Group representations 1 Character table of a finite group

May 3, 2021

Character table of a finite group - the notation

Let G be a finite group, C_1, C_2, \ldots, C_k the list of all its conjugacy classes, in particular, $G = \dot{\cup}_{i=1}^k C_i$. For $i=1,\ldots,k$ we set $n_i := |C_i|$. In each C_i fix some $g_i \in C_i$. Assume that $\mathbb F$ is algebraically closed and $\operatorname{char}(\mathbb F) \nmid |G|$. (In today's lecture we mostly assume $\mathbb F = \mathbb C$.) $\varphi_1,\ldots,\varphi_k$ be a list of all irreducible representations of G over $\mathbb F$. For every $1 \le i \le k$ we write χ_i instead of χ_{φ_i} .

Character table of G over \mathbb{F}

Definition

(under the introduced notation) The character table of G over \mathbb{F} is a $k \times k$ matrix over \mathbb{F} whose entry in the (i,j)-th position is $\chi_i(g_j)$.

Properties of G determined by the complex character table

Theorem

Let G be a finite group. The following information can be read from the character table of G over \mathbb{C} .

- a) Which of C_1, C_2, \ldots, C_k contains 1_G
- b) degrees of $\varphi_1, \varphi_2, \dots, \varphi_k$
- c) the order of G
- d) the values n_1, n_2, \ldots, n_k , where $n_i = |C_i|$
- e) Z(G) as a union of some conjugacy classes
- f) $\operatorname{Ker} \varphi_1, \ldots, \operatorname{Ker} \varphi_k$ as unions of some conjugacy classes
- g) [G, G] unions of some conjugacy classes
- h) the lattice of normal subgroups of G

a) How to detect C_j with $C_j = \{1_G\}$

Note that $\chi_i(1_G)$ is the degree of φ_i . So if $C_j=\{1_G\}$, then the j-th column of the character table consists of positive integers. This column has to be orthogonal with respect to a standard scalar product to all the remaining columns in the character table. In particular, there is only one column in the table containing only non-negative real entries.

b),c)How to find |G| in the complex character table

Recall that if $d_i = \chi_i(1_G)$ is the degree of φ_i , then $|G| = \sum_{i=1}^k d_i^2$. The values d_1, d_2, \ldots, d_k are in the *j*-th column of the character table, where $C_j = \{1_G\}$.

d) How to detect
$$n_i = |C_i|$$

Recall the second orthogonality relations for the case $\mathbb{F} = \mathbb{C}$:

$$\sum_{i=1}^{k} \chi_i(g_j) \overline{\chi_i(g_j)} = \frac{|G|}{n_j}$$

So $n_j = \frac{|G|}{||a_i||^2}$, where a_j is the j-th column of the character table.

e) How to find Z(G)

Note that $g \in Z(G)$ if and only if $|\{hgh^{-1} \mid h \in G\}| = 1$. So Z(G) is a union of conjugacy classes of size 1.

$$Z(G) = \cup_{1 \leq i \leq k, |C_i| = 1} C_i$$

Kernels of irreducible representations

Lemma

Let G be a finite group and let $\varphi \in \operatorname{Rep}_{\mathbb{C}}(G)$ be a representation of degree d. Then $g \in \operatorname{Ker} \varphi$ if and only if $\chi_{\varphi}(g) = d$.

Proof: If $g \in \operatorname{Ker} \varphi$, then $\chi_{\varphi}(g)$ equals to the trace of the identity matrix, that is, $\chi_{\varphi}(g) = d$.

Conversely, let $A := [\varphi(g)]_B$ be the matrix of $\varphi(g)$ w.r.t. some basis B and assume $\operatorname{Tr}(A) = d$. Recall A is similar to a matrix C in the Jordan canonical form

$$C = XAX^{-1}$$
.

Observe that $A^{o(g)} = E$, hence also $C^{o(g)} = E$. It is easy to verify that a regular Jordan block have finite order only if it is of size 1. Therefore C has to be diagonal.

the proof, cont.

Let $C = \operatorname{diag}(c_1, c_2, \dots, c_d)$, then $c_i^{o(g)} = 1$ (in particular $|c_i| = 1$) for any $1 \le i \le d$. Observe $d = \operatorname{Tr}(A) = \operatorname{Tr}(C) = c_1 + c_2 + \dots + c_d$. The triangle inequality gives

$$d = |c_1| + |c_2| + \cdots + |c_d| \ge |c_1 + c_2 + \cdots + |c_d| = d$$

and the equality can hold only if $c_1=c_2=\cdots=c_d=:c$. In that case $C=cE\in Z(\mathrm{GL}(d,\mathbb{C}))$ and hence $A=X^{-1}CX=cE$. To conclude the proof observe that $d=\mathrm{Tr}(A)=cd$ implies c=1 and hence $g\in \mathrm{Ker}\ \varphi$.

f) Ker φ_i

Using the lemma it is easy to determine $\operatorname{Ker} \varphi_i$. Recall, we already know its degree d_i . So

$$\operatorname{Ker} \, \varphi_i = \cup_{1 \leq j \leq k, a_{i,j} = d_i} C_j \,,$$

where $a_{i,j}$ is the value in the (i,j)-th position of the character table of G over \mathbb{C} .

Commutant as an intersection of kernels of representations

Lemma

Let G be a finite group. Then

$$[G, G] = \bigcap_{\varphi \in \operatorname{Hom}(G, \mathbb{C}^*)} \operatorname{Ker} \varphi.$$

Proof.

Recall [G,G] is a subgroup of G generated by elements $xyx^{-1}y^{-1}$. Since \mathbb{C}^* is a commutative group, $\varphi(xyx^{-1}y^{-1})=1$ for every $x,y\in G$ and $\varphi\in \mathrm{Hom}(G,\mathbb{C}^*)$. Therefore

$$[G,G] \subseteq \bigcap_{\varphi \in \operatorname{Hom}(G,\mathbb{C}^*)} \operatorname{Ker} \varphi$$
.

Conversely, let $g \in G \setminus [G,G]$. Note that G/[G,G] is a finite abelian group and hence a direct sum of finite cyclic groups. Recall that every finite cyclic group is a subgroup of \mathbb{C}^* . It follows that for every $g \in G \setminus [G,G]$ there exists $f \in \operatorname{Hom}(G/[G,G],\mathbb{C}^*)$ such that $f(g[G,G]) \neq 1$. Let $\varphi := f\pi$, where $\pi \colon G \to G/[G,G]$ is the canonical projection. Then $\varphi \in \operatorname{Hom}(G,\mathbb{C}^*)$ and $\varphi(g) \neq 1$.

f) [G, G] from the complex character table

Let $I \subseteq \{1, \dots, k\}$ be the set indexing degree one representations of G over \mathbb{C} . That is,

$$i \in I \Leftrightarrow d_i = 1$$
.

Further let $J \subseteq \{1, ..., k\}$ be given by

$$j \in J \Leftrightarrow a_{i,j} = 1, \forall i \in I$$

It means that elements of C_j are contained in the kernel of every degree one representation of G over \mathbb{C} .

Then the lemma implies

$$[G,G]=\cup_{j\in J}C_j.$$

The lattice of normal subgroups

The idea is that if G is a finite group and N is its normal subgroup, then

$$N = \bigcap_{i \in I} \operatorname{Ker} \varphi_i$$

where $I \subseteq \{1, 2, \dots, k\}$ satisfies

$$i \in I \Leftrightarrow N \subseteq \operatorname{Ker} \varphi_i$$

The structural constants of $Z(\mathbb{F}G)$ w.r.t. a homework basis

Fix $i,j,\ell\in\{1,2,\ldots,k\}$ and consider conjugacy classes C_i,C_j,C_ℓ . For a fixed element $g\in C_\ell$ consider the number of ways how g can be written as a product of an element from C_i and an element from C_j . That is,

$$|\{(x,y) \mid x \in C_i, y \in C_j, g = xy\}|$$

Lemma

This quantity depends only on i, j, ℓ and not on the choice of g

proof of the lemma

Assume that $g,g'\in C_\ell$ and consider sets

$$X_g = \{(x, y) \mid x \in C_i, y \in C_j, g = xy\}$$

$$X_{g'} = \{(x, y) \mid x \in C_i, y \in C_j, g' = xy\}$$

Since g, g' are in the same conjugacy class, there exists $h \in G$ such that $g' = hgh^{-1}$.

Then it is easy to see that

$$(x,y) \in X_g \mapsto (hxh^{-1}, hyh^{-1}) \in X_{g'}$$

$$(x,y) \in X_{g'} \mapsto (h^{-1}xh, h^{-1}yh) \in X_g$$

are mutually inverse bijections between X_g and $X_{g'}$

The structural constants of $Z(\mathbb{F}G)$ w.r.t. a homework basis 2

Definition

For $i, j, \ell \in \{1, 2, \dots, k\}$ we define

$$h_{i,j,\ell} = |\{(x,y) \mid x \in C_i, y \in C_j, xy = g\}|$$

where g is a fixed element of C_{ℓ} .

Back to homework # 1: If G is a finite group, $Z(\mathbb{F}G)$ has a basis z_1, z_2, \dots, z_k , where $z_i = \sum_{g \in C_i} \delta_g$. The structural constants of $Z(\mathbb{F}G)$ w.r.t. this basis says how $z_i * z_i$ can be expressed as a linear combination of z_1, z_2, \ldots, z_k .

Assume $z_i * z_j = \sum_{\sigma \in G} c_{\sigma} \delta_{\sigma}$, Using the distributivity of * it is easy to compute that

$$c_g = |\{(x, y) \mid x \in C_i, y \in C_i, xy = g\}|.1_{\mathbb{F}}$$

Therefore

$$z_i*z_j=\sum_{\ell=1}^k h_{i,j,\ell}z_\ell$$

Yet another application of Schur's lemma

Lemma

Let G be a finite group, \mathbb{F} an algebraically closed field, $\operatorname{char}(\mathbb{F}) \nmid |G|$. Let $\psi \colon G \to \operatorname{GL}(d,\mathbb{F})$ be an irreducible matrix representation and $C \subseteq G$ a conjugacy class. Then

$$\sum_{g\in\mathcal{C}}\psi(g)=\lambda\mathcal{E}\,,$$

where $\lambda = \frac{|C|}{d} \chi_{\psi}(c)$, for any $c \in C$.

Proof of the lemma

Proof.

Let $X:=\sum_{g\in G}\psi(g)$. Then it is easy to verify $\psi(h)X=X\psi(h)$ for every $h\in G$. Part b) of Schur's lemma for irreducible matrix representations now gives $X=\lambda E$ for some $\lambda\in\mathbb{F}$.

Apply trace on both sides of the equality $\sum_{g \in C} \psi(g) = \lambda E$ to obtain

$$|C|\chi_{\psi}(c)=d\lambda$$

Recall that if $\operatorname{char}(\mathbb{F}) \nmid |G|$, the degree of any irreducible representation of G over \mathbb{F} does not divide |G|. Therefore $\lambda = \frac{|C|}{d} \chi_{\psi}(c)$ for any $c \in C$.

Relating λ 's and $h_{i,j,\ell}$

Let G be a finite group, \mathbb{F} algebraically closed and $\operatorname{char}(\mathbb{F}) \nmid |G|$. Assume again that conjugacy classes of G are labeled by C_1, C_2, \ldots, C_k .

For an irreducible (matrix) representation $\psi \colon G \to \mathrm{GL}(d,\mathbb{F})$ let $\lambda_i^{\psi} \in \mathbb{F}$ be such that

$$\sum_{g \in C_i} \psi(g) = \lambda_i^{\psi} E.$$

Then

$$\lambda_i^{\psi} \lambda_j^{\psi} = \sum_{\ell=1}^k h_{i,j,\ell} \lambda_{\ell}^{\psi}$$

Of course, if we consider irreducible (linear) representation $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$, we define λ_i^{φ} by

$$\sum_{g \in C_i} \varphi(g) = \lambda_i^{\varphi} 1_V.$$

What infromation is encoded in the complex character table?

Theorem

The structural constants $h_{i,j,\ell}$ can be computed from the character table of G over \mathbb{C} .

proof Recall C_1, C_2, \ldots, C_k are the conjugacy classes of G, $\varphi_1, \varphi_2, \ldots, \varphi_k$ is a list of all distinct irreducible representations of G over \mathbb{C} . The character table is a matrix $A = (a_{i,j})_{1 \leq i,j,\leq k}$, where $a_{i,j}$ is the value χ_i has on C_j .

Let $\lambda_j^{\varphi_i} = \frac{|C_j|}{d_i} a_{i,j} = \frac{|C_j|}{\chi_i(1_G)} \chi_i(g_j)$. Note that $\lambda_j^{\varphi_i}$ are given by the matrix A.

Moreover for every $i, j, \ell \in \{1, 2, \dots, k\}$

$$\lambda_{j}^{\varphi_{i}}\lambda_{\ell}^{\varphi_{i}}=\sum_{m=1}^{k}h_{j,\ell,m}\lambda_{m}^{\varphi_{i}}$$

the proof, cont.

Fix $j, \ell \in \{1, 2, ..., k\}$.

Let Λ be a $k \times k$ complex matrix whose value at the position (m, i) is $\lambda_m^{\varphi_i}$. Formulae from the previous slide can be written in matrix form as

$$(\lambda_j^{\varphi_1}\lambda_\ell^{\varphi_1},\lambda_j^{\varphi_2}\lambda_\ell^{\varphi_2},\ldots,\lambda_j^{\varphi_k}\lambda_\ell^{\varphi_k})=(h_{j,\ell,1},h_{j,\ell,2},\ldots,h_{j,\ell,k})\Lambda$$

Note that if we prove that Λ is regular, then the values $h_{j,\ell,1},h_{j,\ell,2},\ldots,h_{j,\ell,k}$ can be computed from this equality and, in particular, are determined by the matrix A. Since we can do such a computation for any $j,\ell\in\{1,2,\ldots,k\}$,

why is Λ regular?

Note that Λ^T is a product of three regular matrices:

$$\Lambda^{T} = \operatorname{diag}(\frac{1}{d_{1}}, \frac{1}{d_{2}}, \dots, \frac{1}{d_{k}}) \cdot A \cdot \operatorname{diag}(|C_{1}|, |C_{2}|, \dots, |C_{k}|)$$

(in the position (u,v) of the matrix on the RHS there is $\frac{|\mathcal{C}_v|}{d_u}a_{u,v}=\lambda_v^{\varphi_u}$)

That's all for today

Thank you for your attention