Group representations 1

Consequeces of orthogonality relations, character tables

April 26, 2021

Some consequences of orthogonality relations - a reminder

Let G be a finite group, let \mathbb{F} be a field. Consider the space

$$V := \{f \mid f \colon G \to \mathbb{F}\}$$

of all \mathbb{F} -valued functions on G with point-wise linear structure:

$$f_1 + f_2 \colon g \mapsto f_1(g) + f_2(g), g \in G$$

$$tf \colon g \mapsto tf(g), g \in G$$

for $f_1, f_2, f \in V$ and $t \in \mathbb{F}$.

Let U be the subspace of V consisting of all functions which are constant on conjugacy classes of G, i.e.

$$U := \{ f \in V \mid f(x) = f(y) \text{ whenever } \exists z \in G \ y = zxz^{-1} \}.$$

Note that if $\mathbb{F}G$ is understand as the set of all \mathbb{F} -valued functions on G, then U is exactly the center of $\mathbb{F}G$.

A bilinear form on V - a reminder

Assume that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Then we define a bilinear form $b \colon V \times V \to \mathbb{F}$ by the rule

$$b(f_1, f_2) := \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1}), f_1, f_2 \in V$$

Recall that

- lacksquare $\chi_{arphi} \in U$ for every (matrix) representation arphi of G over $\mathbb F$
- ▶ $b(\chi_{\varphi}, \chi_{\psi}) = 0$ if φ, ψ are non-equivalent irreducible (matrix) representations of G over \mathbb{F}
- ▶ $b(\chi_{\varphi}, \chi_{\varphi}) = 1_{\mathbb{F}}$ if \mathbb{F} is algebraically closed and φ is an irreducible (matrix) representation of G over \mathbb{F} .

Multiplicities

Let G be a finite group, \mathbb{F} a field such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Let $\varphi_1, \varphi_2, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$ be the list of all irreducible representations of G over \mathbb{F} up to equivalence.

For every representation $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$ of finite degreee there are $n_1, n_2, \ldots, n_k \in \mathbb{N}_0$ such that φ is equivalent to

$$\overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{n_1} \oplus \overbrace{\varphi_2 \oplus \cdots \oplus \varphi_2}^{n_2} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{n_k}$$

Numbers n_1, \ldots, n_k are uniquely determined by φ and n_i is called the multiplicity of φ_i in φ .

The uniqueness of n_1, n_2, \dots, n_k is a consequence of the Krull-Schmidt theorem.

For algebraically closed fields of characteristic 0 multiplicities can be defined via characters.

Characters and multiplicity

Let us keep the previous notation but assume also that \mathbb{F} is algebraically closed and $\operatorname{char}(\mathbb{F})=0$.

Maschke's theorem gives $n_1, n_2, \ldots, n_k \in \mathbb{N}_0$ such that φ is equivalent to

$$\overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{n_1} \oplus \overbrace{\varphi_2 \oplus \cdots \oplus \varphi_2}^{n_2} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{n_k}$$

Then $\chi_{\varphi} = \sum_{i=1}^{k} n_i \chi_{\varphi_i}$ and, consequently,

$$b(\chi_{\varphi},\chi_{\varphi_i})=n_i1_{\mathbb{F}}$$

The multiplicity of φ_i in φ can be therefore computed as $b(\chi_{\varphi}, \chi_{\varphi_i})$.

$b(\chi_{\varphi},\chi_{\psi})$

Assume now G finite, \mathbb{F} algebraically closed and $\operatorname{char}(\mathbb{F}) \nmid |G|$. Let $\varphi, \psi \in \operatorname{Rep}_{\mathbb{F}}(G)$ of finite degree. Let n_i be the multiplicity of φ_i in φ and let m_i be the multiplicity of φ_i in ψ . That is,

$$\varphi \simeq \overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{n_1} \oplus \overbrace{\varphi_2 \oplus \cdots \oplus \varphi_2}^{n_2} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{n_k}$$

$$\psi \simeq \overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{m_1} \oplus \overbrace{\varphi_2 \oplus \cdots \oplus \varphi_2}^{m_2} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{m_k}$$

Using the bilinearity and $b(\chi_{\varphi_i},\chi_{\varphi_i})=\delta_{i,j}1_{\mathbb{F}}$ we have

$$b(\chi_{\varphi},\chi_{\psi}) = b(\sum_{i=1}^k n_i \chi_{\varphi_i}, \sum_{i=1}^k m_i \chi_{\varphi_i}) = \sum_{i=1}^k n_i m_i.1_{\mathbb{F}}$$

Intertwining number

Assume $\varphi, \psi \in \operatorname{Rep}_{\mathbb{F}}(G)$ of finite degree. The set of morphisms $\operatorname{Rep}_{\mathbb{F}}(\varphi, \psi)$ has a canonical structure of an \mathbb{F} -space. Its dimension is called the intertwining number of φ and ψ

Proposition

Assume G is a finite group, \mathbb{F} algebraically closed such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Let $\varphi_1, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$ be a list of all distinct irreducible representations of G over \mathbb{F} up to equivalence and $\varphi, \psi \in \operatorname{Rep}_{\mathbb{F}}(G)$ be representations of finite degree. Then the intertwining number of φ and ψ is $\sum_{i=1}^k n_i m_i$, where n_i is the multiplicity of φ_i in φ and m_i is the multiplicity of φ_i in ψ .

Note that if we assume also $\operatorname{char}(\mathbb{F}) = 0$ then $b(\chi_{\varphi}, \chi_{\psi})$ is essentially the intertwining number of φ and ψ .

The summary

Theorem

Let G be a finite group, \mathbb{F} algebraically closed field of characteristic 0. Then

- a) If φ and ψ are representations of G over \mathbb{F} of finite degree, then φ and ψ are equivalent if and only if $\chi_{\varphi} = \chi_{\psi}$.
- b) If $\varphi \in \operatorname{Rep}_{\mathbb{F}}(G)$ has finite degree then φ is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \chi_{\varphi}(g^{-1}) = 1$$

Proof.

- a) The direct implication is a general property of characters, the converse is a consequence of the fact that if $\chi_{\varphi}=\chi_{\psi}$ then for every $\theta\in\operatorname{Rep}_{\mathbb{F}}(G)$ irreducible, then $b(\chi_{\theta},\chi_{\varphi})=b(\chi_{\theta},\chi_{\psi})$. Therefore the multiplicity of θ in φ is the same as the multiplicity of θ in ψ . In particular, φ and ψ are equivalent.
- b) The direct implication follows from the Schur's lemma (and does not need $\operatorname{char}(\mathbb{F})=0$). The converse follows from the fact that the intertwining number of a representation which is not irreducible is always at least 2.

Character table of a finite group - the notation

Let G be a finite group, C_1, C_2, \ldots, C_k the list of all its conjugacy classes, in particular, $G = \dot{\cup}_{i=1}^k C_i$. For $i=1,\ldots,k$ we set $n_i := |C_i|$. In each C_i fix some $g_i \in C_i$. Assume that $\mathbb F$ is algebraically closed and $\operatorname{char}(\mathbb F) \nmid |G|$. $\varphi_1,\ldots,\varphi_k$ be a list of all irreducible representations of G over $\mathbb F$. For every $1 \le i \le k$ we write χ_i instead of χ_{φ_i} .

Character table of G over \mathbb{F}

Definition

(under the introduced notation) The character table of G over \mathbb{F} is a $k \times k$ matrix over \mathbb{F} whose entry in the (i,j)-th position is $\chi_i(g_j)$.

Remark

Note that the table keeps information about the values of characters of every irreducible representation of G over \mathbb{F} . Indeed, every such a representation is equivalent to exactly one representation from the list $\varphi_1, \ldots, \varphi_k$ and every character is constant on conjugacy classes of G.

The character table is regular

Proposition

(keeping the introduced notation) Let A be a character table of G over \mathbb{F} . Then A is regular, in fact, $A^{-1} = B = (b_{i,j})_{1 \leq i,j \leq k}$, where $b_{i,j} = \frac{n_i}{|G|} \chi_j(g_i^{-1})$.

Proof.

Recall $\frac{1}{|G|}\sum_{g\in G}\chi_i(g)\chi_j(g^{-1})=\delta_{i,j}$ for every $1\leq i,j\leq k$. Note that if $g_i^{-1}\in C_j$ then $x\mapsto x^{-1}$ is a bijection between C_i and C_j . In particular, $n_i=|C_i|=|C_j|$. Thus $\sum_{g\in G}\chi_i(g)\chi_j(g^{-1})=\sum_{t=1}^k\sum_{g\in C_t}\chi_i(g)\chi_j(g^{-1})=\sum_{t=1}^kn_t\chi_i(g_t)\chi_j(g_t^{-1})$. The first orthogonality relations can be rewritten as $\frac{1}{|G|}\sum_{t=1}^kn_t\chi_i(g_t)\chi_j(g_t^{-1})=\delta_{i,j}$. This equation can be read as 'the product of the i-th row of A and the j-th column of B is $\delta_{i,j}$ ' which is AB=E. In particular, A is regular and $A^{-1}=B$.

Second orthogonality relations

Theorem

(keeping the introduced notation) Let $x, y \in G$. Then

- a) If x, y are not conjugated, then $\sum_{i=1}^{k} \chi_i(x) \chi_i(y^{-1}) = 0$
- b) If $x,y \in C_j$, then $\sum_{i=1}^k \chi_i(x)\chi_i(y^{-1}) = \frac{|G|}{|C_j|}1_{\mathbb{F}}$

Proof.

In the proof of the previous Proposition we established equality AB = E. Of course, this implies BA = E. Multiply the *i*-th row of B and j-th column of A gives

$$\sum_{t=1}^k \frac{n_i}{|G|} \chi_t(g_i^{-1}) \chi_t(g_j) = \delta_{i,j}$$

If $x \in C_j$ and $y \in C_i$ and $i \neq j$ we obtain a). If $x, y \in C_i$ the equality (with i = j) gives b).

Second orthogonality relations over $\ensuremath{\mathbb{C}}$

Theorem

(keeping the introduced notation) Assume that $\mathbb{F} = \mathbb{C}$. Let $x,y \in G$. Then

- a) If x, y are not conjugated, then $\sum_{i=1}^{k} \chi_i(x) \overline{\chi_i(y)} = 0$
- b) If $x, y \in C_j$, then $\sum_{i=1}^k \chi_i(x) \overline{\chi_i(y)} = \frac{|G|}{|C_j|}$.

Properties of G determined by the complex character table

Theorem

Let G be a finite group. The following information can be read from the character table of G over \mathbb{C} .

- a) Which of C_1, C_2, \ldots, C_k contains 1_G
- b) degrees of $\varphi_1, \varphi_2, \dots, \varphi_k$
- c) the order of G
- d) the values n_1, n_2, \ldots, n_k , where $n_i = |C_i|$
- e) Z(G) as a union of some conjugacy classes
- f) Ker $\varphi_1, \ldots, \text{Ker } \varphi_k$ as unions of some conjugacy classes
- g) [G, G] unions of some conjugacy classes
- h) the lattice of normal subgroups of G

a) How to detect C_j with $C_j = \{1_G\}$

Note that $\chi_i(1_G)$ is the degree of φ_i . So if $C_j=\{1_G\}$, then the j-th column of the character table consists of positive integers. This column has to be orthogonal with respect to a standard scalar product to all the remaining columns in the character table. In particular, there is only one column in the table containing only non-negative real entries.

b),c)How to find |G| in the complex character table

Recall that if $d_i = \chi_i(1_G)$ is the degree of φ_i , then $|G| = \sum_{i=1}^k d_i^2$. The values d_1, d_2, \ldots, d_k are in the *j*-th column of the character table, where $C_i = \{1_G\}$.

d) How to detect
$$n_i = |C_i|$$

Recall the second orthogonality relations for the case $\mathbb{F} = \mathbb{C}$:

$$\sum_{i=1}^k \chi_i(g_j) \overline{\chi_i(g_j)} = \frac{|G|}{n_j}$$

So $n_j = \frac{|G|}{||a_i||^2}$, where a_j is the j-th column of the character table.

e) How to find Z(G)

Note that $g \in Z(G)$ if and only if $|\{hgh^{-1} \mid h \in G\}| = 1$. So Z(G) is a union of conjugacy classes of size 1.

$$Z(G) = \cup_{1 \leq i \leq k, |C_i| = 1} C_i$$

That's all for today

Thank you for your attention