Group representations 1 Orthogonality relations of characters

April 19, 2021

Some applications

Corollary

Let G be a finite group. If $\varphi \colon G \to \mathrm{GL}(n,\mathbb{F})$ and $\psi \colon G \to \mathrm{GL}(m,\mathbb{F})$ are irreducible matrix representations of G over \mathbb{F} which are not equivalent and $X \in \mathrm{M}_{n,m}(\mathbb{F})$ is an arbitrary matrix then

$$\sum_{g \in G} \varphi(g) X \psi(g^{-1}) = 0$$

Proof.

Let $Y := \sum_{g \in G} \varphi(g) X \psi(g^{-1})$. Then for every $h \in G$ is

$$\varphi(h)Y = \sum_{g \in G} \varphi(hg)X\psi(g^{-1}h^{-1}h) = \left[\sum_{g \in G} \varphi(hg)X\psi((hg)^{-1})\right]\psi(h).$$

In other words $\varphi(h)Y=Y\psi(h)$ for every $h\in G$. By Schur's lemma, Y=0 or m=n and Y is regular. If Y is regular, we obtain $\varphi(h)=Y\psi(h)Y^{-1}$ for every $h\in G$, that is, φ and ψ are equivalent.

Some applications, cont.

Corollary

Let G be a finite group. If $\varphi \colon G \to \mathrm{GL}(n,\mathbb{F})$ is an irreducible matrix representation and \mathbb{F} is algebraically closed, then for every $X \in \mathrm{M}_n(\mathbb{F})$ there exists $\lambda \in \mathbb{F}$ such that

$$\sum_{g \in G} \varphi(g) X \varphi(g^{-1}) = \lambda E$$

(the proof is similar as the proof of the previous corollary)

Notation

When talking about matrix representation of group G we will use the following notation.

If $\psi \colon G \to \mathrm{GL}(n,\mathbb{F})$ is a matrix representation of G over \mathbb{F} of degree n, then for every $1 \le i,j \le n$ we denote

$$\psi_{i,j}\colon G\to \mathbb{F}$$

the coordinate function of ψ . That is, for $g \in G$, $\psi_{i,j}(g)$ is the value in the (i,j)-th position of the matrix $\psi(g)$.

First important corollary of Schur's lemma

Proposition

Let G be a finite group $\varphi \colon G \to \operatorname{GL}(n,\mathbb{F})$, $\psi \colon G \to \operatorname{GL}(m,\mathbb{F})$ two irreducible matrix representations of G over \mathbb{F} . If φ and ψ are not equivalent then for every $1 \le i,j \le n$ and $1 \le k,\ell \le m$ we have

$$\sum_{g\in G}\varphi_{i,j}(g)\psi_{k,\ell}(g^{-1})=0.$$

Proof: Since φ and ψ are not equivalent and irreducible, we have

$$0 = \sum_{g \in G} \varphi(g) X \psi(g^{-1})$$

for every $X \in \mathrm{M}_{n,m}(\mathbb{F})$. Consider the particular choice $X = E_{j,k}$ (a $n \times m$ matrix being zero almost everywhere with the only exception in the position (j,k), where the value is one).

the proof, cont.

The general formula for the value in the (i,ℓ) -th position of the product in $\varphi(g)X\psi(g^{-1})$, i.e.

$$[\varphi(g)X\psi(g^{-1})]_{i,\ell} = \sum_{u,v} \varphi_{i,u}(g) \cdot [X]_{u,v} \cdot \psi_{v,\ell}(g^{-1})$$

then simplifies to

$$[\varphi(g)E_{j,k}\psi(g^{-1})]_{i,\ell}=\varphi_{i,j}(g)\psi_{k,\ell}(g^{-1})$$

Therefore

$$0 = [\sum_{g \in G} \varphi(g) E_{j,k} \psi(g^{-1})]_{i,\ell} = \sum_{g \in G} \varphi_{i,j}(g) \psi_{k,\ell}(g^{-1})$$

as we wanted to prove.

Orthogonality of characters - nonequivalent representations

Theorem

Let G be a finite group, $\varphi \colon G \to \mathrm{GL}(n,\mathbb{F})$, $\psi \colon G \to \mathrm{GL}(m,\mathbb{F})$ irreducible representations which are not equivalent. Then

$$\sum_{g\in G}\chi_{\varphi}(g)\chi_{\psi}(g^{-1})=0$$

Proof.

The proof of this just a straightforward application of the previous Proposition:

$$\sum_{g\in G}\chi_{\varphi}(g)\chi_{\psi}(g^{-1})=\sum_{g\in G}(\sum_{i=1}^n\varphi_{i,i}(g))(\sum_{j=1}^m\psi_{j,j}(g^{-1}))=$$

$$\left(\sum_{i=1}^{n}\sum_{j=1}^{m}\left(\sum_{g\in G}\varphi_{i,i}(g)\psi_{j,j}(g^{-1})\right)=0\right)$$

Second important corollary of Schur's lemma

Proposition

Let G be a finite group, $\mathbb F$ algebraically closed field, $\varphi\colon G\to \mathrm{GL}(n,\mathbb F)$ an irreducible matrix representation of G over $\mathbb F$. Then

$$n\sum_{g\in G}\varphi_{i,j}(g)\varphi_{k,\ell}(g^{-1})=\delta_{i,\ell}\delta_{j,k}|G|1_{\mathbb{F}}$$

Proof: Recall we know that $\sum_{g \in G} \varphi(g) X \varphi(g^{-1}) = \lambda_X E$ for some $\lambda_X \in \mathbb{F}$. Again we consider the particular choice $X = E_{j,k}$,

$$[\varphi(g)E_{j,k}\varphi(g^{-1})]_{i,\ell}=\varphi_{i,j}(g)\varphi_{k,\ell}(g^{-1})$$

Therefore $\sum_{g \in G} \varphi_{i,j}(g) \varphi_{k,\ell}(g^{-1}) = 0$ if $i \neq \ell$.

The proof, cont.

Similarly, if $j \neq k$, then

$$\begin{split} \sum_{g \in G} \varphi_{i,j}(g) \varphi_{k,\ell}(g^{-1}) &= \sum_{g \in G} \varphi_{k,\ell}(g^{-1}) \varphi_{i,j}(g) = \\ &\sum_{g \in G} \varphi_{k,\ell}(g) \varphi_{i,j}(g^{-1}) = 0 \,. \end{split}$$

So it remains to prove that

$$n\sum_{g\in G} \varphi_{i,j}(g)\varphi_{j,i}(g^{-1}) = |G|.1_{\mathbb{F}}.$$

The proof, final part

Consider the formula $\sum_{g \in G} \varphi(g) X \varphi(g^{-1}) = \lambda_X E$ for the choice $X = E_{j,j}$. There exists $\lambda_j \in \mathbb{F}$ such that

$$\sum_{g \in G} \varphi(g) E_{j,j} \varphi(g^{-1}) = \lambda_j E, \sum_{g \in G} \varphi_{i,j}(g) \varphi_{j,i}(g^{-1}) = \lambda_j$$

for every $1 \le i \le n$.

Compute the trace of $\sum_{g \in G} \varphi(g) E_{j,j} \varphi(g^{-1})$ in two ways:

$$\operatorname{Tr}(\sum_{g\in G}\varphi(g)E_{j,j}\varphi(g^{-1}))=\sum_{g\in G}\operatorname{Tr}(\varphi(g)E_{j,j}\varphi(g)^{-1})=$$

$$|G|\mathrm{Tr}(E_{j,j})=|G|.1_{\mathbb{F}}$$

Also $\operatorname{Tr}(\sum_{g\in G}\varphi(g)E_{j,j}\varphi(g^{-1}))=\operatorname{Tr}(\lambda_jE)=n\lambda_j$. It follows that $n\lambda_j=n\sum_{g\in G}\varphi_{i,j}(g)\varphi_{j,i}(g^{-1})=|G|.1_{\mathbb{F}}$ as we wanted to show.

Important remark

Remark

Assume that G is a finite group, $\mathbb F$ algebraically closed field such that $\operatorname{char}(\mathbb F) \nmid |G|$. Then $\operatorname{char}(\mathbb F)$ does not divide a degree of any irreducible matrix representation of G over $\mathbb F$

Proof.

Let $\varphi \colon G \to \mathrm{GL}(n,\mathbb{F})$ be a matrix representation of G over \mathbb{F} . Look at the formula

$$n\sum_{g\in G}\varphi_{i,j}(g)\varphi_{k,\ell}(g^{-1})=\delta_{i,\ell}\delta_{j,k}|G|1_{\mathbb{F}}$$

If $\operatorname{char}(\mathbb{F}) \mid n$, the left hand side of this formula is always zero. On the other hand, the right hand side of can be $|G|.1_{\mathbb{F}} \neq 0$ if $i = \ell$ and j = k and $\operatorname{char}(\mathbb{F}) \nmid |G|$.

Theorem

Let G be a finite group, \mathbb{F} algebraically closed field such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. If $\varphi, \psi \colon G \to \operatorname{GL}(n, \mathbb{F})$ are equivalent irreducible matrix representations of G over \mathbb{F} , then

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \chi_{\psi}(g^{-1}) = 1_{\mathbb{F}}.$$

Proof.

Since equivalent representations have equal characters, we may assume $\varphi=\psi$. Therefore

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \chi_{\psi}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} (\sum_{i=1}^{n} \varphi_{i,i}(g)) (\sum_{j=1}^{n} \varphi_{j,j}(g^{-1})) =$$

$$\frac{1}{|G|} \sum_{i,j=1}^{n} \sum_{g \in G} \varphi_{i,i}(g) \varphi_{j,j}(g^{-1}) = \frac{1}{|G|} \sum_{i=1}^{n} \sum_{g \in G} \varphi_{i,i}(g) \varphi_{i,i}(g^{-1}) = \frac{n|G|}{|G|n} = 1$$

The summary of orthogonality relations

Theorem

Let G be a finite group, \mathbb{F} an algebraically closed field such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Consider two irreducible matrix representations φ, ψ of G over \mathbb{F} . Then

- a) If φ and ψ are equivalent, then $\frac{1}{|G|}\sum_{g\in G}\chi_{\varphi}(g)\chi_{\psi}(g^{-1})=1_{\mathbb{F}}$
- b) If φ and ψ are not equivalent, then $\frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \chi_{\psi}(g^{-1}) = 0$

Remark

Of course, the same theorem holds for linear representations of finite degree.

Definition

We call the relations from this theorem as 'the first orthogonality relations of characters'.

A particular case of $\mathbb{F} = \mathbb{C}$

Recall that if φ is a matrix representation of a finite group G over $\mathbb C$ then $\chi_{\varphi}(g^{-1})=\overline{\chi_{\varphi}(g)}$ for every $g\in G$. The previous theorem then says that that characters of non-equivalent irreducible representations are orthogonal with respect to the standard scalar product on the space of complex valued functions of G.

Theorem

Let G be a finite group and φ, ψ irreducible complex (matrix) representations of G. Then

a) If φ and ψ are not equivalent, then

$$\sum_{g\in G}\chi_{\varphi}(g)\overline{\chi_{\psi}(g)}=0$$

b) If φ and ψ are equivalent, then

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \overline{\chi_{\psi}(g)} = 1$$

Some consequences of orthogonality relations

Let G be a finite group, let \mathbb{F} be a field. Consider the space

$$V := \{f \mid f \colon G \to \mathbb{F}\}$$

of all \mathbb{F} -valued functions on G with point-wise linear structure:

$$f_1 + f_2 \colon g \mapsto f_1(g) + f_2(g), g \in G$$

$$tf \colon g \mapsto tf(g), g \in G$$

for $f_1, f_2, f \in V$ and $t \in \mathbb{F}$.

Let U be the subspace of V consisting of all functions which are constant on conjugacy classes of G, i.e.

$$U := \{ f \in V \mid f(x) = f(y) \text{ whenever } \exists z \in G \ y = zxz^{-1} \}.$$

Note that if $\mathbb{F}G$ is understand as the set of all \mathbb{F} -valued functions on G, then U is exactly the center of $\mathbb{F}G$.

A bilinear form on V

Assume that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Then we define a bilinear form $b \colon V \times V \to \mathbb{F}$ by the rule

$$b(f_1, f_2) := \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1}), f_1, f_2 \in V$$

Recall that

- lacksquare $\chi_{arphi} \in U$ for every (matrix) representation arphi of G over $\mathbb F$
- ▶ $b(\chi_{\varphi}, \chi_{\psi}) = 0$ if φ, ψ are non-equivalent irreducible (matrix) representations of G over \mathbb{F}
- ▶ $b(\chi_{\varphi}, \chi_{\varphi}) = 1_{\mathbb{F}}$ if \mathbb{F} is algebraically closed and φ is an irreducible (matrix) representation of G over \mathbb{F} .

A basis of U

Proposition

Let G be a finite group, \mathbb{F} and algebraically closed field such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. Let $\varphi_1, \varphi_2, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$ be a list of all different irreducible representations of G over \mathbb{F} up to equivalence (i.e., every irreducible representation of $\operatorname{Rep}_{\mathbb{F}}(G)$ is equivalent to exactly one representation on this list). Then $\chi_{\varphi_1}, \chi_{\varphi_2}, \ldots, \chi_{\varphi_k}$ is a basis of U.

Proof.

Recall $k=\dim_{\mathbb{F}}(U)=\#$ of conjugacy classes in G. So it is sufficient to verify linear independence of $\chi_{\varphi_1},\chi_{\varphi_2},\ldots,\chi_{\varphi_k}$. Assume $t_1,t_2,\ldots,t_k\in\mathbb{F}$ are such that $\sum_{i=1}^k t_i\chi_{\varphi_i}=0$. Then

$$0 = b(\sum_{i=1}^k t_i \chi_{\varphi_i}, \chi_{\varphi_j}) = t_j$$

for every $1 \le j \le k$. Therefore the characters of the representations on the list are linearly independent elements of U.

End

Thank you for your attention.