## Group representations 1

Wedderburn-Artin theorem in Group representations, part 2

March 29, 2021

## Small recapitulation

Let G be a finite group, let  $\mathbb{F}$  an algebraically closed field,  $\operatorname{char}(\mathbb{F}) \nmid |G|$ .

- ▶ Then every  $\mathbb{F}G$ -module is a direct sum of simple modules.
- $ightharpoons \mathbb{F} G \simeq \mathrm{M}_{n_1}(\mathbb{F}) imes \mathrm{M}_{n_2}(\mathbb{F}) imes \cdots imes \mathrm{M}_{n_k}(\mathbb{F})$  as  $\mathbb{F}$ -algebras.
- ▶ The basic goal is to find all simple left  $\mathbb{F}G$ -modules up to isomorphism ( or all irreducible representations of G over  $\mathbb{F}$  up to equivalence).
- ► This is roughly the same problem as to find explicit expression of the isomorphism above.

## Centers of matrix rings

If R is a ring, the center of R is the set

$$Z(R) = \{ r \in R \mid \forall s \in R \ rs = sr \}$$

Let  $R = \mathrm{M}_{n_1}(\mathbb{F}) \times \mathrm{M}_{n_2}(\mathbb{F}) \times \cdots \times M_{n_k}(\mathbb{F})$ . Then Z(R) can be determined using these two easy facts (proofs of these are subjects of the last problem session).

### Exercise

- 1. If  $R_1$  and  $R_2$  are rings then  $Z(R_1 \times R_2) = Z(R_1) \times Z(R_2)$
- 2.  $Z(M_n(\mathbb{F})) = \{\lambda E \mid \lambda \in \mathbb{F}\}$

For example, if  $R = \mathbb{F} \times \mathrm{M}_2(\mathbb{F}) \times \mathrm{M}_3(\mathbb{F})$ , then

$$Z(R) = \left\{ \left( (a), \left( \begin{array}{cc} b & 0 \\ 0 & b \end{array} \right), \left( \begin{array}{cc} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{array} \right) \right) \mid a, b, c \in \mathbb{F} \right\}$$

### Back to Homework # 1

### Definition

We say that G has k distinct irreducible representations over  $\mathbb{F}$  up to equivalence if there are  $\varphi_1, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$  irreducible such that every irreducible  $\varphi \in \operatorname{Rep}_{\mathbb{F}}(G)$  is equivalent to exactly one of these representations (in particular if  $\varphi_i$  and  $\varphi_j$  are equivalent, then i = j).

### **Theorem**

Let G be a finite group and let  $\mathbb{F}$  be an algebraically closed field such that  $\operatorname{char}(\mathbb{F}) \nmid |G|$ . Let k be the number of conjugacy classes in G. Then G has k distinct irreducible representations over  $\mathbb{F}$  up to equivalence.

### Proof of the theorem

In the language of  $\mathbb{F}G\operatorname{-Mod}$  we have to prove that there exists simple left  $\mathbb{F}G\operatorname{-modules}\ S_1,\ldots,S_k$  such that every simple left  $\mathbb{F}G\operatorname{-module}$  is isomorphic to exactly one of these modules. The theorem of Maschke implies that  $\mathbb{F}G$  is semisimple artinian. The Wedderburn-Artin theorem gives an isomorphism of  $\mathbb{F}\operatorname{-algebras}$ 

$$\mathbb{F}G \simeq \mathrm{M}_{n_1}(\mathbb{F}) \times \mathrm{M}_{n_2}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_\ell}(\mathbb{F}) =: R.$$

The Homework # 1 gives  $\dim_{\mathbb{F}}(Z(\mathbb{F}G))=k$  while the matrix structure of R gives  $\dim_{\mathbb{F}}(Z(R))=\ell$ , where  $\ell$  can be also interpreted as the number of simple left R-modules up to isomorphism.

Since  $Z(\mathbb{F}G)$  and Z(R) are isomorphic vector spaces, we conclude  $k = \ell$ .

## Endomorphism ring of a module

Let  $\mathbb{F}$  be a field, R an  $\mathbb{F}$ -algebra. For every pair of (right) R-modules M, N the set  $Hom_R(M, N)$  has a natural structure of a vector space over  $\mathbb{F}$ .

If  $f, g \in \operatorname{Hom}_{R}(M, N)$  and  $t \in \mathbb{F}$ , we define

$$f + g: m \mapsto f(m) + g(m), m \in M$$
  
 $tf: m \mapsto t.f(m), m \in M$ 

If M = N, the set  $\operatorname{Hom}_R(M, M) = \operatorname{End}_R(M)$  has a canonical structure of an  $\mathbb{F}$ -algebra:

$$f \cdot g \colon m \mapsto f(g(m)), m \in M$$
  
$$1_{\operatorname{End}_B(M)} := 1_M \colon m \mapsto m, m \in M$$

### Definition

If R is an  $\mathbb{F}$ -algebra and M is an R-module, then the  $\mathbb{F}$ -algebra  $\operatorname{End}_R(M)$  is called the endomorphism algebra of M.



### Schur's lemma for modules

#### Lemma

(Schur) Let R be a ring and M, N simple (left) R-modules. Then

- a) If M, N are not isomorphic then  $\operatorname{Hom}_R(M, N) = 0$ .
- b) If M = N then every nonzero element of  $\operatorname{End}_R(M)$  has an inverse (such rings are called division rings)
- c) If R is a finite-dimensional algebra over an algebraically closed field  $\mathbb{F}$ , then the  $\mathbb{F}$ -algebra  $\operatorname{End}_R(M)$  is isomorphic to  $\mathbb{F}$ .

### Proof.

- a)+b) If  $f \in \operatorname{Hom}_R(M, N)$ , then  $\operatorname{Ker} f \leq M$  and  $\operatorname{Im} f \leq N$ . Since M, N are simple modules only two cases may happen:
  - 1. Ker f = M and hence also Im f = 0, that is, f = 0.
  - 2. Ker f = 0 and hence Im f = N. In this case f is an isomorphism.



## proof of part c)

We want to prove: If R is a finite-dimensional algebra over an algebraically closed field  $\mathbb{F}$ , then the  $\mathbb{F}$ -algebra  $\operatorname{End}_R(M)$  is isomorphic to  $\mathbb{F}$ .

We prove that  $\operatorname{End}_R(M) = \{\lambda 1_M \mid \lambda \in \mathbb{F}\}$ . Then the map

$$\lambda \mapsto \lambda \cdot 1_M, \lambda \in \mathbb{F}$$

gives the isomorphism between  $\mathbb{F}$  and  $\operatorname{End}_R(M)$ .

Recall that  $M \simeq R/I$  for some maximal right ideal of R. In particular,  $\dim_{\mathbb{F}}(M) < \infty$ .

Let  $f \in \operatorname{End}_R(M)$ . Then f can be considered as an element of  $\operatorname{End}_{\mathbb{F}}(M)$ :

$$f(tm) = f((t1_R) \cdot m) = (t1_R) \cdot f(m) = t \cdot f(m), t \in \mathbb{F}, m \in M$$

Let  $\lambda \in \mathbb{F}$  be an eigenvalue of f with eigenvector  $0 \neq m \in M$ .

Then  $f - \lambda \cdot 1_M \in \operatorname{End}_R(M)$  has nontrivial kernel, since  $f(m) = \lambda \cdot m$ .

Since M is a simple R-module,  $M = \text{Ker } (f - \lambda \cdot 1_M)$ , i.e.,

$$f = \lambda \cdot 1_M$$
.

## Comments on the proof of the Wedderburn-Artin theorem

Assume that R is semisimple artinian ring which is also a finite-dimensional  $\mathbb{F}$ -algebra, where  $\mathbb{F}$  is algebraically closed. Then

$$R \simeq \mathrm{M}_{n_1}(\mathbb{F}) \times \mathrm{M}_{n_2}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$$

as  $\mathbb{F}$ -algebras for some  $n_1, n_2, \ldots, n_k \in \mathbb{N}$ . *Idea of the proof:* Decompose  $R_R$  into a direct sum of simple right modules

$$R_R = T_1 \oplus T_2 \oplus \cdots \oplus T_m$$

Group together isomorphic simple modules. If  $S_1, S_2, \ldots, S_k$  are pairwise non-isomorphic simple right modules such that each  $T_i$  is isomorphic to exactly one of these modules, there are  $n_1, n_2, \ldots, n_k \in \mathbb{N}$  such that

$$R_R \simeq S_1^{n_1} \oplus S_2^{n_2} \oplus \cdots \oplus S_k^{n_k}$$



## Some isomorphisms of $\mathbb{F}$ -algebras

The proof is based on the following isomorphisms of  $\mathbb{F}$ -algebras:

$$R \simeq \operatorname{End}_R(R_R), r \mapsto \lambda_r,$$

where  $\lambda_r(s) = rs$  for every  $s \in R$ .

Endomorphism algebras of isomorphic modules are isomorphic. In our case

$$\operatorname{End}_R(R_R) \simeq \operatorname{End}_R(\bigoplus_{i=1}^k S_i^{n_i}).$$

Apply Schur's lemma part a)

$$\operatorname{End}_R(\oplus_{i=1}^k \mathcal{S}_i^{n_i}) \simeq \prod_{i=1}^k \operatorname{End}_R(\mathcal{S}_i^{n_i})$$

The principle from linear algebra - linear maps can be displayed as matrices can be generalized

$$\operatorname{End}_R(S^m) \simeq \operatorname{M}_m(\operatorname{End}_R(S))$$

for every right R-module S and every  $m \in \mathbb{N}$ .

## Some isomorphisms of $\mathbb{F}$ -algebras, cont.

Finally use Schur's lemma part c) to see  $\operatorname{End}_R(S_i) \simeq \mathbb{F}$  and hence also

$$\operatorname{End}_R(S_i^{n_i}) \simeq \operatorname{M}_{n_i}(\mathbb{F})$$

for every  $1 \le i \le n$ . Composing all these isomorphisms we get the desired one:

$$R \simeq \mathrm{M}_{n_1}(\mathbb{F}) \times \mathrm{M}_{n_2}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$$

### The multiplicity

Let us state without a proof a particular case of the Krull-Schmidt theorem:

### **Theorem**

Let R be a ring and let  $S_1, \ldots, S_m, T_1 \ldots T_n$  be simple left R-modules. Then  $S_1 \oplus \cdots \oplus S_m \simeq T_1 \oplus \cdots \oplus T_n$  if and only if n = m and there exists a permutation  $\sigma \in S(\{1, 2, \ldots, n\})$  such that  $S_i \simeq T_{\sigma(i)}$  for every  $i \in \{1, 2, \ldots, n\}$ 

Recall that if R is a semisimple artinian ring, then every left R-module is a direct sum of simple left modules.

### Definition

Let R be a semisimple artinian ring and let M be a finitely generated R-module. Then there are simple modules  $S_1, S_2, \ldots, S_m$  such that  $M \simeq \bigoplus_{i=1}^m S_i$ . If S is a simple left R-module, the *multiplicity of* S in M is defined as

$$|\{i \in \{1,\ldots,m\} \mid S_i \simeq S\}|$$



### An example from the last lecture

Let  $\mathbb{F}$  be a field and assume that

$$R = \mathbb{F} \times M_2(\mathbb{F}) \times M_3(\mathbb{F})$$

Recall there are up to isomorphism 3 different simple *R*-modules:

And  $_RR \simeq S_1 \oplus T_1^2 \oplus U_1^3$ . So the multiplicity of  $S_1$  in  $_RR$  is 1, the multiplicity of  $T_1$  in  $_RR$  is 2 and the multiplicity of  $U_1$  in  $_RR$  is 3. Note that the multiplicity of a simple module in  $_RR$  coincides with its dimension.

### multiplicity = dimension

### Proposition

Assume that R be a semisimple artinian ring which is a finite dimensional  $\mathbb{F}$ -algebra,  $\mathbb{F}$  algebraically closed. For any simple left R-module the multiplicity of S in  ${}_RR$  coincides with  $\dim_{\mathbb{F}}(S)$ .

### Proof.

Use the Wedderburn-Artin theorem, there are  $k \in \mathbb{N}_0$  and  $n_1, n_2, \ldots, n_k \in \mathbb{N}$  such that

$$R \simeq \mathrm{M}_{n_1}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$$

as  $\mathbb{F}$ -algebras. So we may assume

$$R = \mathrm{M}_{n_1}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$$

and in this case we know that there are simple left modules  $S_1, S_2, \ldots, S_k$  pair-wise non-isomorphic such that  ${}_RR \simeq S_1^{n_1} \oplus S_2^{n_2} \oplus \cdots \oplus S_k^{n_k}$ . So the multiplicity of  $S_i$  in R is  $n_i$  which coincides with  $\dim_{\mathbb{F}}(S_i)$ .

## The regular representation

Let G be a finite group,  $\mathbb F$  an algebraically closed field with  $\operatorname{char}(\mathbb F) \nmid |G|$ . Let  $S_1, S_2, \ldots, S_k$  be simple left  $\mathbb F G$  modules such that every simple left  $\mathbb F G$  module is isomorphic to exactly 1 of these modules. We already know that k is the number of conjugacy classes in G. For  $1 \leq i \leq k$  let  $d_i := \dim_{\mathbb F}(S_i)$ . By the previous proposition the multiplicity of  $S_i$  in  $\mathbb F_G \mathbb F G$  is exactly  $d_i$ , so  $\mathbb F G \simeq \bigoplus_{i=1}^k S_i^{d_i}$  as left  $\mathbb F G$ -modules. Now look at dimensions of these modules:  $\dim_{\mathbb F}(\mathbb F G) = |G|$ ,  $\dim_{\mathbb F}(\bigoplus_{i=1}^k S_i^{d_i}) = \sum_{i=1}^k d_i^2$ . Thus we are added.

Thus we conclude

$$|G| = \sum_{i=1}^k d_i^2.$$

# Summary in the language of $\operatorname{Rep}_{\mathbb{F}}(G)$

#### **Theorem**

Let G be a finite group,  $\mathbb{F}$  an algebraically closed field,  $\operatorname{char}(\mathbb{F}) \nmid |G|$ .

- 1. Every representation of G over  $\mathbb{F}$  is equivalent to a direct sum of irreducible representations.
- 2. If k is the number of conjugacy classes of G, then there are  $\varphi_1, \varphi_2, \cdots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$  irreducible such that every irreducible representation of G over  $\mathbb{F}$  is equivalent to exactly one of these representations.
- 3. If  $d_i$  is the degree of  $\varphi_i$  then the multiplicity of  $\varphi_i$  in  $\operatorname{reg}_{\mathbb{F}}(G)$  is  $d_i$

$$\operatorname{reg}_{\mathbb{F}}(G) \simeq \overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{d_1} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{d_k}$$

4. 
$$|G| = \sum_{i=1}^{k} d_i^2$$



# The Krull-Schmidt theorem in $\operatorname{Rep}_{\mathbb{F}}(G)$

#### **Theorem**

Let G be a finite group,  $\mathbb{F}$  an algebraically closed field,  $\operatorname{char}(\mathbb{F}) \nmid |G|$ . Let  $\varphi_1, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{F}}(G)$  be a list of all distinct irreducible representations in  $\operatorname{Rep}_{\mathbb{F}}(G)$  up to equivalence. Then

the representations 
$$\overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{m_1} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{m_k}$$
 and  $\overbrace{\varphi_1 \oplus \cdots \oplus \varphi_1}^{\ell_1} \oplus \cdots \oplus \overbrace{\varphi_k \oplus \cdots \oplus \varphi_k}^{\ell_k}$  are equivalent if and only if  $m_i = \ell_i$  for every  $1 \leq i \leq k$ .

#### Remark

This theorem holds whithout assumptions on  $\mathbb{F}$  and can be generalized also to representations of infinite groups - the only problem is that there can be infinitely many distinct irreducible representations of G over  $\mathbb{F}$ .

### Thank you for your attention

There is no lecture next Monday. But I will try to prepare something for Tuesday, April 6.