Group representations 1 Some examples; Maschke's theorem

March 15, 2021

Representations of \mathbb{Z}_n over \mathbb{C}

Example

Describe all (matrix) representations of \mathbb{Z}_n over \mathbb{C} of finite degree.

Let us start with matrix representations. Let $G := \mathbb{Z}_n$. We have to find $\mathrm{Hom}(G,\mathrm{GL}(d,\mathbb{C}))$ for every $d \in \mathbb{N}$. Recall that

$$\operatorname{Hom}(G,\operatorname{GL}(d,\mathbb{C})) \leftrightarrow \{A \in \operatorname{GL}(d,\mathbb{C}) \mid A^n = E\}$$

$$\psi \mapsto \psi(1)$$

We have to find matrices satisfying $A^n = E$. Recall every matrix is similar to a matrix in Jordan canonical form. From this we see that A has to be diagonalizable.

That is, there exists $X\in \mathrm{GL}(d,\mathbb{C})$ such that

$$XAX^{-1} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$$

where $\lambda_1, \ldots, \lambda_d$ are complex numbers satisfying $\lambda_t^n = 1, t = 1, \ldots, d$.

Representations of \mathbb{Z}_n over \mathbb{C} , cont.

Let ψ_A be the matrix representation corresponding to A, i.e.,

$$\psi_{\mathcal{A}}(g) = \mathcal{A}^g, g \in \mathcal{G} = \mathbb{Z}_n$$

. Then $\psi_{\mathcal{A}}$ is equivalent to $\psi_{X\mathcal{A}X^{-1}}$ since for every $g\in \mathcal{G}$

$$X\psi_A(g)X^{-1} = XA^gX^{-1} = (XAX^{-1})^g = \psi_{XAX^{-1}}(g).$$

Notice that $\psi_{XAX^{-1}}(g) = \operatorname{diag}(\lambda_1^g, \lambda_2^g, \dots, \lambda_d^g)$. If $\psi_t \colon G \to \operatorname{GL}(1, \mathbb{C}) =: \mathbb{C}^*$ is given by $\psi_t \colon g \mapsto \lambda_t^g$, then $\psi_{XAX^{-1}} = \psi_1 \oplus \psi_2 \oplus \dots \oplus \psi_d$

Overall we proved that every matrix representation of \mathbb{Z}_n over \mathbb{C} is equivalent to a direct sum of representations of degree 1.

When are direct sums equivalent?

Now consider two families of degree one representations of $G = \mathbb{Z}_n$ over \mathbb{C} .

$$\psi_1, \psi_2, \ldots, \psi_d, \psi_1', \psi_2', \ldots, \psi_d' \colon G \to \mathrm{GL}(1, \mathbb{C}).$$

We wonder when $\psi:=\psi_1\oplus\cdots\oplus\psi_d$ and $\psi':=\psi'_1\oplus\psi'_2\oplus\cdots\oplus\psi'_d$ are equivalent. Let $\lambda_t:=\psi_t(1)$ and $\lambda'_t:=\psi'_t(1)$ for every $1\leq t\leq d$. If ψ and ψ' are equivalent, then $\psi(1)$ and $\psi'(1)$ are similar matrices. Now $\lambda_1,\lambda_2,\ldots,\lambda_d$ are the eigenvalues of $\psi(1)$ and $\lambda'_1,\lambda'_2,\ldots,\lambda'_d$ are the eigenvalues of $\psi'(1)$. More precisely $(-1)^d(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_d)$ is the characteristic polynomial of $\psi(1)$ and $(-1)^d(x-\lambda'_1)(x-\lambda'_2)\cdots(x-\lambda'_d)$ is the characteristic polynomial of $\psi'(1)$.

Since equivalent matrices have equal characteristic polynomials, ψ is equivalent to ψ' only if there exists a permutation $\sigma \in \mathcal{S}_d$ such that

$$\lambda_t = \lambda'_{\sigma(t)}; t = 1, 2, \dots, d$$

This condition is easily seen to be equivalent to $\psi_t = \psi_{\sigma(t)}$ for each $t \in \{1, 2, \dots, d\}$.

On the other hand, if $\psi_t = \psi_{\sigma(t)}$ for each $t \in \{1, 2, \dots, d\}$ is true for some $\sigma \in S_d$, then ψ and ψ' are equivalent.

The same result in the category $\operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}_n)$

We still assume $G = \mathbb{Z}_n$. Let us translate previous result on matrix representations of G over \mathbb{C} to the language of $\operatorname{Rep}_{\mathbb{C}}(G)$. Let $\varphi \colon G \to \operatorname{Aut}_{\mathbb{C}}(V)$ be a homomorphism where $\dim_{\mathbb{C}}(V) = d$ is finite. Then $V = V_1 \oplus V_2 \oplus \cdots \oplus V_d$, where V_1, V_2, \ldots, V_d are φ -invariant subspaces of dimension 1. We know that $\varphi(1)$ is diagonalizable. Let $B = \{b_1, b_2, \dots, b_d\}$ be a basis of V such that $[\varphi(1)]_B$ is diagonal. Let $\lambda_i \in \mathbb{C}$ be the eigenvalue of $\varphi(1)$ related to b_i , that is, $[\varphi(1)](b_i) = \lambda_i b_i$. Then $V_i := \langle b_i \rangle$ is φ -invariant, as $[\varphi(g)](b_i) = \lambda_i^g b_i$ for every $g \in G$. Then φ is equivalent to $\varphi_{V_1} \oplus \varphi_{V_2} \oplus \cdots \oplus \varphi_{V_d}$.

The same result proved in \mathbb{CZ}_{n} -Mod (outline)

We want to understand modules over $\mathbb{C}\mathbb{Z}_n$. We want to use the isomorphism $\mathbb{C}\mathbb{Z}_n\simeq \mathbb{C}[x]/(x^n-1)$ of \mathbb{C} -algebras. In this isomorphism $\delta_g\leftrightarrow \overline{x}^g$. Let $\lambda_0,\ldots,\lambda_{n-1}$ be the roots of x^n-1 , say

$$\lambda_t = e^{\frac{2\pi i}{n}t}, t \in \{0, 1, \dots, n-1\}$$

Every $\mathbb{C}[x]/(x^n-1)$ -module has a canonical structure of a $\mathbb{C}\mathbb{Z}_n$ -module (and vice versa). For example, if M is a $\mathbb{C}[x]/(x^n-1)$ -module, then the corresponding $\mathbb{C}\mathbb{Z}_n$ -module M satisfies

$$\delta_{g} m = \overline{x}^{g} m, g \in \mathbb{Z}_{n}, m \in M$$
.

CRT

The Chinese reminder theorem gives another isomorphism of \mathbb{C} -algebras:

$$\mathbb{C}[x]/(x^n-1)\simeq\prod_{t=0}^{n-1}\mathbb{C}[x]/(x-\lambda_t)=\mathbb{C}^n$$

In general, modules over a product of rings $R \times S$ are constructed as follows: Take an R-module M and an S-module N and define an $R \times S$ -module on the abelian group $M \oplus N$ in an obvious way

$$(r,s)(m,n):=(rm,sn),(r,s)\in R\times S,(m,n)\in M\oplus N.$$

And every $R \times S$ -module is isomorphic to a module constructed this way.

A similar construction applies to modules over finite product of rings.

Putting these things together

The structure of modules over $T:=\mathbb{C}\times\mathbb{C}\times\cdots\times\mathbb{C}=\mathbb{C}^n$ is easy: Take V_1,V_2,\ldots,V_n vector spaces over \mathbb{C} . Define $V:=V_1\oplus V_2\oplus\cdots\oplus V_n$ a T-module structure on V by

$$(c_1, c_2, \ldots, c_n).(v_1, v_2, \ldots, v_n) := (c_1v_1, c_2v_2, \ldots, c_nv_n)$$

for every $(c_1, \ldots, c_n) \in T$ and $(v_1, \ldots, v_n) \in V$. Since we know $\mathbb{CZ}_n \simeq T$ via

$$\delta_{\mathbf{g}} \mapsto (\lambda_0^{\mathbf{g}}, \lambda_1^{\mathbf{g}}, \dots, \lambda_{n-1}^{\mathbf{g}})$$

the $\mathbb{C}\mathbb{Z}_n$ -module structure on V is defined by

$$\delta_{g}(v_{1}, v_{2}, \ldots, v_{n}) = (\lambda_{0}^{g} v_{1}, \lambda_{1}^{g} v_{2}, \ldots, \lambda_{n-1}^{g} v_{n})$$

Again we see that this module is a direct sum of its submodules which have over $\mathbb C$ dimension 1.

Representations of \mathbb{Z}_3 over \mathbb{Q}

Example

Find representations of \mathbb{Z}_3 over \mathbb{Q} .

Use the following isomorphisms of \mathbb{Q} -algebras:

$$\mathbb{Q}\mathbb{Z}_3 \simeq \mathbb{Q}/(x^3-1) \simeq \mathbb{Q} \times \mathbb{Q}[x]/(x^2+x+1)$$

The product on the right hand side gives us two $\mathbb{Q}\mathbb{Z}_3$ -modules $M_1 := \mathbb{Q} \times \{0\}$. The element δ_1 acts as the identity on this module.

 $M_2 := \{0\} \times \mathbb{Q}[x]/(x^2 + x + 1)$ The element δ_1 acts as \overline{x} on this module.

The theory says that every $\mathbb{Q}\mathbb{Z}_3$ -module is isomorphic to a direct sum $M_1^{(X)}\oplus M_2^{(Y)}$

Therefore there are two 'basic' representations in $\operatorname{Rep}_{\mathbb{Q}}(G)$ such that every other representation is equivalent to a direct sum of copies of these two.

Representations of \mathbb{Z}_2 over \mathbb{F} , $\operatorname{char}(\mathbb{F}) \neq 2$

Maschke's theorem

Theorem

(Maschke) Let G be a finite group, $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$ a representation of G over \mathbb{F} , where \mathbb{F} is a field such that $\operatorname{char}(\mathbb{F}) \nmid |G|$. If $U \leq V$ is a φ -invariant subspace of V, then there exists $W \leq V$ also φ -invariant such that $V = U \oplus W$. In particular, φ is equivalent to $\varphi_U \oplus \varphi_W$

Proof: For sure there is a vector space $W_0 \leq V$ such that $V = U \oplus W_0$.

But this space may not be φ -invariant so we have to modify it somehow.

Consider a homomorphism $\pi_0 \in \operatorname{End}_{\mathbb{F}}(V)$, a projection of V onto U with kernel W_0 . That, is

$$\pi_0(u+w) := u; u \in U, w \in W_0$$

Averaging

(Important) We use 'averaging principle' to change π_0 to a linear map which is compatible with the action of G on V. This is how we do it:

$$\pi := rac{1}{|G|} \sum_{g \in G} arphi(g) \pi_0 arphi(g^{-1}) \in \operatorname{End}_{\mathbb{F}}(V)$$

Note that here we needed $\operatorname{char}(\mathbb{F}) \nmid |G|$.

Outline of further steps

- $ightharpoonup \pi \in \operatorname{Rep}_{\mathbb{F}}(V,V)$
- \blacktriangleright $\pi(u)=u$ for every $u\in U$, in particular $\pi\circ\pi=\pi$
- Ker π is a φ -invariant subspace
- ▶ $W := \text{Ker } \pi \text{ satisfies } V = U \oplus W$

Compatibility with the action

We have to check that for every $g \in G$

$$\varphi(g) \circ \pi = \pi \circ \varphi(g).$$

$$\varphi(g) \circ \pi = [\varphi(g)](\frac{1}{|G|} \sum_{h \in G} \varphi(h) \pi_0 \varphi(h^{-1})) =$$

$$\frac{1}{|G|} \sum_{h \in G} \varphi(g) \varphi(h) \pi_0 \varphi(h^{-1}(g^{-1}g))) =$$

$$\frac{1}{|G|} \sum_{h \in G} \varphi(gh) \pi_0 \varphi((gh)^{-1}g) =$$

$$(\frac{1}{|G|} \sum_{h \in G} \varphi(h) \pi_0 \varphi(h^{-1})) \varphi(g) =$$

$$\pi \circ \varphi(g)$$

Let $u \in U$. Writing φ_g instead of $\varphi(g)$ we get

$$\pi(u) = \frac{1}{|G|} \sum_{g \in G} \varphi_g(\pi_0(\varphi_{g^{-1}}(u))) = \frac{1}{|G|} \sum_{g \in G} \varphi_g(\varphi_{g^{-1}}(u))$$

(because $\varphi_{g^{-1}}(u) \in U$ and π_0 does not move elements of U) Since $\varphi_g \circ \varphi_{g^{-1}} = 1_V$, $\varphi_{g^{-1}}(\varphi_g(u)) = u$. So $\pi(u) = \frac{1}{|G|} \sum_{g \in G} u = u$. Since $\operatorname{Im} \pi \subset U$, we get $\pi \circ \pi = \pi$.

$\operatorname{Ker} \pi$ is φ -invariant

It is a general fact that we will need later that if $\theta \in \operatorname{Rep}_{\mathbb{F}}(G)(\varphi_1, \varphi_2)$, then $\operatorname{Ker} \theta$ is a φ_1 -invariant subspace and $\operatorname{Im} \theta$ is φ_2 -invariant.

Let's do the particular case here:

$$W:=\{v\in V\mid \pi(v)=0\}$$

Let $g \in G$, $w \in W$ and again write φ_g instead of $\varphi(g)$:

$$\pi(\varphi_{\mathbf{g}}(\mathbf{w})) = \varphi_{\mathbf{g}}(\pi(\mathbf{w})) = \varphi_{\mathbf{g}}(0) = 0$$

In other words $\varphi_g(w) \in W$ for every $g \in G$. Therefore we proved W is indeed φ -invariant.

$$V = U \oplus W$$

$$U \cap W = 0$$
: If $v \in U \cap W$ then

- \blacktriangleright $\pi(v) = v$ as π does not move elements of U
- \blacktriangleright $\pi(v) = 0$ by the definition of W

$$U+W=V$$
: Take $v\in V$ put $v_U:=\pi(v),\ v_W:=v-v_U.$ Obviously $v=v_U+v_W$ and $v_U\in U.$ Let us check that $v_W\in W$: $\pi(v_W)=\pi(v)-\pi(v_U)=\pi(v)-\pi(\pi(v))=\pi(v)-\pi(v)=0.$ This completes the proof.

Thanks for your attention

Set of exercises on the averaging and the assumptions in the theorem of Maschke will be available tomorrow.