Group representations 1 Introduction

March 1, 2021

Groups

Definition

Group $\mathcal{G} = (G, \cdot, ^{-1}, 1)$ is a non-empty set G equipped with operations $\cdot : G \times G \to G$, $^{-1} : G \to G$ and $1 \in G$ such that

- ightharpoonup a(bc) = (ab)c for all $a, b, c \in G$
- ▶ $1 \cdot g = g = g \cdot 1$ for every $g \in G$

Remark

- For commutative groups we sometimes use the additive notation G = (G, +, -, 0)
- ▶ Usually we omit the operations from the notation, i.e., instead of saying 'let $(G, \cdot, ^{-1}, 1)$ be a group' we say just 'let G be a group'.

Group homomorphisms

Definition

Let $\mathcal{G}=(G,\cdot,^{-1},1_G)$ and $\mathcal{H}=(H,*,^{'},1_H)$ be groups. A map $f\colon G\to H$ is a homomorphism from \mathcal{G} to \mathcal{H} if

- $ightharpoonup f(1_G) = 1_H,$
- ▶ $f(g^{-1}) = f(g)'$ for every $g \in G$,
- ► $f(g_1 \cdot g_2) = f(g_1) * f(g_2)$ for every $g_1, g_2 \in G$.

Exercise

Show that if f satisfies $f(g_1 \cdot g_2) = f(g_1) * f(g_2)$ for every $g_1, g_2 \in G$, then f is a homomorphism from G to H.

Definition

Let $\mathcal{G}=(G,\cdot,^{-1},1_G)$ and $\mathcal{H}=(H,*,^{'},1_H)$ be groups. We denote $\operatorname{Hom}(\mathcal{G},\mathcal{H})$ the set of all homomorphisms from \mathcal{G} to \mathcal{H} (usually we use $\operatorname{Hom}(G,H)$ to denote this set).

Group actions

Definition

Let $\mathcal{G}=(G,\cdot,^{-1},1)$ be a group and X a non-empty set. An action of \mathcal{G} on X is a map $*: G \times X \to X$ such that

- ▶ 1 * x = x for every $x \in X$.
- $(gh) * x = g * (h * x) \text{ for every } x \in X, g, h \in G$

Sometimes action of \mathcal{G} on X is defined to be an element of $\operatorname{Hom}(\mathcal{G}, \mathcal{S}(X))$ ($\mathcal{S}(X)$) is the group of all permutations on X).

Exercise

Let $*: G \times X \to X$ be an action of G on X. Show that

- a) For every $g \in G$ the map $\varphi_g \colon X \to X$ defined by $\varphi_g(x) = g * x$ is a bijection
- b) The map $\varphi \colon G \to S(X)$ defined by $\varphi(g) := \varphi_g, g \in G$ is a homomorphism of groups.

Exercise

Let G be a group and X a nonempty set. Let $\varphi \in \operatorname{Hom}(G, S(X))$. Show that $*: G \times X \to X$ given by $g * x := [\varphi(g)](x)$ is an action of G on X.

Remark

These exercises gives correspondences between $\operatorname{Hom}(G,S(X))$ and the set of actions of G on X. It is easy to see that these correspondences are actually mutually inverse bijections.

Group representations as linear actions

Definition

Let G be a group and let \mathbb{F} be a field. A representation of G over \mathbb{F} is a homomorphism $\varphi \in \mathrm{Hom}(G,\mathrm{Aut}_{\mathbb{F}}(V))$, where V is a vector space over \mathbb{F} .

Remark

If V is an \mathbb{F} -space, the set of all its automorphisms $\operatorname{Aut}_{\mathbb{F}}(V)$ has a structure of a group $(\operatorname{Aut}_{\mathbb{F}}(V), \circ, {}^{-1}, 1_V)$, where $\alpha \circ \beta \colon v \mapsto \alpha(\beta(v))$.

Remark

A representation $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$ of G over \mathbb{F} induces an action of G on $V \colon g \ast v := [\varphi(g)](v)$. When this action is considered, the bijection of V given by action of $g \in G$, i.e., $\varphi_g \colon v \mapsto g \ast v$ is linear.

Category $Rep_{\mathbb{F}}(G)$

Definition

Let G be a group, \mathbb{F} be a field. Let $\varphi \colon G \to \operatorname{Aut}_{\mathcal{F}}(V)$ and $\psi \colon G \to \operatorname{Aut}_{\mathbb{F}}(U)$ be representations of G over \mathbb{F} . A map $f \in \operatorname{Hom}_{\mathbb{F}}(V, U)$ is said to be a homomorphism between these representations (a homomorphism from φ to ψ) if for every $g \in G$

$$f \circ \varphi(g) = \psi(g) \circ f$$
.

Exercise

Let G be a group and let \mathbb{F} be a field. Show that

- 1. Show that 1_V is a homomorphism from φ to φ for every representation $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$.
- 2. Let $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(U), \psi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V), \theta \colon G \to \operatorname{Aut}_{\mathbb{F}}(W)$ be representations of G over \mathbb{F} . If $f \in \operatorname{Hom}_{\mathbb{F}}(U, V)$ is a homomorphism from φ to ψ and $g \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ is a homomorphism from ψ to θ , then gf is a homomorphism from φ to θ

Definition

Let G be a group and let \mathbb{F} be a field. The category of representations of G over \mathbb{F} denoted by $\operatorname{Rep}_{\mathbb{F}}(G)$ consists of

- ▶ objects of $\operatorname{Rep}_{\mathbb{F}}(G)$ are all representations of G over \mathbb{F}
- ▶ morphisms: if φ, ψ are two representations of G over \mathbb{F} then $\operatorname{Rep}_{\mathbb{F}}(G)(\varphi, \psi)$ is the set of all homomorphisms from φ to ψ
- units are given by identities and morphisms are composed as maps

Equivalent representations

Definition

Two representations of a group G over a field \mathbb{F} are *equivalent* if they are isomorphic objects in the category $\operatorname{Rep}_{\mathbb{F}}(G)$. That is, representations $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(U)$ and $\psi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$

of G over $\mathbb F$ are equivalent if there exists an isomorphism $f\in \operatorname{Hom}_{\mathbb F}(U,V)$ such that for every $g\in G$

$$f\circ\varphi(g)=\psi(g)\circ f$$

A basic goal for the theory of group representations: For a given group G and a field $\mathbb F$ describe all representations of G over $\mathbb F$ up to equivalence.

General linear group

Let $n \in \mathbb{N}$, and let \mathbb{F} be a field.

 $\mathcal{GL}(n,\mathbb{F}) = (\mathrm{GL}(n,\mathbb{F}),\cdot,^{-1},E)$ is the group of all regular $n \times n$ matrices over \mathbb{F} .

Such a group is called a general linear group (of degree n over \mathbb{F}). If V is an \mathbb{F} -vector space of dimension n, then $\operatorname{Aut}_{\mathbb{F}}(V) \simeq \operatorname{GL}(n,\mathbb{F})$ via

$$\alpha \mapsto [\alpha]_B, \alpha \in \operatorname{Aut}_{\mathbb{F}}(V),$$

where B is a fixed basis of V

Working in coordinates - matrix representations

Definition

Let G be a group and let $\mathbb F$ be a field. A *matrix representation* of G over $\mathbb F$ is a homomorphism $\psi \in \mathrm{Hom}(G,\mathrm{GL}(n,\mathbb F))$, where $n \in \mathbb N$ is called the *degree* of representation ψ .

Let V is an \mathbb{F} -space of dimension n, B a basis of V and $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$ be a representation of G over \mathbb{F} . Then $\psi \colon g \mapsto [\varphi(g)]_B$ is a matrix representation of degree n. Conversely assume $\psi \colon G \to \mathrm{GL}(n,\mathbb{F})$ is a matrix representation of G over \mathbb{F} . Let $V := \mathbb{F}^n$ and define $\varphi \colon G \to \mathrm{Aut}_{\mathbb{F}}(V)$ by

$$\varphi(g)$$
: $\mathbf{v} \mapsto \psi(g) \times \mathbf{v}$

It is easy to verify that

- ▶ $\varphi(g) \in \operatorname{Aut}_{\mathbb{F}}(V)$ for every $g \in G$
- $ightharpoonup \varphi \in \mathrm{Hom}(G,\mathrm{Aut}_{\mathbb{F}}(V))$
- ▶ if B is the canonical basis of $V = \mathbb{F}^n$ then $[\varphi(g)]_B = \psi(g)$ for every $g \in G$.

Equivalence of matrix representations

Definition

Let G be a group and let $\mathbb F$ be a field. Two matrix representations $\psi_1 \colon G \to \operatorname{GL}(n,\mathbb F)$ and $\psi_2 \colon G \to \operatorname{GL}(m,\mathbb F)$ are equivalent if n=m and there exists an $X \in \operatorname{GL}(n,\mathbb F)$ such that

$$\psi_1(g) = X\psi_2(g)X^{-1}$$

for every $g \in G$.

Remark

If H is a group and $x \in H$, the automorphism $\Omega_x \colon H \to H$ given by

$$\Omega_{\mathsf{x}}(h) = \mathsf{x} h \mathsf{x}^{-1}$$

is called the inner automorphism of H (induced by x). Note that ψ_1 is a composition of ψ_2 and the inner automorphism of $\mathrm{GL}(n,\mathbb{F})$ induced by X.

Another way how to look at equivalent matrix reps

Assume $\varphi \colon G \to \operatorname{Aut}_{\mathbb{F}}(V)$ is a representation of G over \mathbb{F} , $n = \dim_{\mathbb{F}}(V)$. Let B_1, B_2 two bases of V. Let $\psi_1(g) := [\varphi(g)]_{B_1}$ and $\psi_2(g) := [\varphi(g)]_{B_2}$ for $g \in G$. Then $\psi_1, \psi_2 \colon G \to \operatorname{GL}(n, \mathbb{F})$ are equivalent matrix representations of G over \mathbb{F} .

Indeed, if $X=[1_V]_{B_2}^{B_1}$, then $\psi_1(g)=X^{-1}\psi_2(g)X$. Another goal for the theory of group representations: Given two (matrix) representations of G over \mathbb{F} . Decide whether they are equivalent or not.

Group algebras

Let $\mathbb F$ be a field and let G be a group. The group algebra $\mathbb FG$ is an $\mathbb F$ -vector space with basis $\{\delta_g \mid g \in G\}$ equipped with a bilinear operation $*\colon \mathbb FG \times \mathbb FG \to \mathbb FG$ given on the basis by

$$\delta_{g} * \delta_{h} = \delta_{gh}, g, h \in G$$

If G is a finite group, then elements of $\mathbb{F}G$ can be written as $\sum_{g\in G}t_g\delta_g,t_g\in \mathbb{F}$. Then

$$(\sum_{g \in G} t_g \delta_g) * (\sum_{g \in G} s_g \delta_g) = \sum_{g,h \in G} t_g s_h (\delta_g * \delta_h) =$$

$$\sum_{g,h \in G} t_g s_h (\delta_{gh}) = \sum_{g \in G} (\sum_{h \in G} t_h s_{h^{-1}g}) \delta_g$$

Also note $\delta_{1_G} * f = f = f * \delta_{1_G}$ for every $f \in \mathbb{F}G$.

Proposition

 $(\mathbb{F}G, +, -, 0, *, \delta_{1_G})$ is an associative \mathbb{F} -algebra (ring having structure of an \mathbb{F} -vector which behaves well with the operations of the ring).

Another way how to look on $\mathbb{F}G$

Let G be a finite group and let \mathbb{F} be a field.

Consider $\mathbb{F}G = \{f \mid f \text{ is a map from } G \text{ to } \mathbb{F}\}$. Note that this set can be naturally seen as a vector space over \mathbb{F} :

$$f_1 + f_2 \colon g \mapsto f_1(g) + f_2(g), g \in G$$

$$0 \colon g \mapsto 0, g \in G$$

$$tf \colon g \mapsto t.f(g), g \in G, t \in \mathbb{F}$$

For $f_1, f_2 \colon G \to \mathbb{F}$, define $f_1 * f_2 \colon G \to \mathbb{F}$ by

$$f_1 * f_2 : g \mapsto \sum_{h \in G} f_1(h) f_2(h^{-1}g)$$

Then $f_1 * (f_2 * f_3) = (f_1 * f_2) * f_3$. So we defined an associative bilinear binary operation on $\mathbb{F}G$.

In fact this structure is essentially the same as the one defined on the previous slide.

Why are we interested in group algebras?

Theorem

Let G be a group and let \mathbb{F} be a field. The category $\operatorname{Rep}_{\mathbb{F}}(G)$ is equivalent to the category $\mathbb{F}G\operatorname{-Mod}$.

So the theory of modules over associative algebras provides a languague we could use to study group representations.

Homework #1

Let G be a finite group and let $\mathbb F$ be a field. Find a basis of the center of the group algebra, i.e., a basis of the space $Z(\mathbb F G)=\{f\in\mathbb F G\mid \forall h\in\mathbb F G\ f*h=h*f\}.$

That's all for today

http://artax.karlin.mff.cuni.cz/~ppri7485/group_rep1/