# Group representations 1

Complex representations of symmetric groups, part 1

June 1, 2021

## How the Dominance lemma is applied

Let  $\mu, \lambda$  be partitions of  $n \in \mathbb{N}$ ,  $t \in X^{\lambda}$ . We define an operator  $A_t^{\mu} \in \operatorname{End}_{\mathbb{C}}(M^{\mu})$  by  $A_t^{\mu} := \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\mu}.$ If  $\lambda = \mu$ , then  $A_t^{\mu}([t]) = e_t$ , the polytabloid associated to t. Lemma

Let 
$$n \in \mathbb{N}$$
,  $\lambda, \mu \vdash n$ ,  $t^{\lambda} \in X^{\lambda}$ ,  $s^{\mu} \in X^{\mu}$ . Assume  $A^{\mu}_{t^{\lambda}}([s^{\mu}]) \neq 0$ .  
Then  $\lambda \trianglerighteq \mu$ .  
Moreover, if  $\lambda = \mu$  and  $A^{\mu}_{t^{\lambda}}([s^{\mu}]) \neq 0$ , then  $A^{\mu}_{t^{\lambda}}([s^{\mu}]) = \pm e_{t^{\lambda}}$ .

### proof of the lemma part 1:

We show that if  $A^{\mu}_{t^{\lambda}}([s^{\mu}]) \neq 0$ , then the assumption of the dominance lemma is satisfied for  $t^{\lambda}$  and  $s^{\mu}$ . If it is not the case there are  $i \neq j \in \{1, \ldots, n\}$  such that i, j are located in the same row of  $s^{\mu}$  and also in the same column of  $t^{\lambda}$ . The second condition says that  $H := \{\mathrm{id}, (i, j)\} \subseteq C_{t^{\lambda}}$ . Let  $\sigma_1, \ldots, \sigma_k \in C_{t^{\lambda}}$  be a transversal of left cosets of H in  $C_{t^{\lambda}}$ , that is

$$C_{t^{\lambda}} = \dot{\cup}_{r=1}^k \sigma_r H.$$

Then 
$$A^{\mu}_{t^{\lambda}}([s^{\mu}]) = \sum_{\pi \in C_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi^{\mu}_{\pi}([s^{\mu}]) = \sum_{r=1}^{k} \operatorname{sgn}(\sigma_{r})[\sigma_{r} * s^{\mu}] + \operatorname{sgn}(\sigma_{r}(i,j))[\sigma_{r} * ((i,j) * s^{\mu})]$$
  
Since  $i,j$  are located in the same row of  $s^{\mu}$ , we get  $(i,j) * [s^{\mu}] = [s^{\mu}]$ . Therefore  $A^{\mu}_{t^{\lambda}}([s^{\mu}]) = 0$ .  
The dominance lemma implies that  $\lambda \trianglerighteq \mu$ .

### proof of the lemma, part 2

The proof of the dominance lemma in the case  $\lambda=\mu$  shows that there exists a  $\lambda$ -tableau  $u^{\lambda}$  such that

- ▶ There exists  $\sigma \in C_{t^{\lambda}}$  such that  $\sigma * [t^{\lambda}] = [u^{\lambda}]$
- $s^{\lambda} \sim u^{\lambda}$  (recall the assumption  $\lambda = \mu$ )

### Now compute

$$\begin{split} A^{\mu}_{t^{\lambda}}[s^{\mu}] &= \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi^{\lambda}_{\pi}([s^{\mu}]) = \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi^{\lambda}_{\pi}([u^{\lambda}]) = \\ \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi^{\lambda}_{\pi}([\sigma * t^{\lambda}]) &= \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\pi \sigma) \varphi^{\lambda}_{\pi \sigma}([t^{\lambda}]) = \\ \operatorname{sgn}(\sigma) \sum_{\pi' \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi') \varphi^{\lambda}_{\pi'}([t^{\lambda}]) &= \pm e_{t^{\lambda}}. \end{split}$$

# A corollary

### Corollary

Let  $n \in \mathbb{N}$  and let  $t \in X^{\lambda}$ . Let  $A_t = \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda} \in \operatorname{End}_{\mathbb{C}}(M^{\lambda})$ . Then  $\operatorname{Im} A_t = \mathbb{C}e_t$ 

### Proof.

Since  $M^{\lambda}$  has basis  $T^{\lambda}$ ,  $\operatorname{Im} A_t$  is the subspace of  $M^{\lambda}$  generated by  $\{A_t([s]) \mid [s] \in T^{\lambda}\}$ . If  $A_t([s]) \neq 0$ , then  $A_t([s]) = \pm e_t$ . On the other hand,  $A_t([t]) = e_t$ .

# Scalar product on $M^{\lambda}$

On  $M^{\lambda}$  we consider a standard scalar product,  $\langle -, - \rangle$  such that  $T^{\lambda}$  is an orthogonal basis w.r.t.  $\langle -, - \rangle$ . That is, for  $[s], [t] \in T^{\lambda}$ 

$$\langle [s], [t] \rangle := \delta_{[s],[t]}$$
.

Note that the product is invariant w.r.t.  $\varphi^{\lambda}$ , since for every  $\sigma \in \mathcal{S}_n$ 

$$\langle \varphi_\sigma^\lambda([s]), \varphi_\sigma^\lambda([t]) \rangle = \langle \sigma * [s], \sigma * [t] \rangle = \delta_{[\sigma * s], [\sigma * t]} = \delta_{[s], [t]} = \langle [s], [t] \rangle$$

# $A_t$ is self adjoint

### Proposition

Let  $n \in \mathbb{N}$ ,  $\lambda \vdash n$ ,  $t \in X^{\lambda}$  and  $A_t = \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda}$ . For every  $u, v \in M^{\lambda} \langle A_t(u), v \rangle = \langle u, A_t(v) \rangle$ 

#### Proof.

Standard arguments using linearity of  $A_t$  and properties of scalar products enable reduction to the case  $u, v \in T^{\lambda}$ .

Note that if  $u \notin \{\sigma * [t] \mid \sigma \in C_t\}$ , then  $A_t(u) = 0$ . Since  $A_t(u)$  is a multiple of  $e_t$ ,  $\langle u, v \rangle$  can be nonzero only if  $v \in \{\sigma * [t] \mid \sigma \in C_t\}$ 

$$v \in \{\sigma * [t] \mid \sigma \in C_t\}.$$

Similar arguments show that  $\langle u, A_t(v) \rangle \neq 0$  only for

$$u, v \in \{\sigma * [t] \mid \sigma \in C_t\}.$$

Now assume  $u = \sigma_u * [t], v = \sigma_v * [t]$  for some  $\sigma_u, \sigma_v \in C_t$ . Then  $\langle A_t(u), v \rangle = \operatorname{sgn}(\sigma_u) \langle e_t, \sigma_v * [t] \rangle = \operatorname{sgn}(\sigma_u) \operatorname{sgn}(\sigma_v)$ .

$$\langle u, A_t(v) \rangle = \operatorname{sgn}(\sigma_v) \langle \sigma_u * [t], e_t \rangle = \operatorname{sgn}(\sigma_v) \operatorname{sgn}(\sigma_u).$$

### Subrepresentation theorem

#### **Theorem**

Let  $n \in \mathbb{N}$  and let  $\lambda \vdash n$ . If  $V \subseteq M^{\lambda}$  is a  $\varphi^{\lambda}$ -invariant subspace of  $M^{\lambda}$ , then either  $S^{\lambda} \subseteq V$  or  $V \subseteq (S^{\lambda})^{\perp}$ .

#### Remark

Recall  $S^{\lambda}$  is the subspace of  $M^{\lambda}$  spanned by  $\{e_t \mid t \in X^{\lambda}\}$ . We already know that  $S^{\lambda}$  is  $\varphi^{\lambda}$ -invariant.

### The proof of subrepresentation theorem

### Proof.

We distinguish two cases: a) Assume there exists  $t \in X^{\lambda}$  and  $v \in V$  such that  $A_t(v) \neq 0$ , i.e.,

$$\sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda}(v) \neq 0$$

Since V is  $\varphi^{\lambda}$ -invariant,  $A_t(v) \in V$ .

By the Corollary,  $\operatorname{Im} A_t = \mathbb{C} e_t$ , so  $e_t \in V$ . We also proved  $\varphi_{\sigma}^{\lambda}(e_t) = e_{\sigma*t}$ . Since V is  $\varphi_{\lambda}$ -invariant,  $e_{\sigma*t} \in V$  for every  $\sigma \in S_n$ . Hence also  $S^{\lambda} \subseteq V$ .

b) For every  $t \in X^{\lambda}$  and every  $v \in V$  is  $A_t(v) = 0$ . Then

$$\langle e_t, v \rangle = \langle A_t([t]), v \rangle = \langle [t], A_t(v) \rangle = 0$$

for every  $t \in X^{\lambda}$  and for every  $v \in V$ . Since  $S^{\lambda}$  is spanned by  $\{e_t \mid t \in t^{\lambda}\}$ , we get  $V \subseteq (S^{\lambda})^{\perp}$ .



# Specht's representations are irreducible

### Corollary

Let  $n \in \mathbb{N}$  and let  $\lambda \vdash n$ ,  $\psi^{\lambda} \colon S_n \to \operatorname{Aut}_{\mathbb{C}}(S^{\lambda})$  the Specht's representation associated to  $\lambda$ . Then  $\psi^{\lambda}$  is irreducible.

#### Proof.

The important observation is that every  $\psi^{\lambda}$ -invariant subspace of  $S^{\lambda}$  is also a  $\varphi^{\lambda}$ -invariant subspace of  $M^{\lambda}$ .

If  $0 \subsetneq V \subsetneq S^{\lambda}$  is a  $\psi^{\lambda}$ -invariant subspace, then it is  $\varphi^{\lambda}$ -invariant subspace and we may apply the subrepresentation theorem.

Since V cannot contain  $S^{\lambda}$  it has to be contained in  $(S^{\lambda})^{\perp}$ . But then  $V \subseteq S^{\lambda} \cap (S^{\lambda})^{\perp} = 0$ . This is not possible, so  $S^{\lambda}$  contains no  $\psi^{\lambda}$ -invariant subspaces other than 0 and  $S^{\lambda}$ .



# Equivalence of $S^{\lambda}$ and $S^{\mu}$

Let  $n\in\mathbb{N}$ ,  $\lambda,\mu\vdash n$  and assume that  $\psi^\lambda$  is equivalent to  $\psi^\mu$ . Maschke's theorem implies there exits a  $\varphi^\lambda$ -invariant subspace  $C^\lambda\leq M^\lambda$  and a  $\varphi^\mu$ -invariant subspace  $C^\mu\leq M^\mu$  such that

$$M^{\lambda} = S^{\lambda} \oplus C^{\lambda}, M^{\mu} = S^{\mu} \oplus C^{\mu}.$$

Let  $T \in \operatorname{Hom}_{\mathbb{C}}(S^{\lambda}, S^{\mu})$  be a witness of the equivalence of  $\psi^{\mu}$  and  $\psi^{\lambda}$ . That is, T is an isomorphism satisfying

$$\psi_{\pi}^{\mu}T = T\psi_{\pi}^{\lambda}$$

for every  $\pi \in S_n$ . Extend T to  $\overline{T} = T \oplus 0 \in \operatorname{Hom}_{\mathbb{C}}(M^{\lambda}, M^{\mu})$ . It is easy to check that  $\overline{T} \in \operatorname{Rep}_{\mathbb{C}}(S_n)(\varphi^{\lambda}, \varphi^{\mu})$ , in other words

$$\varphi_{\pi}^{\mu} \overline{T} = \overline{T} \varphi_{\pi}^{\lambda}$$

### Some computations

Let  $t \in X^{\lambda}$ . Then

$$T(e_t) = \overline{T}(e_t) = \overline{T}(\sum_{\pi \in \mathcal{C}_t} \operatorname{sgn}(\pi) \varphi_\pi^\lambda([t])) = \sum_{\pi \in \mathcal{C}_t} \operatorname{sgn}(\pi) \varphi_\pi^\mu(\overline{T}([t])) =$$

 $A_t^\mu(\overline{T}[t])$ , where  $A_t^\mu = \sum_{\pi \in \mathcal{C}_t} \operatorname{sgn}(\pi) \varphi_\pi^\mu \in \operatorname{End}_\mathbb{C}(M^\mu)$ .

Since  $T(e_t) \neq 0$  for some  $t \in X^{\lambda}$  the value of  $A_t^{\mu}([s])$  has to be nonzero for some  $[s] \in T^{\mu}$ .

The dominance lemma implies  $\lambda \trianglerighteq \mu$ . But using the symmetric arguments we can obtain also  $\mu \trianglerighteq \lambda$ .

Therefore if  $\psi^{\lambda}$  and  $\psi^{\mu}$  are equivalent, we have  $\lambda = \mu$ .

### The conclusion

#### **Theorem**

Let  $n \in \mathbb{N}$ . Then

- a) For each  $\lambda \vdash n$  the representation  $\psi^{\lambda} \colon S_n \to \operatorname{Aut}_{\mathbb{C}}(S^{\lambda})$  is irreducible.
- b) For every irreducible representation of  $S_n$  over  $\mathbb{C}$  there exists exactly one  $\lambda \vdash n$  such that  $\psi$  is equivalent to  $\psi^{\lambda}$ .
- c) Every representation of  $S_n$  over  $\mathbb C$  is equivalent to a direct sum of Specht's representations.

### The End.

Thank you for following the course. To schedule the date and the form of the exam, please write me an email (preferably about a week in advance).