Group representations 1

Complex representations of symmetric groups, part 1

May 31, 2021

Partitions

Definition

Let $n \in \mathbb{N}$. A partition of n is a tuple $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ where $\lambda_1, \lambda_2, \dots, \lambda_\ell \in \mathbb{N}$ satisfy

- 1. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell \ge 1$
- 2. $\sum_{i=1}^{\ell} \lambda_i = n$

We write $\lambda \vdash n$.

Remark

Note there is a bijection between the set of all conjugacy classes of S_n and the set of all partitions of n. In this correspondence $\lambda \vdash n$ corresponds to the of permutations which are products of ℓ independent cycles of lengths $\lambda_1, \lambda_2, \ldots, \lambda_\ell$.

For example, if n = 3 this bijection is

- $(3) \qquad \{(1,2,3),(1,3,2)\}$
- (2,1) {(1,2)(3),(1,3)(2),(2,3)(1)}
- (1,1,1) {id} = {(1)(2)(3)}

An overview

For each $\lambda \vdash n$ we define $\psi^{\lambda} \in \operatorname{Rep}_{\mathbb{C}}(S_n)$ and show that this representation is irreducible, and whenever $\lambda \neq \mu \vdash n$ then ψ^{λ} and ψ^{μ} are not equivalent.

The general theory of representations of finite groups over $\mathbb C$ then implies that for every irreducible representation ψ of S_n over $\mathbb C$ there exists unique $\lambda \vdash n$ such that ψ and ψ^{λ} are equivalent.

Young diagrams (also Young frames)

Definition

Let $n \in \mathbb{N}$, $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$, $\lambda \vdash n$.

The Young diagram of λ consists of n boxes placed into ℓ rows in such a way that the i-th row contains exactly λ_i boxes $(i=1,\ldots,\ell)$.

Dominance order

Definition

Let $n \in \mathbb{N}$, $\lambda, \mu \vdash n$. If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ and $\mu = (\mu_1, \mu_2, \dots, \mu_m)$ we say that λ dominates μ (and write $\lambda \trianglerighteq \mu$ or $\mu \unlhd \lambda$) if

$$\lambda_1 + \dots + \lambda_i \ge \mu_1 + \dots + \mu_i$$

for every $i \in \mathbb{N}$, where $\lambda_t := 0$ for every $t > \ell$ and $\mu_s := 0$ for every s > m.

Remark

It is easy to see that \trianglerighteq is a partial order on the set of all partitions of n. Note that (n) is the greatest element and $(1,1,\ldots,1)$ is the least element of this poset.

Also note that the dominance order is not linear - for n = 7, the partitions (3,3,1) and (4,1,1,1) are not comparable in \geq .

Young tableau

Definition

Let $n \in \mathbb{N}$, $\lambda \vdash n$. A λ -tableau (a Young tableau of shape λ) is a Young diagram with numbers $\{1, 2, \dots, n\}$ placed into the boxes (each number to one box).

Remark

For a given shape $\lambda \vdash n$ there are n! different λ -tableaux.

The dominance lemma

The following result will be crucial.

Lemma

Let $n \in \mathbb{N}$, $\lambda, \mu \vdash n$. Suppose there are tableaux t^{λ} and s^{μ} satisfying

- 1. t^{λ} is a λ -tableau and s^{μ} is a μ -tableau
- 2. every pair of different numbers located in the same row of s^{μ} is not located in the same column of t^{λ} .

Then $\lambda \trianglerighteq \mu$.

The action of S_n on the set of all λ -tableaux

Let $n \in \mathbb{N}$ and $\lambda \vdash n$. Let X^{λ} be the set of all λ -tableaux. The group S_n has a natural action on X^{λ} : If $\pi \in S_n$ and $t^{\lambda} \in X^{\lambda}$, then $\pi * t^{\lambda}$ is the tableau obtained from t^{λ} by applying π to each number in t^{λ}

Example:
$$n = 4$$
, $\lambda = (2, 2)$, $t^{\lambda} = \begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix}$.

For
$$\pi \in S_4$$
 is $\pi * t^{\lambda} = \left| \begin{array}{c|c} \pi(1) & \pi(2) \\ \hline \pi(3) & \pi(4) \end{array} \right|$

The column stabilizer

Definition

(Column stabilizer) Let $n \in \mathbb{N}$, $\lambda \vdash n$, $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$, $t \in X^{\lambda}$. The column stabilizer of t, denoted by C_t , is the set of all permutations of S_n permuting only numbers within the same column of t. More precisely,

 $C_t = \{ \pi \in S_n \mid \forall i \in \{1, \dots, n\} \ i \text{ and } \pi(i) \text{ are placed in the same column of } t \}$.

Remark

Note that if c_i is the length of the i-th column of the Young diagram of λ (in particular, $c_1 \geq c_2 \geq \cdots \geq c_{\lambda_1}$), then $|C_t| = c_1!c_2!\cdots c_{\lambda_1}!$.

Some remarks on the column stabilizer

Remark

Consider the relation ℓ on X^{λ} given by $s,t \in X^{\lambda}$ satisfy $s \wr t$ if and only if for each $1 \leq i \leq \ell$ the i-th column of s contains the same set of numbers as the i-th column of t. Then ℓ is obviously an equivalence on X^{λ} and the action of S_n on X^{λ} can be transfered to the action of S_n on $X^{\lambda}/\ell := \{[t]_{\ell} \mid t \in X^{\lambda}\}$ by $\pi * [t]_{\ell} = [\pi * t]_{\ell}$. Then C_t is actually the stabilizer of $[t]_{\ell}$ in this action, that is

$$C_t = \{\pi \in S_n \mid \pi * [t]_{\wr} = [t]_{\wr}\}$$

Tabloid

Definition

Let $n \in \mathbb{N}$, $\lambda \vdash n$ and let $s, t \in X^{\lambda}$. We say that s and t are equivalent λ -tableaux ($s \sim t$), if for each $1 \leq i \leq \ell$ the set of numbers contained in the i-th row of s is the same as the set of numbers in the i-th row of t.

Note that \sim is an equivalence on X^{λ} .

Definition

An equivalence class of a λ -tableau is called a λ -tabloid. If $t \in X^{\lambda}$, the equivalence class

$$[t] := \{ s \in X^{\lambda} \mid s \sim t \}$$

is called the *tabloid* of t. The set of all λ -tabloids is denoted by T^{λ} , i. e., $T^{\lambda} := X^{\lambda}/\sim$.

The action of S_n on T^{λ}

Note that if $t_1, t_2 \in X^{\lambda}$ and $\pi \in S_n$, then

$$t_1 \sim t_2 \Leftrightarrow \pi * t_1 \sim \pi * t_2$$

It follows that $\pi * [t] := [\pi * t], \pi \in S_n, [t] \in T^{\lambda}$ is a correctly defined map from $S_n \times T^{\lambda} \to T^{\lambda}$. Obviously

$$\mathrm{id} * [t] = [t], \pi_1 * (\pi_2 * [t]) = (\pi_1 \pi_2) * [t] (= [\pi_1 * (\pi_2 * t)])$$

for every $[t] \in T^{\lambda}$ nad $\pi_1, \pi_2 \in S_n$. Thus we get natural action of S_n on the set of all λ -tabloids.

Representation φ^{λ}

Since S_n acts on T^{λ} we can consider the representation of S_n induced by this action.

Let us briefly recall its construction: Let M^{λ} be a vector space over $\mathbb C$ with basis T^{λ} , $\varphi^{\lambda} \colon S_n \to \operatorname{Aut}_{\mathbb C}(M^{\lambda})$ be the representation of S_n over $\mathbb C$ given by $\varphi^{\lambda}(\pi) := \varphi^{\lambda}_{\pi}$, where

$$\varphi_{\pi}^{\lambda}([t]) := \pi * [t] = [\pi * t].$$

Note that if $\lambda=(n)$, then $|T^{\lambda}|=1$ and the φ^{λ} is the trivial representation of S_n over \mathbb{C} .

For other partitions of n the space M^λ has dimension ≥ 2 and contains a one dimensional φ^λ -invariant subspace $\langle \sum_{[t] \in \mathcal{T}^\lambda} [t] \rangle$. The irreducible representations we are searching for are given by some φ^λ -invariant subspaces of M^λ .

Polytabloid

Definition

Let $n \in \mathbb{N}$, $\lambda \vdash n$ and $t \in X^{\lambda}$. The element

$$e_t = \sum_{\pi \in C_t} \operatorname{sgn}(\pi)[\pi * t] \in M^{\lambda}$$

is called the polytabloid associated to t.

Remark

Important: Note that the polytabloid is a linear combination of tabloids. But the parametr t is a tableau. So we can have tableaux $s,t\in X^\lambda$ such that $s\sim t$ and $e_s\neq e_t$.

Action of φ^{λ} on polytabloids

Proposition

Let $n \in \mathbb{N}, \lambda \vdash n, t \in X^{\lambda}$. For every $\sigma \in S_n$ is

$$arphi_{\sigma}^{\lambda}(e_t) = e_{\sigma*t}$$

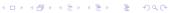
Proof.

Recall that if G is a group acting on the set X, the stabilizer of x is defined as $C_x := \{g \in G \mid g * x = x\}$. Then for every $x \in X$ and $g \in G$ we have $C_{g*x} = gC_xg^{-1}$.

Apply this rule on the action of S_n on X^{λ}/ℓ - the column stabilizer $C_{\sigma*t}$ is the stabilizer of $\sigma*[t]_{\ell}$ in this action. Therefore

$$C_{\sigma*t} = \sigma C_t \sigma^{-1}.$$

The rest of the proof is just a standard computation



some standard computation

$$\varphi_{\sigma}^{\lambda}(e_{t}) = \varphi_{\sigma}^{\lambda}(\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi)\varphi_{\pi}^{\lambda}([t])) = \sum_{\pi \in C_{t}} \operatorname{sgn}(\pi)\varphi_{\sigma\pi}^{\lambda}([t]) =$$

$$\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi)\varphi_{\sigma\pi\sigma^{-1}}^{\lambda}[\sigma * t] = \sum_{\pi \in C_{t}} \operatorname{sgn}(\sigma\pi\sigma^{-1})\varphi_{\sigma\pi\sigma^{-1}}^{\lambda}[\sigma * t] =$$

$$\sum_{\pi' \in \sigma} \operatorname{sgn}(\pi')\varphi_{\pi'}^{\lambda}([\sigma * t]) = e_{\sigma * t}.$$

Specht's module

Definition

Let $n \in \mathbb{N}, \lambda \vdash n$. Let S^{λ} be the subspace of M^{λ} given by all polytabloids related to tableaux of shape λ . That is,

$$S^{\lambda} := \langle e_t \mid t \in X^{\lambda} \rangle$$

The proposition implies that S^{λ} is a φ^{λ} -invariant subspace of M^{λ} , therefore there exists a representation $\psi^{\lambda} \colon S_{n} \to \operatorname{Aut}_{\mathbb{C}}(S^{\lambda})$ given by $\psi^{\lambda} := \varphi^{\lambda}_{S^{\lambda}}$.

Definition

The representation $\psi^{\lambda} \colon S_n \to \operatorname{Aut}_{\mathbb{C}}(S^{\lambda})$ is called the Specht's representation of S_n associated to λ .

So finally we defined representations ψ^λ . It remains to show that every Specht's representation is irreducible and $\psi^\lambda \not\simeq \psi^\mu$ if λ and μ are different partitions of n.

How the Dominance lemma is applied

Let μ, λ be partitions of $n \in \mathbb{N}$, $t \in X^{\lambda}$. We define an operator $A_t \in \operatorname{End}_{\mathbb{C}}(M^{\mu})$ by $A_t := \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\mu}$. Note that if $\lambda = \mu$, then $A_t([t]) = e_t$, the polytabloid associated to t.

Lemma

Let $n \in \mathbb{N}$, $\lambda, \mu \vdash n$, $t^{\lambda} \in X^{\lambda}$, $s^{\mu} \in X^{\mu}$. Assume $A_{t^{\lambda}}([s^{\mu}]) \neq 0$. Then $\lambda \trianglerighteq \mu$.

Moreover, if $\lambda=\mu$ and $A_{t^\lambda}([s^\mu])\neq 0$, then $A_{t^\lambda}([s^\mu])=\pm e_{t^\lambda}$.

proof of the lemma part 1:

We show that if $A_{t^\lambda}([s^\mu]) \neq 0$, then the assumption of the dominance lemma is satisfied for t^λ and s^μ . If it not the case there are $i \neq j \in \{1,\ldots,n\}$ such that i,j are located in the same row of s^μ and also in the same column of t^λ . The second condition says that $H := \{\mathrm{id},(i,j)\} \subseteq C_{t^\lambda}$. Let $\sigma_1,\ldots,\sigma_k \in C_{t^\lambda}$ be a transversal of left cosets of H in C_{t^λ} , that is

$$C_{t^{\lambda}} = \dot{\cup}_{r=1}^k \sigma_r H.$$

Then
$$A_{t^{\lambda}}([s^{\mu}]) = \sum_{\pi \in C_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi_{\pi}^{\mu}([s^{\mu}]) = \sum_{r=1}^{k} \operatorname{sgn}(\sigma_{r})[\sigma_{r} * s^{\mu}] + \operatorname{sgn}(\sigma_{r}(i,j))[\sigma_{t} * ((i,j) * s^{\mu})]$$

Since i,j are located in the same row of s^{μ} , we get $(i,j) * [s^{\mu}] = [s^{\mu}]$. Therefore $A_{t^{\lambda}}([s^{\mu}]) = 0$.
The dominance lemma implies that $\lambda \rhd \mu$.

proof of the lemma, part 2

The proof of the dominance lemma in the case $\lambda=\mu$ shows that there exists a λ -tableau u^{λ} such that

- ▶ There exists $\sigma \in C_{t^{\lambda}}$ such that $\sigma * [t^{\lambda}] = [u^{\lambda}]$
- $s^{\lambda} \sim u^{\lambda}$ (recall the assumption $\lambda = \mu$)

Now compute

$$\begin{aligned} &A_{t^{\lambda}}[s^{\mu}] = \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda}([s^{\mu}]) = \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda}([u^{\lambda}]) = \\ &\sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda}([\sigma * t^{\lambda}]) = \sum_{\pi \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma\pi) \varphi_{\pi\sigma}^{\lambda}([t^{\lambda}]) = \\ &\operatorname{sgn}(\sigma) \sum_{\pi' \in \mathcal{C}_{t^{\lambda}}} \operatorname{sgn}(\pi') \varphi_{\pi'}^{\lambda}([t^{\lambda}]) = \pm e_{t}. \end{aligned}$$

A corollary

Corollary

Let $n \in \mathbb{N}$ and let $t \in X^{\lambda}$. Let $A_t = \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda} \in \operatorname{End}_{\mathbb{C}}(M^{\lambda})$. Then $\operatorname{Im} A_t = \mathbb{C}e_t$

Proof.

Since M^{λ} has basis T^{λ} , $\operatorname{Im} A_t$ is the subspace of M^{λ} generated by $\{A_t([s]) \mid [s] \in T^{\lambda}\}$. If $A_t([s]) \neq 0$, then $A_t([s]) = \pm e_t$. On the other hand, $A_t([t]) = e_t$.

End of part 1

Thank you for your attention.