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Introduction

These lecture notes are a transcript of the course “PDE2”, given by the second author at MFF UK during spring
2016. All the material presented here is well-known. Precise wording of theorems and their proofs were inspired
by various sources we list in the bibliography.

An up-to-date version of these notes, along with supplementary material, can be found at the webpage of the
course: http://www.karlin.mff.cuni.cz/~prazak/vyuka/Pdr2/.

Feel free to write an e-mail to the authors in the case you would like to share some ideas or report found errors
in the text. The authors’ email adresses are radim.cajzl@gmail.com and prazak@karlin.mff.cuni.czl
Special thanks go to Zdenek Mihula for providing detailed solutions to selected exercises.
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CHAPTER 1

Vector—valued functions

Vector—valued ... values in infinite—dimensional Banach space.

Notation: we consider:
e u(t): I — X, I=][0,T]is time interval, X is Banach space,
o ||ully is norm in X
e X* is dual space X*, (z*, ) y. y is notation of duality
e scalar case: X =R

1.1. Vector—valued integrable functions (Bochner Integral)
Def.: [Simple, weakly and strongly measurable function]. Function u (¢) : I — X is called

simple: if u (t) = Zjvzl XA, (t) z;, where A; C I are (Lebesgue in R) measurable and z; € X

(strongly) measurable: if there exist simple functions w, (t) such that w,, (t) — u (t), n — oo for a. e.
tel

weakly measurable: if the (scalar) function ¢ — (2*,u (t)) is measurable in [ for Vz* € X*.

Remark:

(1) Strongly meas. — weakly meas.
(2) w(t) simple <= w(t) is measurable and « (I) C X is finite.

Theorem 1.1 [Pettis characterization of measurability]. Function u (¢) : I — X is measurable iff u (t)
is weakly measurable and moreover AN C I such that A (V) = 0 and w (I'\N) is separable (i. e., u (t) is “essentially
separably—valued”).

Corollary.

(1) For X separable: weakly measurable <= strongly measurable.
(2) g (t) is measurable, u, (t) = u (t) a. e. = u () is measurable.
(3) w(t) continuous = wu (t) measurable

Proof: u,, (t) measurable thilﬁl N, C I, A(N,,) = 0. Set u(I\N,,) = M,, C X is separable, also ANy C I,

A (No) such that u, (t) — u (t) for vVt € I\Ng. Set N = U2 N;, then A (V) = 0 and moreover u (I\N) C UnM”X
. separability is preserved under countable unions and closures = wu (t) is essentially separably—valued.

Is u(t) weakly measurable? Consider z* € X*fixed, then the mapping t — (z*,u, (t)) is measurable and
(x*,up (t)) = (x*,u(t)) as n — oo for a. e. t € I, the mapping ¢ — (z*,u (¢)) is measurable by scalar (Lebesgue)
theory.
(3) HW1

Def.: [Bochner integral]. function w(t) : I — X is called Bochner integrable, if there exists w, (t) simple
such that [, [|lu(t) — uy (t)|| dt = 0, n — co. The integral (Bochner integral) is defined as follows

1) [yu(t)dt =S X (A))aj, if u(t) is simple

j=1
(2) [,u(t)dt =1lim, o [; un (t)dt, if u (t) is integrable with u,, (t) simple from the definition above.

Remark: It is possible to show that the definiton is correct, i. e., independent on the choice of A;, ;, u, (t).
Also it is possible to prove that || [, u (t) dt|| . < [[lu(t)] x dt.

5



1.1. VECTOR-VALUED INTEGRABLE FUNCTIONS (BOCHNER INTEGRAL) 6
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FIGURE 1.1.1. Regularization kernel

Theorem 1.2 [Bochner characterization of measurability]. Function v (¢) : I — X is Bochner inte-
grable iff u (t) is measurable and [, ||lu (t)|| dt < occ.

Theorem 1.3 [Lebesgue]. Let u, () : I — X be measurable, u,, (t) — u(t) as n — oo for a. e. t € I, let
there 3g (¢) : I — R integrable and such that |[u, (t)|| < g (¢) for Vn and a. e. t € I. Then [, u, (t)dt — [, u () dt,
moreover [, [|uy (t) —u (t)|| dt — 0 for n — co and wu is integrable.

Recall: for scalar u (t) : I — R we say that ¢ € I is a Lebesgue point if limj o 57 ffh |u(t+s) —u(t)ds =0.
Lebesgue theorem: u (t) : I — R is integrable = a. e. t € I is a Lebesgue point.

Def.: [Lebesgue point of function]. We say that ¢t € T is a Lebesgue point of w (t) : I — X if
h

— [lu(t+s) —u(t)]|ds — 0 as h—0 .
2h J_p

Theorem 1.4 [On Lebesgue points a. e.] If u(t) : I — X is integrable, then a. e. t € I is a Lebesgue
point.

Remark. Let u (t) : I — X be integrable.

(1) Set U (x) = j;to u (t)dt, to € I fixed }gl U’ (t) = u (t) for every Lebesgue point of u (¢), in particular a.
e.

(2) (regularization kernels) Let 1o (t) : R — R be bounded, zero outside interval [—1,1] and such that
fil o (s) ds = 1 (& possibly other regularizations).

U (t) = napo (nt), ws y (t) = [pu(t —s) Py (s)ds for t € [L, T — 1] or set u(t) = 0 outside I.
Claim: u * ), (t) = w (t) if ¢ € I is Lebesgue point of u. Proof:

W () —u(t) = /Ru(t—s)wn(s)ds—u(t)

1

/_ [ (t — ) — u (8)] 6n (5) ds

1
n

3

1

- Huwn(t)—u(t)ch\?L/nl ||u(t—s)u(t)||ds(190, n — 00

h—1 n
—h

where (%) holds by definition of Lebesgue points.

X
Proof of th. 1.4: By th. 1.1 there 3Ny C I, A(Ng) = 0 such that u(I\Ny) C {x1,22,...,2,...} . Set
ok = ||u(t) — x| ... scalar, integrable. By scalar version of the theorem INy C I, A (V) = 0 such that ¢y (t)
has Lebesgue point at every t € I\Nj. Set N = U2 Nj, then A(N) = 0 and V¢ € I\N is Lebesgue point

of u(t), i. e., 3= ffh llu(t+s)—u(t)]|ds = 0, h = 0. Fix t € I\N, € > 0 arbitrary. Observe: 3k such that
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|lu(t) — 2] < e. Then

h
g | (s —u@ agas <
h 1 h
3 | letes =t g [ fuo - o ds
p(tts) <e
I(h) <e (%)

1 h
I(h) = 7/ o (t+5)ds = op (1), h— 0
Qh —h W—/
<e by choice of k

since ¢ is L. point of ¢ (¢).
() < 2¢ for h small enough.

Def.: [Spaces L? (I; X)]. for p € [1,00) we set

P (I;X) = {u(t) : I — X measurable, /||u(t)||§< dt < oo}
I

L™ (I; X)

{u (t) : I — X measurable, essentially bounded,

ie,de<oos. t. |lu(t)|y <ca. e.}

Remark: These are Banach spaces with the usual norm and the convention that w (t), @ (¢) are identified if
u(t) =u(t) a. e. in I. If X is Hilbert with scalar product (-,-)y, then L?(I; X) is Hilbert with scalar product

(u, U)LZ(I;X) = f[ (u (t) U (t))X dt.
Note: L' (I; X) is space of Bochner integrable functions, LP (I; X) C L% (I; X) for p > ¢ (since I is bounded).

Lemma 1.1 [Approximation and density in L? (I; X)]. Let p € [1,00). Then

(1) Simple functions are dense in L? (I; X).

(2) Functions of the form u (t) = Z;\Ll @; () zj, ¢; (t) € C (I,R) are dense in LP (I; X)

(3) If the space Y is dense in X, then C2° (I,Y") are dense in L? (I; X).

(4) Let 9y, (t) be regularizing kernels, let u (t) € L? (I; X) be extended by 0 outside of I. Then u* ), (t) —
u(t) in LP (I; X) for n — oo.

Remark:
C(I,X) = {u(t):I— X continuous}
CHI,X) = C(L,X)n{u (t)eC(I,X)}
C.(I,X) = CI,X)Nn{u(t)=0o0n [0,6]U[T —46,T] for some 6}
Proof:

(1) w(t) € LP (I; X) given == 3u,, (t) simple such that [, ||u, (t) — u (£)[[% dt — 0.
We know u (t) is measurable, hence Ju, (t) simple such that w, (t) = u () a. e. in I. Set u, =
{ﬂn @) if flu, @O <1+ u@)]

) . Clearly u, (t) — u(t), but ||u, ()] <14 [Ju(t)] for a. e.
0 otherwise

lun (8) —uw@)|” < (L+2[u@)])"
—0 8. V.
< I+ u@)|”) =g () ... integrable

By scalar Lebesgue theorem we are done.
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(2) by (1) we know: u (t) = Zjvzl XA, (t) z; are dense in LP (I; X). Scalar theory: x4, (t) can be approxi-
mated in L? (I;R) by ¢, (t) € C (I, R).
(3) Functions u (t) = Z;\;l w; () zj, ¢ (t) € C(I,R), z; € X can be approximated in L? (I; X) by
functions u () = Z;\le @; (t)y;, where p; € C° (I,R), y; € Y.
—_———

€ C* (1Y), obviously
(4) € = 0 given, arbitrary. Find v () € C2° (I, X) such that [Ju(t) — v (t)[|1s(7,x) <& Then

wihn (t) £ 0 (t) = [u—v]* () + 0% () = fu () + gn (t)

e f,(t): use Young inequality: |1 * 2| < |l¢ills l02]le, in particular for p = r, ¢ = 1:
1 * @2lly < llpallpe - lwallps Set w1 =w—w, then [lu = vl 1x) <& w2 = Yn, [l = 1.
= [[fo Ollor,x) <€

® gn(t) =v*1py (t) S v (t)in I, hence v« (t) — v (t) in LP (I; X), hence |gn (£) = v ()| po(r.x) <€
for n large enough.

uwn(t)—u(t)=w+gn(t)—v(t) + v(t) —u(t),

-0 -]l <e I-ll<e
for n large

therefore |lu x 1, (t) — u (¢)|| < 3¢ for n large.

Remark.
(1) Corollary: X separable = LP (I; X) is separable for p € [1,00).
(2) None of these is true for p = cc.
(3) More about L? (...) can be found below (dual space, geometry).

1.2. AC functions and weak time derivative

Def.: u(t) : I — X is absolutely continuous (AC (I, X)) <= for Ve > 0 3§ > 0: V disjoint finite system
(o, Bj) C I it holds that if 3 [a; — ;] < & then >, |lu(ay) —u (8[| <e.

Theorem 1.5 [Derivative of AC function]|. Let u(t) € AC(I,X), let X be reflexive and separable.
Then o' (t) = limp0 + (u(t+h) —u(t)) for a. e. t € I, v/ (t) € L' (I; X) and u (t2) — u(t;) = 2/ (s)ds for

t1
th,tz el

Recall: We assume scalar version (X = R) is already proven.
e [ =[0,T]
e X is Banach space.

Recall: (Eberlein-Smulian theorem). X is reflexive, |lu,|| is bounded = 3 weakly convergent subse-
quence Uy, i. e., Ju € X such that 4, — v meaning (z*,u,) — (z*,u) for Va* € X* fixed.

Recall: norm is weakly lower-semicontinuous:
Up = u = |Jul| < liminf |ju,|
n—oo
Proof of th. 1.5: Step 1: set

N
V(0 = var (u(0),0.0) 2 sup S u(7) — (-0

j=1

where the supremum is taken over all partitions D of the interval [0,t],1. e, D:0=7o <7 < ... <7, =1.
observe: V (t) > 0, V (t) is non-decreasing, even AC.
u(t+h) —u(t) < V(t+h)—V(t)

W < 3 — V' (t) eR for a. e. t € I\ Ny,

where A (Ng) = 0. Hence

MH is bounded as h — 0, for a. e. t € I.
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©

Step 2: X* is separable, let {z7, 23,...} be some countable dense set in X*. Define auxiliary functions @y, (t) =
(xr,u()y: I — R ¢k are AC. Therefore by scalar case ¢’ (t) € R, 3 for V¢ € I\Ng, A (Ng) = 0 and ¢y, (t2) —

ok (t1) ft s)ds Vti,ta. For t € I\|J,oo Nk define v (t) € X as follows: take some h, — 0 such that
w ( ) (by Step 1 & Eberlein-Smulian).

observe: v (t) is independent of the sequence h,,, hence M - (t), h—0.
w — 7 (t) € X. But then
(a7, L 5 (g )
I I

Lottt h) — o) = (),

n

the same holds with Ay, (5,0 (1)) = ¢ (t) = (z*,v (t)), therefore (z},v (t) — v (t)) = 0 for Vk, by density of =}
in X we have v (t) = v (t).
Step 3: v(t) € L' (I,X),1i. e

(1) measurable ... see excercises, HW1
2) [,llv(t)|ldt < oo ... weak lower semicontinuity

v (t)] dt /liminf
[ im n

< /liminfi(V(t—l—hn)—V(t))dt
I
we know = /hm i(V(t—l—hn)—V)dt
I

Assume:

IA

n

1
— (v(t+hy) —v (t))H dt
- n—00 M,
n—oo
/V/ t)dt < oo
since V' (t) is AC.

Step 4: u (t2) —u(t1) = ftz (s)ds for Vty,tq € I.
We have:

hou ) ~ (i) = | v o) ds = (i / v(s)ds)
#1.(s)

We conclude by density of z7 in X™*.
Step 5: M — v (t) strongly for a. e. t € I ... consequence of Th. 1.4 and step 4.

Notation: D (I) = C (I,R) ... scalar test-functions.

Lemma 1.2 [Weak characterization of constant and zero function]. Let u (t) € L' (I; X).
IffI dt—OforVgp()ED(I)thenu(t):Oa. e. in I.
) If [ u( t)dt =0 for Vo (t) € D (I) then Jzg € X such that u (t) = zp a. e. in I.

Proof. (1): Set un( ) = u * 1y, (), where ¥, (t) = nwg (nt), 1o (t) is convolution kernel such that 1y €
D ([=1,1]).

PS = fR $) ¢y (t — s) ds = 0 by assumptions.
———
€ D (I) for n large enough and ¢ € [0, 7] fixed
On the other hand: LS = un ( ) = u(t) a. e (by th 1 4)
(2) up, (t) as above: ul, (t) = & [ou( wn (t—s)dsZ fR s)yl (t—s)ds =0, t € (0,T) fixed, n large enough,
E,_/

—¢’(s)
where ¢ (s) = ¢, (t —s) € D(I). Hence u, (t) is smooth, u), (t) = 0, therefore u, (t) = =, everywhere. But
Up (t) = w(t) a. e. in I, which concludes the proof.
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Yt — s)

| | |
0| t| T

FIGURE 1.2.1. Regularization function ., (t — s)

Lemma 1.3 [Equivalent definition of weak derivative]. Let u (t), g (t) € L' (I; X). Then the following
are equivalent:

(1) ElxoeXbuch ‘cha‘cu(1f)—aco~6—f0 s)ds for a. e. t € I.
) S;u@®) ¢ (t)dt=—[,9(t) dtforVgo()ED(I).
(3) jt <:c u (t)> = (z*,¢(t)) in the sense of distributions in (0,7 for Va* € X* fixed.
Proof:
(2) < (3) recall: (3) means f[ <x*,u(t)) <p = —fl g(t) ( )dt for Vo € D (t).
It follows that (x*, [;u( > —(a* fg dt) for Va* € X* and Vo € D (I). Therefore
Jru) ¢ = [g(t) dt <= (2) holds.

(1) = (3) take z* € X* arbltrary, apply to (1):

{27, u(t)) = (z%, z0) +/0 (. g(s)) ds = £ (t)

———
=&(t) 1 (s)
clearly & (t) € AC, £(t) = £(t) a. e. Take ¢(t) € D(I): one easily verifies that £ (t) o (t) € AC
and (g(t)go(t)) =)o) +£(t) ¢ (t) a. e. Integrate over [0,T], note that ¢ (0) = ¢ (T) = O:
0= f] E(t) o (t) + £ () ¢ (t) dt. Therefore (3) holds
~—~
Zﬁ(t) a. e.=((t) a. e.
(2) = (1) set u(t) fg )ds u(t)e AC(I,X),d (¢) (t) a

=Jog(s =9
Take o (t) € D (I) arbitrary ... u(t) ¢ (t) € AC (I, X), by remark below Th. 1.4 it holds that

//Idt

— 0 = /g(t)w(t)dH/ﬂ(t)w’(t)dt,

=
=
©
=
Il
4
=
©
=
+
2

I I
by (2) we have: fIg(t)gp(t) dt+ [;u(t) ¢’ (t)dt =0.
Subtract f[ t)—u(t)) ¢ (t) =0V (t) € D) L. g’ 23x0€Xs. t. u(t) —u(t) =x0 a. e. in I.

But u ( fo s) ds, hence (1) holds.

Def.: [Weak derivative of u(I) :— X]. Let u(t), g(t) € L' (I; X). We say that g (t) is weak time
derivative of u (t), if one (and hence any) of the assertions of L. 1.3 holds. We write 4w (t) = g(t). We then
define WP (I; X) = {u(t) € LP (I; X), Lu (t) € LP (I; X)}.

1.3. Geometry and duality in L? (I; X') spaces

Recall: [Reflexive space, canonical embedding X — X**]. mapping J : X — (X*)" is isometric into.
For X reflexive, J is onto.
z = Jx, where (Jz,y) yun o = (Y, )y x for Vy € X*. Eberlein-Smulian: X reflexive, {u, } ¢ X bounded =—>
3 subseq. Uy Ju € X s. t. U, — u (weak convergence, meaning (y,u,) — (y,u) for Yy € X*).
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Def.: [Strictly and uniformly convex space]. X is:

strictly convex: ||z|,|ly]| <1,z #y = ||%H < 1.
uniformly convex: Ve > 035 >0s. t. [|z,|ly]| <1, |lz—y|| > = H%H <1l-4.

Theorem 1.6 [Relationship between weak and strong convergence in UC spaces|. Let X be uni-
formly convex, let 2, — x and let ||z,| — ||z||. Then z,, — x.
Proof: WLOG: x # 0, set yn = 327, ¥ = > clearly yn — y, lynll = |lyl]] = 1. Assume for contradiction

Yn — Y, hence Je > 0, 3 subseq ¥, such that ||y, —y|| > € for Vn. But g, =~ y = y;—y — % and since the

) ) ) o 4y X unif. conv. )
norm is weakly lower semicontinuous, we have ||y|| < liminf, H nl H < 1 -0 < 1, by which we have

obtained a contradiction.

Remark: general principle: z,, = z, A (z,) — A(x) for suitable A = x,, — =.

Remark:

e X Hilbert = X uniformly convex,
e X uniformly convex = X reflexive,
e LP () is uniformly convex for p € (1,+00).

Theorem 1.7. Let X be uniformly convex, p € (1,+00). Then LP (I; X) is uniformly convex.

Recall:
e p,p €[1,00) are Holder conjugate <= %+ i =1
1 ’
e Holder inequality: [, |u(z)v (z)] dz < ([, |u(z) |p dx)p (fg \U(x)|p>p

’

e consequence: v (x) € L () ... F, € (L? ()" )= Jou(x)v(z) de for Yu € LP (Q).

-

Theorem 1.8 [Holder inequality]. Let u (t) € L? (I; X), v (t) € L*' (I; X*), p,p’ Holder conjugate. Then
the mapping ¢ — (v (¢),u (t)) x- x is measurable and

/I |dt<(/|lu |p>;</l||v(t)||§;*>;’.

Proof: u(t), v (t) are strongly measurable, PS < oo. Then Ju,, (t) : I — X simple such that u,, (t) — u (t) and
Ju, (t) : I — X simple such that v, (t) = v (t) a. e. in X, X*. Therefore the mapping t — (v, (t), uy, (t)) is simple
and measurable. Since (v, (t),u, (1)) = (v (t),u (t)) a. e. ({-,-) is continuous), the mapping ¢ — (v (t),u (t)) is
measurable. Finally: (v (t),u (t))] < ||v (#)| ¢« |u (t)||x and by scalar Holder inequality we are done.

Corollary: v (t) € L¥ (I; X*) = F, :u— Ji (), u(t)x. x is well defined for Vu (t) € L (I; X).

Theorem 1.9 [Characterization of L? (I, X) dual]. Let X be reflexive, separable, let p € [1,4+00). Denote
2 = LP (I; X). Then for any F € 2 there is v (t) € L*' (I, X*) such that

Fu®) ey = [00.00) ey do ult) e 2.

I
Moreover, v (t) is uniquely defined and [[v (t)| 1 (7,x) = [[Fll g7+
Proof. Step 1: For 7 € I and z € X denote u,.(t) = Xxjo,-(t)x. Clearly u,,(t) € 2 and z
(F,urz(-)) g g 1s linear continuous. Hence there is g(7) € X* such that (F\uro()) 5. o = (9(7),2) x« x
for all z € X.
We will show there is v(t) € LP (I; X*) such that

o(r) = / "u(t) di 1)

lo@l Lo (r,x+) < 1F] 5+ (2)
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Observe that with this we are done: implies that

Fainal) e = { [ 000 dt’x>X*,X = [ @) ura(0) . x

I

By linearity we have
(Fru()) ey = / (0(t), u(t)) di (3)

for any u(t) = Zj X(a;.5;](t)x;. But such functions are dense in 27, to which (3)) extends, using continuity of F*
on the left, and Holder inequality on the right. Furthermore, it now follows from that

[Fllge = sup  (Fu(-))gu o = sup /<v(t),U(t)>X*,X dt <o)l Lo (1)
lu(®)ll =1 lu(®)ll =11

by Holder inequality again. Together with (2) we obtain [[F[[ 4. = [[v(¢)|[ 1w (7,x+); this also implies that v(t) is
uniquely defined.

Step 2: Towards proving , we first show that g(t) : I — X* is absolutely continuous. Let (o, 8;) C I be dis-

joint. It follows from reflexivity of X that there exist x; € X with [|2;|| = 1 such that ||g(8;) — g(a;) . (9(8;) — g(a

On the other hand

(9(85) — 9(g),5) x v x = (Foug, o, () — “%ﬁf;‘('»%*,% = (F, X(Oéjﬁa‘](')xj>%*,.%

Hence

leg Bi) = gla)ll x. = <F ZX(aJ,BJ >

XX

< Foe | Y Xeayus ) (Dz5]| = I1F N | D (85 — )
i o i
Obviously, this implies g(t) € AC(I; X™*).

Step 3: By previous step and the fact that g(0) = 0, we see that (1)) holds with some v(t) € L*(I; X*). It
remains to establish .

If p = 1, observe that implies g(t) is lipschitz, and in particular v(t) = ¢'(¢) a. e. is essentially bounded by
| F|| 5~ In other words, (2) holds with p’ = oo as required.

If p € (1, 00), one can proceed as follows. As in Step 1 we use linearity to deduce 1) for all u(t) = Zj X(a;,8,](1)T;
We now just have v(t) € L(I; X*), so the density argument only extends to u(t) € L>(I; X).

We need one more limiting argument: set

on(t) = {”(f)v if ()] x. <n

0, otherwise

and u, (t) = z(t) ||Jva(t )||X ; where z(t) € X are such that |[2(?)[|x = 1 and (v(?),2(¢)) x- x = [[v()][x-- Now

un (t) are essentially bounded, and [[u, (t)[|% = (v(t), un(t)) x« x = ||vn(t)Hp/*. Plugging u, (t) into (3| gives, after
a simple manipulation, that
1

( AL dt) < IF] -

Since [|vn (t)] x« A Jv(E)|| -, estimate (2)) follows by Levi theorem.

Corollary: X reflective, separable, p € (1,400) = LP(I;X) is reflexive and separable. Hence any
sequence bounded in L? (I; X) has a weakly convergent subsequence.

j)v$j>x*,x~
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1.4. More on weakly differentiable functions:
extensions, approximations, embeddings

Recall: u(t),g(t) € L* (I X) ... g(t) is a weak derivative of u (t) (Lu (t)) iff (by L. 1. 3) Eixo € X
such that u(t) = :coJrfO s)ds for a. e. t € I =1[0,T] or < fI gp’ t dt = —[;9( t)dt for
Vo (t) € D(I) = C= (I,R).

Remark:

e by the above results: w (¢) is weakly differentiable <= 3Ju(t) € AC such that w(t) = u (t), v’ () =
Ly (t) a. e
e in applications we will often have u (t) € L (I;Y), $u(t) € L?(I;Z). This means: 3X such that

Y,Z C X (often Y C Z = X). Then %u(t) = g(t) in L' (I; X) and moreover u(t) € LP(I;Y),
g(t) € LU(I; Z).

Lemma 1.4 [Weak derivative of product and convolution]. Let u (¢) : I — X be weakly differentiable.
Then:

(1) I n@t) : I — Ris C°° then w(t)n(t) : I — X is weakly differentiable and %(u t)n ) =
(fu@®)n (@) +u ) ().
(2) If ¢ (t) € D(I), then w1 (¢) : I — X is smooth and moreover (u 1)’ (t) = (24u) * ¢ (), whenever
t —suppy C (0,7).
Proof:
(1) ¢ (t) € D(I) given:

/[u On O] (t)dt = /U(t)ﬁ(t) ¢’ (t)dt
I T ——
| (smooth)

(n(t)e () —n' ()@ (t)

- / w(t) (7 () @ (8)) dt — / w () (&) (1) dt
I N——— I
e D(I)

= [rg®)n ) e t)dt, g(t) = Fu(t)
= [ |G on@ i 0] ewa
(2) extend u (s) =0 for s ¢ I (not neccessary if t —supp C I). Let t € I be fixed.

uxp(t) = /Ru(t—s)w(s)dssugs‘c'/Ru(s)w(t—s)ds
/u(s)w(t—s)ds

I

we know: (ux1) (t) = /Iu (s)¢' (t —s)ds

N——
=—¢' (), where ¢ (s) = (t — )

d
= /Ig(s)gp(s)dSZ/Iau(s)dJ(t—S):PS

Theorem 1.10 [Extension operator for weak derivative|. Let u(t) € LP (I,Y), 4u(t) € L(I;Z),
where I = [0,T]. Denote In = [-A,T + A] with A > 0. Then there is Eu(t) € L? (I;Y), thu € L1(Ia, 2)
and such that Fu (t) = u (t), thu( ) = 4y for a. a. t € I. Moreover, ||Eu Ol rorayy < Cllu®llora vy and

<C H U for suitable C' > 0.

| 4 Bu (t)HLq(IA,Y) ||L<1(IA,Y)

1Holds for lipschitz, proven for C'*°.
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|
- 0

~ t te |0, T
Proof: Trick: use even extension as on Fig. |1.4.1} w (t) = {u( ) 0,7

Claim: % (t) is weakly differentiable and 2% (t) = g (¢) in [-T,T],

N g (t) te [07T}
where g (t) = {g (-t) te[-T,0)
Note: t € [-T,0] =

i@ T xo+/0_tg<s>ds=xo+/0Tg(s>ds— /Tg<s>ds

—t

with g (t) = Lu (¢).

ToeX subst. s = —7
t t
= f()—/ E]'(—T) dT:’f()—‘r/ g(S)dS,
-7 -7

hence we have shown: @ (t) = T + fng(s) ds, t € [-T,0), but also u(t) = zo + fo s)ds, therefore u(t) =
~ t ~ ~
To + fng(s) ds, t € [-T,T]. Clearly ||u(t)HLp([_T72T];Y) =3 ||u\|Lp(I;Y)7 ’ EHLQ(FTQT],Z) =3 ||au}|Lq(1;Z).

Remarks:

e extension operator u — Fu is linear,
e we can have Eu (t) = 0 for ¢ outside 14/, (multiply by cutoff function 7 (¢): L. 1.4,1).

Theorem 1.11 [Smooth approximation of weakly differentiable functions|. Let u(¢t) € L? (I;Y),
4y, (t) € L9 (I; Z). Then there exist functions u,, (t) € C' (I;Y) such that u, (t) — w(t) in L? (I;Y), u, (t) —
Lo (t)in L9 (1; Z).

Proof: Set uy, (t) = Eu * 1y (t), where ¥, (t) = ntp (nt), 1o (t) € C2 (R,R), [p1ho (t)dt = 1, 1o (t) = 0
outside [—1,1]. Eu (t) is defined for t € [-A, T 4+ A] ... from Th. 1.10, set Eu( )=20 elsewhere.

Observe: u, (t) € C* (I,Y) ... ex. 1.3.1, u, (t) — Eu(t) n—ooin LP (Ia,Y) ... L1.14 and Fu(t) = u(t) in
[0,T7], hence u, (t) = w (t) in L? (I;Y). Moreover ul, (t) = (L Eu) =y, (t) = (£ Eu(t)) b, in L?(I1; Z) by L
1.1,4 and %Eu (t) = %u (t) in I, hence uj, (t) — Fu(t) in L1 (I Z).

Def.: [Gelfand triple]. Let X be separable, reﬂexive7 densely embedded into a Hilbert space H. Then, by
Gelfand triple we mean X C H = H* C X*.

Commentary: Riesz: H = H* (identification): Vy € H* 3y € H such that (y,2)y. iy = (y,2)y Yz € H,
where (-, ) is scalar product in H. X C H = H* C X*, in particular X C X* via the embedding: zo — x{,
where (23, 2) x. x = (20,2)y Vo € X. Can be shown: injective and on the dense set, see ex. 3.3.

Application: we will often work with u (t) € LP (I; X), $u (t) € L1 (I; X*).

Lemma 1.5 [Weak representative for W7 (I; X)]. Wb (I; X) C C (I, X) in the sense of representa-
tive: for any u(t) € WP (I, X) there is u(t) € C(I,X) such that u(t) = u(t) a. e. and 1@ ®llorx) <

cllu@llwrerx)

Remark: One even has WP (I; X) < C% (I, X), where a =1 — 1 (HW 2).
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Proof: Step 1: u(t) € C'(I,X) ... fix t € I, WLOG let t € [Z,T], where I = [0,7]. Then u(t) =
u(r) + f: Ly (s)ds for T € [0,L]. Therefore
T/2
ds // dr
0

ds

IN

@l < @i+ [] e

T z T
she@l < [Tu@iar+s [

cllu@llwrarxy < Ellullmieg.x)

IN

d
%U(S)

IN

= llu@llcux) Scllu@lwirgxy )
c=c(T) for any u(t) € C* (I, X)
Step 2: u(t) € W1P (I; X) arbitrary. Th. 1.11 = Ju, (t) € C* (I; X), u, (t) — u (t) in WP (I; X). Hence
{uy, ()} is cauchy in WP (I; X) and we apply (#) to up, (t) — uy, (t) = {u, (t)} is cauchy in C (I, X), hence
un (t) = w(t), where u (t) € C (I, X) is the continuous representative.
Theorem 1.12 [Continuous representative for L (I; X) with v (I, X*) derivative|. Let X C H =
H* C X* be Gelfand triple. Let u () € L? (I; X), $u(t) € L (I; X*), where p, p/ are Holder conjugate. Then
(1) u(t) € C(I,H) in the sense of representative:
3 (1) € C (I, H) such that [@ll¢ g < ¢ (||u||Lp(,;X) n H%unm,(hx*)) and U (¢) = u(t) a. e. in I.
(2) ¢ = [lu(®)|[ is weakly differentiable with 4 |lu (£)|[3;, = 2 (Fu (), u(t)) . y a. e in I, in particular,
Hﬂ(t2)||§{ = Hﬂ(tl)H%{ + fttf 2(Ly(s),u (5)) x- x ds where @ (t) is the continuous representative.
Proof:

(1) Step 1: u(t) € Ct (I, X). Trick: u(t) =u(t)0(t)+u(t)(1—0(t)), 0(t): I — R is smooth, 6 (0) = 0,

uy (t) uz(t)
O(T)=1,e g 0(t) = ~.
lus (W)l = (w1 (8) 01 (8) g — (u (0),u1 (0)
0
ty
- / = (un ()1 (5)) ds

- Adu)e

u' (8)0(s)+u(s)d (s) u(s)f(s)
= 2/ (u' (s),u(s)) g 0% (s) + (u(s),u(s))y 0 (5)6 (s)ds
0

(FIN) = 2 [ 9 e 006) + (o) (o) 0 (9015) s

C I|<w’(8)7u(8)>|+\<W(S)7u(8)>|d8

<
"generalized scalar product": Gelfand: (1u,v) y. y = (4, v)p ... use Holder
< O i) Ielln) + Nellpmgrxy Tl
—_———
L. 1.1
S C ||u||W1>1(I;X*)
2
d
< O lullperx) + at
Lr' (I;X)
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And therefore part 1 holds for u (t) € C! (I, X), namely we have:

(3%) SUP¢eo,T) lu@®ly <c (“u”m(l;x) + H%UHLP(I;X*)>'
Step 2: let u (t) € LP (I; X) with Lu(t) € L¥' (I; X*) be given. By Th. 1.11 there exists u, € C* (I; X)
such that u, (t) = u(t) in L? (I; X) and w), (t) = Lu(t) in LY (I; X*). Apply (3) to up (£) — u, (t) €
CY(I,X), hence RHS is small for m,n > ng for ng large enough. Therefore LHS is small = (B.C.)
for u, (t): I - H = Ju(t) € C (I, H) such that u, (t) 2 u(t) in I. Also: u, (t) = u(t) a. e. in X,
hence u (t) = % (t) a. e., where @ (t) is the representative.

(2) Let uy, (t) be smooth approximations:

i O =% (6 (1)) = 2 (0), 0 1)

2 (g (£)  um (1)) - x

For Vty,ts € I we have

ty
lun ()5 = llun (tl)llifr?/t (vuy, (8) un (8)) x- x ds
I n— oo
~ 2 ~ 2 h /
@)y = la)ly + 2/,5 (' (s),u(s))x. xds

by Hélder 1ncquahty (ex.: up (t) — (t) in L? (I; X), v, (t) — v (t) in L (I; X*) which implies the
convergence [, (vy (s),un (s)) ds — [ (v (s),u(s))ds, see ex. 2.5.

Notation:

embedding: X — Y: X C Y, 3¢ > 0 such that ||ull, <cluly
compact embedding: X —— Y: X — Y and for any {u, } C X bounded there is a strongly convergent
(in Y') subsequence.

Remarks:
e Th. 1.12: { (t) e LP (I; X)), Lu(t) € 7 (I;X)} — C (I, H) in the sense of representative.

e Gelfand triple: X < H = H* — X*, also X — X*, more precisely: the embedding of X into X* is given
by tX — X*, where (tu,v) x. x = (u,v)y, u,v € X, because: dy(t)y=gt) < [fuu@)¢ (t)dt=
—[g@®) ¢ (t)dt Vo(t) € D(I).

Lemma 1.6 [Ehrling lemma]. Let ¥ << X < Z. Then for any a > 0 there is C' > 0 such that
lull < llully + Cllull.

Proof: for contradiction assume that Vn Ju,, such that |u,| v > allunlly + nllunll,, WLOG |ju,|y = 1,
hence 1 > a||uy, ||y +n ||un|l,. Therefore {u,} is bounded in Y = ZJsubsequence @, = v € X, |Jul|y = 1. But:
L> |lunll;, un — 0 in Z. Therefore w = 0 in Z and thus we have obtained a contradiction: uw =0 in Z =
u =01in X since X — Z

Theorem 1.13 [Aubin—Lions lemma]. Let Y —<— X — Z, where X, Z are reflexive and separable. Let
p.q € (1,00). Then for any sequence uy, () bounded in LP (I;Y) such that Zu,, (¢) are bounded in L? (I; Z) there
is a subsequence converging strongly in L? (I; X).

(Briefly: {u(t) € LP (I, Y), 4 Lu(t)ye L1(1;2)} < LP (I;X).)

Proof: Step 1: L? (I;Y), L% (I; Z) are reflexive, by Eberlein-Smulian 3 subsequence such that wu, (t) — w ()
in LP (I;Y) and Lu, (t) — g(t) in L9([;Z) and $u(t) = g(t). We will show: u, (t) — u(t) in LP (I; X).
WLOG u (t) =0 ... otherwise subtract the limit (see ex. 2.1).

Subproblem: wu, (t) = 0 in LP (I;Y) and un( )—=0in L1(I;Z) = wu, (t) = 0in LP ([; X).
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Step 2: u, — 0 (strongly) in Z for any ¢ € I fixed. Trick: u,, (t) = uy, (t +5) — f:+s 4, (0)do, s € (t,t+6).

Integrate f05 -ds, multiply by :
1 5 1 5 t+3
un(t):f/ un(t—&—s)ds—f/ / Uy, (0) dods
4 Jo 0 Jo Ji
Iln I2n

I, recall: ,, = 0in X, L : X — Y linear continuous = Lz, — 0in Y (see “Properties of weak convergence”

in appendices). Observe: u %f(f u (t + s)ds is linear continuous L? (I;Y) - Y << Z. Recall: 2, ~0in Y,
Y >~ 7 — 2, > 0in Z. Hence I;,, —» 0in Z.

Is,:
5 t+s t+0 o
d Fub. d
UL Geear)ae B ([ G

t+0 d
= / (c —o+t)—uy(o)do
t

dt
t+4 d
= |||, < / £un(0) do
t z
1 1
t+48 d q q t+6 , a’
(Holder) < / —uy, (0)|| do / 19 do
‘ dt z .
< Hdu 51 < kot
dt | Le(r,2)

where 1 — % > (0 since g > 1.

Therefore for € > 0 given choose § > 0 small such that ||I2,]|, < § for Vn. Then choose ng such that |[11,]|, < §
ifn>ng = |lu, (t)||, < e for n > ny.

Step 3: w,(t) — 0 in LP(I;X), ¢ > 0 given. Use L. 1.6: ||u, (t)]x < allun (O)|ly + Cllun (t)],. A-
inequality: [[unllzor.x)y < alltnllpogyy + cllunllper,z)- Choose a = 57, where [unllpp(fyy < K. But:

lwn (O Lorzy) = (f; lun (¢)]1% dt)” — 0 by Lebesgue. Since |lu, (t)||, — 0 by step 2 and |u, (¢)||, < C by

embedding W' (I; Z) < C (I, Z) is u, is bounded in W' (I; Z), hence second term < £ for n large, therefore
HUTLHLP(];X) < ¢ for n large.



CHAPTER 2

Parabolic second order equations

(P1) Ow—diva(Vu)+ f(u) = h(t,z), (t,z)elx
(P2) uw = wup, t=0,z€Q
(P3) uw = 0, x€9N
where Vu = %7...,% ; operators A and div are defined as usual. w = w(t,2) is unknown solution,

h = h(t,x) is right—hand side, ug = ug (x) is initial condition. h and ug define the data of the equation.

Assumptions.

(A1) © € R™ is bounded domain (i. e., open, connected) with regular (Lipschitz) boundary.
(42) a(€) : R = R, a(0) = 0, |a(&1) —a(&)] < a1lé — &, (a (&) —a(&)) - (4 — &) = aglér — &l

V&1,6 € R™
(43) f(2) :R=R,|f(21) — f(22)| <L|z1 — 22|, V21,22 €R.
Remark:

e special case: a(§) =&, f =0 ... heat equation dyu — Au = h(t,x).
Plan:

(1) well-posedness (3! weak solution)
(2) regularity (strong solution for smooth data)
(3) further properties

tel .

x € )

FI1GURE 2.0.1. Initial and boundary condition in spacetime cylinder.

18
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Recall:
e Sobolev spaces W2 = {u € L*(Q) : Vu =v € L? ()}, where Vu is weak derivative, i. e., — [, u%‘”j dr =
Jovjedx Yo € D(Q),Vj.
lullywr2) = lull L2) + [Vull p2(q)
o« Wy (Q) = {ue W2 (Q),u =0 on 02 in the sense of traces} = Cx(Q)
o W2(0) = (W32 (@)

wi2(Q)

Facts:

e compact embedding: W12 (Q) —< L% (Q)

e Poincaré inequality: [[ulz2q) < ¢p [Vull12(q) for Vu € Wy2 (Q).

Corollary: norms [[u|yy1.2(q) and [[Vul|2(q) are equivalent on Wy (Q).

e W12(Q) is reflexive, separable, VVO1 -2 (€2) is a closed subspace of W12 () hence also reflexive, separable.

o Wy (), Wh2(Q) are dense in L2 ().
Notation: we will write L2, W2, W% instead of L2 (), lullgs [lully o5 [lull_; o instead of [[ul| 12 ete.

(,-) is scalar product in L? (Q), i. e., (f.g) = [, f (x)-g (x) dx, (-,-) is duality of W =2 and WOI’Q.
n
both functions in R™ or R

Gelfand triple: Wol’2 — [?2 = (LQ)* — W~12 with the embedding ¢ : L? < L? : (1u,v) = (u,v), Vo € L?.

Recall: stationary problem:
—diva(Vu) = h, z€QheW 1?2
u = 0, z€0df
weak solution: u € W,'? such that: Joa(Vu(x)) - Vo (x) dz = (h,v) for Vv € W,

e by nonlinear Lax-Milgram theorem: Yh € W42 Jlu € WO1 2 weak solution
e we introduce operator A : W2 — W12 by (A (u),v) = (a(Vu),v). By Lax Milgram: A : Wy* —
W12 is continuous, 1-to-1.

Remark: if a (§) =&, then (A (u),v) = (Vu,Vv), i. e., A(u) = —Au (weak laplacian).
Assumption: h(t) € L? (I; W~?), where h (t) = h(t,z) is the RHS in (P1).

Def.: [Weak solution of parabolic equation]. function u (t) € L?(I; W, ") is called a weak solution to
(P1)—(P3) provided that:

a

dt

in the sense of distributions in (0,T) for Vv € Wy, (“Infinite system of ODEs.”)

(u(t),0) + (a(Vu(t)), Vo) + (f (u(®),0) = (h(t),v)

Remark: Expanding the definition of % we get

Gr0=s0 = [v0¢ 0= [se®ave e
= (%) —/I(u(t),v) 4 (t)dt+/l(a(Vu(t)),Vv) pdt
+/I(f(U(t)),v)<p(t)dt:/I<h(t),v>w(t)dt

for Vv € Wy, Yo (t) € D (I)
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by expanding further (-,-) we get

- H u(t,z)v(x) ¢ (t)dtdo + ﬂ a(Vu(t,z)) - Vo (z) e (t)dt do

IxQ IxQ2
+f f(u(t,x))v(x)go(t)dtdm:/<h(t),v)<p(t)dt
IxQ I

for Vv € W,

Note:

e multiply (P1) by v (x) ¢ (t), integrate by parts ... formally we obtain the equation above.
e definiton makes sense: all integrals are finite (Holder & (A1), (A2) ... see ex. 3)

Lemma 2.1 [Properties of weak solution of parabolic equation]. Let u(t) € L? (I; Wol’z) be weak
solution. Then

(1) u(t) is weakly differentiable as a function I — W12 with
d
(ex) () +Au(t) +of (u(t) =h (1),

in particular %u(t) c L? ([, [/[/*172)7
(2) u(t) € C(I,L?) in the sense of representative,

(3) t—|lu (t)||§ is weakly differentiable with

(5 %) %IIU(QH@HA (u(®),u(®) + (f (w(®),u(t) = (h(t),u(t) a e inl

Proof:

(1) with embedding s : Wy'? — W12 from Gelfand triple: (u (t),v) = (wu (t),v), (f (u(t)),v) = (uf (u(t)),v),
by definition: (a (Vu (t)),Vv) = (A(u(t)),v). But then (x) is rewritten as

I

</ —w () @' () + A(u®) e (t) +of (w(t) @ (t) —h(t) e (t)dt, v> =0.

y) since eq. holds Vo (t) € D (I), Yo € Wy

Therefore (xx) is proven.

4y (t) € L* (I, W12) follows from (xx) and the fact that A (u(t)), f (u(t)), h(t) belong to this space.
(2) Apply Th. 1.12,1 with X = W%, X* =W 12 H=I12 p=p =2.
(3) Apply Th. 1.12,2 with X = Wy, X = W*, X* =W 2, H =1 p=p =2 ... Llu@l; =

use (xx*)

2<%u(t),u(t)> =

Remark:

e we will always work with continuous representative, hence u (t) is well-defined for all ¢ € I, in particular
initial condition u (0) = up makes sense,
e also, t — |[u(t)]|3 is AC (Th. 1.12).

Theorem 2.1 [Uniqueness of weak solution of parabolic equation]. Weak solution is unique.

Proof: Let u(t),v(t) € L? (I; W01’2) be weak solutions and assume u (0) = v (0). Set w (t) = u () — v (¢).
Goal: w(t) =0Vt e I.
By L. 2.1: w(t) is weakly differentiable with $w (t) + A (u(t)) — A (v (t)) + f (u(t)) — f (v(t)) = 0 in W12 for
a. a. t € I. Apply (-,w (¢)), by Th. 1.12:
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Th. 1.12 |

2
33w )]

(t2) : /Q (a(Vu(t)) —a(Vo(t))) (Vu(t) —Vo(t)) de >0
>0 by (A1)

(ts) :

/Q (F () —  (0(8))) (u () — v (1)) de
Ztlu(t) — v (1)] by (A2)

§/9£|w(t)| de = €w (1)}

Therefore
1d
gg\\w(t)lli = —(t2)+(=(t3))
—— N—\—
<0 <|(ta)]
< 0+ Lfw )l

— 2w @2 < 2] (1)]2 for a. a. t € T B2 |w (1)]2 < w (0)]2 e for Vi, therefore w (¢) = 0 in I.

Lemma 2.2 [Gronwall lemmal]. Let y(g), g (t) be nonnegative (scalar) functions, y (¢) continuous, g (t)
integrable. Let y (t) < K + fotg (s)y(s)ds for Vt € I. Then y (t) < K exp (fot g(s) ds) for Vt € I.
Proof: see ex. 3.

Goal: for Vug € L2, h(t) € L? (I;W—12) Ju € L*(I;W,"*) weak solution such that u (0) = ug.

Def: [Monotone and hemi-continuous operator]. £ is Banach space, let A : 2~ — 2™* be (nonlinear)
operator, A is

monotone: (A(u) —A(w),u—v) >0 Vu,ve 2.
hemicontinuous: ¢ +— A (u + tv) is continuous (R — Z7) for Vu,v € 2" fixed.

Lemma 2.3 [Minty’s trick]. Let A : 2~ — 2™ be monotone, hemicontinuous. Let w, — u in %2,
A(uy) = ain Z*. Let limsup,,_, o (4 (upn),un) < {a,u). Then a = A (u), i. e, A(u,) = A(u).
Proof:

(A(up) —A(),up —v) >0 veZ to be specified later.

n—oo

(A(up),un) = (A(un),v) + (AW),u, —v) /limsup

limsup (A (un) ,un) > (,0) + (A (v),u—wv)

n—oo
using last assumptions:

(u) = {a,0) +{A(v),u—v)
(a—AW),u—v) > 0 trickkv=u£lw,A>0weZ
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= (a—A{ux ), F\w) > 0

= (a—AuEv),w) = 0
—_———
4 by hemicontinuity
A(u)
= (a—A@w),w) = 0 forVweZ
= a—Au) = 0

Theorem 2.2 [Compactness of weak solutions of parabolic equation]. Let u, (t) € L? (I; Wol’z) be

weak solutions such that u, (0) — ug in L?. Then there is a subsequence @, (t) — u € L? (I; Wol’z) such that
u (t) is a weak solution with u (0) = wo.
Proof: Step 1: a priori estimates

%un )+ A (up () + f (un (1)) = il\(i)/ a. e. in I, /(,un ()
e (t2) (ta) (ta)

(t1) {Lun (), un (t)) = 3% [lu, (8)]|5 by Th. 1.12, L. 2.1.
(t2) below we omit () (argument of functions).

(A (up),up) = /Qa(Vun)~Vundx

/ (a(Vu) ~a (90) ) (Vu, — V0) do
o =0
(él) / a|Vu, — VO|* dx
Q

5 Poincaré 5
= alVuuly = alluali,
(t3)
() = [ fw)unda
= [ () = £0) (0 =0 dat 7 0) [
|-|<£|un| by (A2)
(%)
= |(t3)| < lJunlly + £(0) - [unll, <
2
but [un|, < ¢llunlly. Young: [[unlly = llunlly - 1< 5 llunll; + 5
(%)
< c3 (1 + Huan) where ¢35 = c3 (Q,¢,...)
(ta)
Young ., ) 1 9
|t =K (@) un)l S RI_ o lunllie < o llunlli e + 5= IA1Z: 2
2 261
Then:

(G (021 (6 (A () (O (F (0 () 0 (), = (18,0 ()

2 2 2
d 2 > HunH1}2 <c3 (1 + ||un||§) <% Hun||1,2 + i Hh||_1,2
dt ”Un (t)||2

—1
)
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2 2
57 len O3 + e llun O, <

C1 1 t
es (14 Tun ()12) + 2 im0+ 5o I ()1 2 [ s
2 2c1 0

t
2 2 2
= Hun(t>||2+01/0 [un ()Y ods < Jlun (0)[[5 + 25t +

1 t t
E/ ||h(5)||2_172d5+203/ [ (8)]2 ds for vVt e 1.
0 0

Set Y () = |lun (]2 +¢1 fot l|lun (8)H§2 ds, let K > 0 be such that [ju, (0)[|3+ 2cst + = fg (IR (s)|ﬁ2 ds <

K for Vt € I, Vn. Hence we obtain Y (¢t) < K + fot 2¢3Y (s)ds for V& € I. By L. 2.2 (Gronwall):
Y (t) < Ke?st for Vt € I = [0,T]. Therefore Y (t) is bounded in I (independently of n) and so Yu,, (t)

is bounded in L*> (I; L2) and L2 (I; Wol’2>. Moreover %un (t) are bounded in L? (I; W‘m) ... follows

from the equation (ex. 3).

Step 2: convergent subsequences: 3 subsequence (denote by u, (t)) such that u, — u (¢) in L? (I W, ’2) by
Eberlein-Smulian and Dy, (t) = g(t) in L2 (I;W—12). By HW2 we know g (t) = 4w (t). By Th. 1.13 (with
Y =W,? X =12 Z=W~'2 p=q=2) it holds that u, (t) — u (t) in L? (I; L?).

Moreover: uy, (t) — u (t) in L? for Vt € I fixed (representatives).
e Proof: up (t) = u(t) in W = {u (t) e L? (I; Wol’Z) , %u (t)eL (I;Wﬁl’Z)}, but the mapping u (+) —
u (t), is continuous and linear for ¢ € I fixed as W — L? by Th. 1.12. The proof is completed since

the weak convergence is preserved by continuous mappings, see “Properties of weak convergence” in
appendices.

Step 3: passage to the limit.

%un () + A(un ) + f(un (t)) = h(t) in L* (I;W1?)
! | |

d

Zu®  Fa®) +f®) = @)

e easy to show: f(u, (t)) = f(u(t)) in L? (I;L?), hence also — in L? (I; W—12) (ex. 3).
e observe: A (uy, (t)) is bounded in L? (I;W~12), hence A (u,) — a(t) in L? (I; W~12) for some « (t)
after taking a subsequence.
It remains to show that A (u(¢t)) = «(¢) for a. a. t € I.
Apply L. 2.3 (Minty’s trick): , X = L? (I, Wol’z) X+ =L2(I,W12), A: X = X« u(t) = A(u(t)). easy to

see: A monotone and hemicontinuous (in fact continuous, HW3). Need to show: (This completes the proof.)

limsup/<A (Un)) st (1)) 22y it < /(a (1) 0 (O)yvagr dt ()

n—oo I I

<A(u")’u">x*,x

By step 1+ 2 a3+ (A (i (1)) (1)) (F (ot 6)) 1 6)) = 0 (0) s (1)) / i, rearamge:
[ 0 @)t = [ 000 Ot~ [ (7 (00) 0 () 5 5 1 O = 5 un ()]

I I I
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4
lim Sup/ <A (un (t)) y Un (t» dt = limsup (Jln + J2n + JBn + J4n) S thsup Jkn
I k=1

n—oo n—oo n—oo

limsup Ji, = Um [ (h(t),u, (t))dt = / (h(t),u(t))dt as u, — u, in L? (I, Wol’z)

n—00 n—oo Jr I

limsup Jo, = lim [ (f (un (2)),u, (2))dt = /1 (uf (w(t)),u(t))dt as u, — u, in L* (I, L?)

n— oo n—oo Jr

. 1
limsup Ja, = lim = [[u, (0)[|5 = [|u (0)]]3
n— o0 n—oo 2

1 1 1
imsup i, = s (< o (7)13) =~ timint (5 o (DI ) < 5 Ju (7))

n—o0 T

because u, (T') — u (T') in L? and the norm is weakly lower-semicontinuous, i. e. |Ju (1), < liminf, o |ty (T)||,-

Finally: limsup,, o [, (A (n (£)) un (8) dt < [ (B (8),u(8) di+ 7 (f (u(®) ,u(8) dt+ 5 [[u (05 = 3 Ju (T)]5-
But test eq. for u (t) (three underbraces above), apply (-, u (t)):

S IO + o (0w () + (7 (1) u () = A (1) u(0) /e
obtain:
1 , 1 )
J @y unar= [ oo [ @)z lu o) -3 @i

by comparing the RHS we get the (), which completes the proof.

Remark: u(t) is w. s. <= $w(t) =F (t,u(t)), where F (t,u): I x Wy? — W12 where

F(tu)=—-A(u) —tf (u) + h(t) =

d

T (u(t),v) = F (t,u(t)) for Yo € Wy fixed

easy to show <= 4 (u(t),w;) = (F (t,u(t)),w;), where wi,wo, ... are dense in W,* ... infinite (countable)

system of ODEs. Good choice of basis w; is useful, it makes things nice.

Recall [Weak formulation of laplacian in VVO1 ’2”]: Eigenvalue problem for Dirichlet laplacian:

—Au = Adu inQ
u = 0ondf
weak formulation: find u € W, % s. t. (Vu, Vo) = A (u,v) for Yo € Wy'*. We know: 3\; > 0, \; — oo, w; € Wy

pairs of eigenvalue/eigenfunction s t. {w;} are complete ON basis of L? and also complete ON basis of VVO1 2.
Hilbert space with scalar product ((-,-)) = (Vu, Vv) ... (due to Poincaré it gives an equivalent norm on Wy ?)

Notation: P, ... projection L? — span {w1,...,w,}. Clearly |P,|| = 1, but also || P,|| = 1 with respect to
Wol’2 norm, see ex. 4.2.

Theorem 2.3 [Existence of weak solutions of parabolic equation]. Let ug € L2, h(t) € L? (I, W—12).
Then there is u (t) € L? (I, W01’2) a weak solution such that u (0) = uo.
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Proof: Step 0: approximating solutions u® (t) = Zf;l e ()w;. (Y is index), w; laplace eigenfunctions,
¢ (t): I - Rare ACs. t.

. system of N ODEs.

Note' ¥ (t) = (uM (t),w;) ... sincew; are ON in L?. Hence (Py) <= 4 (uN (t),w;) = (F (t,uV (t),w;)),j =
N = Py (LuN () —F(tu®)) = 0. ¢V (t) solves (Py) with init. cond. ¢ = (ug,w;),Vj =
.,N <= uV (0) = Pyug by ON of w;, hence u¥ (0) — up = u (0) in L?.

Easy to see: (HW3): RHS of (Py) satisfies Carathéodory conditions = Elcj-v (t) € AC (I). Hence u" (t) are

well-defined in I.

Step 1: a priori estimates (independent of N fixed)

J

N
(Pn) %Cﬁv (t) + (A (u (1) wy)) + (F (u™ (1)) s wj) = (b (t,wy)) /,C;,v O

j=1

first term: 35,0, (fel) e = 54 205 ()" = 5.4 w5,

since w; € L? are ON, the sum is finite

and c € AC.
second term: < ( ) N> f a( )VuN (Azl) o HVuNHZ > ||uNH? 5 a8 in Th. 2.2.

third term: |(f (v (2)), ™ (t) )| <...<c (1 + ||u (t)H;) as in Th. 2.2

fourth (last) term: [(h (£),u™ (t))] < .S%HuN(t)Hiz s 1 ()13 5.

Finally: & [Ju™ (t)H; + e [[u?y (t)||f2 <cz+ e ||ul (t)||§

By Gronwall: u" (t) bounded in L2 (I, W01’2> and L> (I,L?).

We now need: %LUN (t) bounded in L? (I, W~12) ... use dual characterization of norm:
d d
’ — Y (t)‘ = sup <LuN (t) ,U>
dt “12 vew 2 u=1 \ 9 w12, W2

but for v fixed we have:

< d N ) >PNuN = 4V due to the previous equality
, U =

S
(Pth Nt ,v) = (jtuN (t) 7PNU) = <L$u1\’ (t) 7PNU>
(F (t,u™ (1)), Pxv)

<LPthuN (t) ,v>

< 7@ @)y I1Pvvll e < 17 (e O)]
—_———
<1 because [[v]|; , = 1 and HPNHL(WOLQ) =1
< ([ Ol o+ 1B 0] 1 5) by (HW 3)

taking sup: H%UN (t)HL2(1,W—112) < C independent of N.
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Step 2: 3 convergent subsequences (as in Thm. 2. 2) s. t
uN () — wu(t) in L2 (1, WOI*Q)
N d

d .79 —1,2
2 t) — %u(t) in L? (I, w—1?)
oV (1) — wu(t) in L? (I,L?)
AN @) — a(t) in L? (I, W 12)

u  — w(t) in L? for any t € I fixed
Step 3: limit passage (Py) — (Pr)

(P) 4 (¥ uy) = (F (b (1) ) for j <N

= f/I(uN (t),wj) ¢ (t)dt+/I<A(uN () ,w;) e (t)dt
+/(f (u <t>),wj)gp(t)dt:/<h(t>,wj>¢<t>dt

I I
for Vo (t) € D (I). Fix j, let N — oo.
— / >dt+/1<< (1) wj) o (1) dt
+/I<f<u<t>>,wj>so<t>dt:/I<h<t>,wj>so(t>dt

This holds for Vj, by density of w; in VVO1 2 we can replace w; by v € VVO1 2 arbitrary.

= %LU (t) +a(t) +of (u(t)) = h(t) in L* (I, W 12)

It remains to show, that A (u (t)) = a (), same argument as in Th. 2.2. This finishes the proof.
Remark: If A is linear (e. g. heat equation), then A (u, (t)) = A (u(t)) is automatic.

Recall: maximum principle: dyu — Au = h(t), v (0) < 0, h(t) < 0 then u(¢t) < 0 for V¢t > 0. Classical
argument: let (¢g,z9) be the point of maximum, then d;u (t) = 0, %u < 0 at (to,x0), then contradiction:
Oyu — Au > 0 up to some details.

Problem: it requlres u(t) € C (I x Q) NCYNC2 Therefore this is not available for weak solution
weak argument: % [ uT (t) dz < 0. (Then ut =0 = u™ (t) = 0Vt > 0. How to prove 4 [ u™ (t) dz < 0?)
z ;220

Observe u™ = 1) (u) where v (2) = Key point: 1) is convex. Convex funcions have nice behaviour

0 ;2<0
with respect to diffusion.

dt/w dm—/w atu d:c—/w Audxpp/ —" (u) (Vu - Vu) d
infinite but with good sign

This is the basic idea, now let us do it rigorously.

Lemma 2.4 [Weak derivative of compound functions]. Let ¢ (z) : R — R, with ¢/, ¢/ bounded.
(1) if u € Wy, then ¢ (u) € Wo2, Vi (u) = ¢/ (u) Vu in the weak sense and moreover u ~ 1 (u) is
: 1,2 1,2
continuous Wy* — W,
(2) if u(t) € L? (I,Wom), Ly (t) € L2 (I,W=12) then &[4 (u(t)) dz = (Lu(t),¢' (u(t))) for a. e.
tel.
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Proof:
(1) given u € Wy '? there Ju, € C°, u, — u in W2, let ¢ € C° be fixed.
d
/ ¥ (uy) %dw = —/ Y’ (un) Vunpdz by parts, all is smooth, zero boundary
Q j Q

Take limit n — oo:

K
/Qz/)(u) 7z, dx = /Qw (u) Vupdz

hence Vi) (u) = ¢’ (u) Vu weakly.

Continuity: mapping u +— 9 (u) is continous I/Vol’2 — WOI’Q? We want to show, that if u, — « in W12,

i. e, u, — uin L? and Vu, — Vu in L%, then ¢ (u,) — ¥ (u) in W12, i. e., 9 (u,) — ¥ (u) in L? and

' (uy) Vu, = ¢ (u) Vu. Routine argument (Lebesgue): ¢, 4" bounded, hence |¢ (2)] < C (1 + |z]).
(2) Let first u (¢) be smooth, say u (t) € C* (I, L?), 1 € C? Take t1, t5 € I fixed.

u(ty) —u(ta) = / : %u(t)da: in L?

ty

hence u (t2,2) — u (t1,x) = tt12 4y (t, ) dx for a. e. z € Q.

We know: $u(t,z) € C(I,L?) < L' (I, L") = L' (I x Q) = L* (2 x I), Fubini ... see ex. 2.2.
Hence for a. e. z € Q the following is true: 4u(t,z) € L'(I) = t— u(t) € AC = t
¥ (u(t,z)) € AC and L1 (u(t,z)) = ¢/ (u(t,x)) Lu(t,z). Finally:
to d
P (u(te, ) — ¢ (u(ty,x)) = / ¥ (u(t,z)) pri (t,z)dt fora.e z€Q
ty
Integrate [, dz:

/Qw(u(za)) d:c—/ﬂl/)(u(tl)) dxz/:/ﬂw’ (u(1) S (1) da:dt:/: <L(§ltu(t),w’ (u(t))>dt
(). v (u(r))

If u(t) € L? (I,Wol’2) is arbitrary, %u (t)e L2(I,Ww=+?%) ... Ju, € C* (I,Wol’2) s. b up — ul(t)
in L2 (I,Wol’Q)7 vhu, () — $u(t) in L2 (I, W=?) and u, — u(t) in L? for all t € I (continuous
representative).

By the above:

[t @) o= [ G (0)) o= / (i 0,0 (0 1))

let n — oo (by Lebesgue: routine limit passage (ex. 4)):

[ o) ar— [ ) da:=/: <jtu<t>,w' (w () )at

Def.: [Nonnegative functions in spaces L7, Wy*, W=22]. If v € L? or W%, then v > 0 (or v < 0)
means v (z) > 0 (or v (z) <0) for a. e. x € Q.
If h e W2 then h > 0 (or h < 0) means (h,v) >0 (or (h,v) < 0) for all v € W, %, v > 0.

Theorem 2.4 [Maximum principle for weak solution of parabolic equation|. Letu (t) € L? (I, WOI’Z)
be w. s.,let w(0) <0, h(t) <Ofora. e tel, f(-)>0. Thenu(t) <0 fora. e tel.
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Z_|_

Ve

FIGURE 2.0.2. Graph of z* and ..
Proof: take ). : R — Rs. t. 0 <. <zt 4. (2) /2T, e — 01, 9L, ¢/ > 0 bounded.

%Lu( t)+ A(u(t)) +of (u(t)) =h(t) in WH2, take <-, WL (u(t)) >
———
in W, by L. 2.4
first term: (Lo (), ¢L (u (1)) = & [ (u(t))dt by L2.4
second term: (A (u (), ¢! (u(t))) = a (Vu, vwg (w) 2 (a (V) , 92 (w) Vu) = [a(Vu) - Vu Y dez0.

>0 by (A1) >0

third term(cf (u), YL (u)) =

fourth term:(h (t), 9. (u)) <0
)

together: & [, ¥, (u (t

x <0, take [ dt, 7 € I: [,1- (u(r)) do < [, ¢ (u(0)) do, takee — 0T: [, u™ (1) do <
Jout (0) dx, hence u™ (0)

hence u™ (1) = 0 for all 7.

Theorem 2.5 [Strong solution of heat equation]. Let u (t) € L? <I, W01,2) be w. s. to the heat equation:

d
%U—Au—kf() h(t)

Let u(0) € Wi, h(t) € L? (I, L?). Then u(t) € L (I Wl 2) N L2 (1, W22), Ly (t) € L2 (I, L?).

Remark: usually for w. s. w(0) € L2, h(t) € L? (I, W=1?) and u (t) € L> (I,L*) N L? (I, W01’2>, du(t) e
L? (I , W071’2). Strong solution: one derivative better in spatial derivative
Proof: Step 1: (formal) ... multiply by %m Jq da:
o first term: [, $u- %uda::H%qu

o second term: — [, Aubuds = [, Vu -V (Lu) de = 14 ||Vu|;

- d d Young 2, 112
e third term: |(f (u), $u)| < ||f(u)||2HEuH2 < f(u)lly+ 5 Hdtqu (Young: ab < Sa®+ 5-b°, here
e=2)
o fourth term: |( (), u ()] < IR Olly- [[ful < 1RO+ | Ful,.

2 t
All together: £ H%UHQ +i4d ||Vu||2 < |l (t )||2 +\f (u)||2 integrate 2 [, dt:

[

ok, u (0) € Wy
—_—~

d 2 ) >
fu(s)2d8+||Vu ) < /Ilh M+ I1f (w(s) 3ds+ |Vu(0)]; Veel

dt

<K
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where K is independent of ¢t € I because h (t) € L? (I; L2), u(t) € L? (I;Lz) and f is lipschitz. Take sup;c;:
du(t) € L2 (I,L2), |Vu (1), € L (I), by Poincaré (|Vaul| ~ [[ul, 5 in Wa?): u € L (I,Wol’Q).

Step 2: rigorous proof: let u (t) = Z;V=1 C§V (t)w; be approximations from Thm. 2.3., i. e, %cﬁy +
(VU (t), Vw;) + (f (uN (1) ,w;) = (h(t),w;) in I,j = 1,...,N, ¢} (0) = (u(0),w;). Multiply by %cj»v,
Z;vzf
e first term: note that Lu™ (¢) = Z;\f:l %cﬁy (t) w;, hence Z;\f:l (%cﬁy)Z = ||%UN||§, since w; € L? are
ON,
e second term: (VuN,VZ;.V:l %cﬁyw]) = (VuN, %VuN) = %% HVuNH;
—_———
4N
dt
: NdNC'S‘ N dNYOImg N2 1|4, N|?
o third term: [(f (™), Zu™)| <7 @), ey <l )+ 3 e
o fourth term: [(h(t), < (uM))| < ... <R ®)]5 + L || Lu?|.

Together as before: 1 H%UNHE +14 HVuNHz <A (t)||g -+ f (u)]

t
J
Observe: RHS < K independent of ¢t € I and N: beacuse h(t) € L? (I,L?), u"¥ (t) is bounded in L* (I, L?),

f () lipschitz and u® (0) = Pyu (0), where Py : L? — span {wy, ..., wy} but we also know I Pvaully o < [lull; o
Hence ||ulY (O)H1 , is bounded.

2
5 take [} ds:

TN Ol <2 [ I+ 1 @) ds+ 90 O

d n
%U (s)

By argument of step 1: u” (¢) bounded in L> (I, Wol’Q) and LuN (t) is bounded in L? (I, L?). Therefore w. s.
u (t) constructed in Thm 2.3 belongs to these spaces. But we have uniqueness (Th. 2.1), therefore every solution
has this regularity.

Step 3: u (t) € L? (I, W??):

Recall elliptic regularity for laplacian: if —Au = F weakly (i. e. (Vu, Vv) = (F,v) for Vv € W01’2)7 where F € L?,
then u € W>? and |[|ull, , < Cr ||F|ly, Cr depends only on €.

f/<u<t>,v>so'<t>dt n /<Vu<t>,w>so<t>dt+/<f<u<t>>,v>so<t>dt

I I I

:/I(h(t),v)cp(t)dt Yo € W2 Vo (t) € D(I)

but Lu(t) =g (t) € L? (I,L?) by step 2, hence first term= [} (¢ (t),v) ¢ (t) dt. Therefore:

/(Vu (t),Vv)p(t)dt = / (F (t),v)e(t)dt Yuv,e(t)

1 I
where F(t) = h(t) — f (u(t)) — g (t). By standard argument: (Vu (t),Vv) = (F (t),v) Yo € Wy'? and for a. e.
tel.
Now use elliptic regularity: [|u (¢), , < Cr |F (t)|l,- But F(t) € L* (I, L?) hence u (t) € L* (I, W??).

Remarks:
(1) local regularity if u (¢) is w. s., u (0) € L?, h(t) € L* (I,L?), but u(t) € L? (I, Wol’z) — u(r) e W2

fora. e. 7€ (0,T) = wu(t) € L™ (T,T; W(}’z) NL? (T, T, Wol’z), %u(t) erL? (7', T, L2) for arbitrarily
small 7 > 0.,

(2) even better data imply even better solutions.



CHAPTER 3

Hyperbolic second order equations

(H1) Ouyu—Au+adu+f(u) = h(t), tel,ze
(H2) u = wuy, t=0,2€Q
(H3) O = w,, t=0,z€Q
(H4) uw = 0, tel,xzecdf

Assumptions: (4) Q C R” bounded domain, 99 regular (lipschitz), f(z) : R = R, |f (21) — f (22)] <
l|z1 — 22|, V21,22 € R, @ € R.

Def.: [Weak solution of hyperbolic equation]. Function u (t) € L™ (I, W01’2) with %u € L>(I,L%) is
called weak solution of the problem (H1), iff
d2

dtQ(u(t),v)—i—(Vu(t),Vv)—i—a(iu(t),v) + (f (uw(®),v)=(h(t),v)

in the sense of distributions in (0,7, for any v € VVO1 2 fixed.

Remarks:

(1) define A : Wy ° — W12 by (Au,v) = (Vu, Vu)Yo € Wy?, (A = —A), u(t) is w. s.
%Lu (t) + Au (t) + crw (t) + of (u(t)) = th (t) in W12 or by d’Alambert: $u (t) = v () in L?,

as in L2.1
<~

%L’U (t) + Au (t) + aw (t) + of (u(t)) = th(t) in Wy "2

(2) continuous representatives: clearly u (¢t) € W'2 (I, L?) < C (I, L?), %u t)=v(t) e W2 (I,W=1?%) —
C (I, W*I’z). We will show better continuity later.

Le:u(t)e L™ (1, W01’2) — L? (I,L%), Lu(t) € L? (I,L?) = u(t) € C%= (I,L?) by L. L5 ex. 2.1,

du e L2 (IL?) < L2 (ILW™12), fu(t) = —Au(t) — agu(t) —of (u(t)) + h(t) € L2 (I, W12),

therefore %u (t) € C0% ([, W*1»2).
However (see ex. 4.1): if X — Z, and u(t) € L*(I,X)NC(I,Z) = u(t) € C (I’Xweak). Using this

u(t)eC (1, (Wg?)weak) dyt)yeC (1, (L2)Weak>.

We even have have u (t) € C (I, Wol’2) and %u (t) € C (I, L?) for u(t) weak solution. See the last remark of this
chapter.

Def.: u(t) e C (I, Xweak) < t+ (f,u(t)) is continuous for Vf € X* fixed.
Remark: proving uniqueness the same way as for solution of parabolic equation: let u;, us be weak solutions,

u1 (0) = uz (0), Orug (0) = Opuz (0), set w (t) =uy —ug ... isu(t) =0Vt e I?
Subtract equations for uy, us:

Opu — Au+ adu + f (u1) — f (uz) = 0/formally 5‘tu7/ dx
Q

30
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first term: [, dpududz = 34103,
301(0¢u)?
second term: [, Vu -V (Qyu) do =14 1Vull3,
third term: « H@tuﬂg,
fourth term: |(f (u1) — f (u2), Oww)| < Uully [|Ocully < ...

Together: £ (% loull? + L ||vu|\§) <e (H@tuH; + ||u|\§), use Gronwall lemma.

Problem: we can not do this for w. s., since dyu € L? (L W’1>2) ,Opu € L? (I, L2), and that is not enough
for first and second term above.

Remark:

e Goal: existence and (more precisely “or”) uniqueness of solution. The solution could be weak, strong,
classical or on the other hand very weak, in measures, in distributions. The uniqueness is easy to prove
for stronger solutions, whereas the existence is easier for weaker ones.

e Parabolic equation:

iu—l—,A(u)—i—... /~u7/ﬂdx

dt
1d 9 T
all2 4 (A () ) + .. /A dt

2 dt N

>cilullf ,
nwﬂ@+4\m@ﬁgﬁs0=cwmmwn>

= a priori estimates: u (t) € L> (I, L*) N L* (I, W"?), Ly (t) € L? (I, W~?) (formal)

a priori estimates + approximation (Galerkin: u® (t) = Z;\le cév (t)w;) = existence of a solution in
the class of solutions above. A priori estimates are valid (u (¢) is admissible test function) — easy
proof of uniquenes: (a priori estimates for difference of solutions w = u — v, Gronwall).

e hyperbolic equation:

=

d—Qu—i—Au—l—aiu—Ff(u) = h(t,zx)
dt? dt B ’
u(0) = wo
d
pra 0) = w
assumptions: A = —A (weak), f (-) globally lipschitz, oo € R, h (¢, z) € L? (I,L?), ug € W2, uy e L2,

d
dt

Eu=1% (H%u”i + ||Vu||§) is energy (sensible defined for physicists). Integrate [j dt = E [u(7)] <

Formal a priori estimates: use $u as a test functions, the first and second term yield: %E [u], where

C = C(data) = wu € L™ (I, W01’2>, %u (t) € L™ (I, Lz). Problem: this can not be done, since

%u (t) € L> (I, W~?) is not admissible test function.

Theorem 3.1 [Uniqueness of weak solution of hyperbolic equation]. The weak solution is uniquely
defined by the initial conditions.
Proof: let u (t), v (t) be weak solutions, u (0) = v (0), %u (0) = %v (0), denote w (t) = u(t) — v (t). w(t)
satisfies:
2

%Lw+Aw(t)+aL%w+L(f(u)ff(v)):O

(weakly in I: equation in W~12 w (0) = 0, Lw (0) = 0)

Trick: fg ds: four terms:

t g2 t
(1) Jo j?Lwds = [%Lw]o = %Lw (t)
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(2) [5 Aw(s)ds = A [ w(s)ds = AW (t) € W12
\_v_./

denote W(t) € W2

) afg 4w (s)ds = afiw (s))h
) 1 fo £ u(s) = f(v(s))ds

Together:

¢
%LU} + AW + oW + L/ fu(s)) = f(v(s)ds =0 weakly in I with values in W52 (-, w )
1,2
eWy

) (fuw,w) = (Fw,w) =54 % lwlls
Remark: special case of Th. 1.12: u (¢) € L? (I, H), &
weakly. Apply for H = L2,

(2) Apply previous remark for H = WO1 2,

Aue I (LH) = &u()f =2 (%u).u(),

=4y
) e L e, = 22w
(AW, w) = (VW, Vw) = ((W, 0 2 = 2
(( 53 Wlhe =55

scalar product in W2~ Borm induced by ((-,-))

(3) lasw, w)| = | (w,w)| < |af [lw];

(4)
‘<L/Otf(u () = f (v (s))ds,w(t)>‘ _

< / 1 () = £ @ ()l - oo (1) ds

<tlw(s)ll,

f lipsch. t
£ / e ()1l llw ()] ds

Young 02
< /O—Hw<>uds+ o (8)1

t

; (f (u(s)) = f (v(s)) ds, w (1))

Together: %%(||w(t)||§+ (A4 (t)||§) < (Jo| + &) Jlw (®)]3 +5 fo |w (s)|3ds, / [y dt, we know: Y (0) = 0 due
denote by Y (t) <o <Y (1)

to the initial conditions:
T l2 T t
T)gcl/ Y(t)ds—i——/ / lw (s)|1? dsdt
0 2 Jo Jo

<c [T lw(s 2ds ... Fubini
Jo llw ()l

SoY (1) <es fo s)ds for Vr € I, Gronwall: Y (7) < 0proVr € I,i. e. w(t) =0 a. e. in I. The proof is done.
The trick works due to linearity of all problematic terms and the integration which increases regularity.

Lemma 3.1 [Testing hyperbolic equation by the derivative]. Let u(t) € L? (I Wy 2), dy(t) €

L?(I,L?),let %LquAu = (H (t) weakly in I, where H (t) € L? (I, L?). Then t — E [u (t)] is weakly differentiable

and %E [u(t)] = (H (), %u(t)) fora. e tel.
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Proof: molifying by convolution: ., (t) = nig (nt), 1o (t) ... convolution (smooth) molifier. Define w, (t) =
u*q/)n()6C“(J,W(]I’Z),Wherejz(6,T76) § > 0 fixed, 2 < &, here u* by, (t) = [pu(s) vy (t—s)ds =

Jpu(t—s 1/)n (t)ds makes sense.

We know: u!! (t) = u* ]! (t fR 1/)” t — s)ds.

The equation (weakly): fI wu ( s)ds + [; Au(s) ¢ (s)ds = [,1H (s) ¢ (s)ds for Yo (s) € C(I) choose
©(s) =1n (t—s), t €J fixed, i. e..

(-, u;L )y /) wul (t)+ Auy, (t) = H, (t) in J
(holds classically)

where H,, (t) = H (t) * 1y, (t). Thus we get:

Gl 0] = (0. S 0) = (.0, S0 1) / [

E [uy, (0)] + /OT (Hn (t),aun (t)) dt ;n — oo

Eu(0)] + /0 (H ), %u (t)> dt

since w,, () — u (t) in Wy, Lu, (t) — Lu, (t) v L? for a. e. t € I; H, (t) — H (t) v L* (I, L?), by which the
proof is done.

=
=
3
—~
2

I

&=
B
—~
.y

Il

Corollary: uniqueness of weak solution (other proof): apply L. 3.1 to w (t) = u (t)—v (¢), where u (¢) and v (t)
are solutions. L. e. %Lw + Aw =1 (—aw+ f (v) — f (w), we get: LE[u(t)] = (—w+ (f(u) — f(v), Lw) <

u)
denote by H(t)eL2(I,L?)
cE [w] (Young, routine estimates). Gronwall: E[w (7)] < E[w (0)] e“” for V7 € I. Uniqueness, moreover, contin-
uous dependence on initial condition.

Theorem 3.2: [Existence of weak solution for hyperbolic equation]|. Let uy € Wol’Q, uy € L?
h(t) € L* (I, L?). Then there exists u (t) € L™ (I, W01’2) such that Su () € L™ (I, L?) is weak solution of (H1)

with initial conditions u (0) = ug, 2u (0) = u; in the sense of continuous representatives.
Proof: Step 1: Galerkin approximation: u'v (t) = Z;V=1 cj»v (t)wj, w; € VVO1 2 are laplace eigenfunctions,

cj-v (t) : I — R, solve the system of equations

2

(HN) 52 (LuN (t),wj) + <A'u,N( ) >+a <jt N(t),wj)

+ (f (un (1)), wy) = (@), w;)) vIVi=1,...,N
Initial conditions ulv (0) PNuo, 4uN (0) = Pyuy.
Observe: (u® w;) = ,(Aun (t) ,wy) = (Vu? (t), Vw;) = A (uV (), w;). Therefore
|
o5 (t)
N d N N
(Hy)  Ouc; + A —i—adc +Fj(tet,...;en) = 0
¢ (0) = (uo,wy)
d
L) = (mwy)

where F; (¢, ¢l ... m%)z(f (Zl]\il cfvwl) ,wj) — (h(t) ,wj). 1. e., we have a system of nonlinear equations. The

nonlinearity of F satisfies Carathéodory conditions (lipschitz with respect to cj, integrable in t) = therefore

there exists exactly one solution cé-v (t), i ;V e AC (I).
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Step 2: estimates independent of N. (Hy) - 3 éV D e 1 (formally analogous to multiplication of equation by
time derivative and integration fQ dz). We get five terms:
2
(1) (%qu al¥ ) =34 H N||2
(2) <Au , dt N> = (VuN \Y ((ft N)) = %i ||VuN||2 Together with the first term gives th [UN]
(3) [a (¥, gu™)| <lal- | "],
(4)
d d Ex. 3.2 d
(e )| < M5 TS e - |5
Poincaré d
T (L Ve, - Hdt NH2
Young 5 d 2
< C3<1—|—HVUNH2+HdtuN 2)
2E[uN]
) 1(h @), ) < W Ol [l < 51O + 3 g
<E[uV]
<Elu

%E[uN(t)]SC4E[uN(t)]+%Hh Ol // dt

ELN(r)] <E[WY(0)] + % /T R (£)]]3 +c4 /OTE [u® (t)] dt,

< K independent of N (%)
where K is independent of N due to  (t) € L? (I, L?) and Gronwall: E [u (1)] < K ,YN € N,Vr € 1,i. e, u (1)
is bounded in L (I Wy 2), 4yN (t) bounded in L* (I, L?). The estimate (%*) holds since h (t) € L* (I, L?)
ond (1% (0] = 49 Pl + 4 1Pl < 4 [Vl + ol
N'(t) is bounded in L? (I, W~%2). Use: Hbdﬁ ulv (t)”

Therefore ‘<L;T2ZUN,’LU>‘ = ‘(%u]\] (t) ,PNw)
Aside:

- d> N .
We claim: Ldt? = SUP )2 <Lmu (t) ,w>.

lwll=1

(j;uN (t) ,w> <j; Pyu™ (t) w)
- (j;uN (t) ,PNw> = <L5:27.LN (t),PNw>

*

—1,2

Hy) : dth Au® (t d”t Nt h(t S Y=0 Vj=1 N
(Hy) : <L@u (t) + Au ()+cu£u () +of (L™ (1) —¢ ()’\w,j./>_ j=1,...,N.

generate Py
Therefore <= Py (Ldt2u (t) + AulN (t) + awfum™ (¢) + of (uV () — h(t)) = 0 and <L;TiuN (t),PNw> =
(—AuN +aL culN o f (uN) — b (t), Pyw)
= <Lj7u,w>‘ < H—Au (t) — QL%UN (t)—of (u (t )) +ch(t H 1.2 |PNw||L2.
—_—————
<lwlly, =1
d N (

v O] 5 < el O

Use the estimates HAu HVU ’

Ol s < >
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Together: HL%uN (t)Hi1 , < c(l + ||Vu ()], + || £u ®)]], + || @), + Hh(t)HQ)

bounded in r2(r) independently of N
Step 3: passage to the limit: Eberlein-Smuljan: Ju (¢) t. 7. u™N (t) = u (t) weakly-* v L (I, Wol’Z), LN () =
4, (t) weakly-* in L* (I, L?), due to Aubin-Lions lemma u® (t) — u(t) strongly in L? (I, L?) and therefore
f(u™ () = f(u(t)) strongly in L? (I, L?) (see ex. 3.2).
(Hy) - (t) € C (1), [} dt:

first term: (;—;uN (t) ,wj> ¢ (t)...2xby parts, we get:

/ (u™ (), w;) " (t)dt + / (V™ (), Vw;) pdt + a/

I I I

(Z“N " ’wj) at+ [ () ) o (e =
[y wpeyar

I

. u™N — u due to the convergences above we can take the limit in every term, holds for Vw; since w; are dense it
holds for arbitrary w € W%, i. e., u (t) is a weak solution.

Step 4: the initial conditions are satisfied (for continuous representatives): let us consider the space W =
{u(t)ye L*(I,L%), %u(t) € L? (I,L?)} = W2 (I,L?). We know: v (t) — u(t) v W. Also: the operator
7:W — L% u(:) ~ a(7) is continuous (L. 1.5), i. e. u™ (1) — @ (7) in L? for ¥7 € I. We also know that
u™ (0) = Pyug — ug strongly in N — co. Therefore @(0) = ug. For u; = £ (0) in W~1? analogously. Thus
the theorem is proven.

Theorem 3.3. [Strong solution of hyperbolic equation]. Let u(¢) be a weak solution of (H1), let
Aug + h(0) — f(u(0)) € L%, wy € Wy?, Lh(t) € L?(I,L?) and f(z) : R — R is smooth with bounded
derivative, let O € C2. Then u (1) € L (I, W2), fu (1) € L= (1, W3 ) and fu (1) € L (1, L?).

Proof: (formally): ;Tiu + Au+ adu = h(t) — f(u(t)) /%7 denote v = Lu. We get: ;TQZU + Av +

equation for u (t)

ady = Lp(t)— fu@®)v(t), v(0) = Lu(0) = u € W, 2, 4y(0) = ;—;u(O) u(0) +

denote by H(t)eL2(I,L?)
h(0) — f(u(0)) — afu(0) € L?. Estimates (see step 2 in Th. 3.2) for v(t) = wv(t) € L™ (I,Wom),
4y (t) € L™ (I,L?). It remains to show u(t) € L™ (I, Wa): we want [ju By € L (I) ... again by the

equation: —Au (t) = h(t) — f(u(t)) — a%u(t) - j—;u (t). By previous estimates we know (for h () due to L.

denote by F(t)
1.5) we know that F (t) € L> (I, L?). By elliptic regularity: [lu (¢)|, < cr[|F (t)|l,, where cg depends on 99,
we need C? regularity of boundary. More correct proof: for u” (t) suitable approximations (i. e., Galerkin).

Remarks:
e If u(t) is a weak solution of (H1) and it holds that u (t) € L= (I, W?2), Ly (t) € L™ <I, W02’2>, then

u(t) e W22 Ay (t) € W,? for every t € I, moreover, we have weak continuity with respect to ¢ (see
ex. 4.1).

e For parabolic equation (for simplicity, equation of heat): let %u —Au =0, u(0) = ug € L? (and not
better), 02 smooth.
We know that there exists a weak solution u (t) € L? (I Wy ’2> = 3t > 0 (arbitrarily small) s.

t. u(to) € Wh2 Let us use Th. 2.5: u(t) € L™ (tO,T; Wol’2> N L2 (to, T; W22). = Tty > to
(arbitrarily close) s. t. u (t;) € W22, We can arbitrarily increase the regularity as long as the boundary
is sufficiently smooth. Therefore the regularity of weak solution increases in time.
2
e Hyperbolic equation, for simplicity: let 45u—Au+a-Lu =0, 9Q be smooth, u (0) € W, 2, 4y (0) € L?
and not better.
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(ZIZQ, T — t)

B
ZE()\

= €XT
T
FI1GURE 3.0.1. Wave principle illustration.

We claim: 37 > 0s. t. u(r) € W22, Ly(r) € Wy, Proof: time reversal in the wave equation:
u(t) is a weak solution in [0,7] <= 4 (t) = u(7 —t) is a weak solution in [0, 7], where o + —«
(not significant for previous theory). Therefore the regularity can’t be increased: if u(r) € W22,
dy(r) € Wy = a(0) e W22, 44,(0) € W22, due to Th. 3.3 and following remark we have

a(t) e W22, Loy (t) € W2 for Vt. Especially for t = 7 we have a contradiction with non-smoothness
of u (0) and £u (0).

Notation:
e B(xzg,r) ={z € R", |z — x| < R},

o c=elt, 33) = ‘dt (t gc)|2 2 |Vu(t, 2))?, where u = u (t,z) is a weak solution. Remark: E [u (t)] =
Joe(tz) < dx in particular e (t,z) € L' (I x Q).

Theorem 3.4. [The wave principle]. Let u (¢) be a weak solution of the wave equation gtz u— Au—i—adt =

0, where @ > 0. Let 2o € Q, 7 € I be such that B (zo,7) C Q. Then [ rpeltr)de < fB (20,r) € (0, ) da for
vt € [0,7].

Corollary [Finite speed of propagation|. u (t) is a weak solution, » (0) = 0

, L4 (0) = 0 in B(z0,7)
= u=0in U B (20,7 — ).

Remark: analogous inequality holds for difference of solutions (linearity of the equation).
Proof: Step 1: let u(¢,x) be smooth. Define auxiliary function p (t) = fB ) € e (t,z)dx, where B(t) =

B (xo, 7 —t). Auxiliary calculation (see “Time derivative of integral over time dependent domain” in Appendices):

p(t) =4 fB(t) (t, ) dz =[5 O (t,x) dz — [p, € (t,x) dS (2).
Goal: p' (t) <0 (then we are done)

1 1
e (t,x) = Oy (2 (8tu)2 + 3 |Vu|2> = Oyu - Oy + Oy Vu - Vu.

So we obtain:

/ Ouu - Opu + 0y Vu - Vudr — / edS (z) .
—_———

aB(t)
by parts
by parts (Gauss theorem): f@B (Opu) Vu - < ds (z fB(t) ((Opu) Vu) dz = fB(t) Vowu - Vu + (Opu) Audz.
outer normal
Therefore p’ ( fB Ot - Opu — Au - Opudx + f@B(t) —e + (Opu) Vu - l/dS( y=11 + I5.

ad I: by the equatlon we have: Opu — Au = —adu, tj. I} = fB Btu dx < 0 since a > 0.
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Holder 5 5
ad Ip: |(Opu) Vu-v| < |0l |Vu| [v| = |0wu||Vu] < 3|0w|” + §|Vu|” = e, therefore I, < 0, since the
~—

=1
integrand is < 0. Therefore we are done for smooth solution.

Step 2: wu(t) is an arbitrary weak solution ... suitable approximation u™ (t): sufficiently smooth so the first
step is valid and at the same time u™ (¢) — w (t) sufficiently strongly so the claim is preserved. Use Galerkin

approximation u (¢) from Th. 3.2.
Observe: u” (t) = Zjvzl ¢ (t) wj solves the equation: (Hy) %cﬁf—i—)\jcﬁf —&—a%cj-v =0,1i. e, cl € C>(I) since
it solves the ODE with constant coefficients. Moreover, w; € C* () due to local regularity of laplacian: —Aw; =

Nw; (PS € L2 = LS € W22 — PS e W>? etc.). Moreover, it holds that: 4u™ — AuM + adyN =0,

i. e., the approximation exactly solves the equation. (Moreover, cév (t) w; exactly satisfies the equation for Vj

fixed.) Therefore the conclusion of theorem holds for u?.

Passage to the limit: we know that Vu® (t) = Vu(t), $u (t) = $u(t) in L?, moreover Vu® (0) — Vu (0),

4yN(0) —» Lu(0) v L2 t € [0,7] is fixed, by weak lower semicontinuity we have:

dt
1]d 2 ) N RV
il el hl < hl il
/Bu) 2 ‘dt“(t“””) talVuta)l de<ipinf | g low” )]+ 5 [VeT (o) do
Step 1 for u® (t) 1 1
< liminf/ — 0™ (0,2)] + = |Vu ((),9c)|2 dx
N—00 B(0) 2 2

1 2

d
= = |5u(0,z

Remark: corollary of Th. 3.3: strong continuity of weak solutions: let u (¢) be a weak solution of (H1),
uy € Wy'%, uy € L2, let 90 € C2, where f (z) is smooth with bounded derivative, 4 (t) e L? (I,L?). Then we

claim u (t) € C(I,Wol’z), 4y (t)eC(1,L2).

1
+ 5 [Vu (0,2))? dx

Proof: choose uf} € W22 ul € VVOL2 s. t. ugj — uo strongly in WOI’2 and u} — u; strongly in L?. Let u™ (t)
be a strong solution for more smooth initial conditions u}, uf;. Therefore u™ (t) is at the same time a strong
solution (Th. 3.3). At the same time it holds that v™ (t) — w (¢) in the sense of Th. 3.3.

Trick: the equation for u™ (t) — u™ (t), test by % (u™(t) —u™(t)). (Standard estimates + Gronwall) ... we

obtain: E [u™ (t) — u" (t)] < ¢o - E [u™ (0) — u™ (0)]. Initial conditions u™ (0), 4£u™ (0) are cauchy in Wy resp.
L?,i. e., u™ (t), u™ (t) are cauchy in C (I, W01’2) resp. C (I7 Lz). By completeness & continuity of strong solution

we obtain the conclusion.



CHAPTER 4

Semigroup theory

Up to now we considered evolution PDEs: %u —Au+---. The rest of lectures is more close to functional analysis.

4.1. Homogeneous equation

Motivation: Let us have the equation 2’ = awx, where z(0) = 1 ... the solution is e**, an exponential
function. Generalization: a + A € R™*"™: 2/ = Az, 2(0) = z( the solution is ez, a matrix exponential
function. Goal: generalization to general Banach space, the study of equations of the type

d
(4.1) P Az, x(0) = x9, z € X,
where X is a Banach space, A : X — X is a linear operator, e. g., A = A. How to define a general exponential
function e’4? The power series is suitable only for bounded operators. Problem: A is unbounded operator,

S0 o 4 in general does not make sense. Remark: —A : W, ? — W12 is bounded, but in different spaces.

Idea: A is “well unbounded” (i. e., bounded from above), then e!4 will be possible to define for ¢ > 0.

Notation: [Unbounded operator].

e X ... Banach space with respect to |||
e £(X)={L:X — X is linear continuous operator} is a Banach space, |[L| ;x, = sup oex | L],
zl|=1

e Unbounded operator is the couple (A, D (A)), where D (A) CC X is a subspace (domain of definition of
A), A: D(A) — X is linear.

Def.: [Semigroup, co-semigroup|. The function S(¢) : [0;00) — £ (X) is called a semigroup, iff
(1) S(0) is identity
(2) S(t)S(s)=S(t+s), Vt,s >0
If moreover

(3) S(t)x — =, t — 0T for Vo € X fixed, we call S (t) a cg-semigroup.

Remark:

e co-semigroup ... abstract exponential. Possible definitions of standard exponential: either a solution of
7’ = az, z(0) = 1 or a power series e = > > (agn = limy, 00 (1 + %t)n, or a solution of functional
equation: f (x +y) = f(z) f (y) + continuity and f (-) is nonzero. Then ,,S(t) = €'®“ cy-semigroup is a
suitable candidate for exponential.

e stronger assumption (3') [|S(¢) — Il|z(x) — 0, t — 07 (so called uniform continuity) implies S(t) = e

for some linear continuous operator A, see ex. 5.1.

tA

Lemma 4.1 [Exponential estimates, continuity in time of ¢y-semigroup]|. Let S(t) be a cp-semigroup
in X. Then
(1) IM>1,w>0s. t. [[S()|x) < M-e?! for Vt > 0.
(2) t+— S(t)z is continuous [0,00) — X for Yz € X fixed.

38
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Proof:

(1) we claim: 3M > 1,36 > 0s. t. [[S(t)[|zx) < M, Vt € [0,6]: by contradiction: if not, then 3t, — 0" s.
t 1Sl g(x) = +oo, but S(tn) x — x for Vo € X fixed due to the part (3) of semigroup definition and
so ||S(tn) x| is bounded. That is a contradiction to the principle of uniform boundednes, see functional
analysis (a set of operators is bounded in operator norm iff ||S(¢,) x| is bounded for Vz).

Set w = %ln M,i. e.. M = e“°, then for t > 0 arbitrary it holds that t = nd +¢, € € [0,6), n € N. Then
ISl ey = [1S(E40 4+ 8+) |, = IS60)-S0) SE) ey < ISO) 20 1SE ey < M-
nx
M™ < M -evt,
<~
— ewn6

(2) continuity: in 0T we have due to part (3) of definiton of semigroup. Continuity (from the right and

from the left) in ¢t > 0 remains:

Continuity from the right: S(t +h)z = S(t) S(h)x — S(t)z, h — 0" due to the property (3), S(¢t) €
——

—x
L(X).
Continuity from the left: (WLOG h < t) S(t—h)z — S{#t)xz = S{t—h)[z—S(h)z]. Estimate:
——
S(t—h)S(h)x

— 0 due to (3)

+
1St —h)x = SE) || < [S(E—= )l zx) lz = S(h) x|, h— 0.
—_——
< Me*t, independent of h due to the first part

Def.: [Generator of a semigroup]. An unbounded operator (A, D (A)) is called a generator of semigroup
S(t) iff
1 1
Az = lim 7 (S(hyx —x), D(A) = {a: € X,hlim 7 (S(h)x — x) exists v X} .

—0t

Remark: it is easy to show that the operator defined by this formula is linear and D (A) C X is a linear
subspace.

Theorem 4.1 [Basic properties of a generator|. Let (A, D (A)) be a generator of S(t), a cyp-semigroup
in X. Then:

(1) xze D(A) = S(t)x € D(A) for Vt > 0,
(2) 2 € D(A) = AS(t)z = S(t) Az = £5(t)x for V¢ > 0 (in t = 0 only from the right),
(3) € X, 120 = [y S(s)ads € D(A), A([f; S(s)ads) = S(t) v~ x.
Proof:
=S(h+t)=5(t) S(h)due to (2)
—T ?
(1) z € D(A), t >0 given, +(S(h)S(t)z —St)z) >y = S{t)ze D(A),ASt)z =y

2) x € t)x = S(t) Az see part 1, --5(t) x = S(t) Ax from the right for V¢ > 0, see first part
D(A AS S(t) A 48 S(t) Az from the right for V fi
(%(S(t—kh)x—S(t)x)—>S(t)Ax),h—>0+.

From the left? M}:S@)I—>S(t)A;vash—>0+ for ¢ > 0 fixed? %h_s(t)w:S(t—h) {%]—
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S(t) Ax = S(t— ) [Z302] 56— hys(h) Az - 0: S(t—h) { [H2=2] —5(n) Az} - 0 as in L.

L. 4.1, 1: bounded in ||l 4 x, Az — Az due to (3)

4.1, 2.
(3) Denote y = fo s)xds, x € X for ¢ > 0 fixed.

(S(h)y—y) — i(sm) / S(s) zds — /0 S(s)xds)

fo s+ h)xzds, subst. — a shift by h

= 2(/; S(s)xds—/OS(s)a:ds>

L g oymds— L [ s(s)was™ s(t) 2 - 500
= E/t (s)x S_E/o (s)xzds_ = S(t)xz — S(0)x
derivative of continuous integrand (L. 4.1) w. r. t. upper bound

S =

Therefore y € D (A), Ay = S(t) x — x, which was to be proven.

Remark: The theorem states:
(1) D(A) is invariant w. r. t. S(¢).
(2) S(t), A commute in v D (A), moreover ¢ — S(t)x is a classical solution of 42 = Az, x(0) = o, if
x € D(A).

Def.: [Closed operator]. We say that an unbounded operator (A, D (A4)) is closed, iff: u,, € D (A), up, — u,
Aup, v = u € D(A) and Au = .

Remark: it is easy to show that (4, D (A)) is closed <= D (A) is complete (i. e., Banach) with respect to
the norm |Ju| + || Aul|, the so-called graph norm.

Remark: unbounded, but closed operators: natural property of derivative in different function spaces, ex-

amples:
(1) 2 =L"(I,X), A:u(t) » Lu(t), D(A) = VV1 Y(I,X) ... see chap. 1: statement (see ex. 2.1):
up () € WHH(I,X), up (t) = u(t) v LY (I, X), $u, (t) = g(t) v L' (I,X) = u(t) € Wh (I, X),
4y (t) =g (t). Thisis equ1valent to closedness of (4, D (A)).
(2) X =C*([0,1]) ... theorem from analysis: f, (t) € C*([0,1]), fn (t) = f(t) v [0,1], %fn (t) = %g (t)
v [0,1] = f(t) € C*([0,1]), &f(t) =g (t). That is equivalent to closedness of “4” in C ([0,1]) = X

with the definition domain C* ([0, 1]).
Theorem 4.2 [Density and closedness of generator|. Let (A, D (A)) be a generator of a ¢p-semigroup

S(t) in X. Then D (A) is dense in X and (A, D (A)) is closed.
Proof: Density ... x € X given. z = limj_,o+ + 5 fo s)xds (continuity of integrand), i. e., we have
\—,_/

€D(A)dleV413
elements from the definition domain which approximate given element.

Closedness ... z, € D(A) given, x,, — =, Az, — y = D(A), Az = y. Observe: s — S(s)z,
is C! since £5(s)z, = S(s) Az, due to Th.4.1, 2 and due to Newton-Leibnitz we have S(h)z, — S(0)z, =
foh s) wpds = th ) Az, ds. Take a limit n — co. LHS — S(h)x —x, RHS ... exchange of lim and [:
Axn —> y, therefore ||S(s )Ax = S(s)yll < 15(s)ll z(x) [[Azn — y||, uniform convergence. Therefore by the limit we
—_———
bounded independently of s € [0, h]
obtain 1 (S(h)z —z) = + fo s) yds, take h — 0T. RHS — y (continuity of integrand), i. e., LHS — y or in

other words x € D (A4), Ax =y, Wthh was to be proven.
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Remark: Theorem 4.2, proof of closedness: S(h)x, — z, = foh S(s) Axnds, x, € D (A) is needed. In Th.
4.1, 3 we already have S(h)z —z = A (foh S(s)zds ), x € X. Wouldn’t it be possible to shift A into the integral

straight away?

Problem: does it hold that A (f; f (s)ds) = [, Af (s)ds? For continuous operators A it holds, see ex. 1.1. For
closed operators A it is possible to prove, see ex. 5.3. It is not possible to use this argument above as we are just
proving the closedness of generator A.

Remark:
e Th. 4.1:(A, D (A)) is a generator of a semigroup S(t) = Vo € D(A) is z(t) = S(t) zo a classical
solution of (4.1).
e Key problem: (A, D (A)) given, = Jdep-sg. S(t) s. t. A is a generator of S(t).

Lemma 4.2 [Uniqueness of a semigroup]. Let S(¢), S (t) be ¢p-semigroups which have the same generator.

Then S(¢t) = S (¢) for V¢t > 0.
Proof: Trick: y(t) = S(I'—1t)S(t)z, € D(A), check y(t) € C([0,T],X), y'(t) =0Vt € (0,T) =
y(T)=S(T)y(0)=95(T)z. D(A)is dense in X (Th. 4.2)

Def.: [Resolvent, resolvent set, spectrum|. Let (A4, D (A4)) be an unbounded operator. We define
resolvent set: p(A) = {\;A\] — A — X is one-to-one} C R (generally can be considered a subset of C),
resolvent: R(A\,A) =AM —-A)_,: X - D(A), A€ p(4),
spectrum: o (A) = {\ € C,\I — A is not invertible}. Equivalently o (A) = C\p (4).

Remark:

o (A,D(A)) is closed = R(\, A) € L(X), since A is closed <= D (A) is Banach with graph norm
llz|| + ||Az||. Moreover by the closedness is t A : D (A) — X continuous. Banach theorem on open
mapping: inversion is continuous, i. e., R (A, A) : X — D (A) is continuous.

e the following relations hold:

(1) AR(MA)x = ARMNA)z—zVrelX,
(5) R(MA)Ar = AR(MA)xz—z Ve e D(A),
(i) RMNA)zrz—RpA)zr = (W—ANRNARpA)zxVeeX,
where (ii%) is so-called resolvent identity.
Proof of (i): AR\ A)z=[A—A)+AM|RMNA)xz=—-—AN—-A)R\NA)X+AR(\ A)z.

The other relations are proven similarly, (i)-(ii)) = AR (A, A)z = RA (;, A)x, x € D (A). Heuristics: R(\, A) =
A

Lemma 4.3 [Formula for the resolvent by Laplace transform]. Let (A, D (A4)) be a generator of co-
semigroup S(t); let [|S(¢)[zx) < Me“*. Then X € p(A) for VA > w and the resolvent can be expressed as
RN A)z = [[7 e MS(t) zdt, RO Algx) < 2L

Proof: WLOG: w = 0, (see ex. 6.2) since co-sg. generated by (4, D (A)) < S (t) = e “S(t) is co-sg.
generated by (g, D (Z)) where A= A—wI, D (ﬁ) = D (A). Moreover R ()\, Z) =R(A+w,A).

Therefore ||.S(¢ <M, A>0 L ae p (A). Denote Rx = [ e MS(t) zdt Laplace transform of semigroup
L(X) 0

S(t)), z € X, A > 0 fixed. Integral defined: integrand continuous (L. 4.1), ||integrand|| < e M ||z|| € L' (0, o0),

HR””’ < [ e XM ||z]dt = X ||z, i. e., R € L(X), éHﬁ(x) <M

We will show that Rz € D (A):

% [S(h) — 1] B = % [ /0 T e NS St w — e MS(t) 2 dt] ,
S(h+t)
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Substution in first integral: [, e =M S(t) 2, £ foh e =M S(t) z, together:

e)\h -1 Ah h

= / ef)‘tS(t)xdt—e— e MS(t) x dt
hJo hJo

Rx

TakeiNL%()*:%)\Rigf:r. N B
ILe, Rx € D(A), ARx = ARz — z, Vz € X, in other words (Al — A) Rz =z,1. e. A\l — A: D(A) — X is onto.
Is injective? Let 2 € D (A) be fixed,

~ o Ex. 5.4, A closed (Th. 4.2.) [*
ARz = A (/ e MS(t) x) * 4 EEe ( ) / A (e*/\tS(t) z) dt
0 0

oo
(exchange op. and sg: Th. 4.1, 2) = / e MS(t) Axdt = RAx
0

i.e. AR=RAin D(A) = R(M — A)z = ARz — RAX ARs=ARz—2 z,i. e,Vre D(A): RAM —A)z ==z
. Al — A is injective! L. e., R = R (A, A), the proof is done.

Def.: [Semigroup of contractions]. We say that S(¢) is a semigroup of contractions, if [|S(t);y) < 1,
VE>0

Theorem 4.3 [Hille-Yosida (for contractions)]. Let (A, D (A)) be an unbounded operator. Then it is
equivalent:

(1) Feg-semigroup of contractions, which is generated by (A, D (A)).
(2) (A,D(A)) is closed, D (A) is dense in X, X € p(A) for VA > 0 and it holds that ||R()‘7A)Hg(x) < %

Proof:

(1) = (2) we already have proven: Th. 4.2 (density and closedness), L. 4.3 (resolvent, M = 1, w = 0).
(2) = (1) Yosida’s approximation: A, = nAR (n, A),n € N. Strategy: S(t) = lim,_, ez
Step 1: we claim that A, = n?R(n,A) —nl,i. e., A, € L(X), nR(n,A)z — z, n — oo for Vo € X
fixed, A,z — Az, n — oo, Va € D (A).
(i) AR(n,A)=nR(n,A)—1I, /n = nAR(n,A) =n?R(n,A)—nl € L(X), since R (n, A) € L (X).
A
(it) convergence principle (ex. 1.4, 1): F, : Xn% X linear, ”F"”L(X) < C, Fy — y for Yy € S fixed,
S dense in X — F,z — x for Vo € X.
Apply Fy = nR(n, A), |[Fullzx) < 1 due to [R(AA)lzx) < + VA >0, S = D(A) dense in X
(assumption), y € D(A) :nR(n,A)y=y+ AR(n,A)y —y, n— oc.
—_————

R(n,A) Ay
~—— ~~

Il 2 xy < £ fixed
(791) Apx =nAR(n,A)z =nR(n,A) Az — Ax due to (ii)
e Step 2: approximation of semigroup S, (t) = e/4n = 312 tklj']'i € L(X), since A, € L(X) due to
step 1. At the same time we know: A, = n2R(n,A) —nl = ¢lAn = enR(nA)—inl _ o—nt .
—_———

are commutative

n2tR(n oo (nt)*(nR(n,A oo (nt)F k n
A ()] x) = sz:o ()" (nR(n,A)* <o B [nR (n, A)|fx) < €. L e., we have
— —_—————

2|
k! £(X)
()

180 ()]l £(x) < 1 for Vn, in other words S, (¢) are contractions.
Step 3: existence of lim,,_, o Sy, (t) x, for Vo € X fixed. For now, let = € D (A).

<1
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Trick: let ¢ be fixed.

t

Sp(t)x—Sm )z = [Sp(t—s)Sm(s)2]izy = [eu—s)AnesAmm}

- [

t
/ — A, et AngsAm g o o(t=9)An A o5 Am g — (3%)
0

s=0

We know: A, A, = AnA, ... is implied by expression of resolvent (R (n, A), R (m, A) are commuta-
tive).

t
() = / e(t=9)An gsAm [Apmx — Apz]ds
~———
0 Sn(t—s)Sm(s)
—_——

INlz@) <1

= [|Sp (t)z — Sim (t) z|| < t||Amax — Apz||
x € D(A) = Az, Apx — Az, Apz — A — 0 = {5, (t) 2} satisfy B. C. condition uniformly
loc

with respect to t € [0,T], which is bounded interval, i. e., there exists S, () = S(¢)x defined as
this uniform limit. The convergence principle (density of D (A),[[Sn ()|lz(x) < 1+ S(t) is clearly a
co-semigroup of contractions) = 3 limit for Vo € X.

Step 4: S(t) is generated by the original (A, D (A)). Denote the generator of S(t) by (Z, D (A)), let
x € D(A).

— Az

t d t t A~ =
o —x= / — Sy () zds = / Ap Sy (s)xds = / Sp (s) Apxds
0 ds 0 0 S—~—

= 5(s)

For n — oo: LHS—)S()x—a:—fO s)A(z)ds, i. e, + (S(h)z—x) = hfo s) Azds — Awx,
h — 07, in other wordsxGD(A) Az = Az, i. e., we have D (A CD(A) Az = Az for z € D (A).
Opposite implication: choose A > 0 arbitrarily:

L3: 1Sl o) 1= Me', M = 1L,w =0
—~

Aewﬂ p(ﬁ)

assumption

and so A\l — A = A\ — A in D(A) , therefore RHS = X\ — A : D (Z) — X is onto, injective: D (A) C
—_—

injective, onto
D (A).nep(A).

Remarks:
(1) Generalized Hille-Yosida theorem: (A, D (A)) generates co-semigroup, satisfying the estimate [|S(t)[| ;(x) <
Me“t <= is closed, densely defined and it holds that A € p(A) for VA > w and ||R" A Al <
% Vn € N.
Proof: reduce to Th. 4.3: we know w #0 ... S =e “!S(t), M #1 ... by equivalent norm in X.

(2) Lumer—Phillips theorem: (A, D (A)) generates cp-semigroup of contractions <= it is closed and densely
defined and [[Az — Az|| > Ajz|| Vo € X for VA >0 and 3X\g > 0s. t. A\gI —A: D (A) — X is onto.
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Proof: reduce to Th. 4.3:

1
| = Az ]| 2 A || = 1RO Aleen < 5

by
y RN A)y

(3) Heuristic remarks:
e key condition for generator of semigroup of contractions is in some sense “A < 0™ ||A\x — Az|| >

Alell.. |2 =4 2] > |ja|
~~
~>0
e in the proof of Th. 4.3 we have used the approximations A,z — Az; A,z = n’R(n, A) —
nR(n,A)x — x. For quick check and as clue to remember: R (n,A) = niA = nR (n,A =
2 —

g =rr o LA =25 —p=2nnod) oA A A

Remark: (4.1) ... 4z = Az, z(0) = zg ... if S(t) is co-semigroup, generated by A = S(t)zq ... we

have reasonable concept of solution. ..

e 10 € D(A) ... even a classical solution (Th. 4.1, 2),
e o€ X\D(A) ... S(t)xg =lim, 00 S(t) x,, where z,, € D (A), z, — 20 uniformly in [0, 7T].

4.2. Nonhomogeneous equation

(4.2) %U—AU,—F]C() u(0)=up e X

where f (t) : I — X is integrable, I = [0,T], (A, D (A)) is unbounded operator.

Def.: [Classical and strong solution of nonhomogeneous task]. A function u (t) is called:

classical solution of (4.2): if u(t) € C' (I, X)NC (I, D (A)) satisfies the equation (4.2) for Vt € I,
strong solution of (4.2): if u (t) € Wb (I, X) N L' (I, D (A)) satisfies the equation (4.2) for a. e. t € I.

Remarks.

(1) Classical solution is a strong one ... classical derivative is a weak derivative, continuity implies integra-
bility. Ju classical solution, neccessarily f € C (I, X).

(2) wu(t) is a strong solution <= w (t) € L' (I,D (A)) and u (t) = ug —|—f0 Au(s)+ f(s)ds for a. e. t € I.
Proof: L 1.3, moreover RHS ... AC representative of u (t) € W1,

(3) u(t) € C(I,D(A)) means t — u(t) is continuous with respect to the graph norm D (A): |lu|| + ||Au].
(A,D(A))is closed <= D (A) is complete (Banach) in graph norm. It is easy to show that if (A, D (A))
is closed, then u (t) € C(I,D (A)) <= u(t) e C(I,X), u(t) € D(A)for Vt € I and Au (t) € C (I, X).

Lemma 4.4 [Hille theorem on characterization of L' (I;D (A))]. Let (A, D (A)) be closed. Then
u(t ) E LY(I,D(A)) < u( ) € LY(I,X),u(t) € D(A) for a. e. t, Au(t) € L* (I, X). Moreover in a such case,

JS;u(t)dt € D(A), A(f;u(t)dt) = [, Au(t)dt.

Proof. “ =" and moreover ... see ex. 5.3.
“ «=": observe: for uy (t) : [ — Xl, us (t) : I — X5 integrable and X5, X5 Banach spaces is (uq (¢ ) o (1) : 1
X1 x X2 integrable where we consider the norm [|(u1,u2)| x, x x, = l[u1llx, + u2llyx, and [; (w1 ),uz (t))dt

(f;ui (t)dt, [;uz(t)dt) ... easy to prove by expansion of definitions.
Apply thls observatlon touy (t) =u(t), ug (t) = Au(t), 1 =xo =2 ... ug,ug: I = D (A).

Def.: [Mild solution]. Let (A, D (A)) be a generator of co-semigroup S(¢). Then the function u (¢), satis-
fiying u (t) = S(¢) uo + fot S(t—s) f(s)ds, Vt € I is called a mild solution of (4.2).

Remark: motivation: “variation of constans” since S(t) = ‘4. Integral is finite, therefore u (t) € C (I, X)
. see next lemma, trivially 3! mild solution.
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Lemma 4.5 [Properties of convolutlon of semlgroup]
. Let S(t) be a cop-semigroup, let v ( fo (t —s) f(s)ds. Then:
(1) ft)e L (I,X) = vt ) € C(LX)
(2) f(t) e COMN(I,X) = v (t) € CO (I,X)
(3) f()ECl(I X) = v()eCl(I,X) and v’ (t) = —i—fo (t—s)f (s)dsVtel.

Proof: v ( fo (t—s)f(s)ds, S(t—3s)f(s) = g(s) € L1 ((07t),X) (excercise: use measurability and
integrability of f, St—s) € ( ) 1Sl gxy < co ... Lodl, t €I =10,T]) ... well defined for f(¢) €
L' (I, X).

(1) continuity: let t,t + h € I, WLOG h > 0.

t

t+h
VLR — () = A S(t+h =) f ()ds = [ St (s)ds
t+h

h
— /S(t+h—s)f(s)ds+/ S(t+h—s)f(s)ds
0 h

/St—s

= S(t—l—h—s)f ds—i—/St—s)[f(s—I—h) f(s)]ds

0

subst. s > s+ h

h T
= [o(t+h)—v®)] <Co ||f(8)|\d8+00/ If (s +h) = £ (s)ll ds.
0 0

Set f(t) = 0 outside I = [0,T], we know: h — 0: RHS — 0: f(s+h) — f(s) in L* for h — 0
= LHS — 0.

(2) lipschitz continuity: use the last estimate once more, where f (t) € C%1 (I,X) = | f(t)|lx < Ci,
lf (t+h)— f ()] < Cqlh|, together: |Jv(t+h) —v (t)|| < CoCrh + CoTCoh = Csh.

(3) differentiability:

1 I ! h) —

f[v(tJrh)fv(t)]:f/ S(t+h*5)f(8)ds+/ S(t—s) Jlsth) = (s) ds

h h Jo 0 h

Iy (h) I>(h)

Let t € [0,T) be fixed, h — O+ then I (h) — S(t) f(0) ... continuity of integrand (with respect
to all variables, see ex. 6.4), — fo (t—s)f (s)ds ... since [[S(t—s)|lx) < Co, we know:
W — Lf(s)=f(s ) a. e. (see ex. 5.4, exchange of limit and integral: Lebesgue theorem,
bounded majorant) ... derivative from the right, derivative from the left is analogous ¢ € (0,T].
Together: v (t) = S(¢ )+ fo (t—s) f'(s)ds ¥t € I and that is a continuous function of time ¢

(property of co—semlgroup + first part for f’ instead of f), therefore v (t) € C! (I, X).
Corollary: mild solution is neccessarily continuous.

Lemma 4.6 [Equivalent definition of mild solution]. A function u () is a mild solution of (4.2) <
w(t) € C(I,X), [lu(s)ds € D(A), ():uO+A(f u(s) ds)+f0 s)ds for Vt € I.

Proof: Step 1:
“="7 let u(t) = S(t)ug + fg S(t—3s)f(s)ds = up (t) + uz (t) be a mild solution. (Remark: u; and uy are

mild solutions of (4.2) for f (¢) = 0 and ug = 0, respectively.)

) t Th. 4.1, 3 )
ad uy: [y uy (s)ds = [, S(s)uods € D(A) and A (fo S(s) uods) = S(t) up — uo.
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ad ug: consider A (fot ug (8) ds) = ...

/Otuz(S)ds = /Ot (/OSS(s_g)f(J)da>ds

denote by I;

(Fubini: 0 <o <s<t) = /Ot (/;S(S—U)f(a)ds)da

denote by w (o)

designate I
w(o) = fotio S(s)f(o)ds € D(A). Aw (o) = S({t—o0) f(o)—f (o) ... due to Th. 4.1, 3. Due to L.
S~~~ —
fixed in X €LY (I,X)
4.4 we know: (fo us ( ds) = fo Aw (o) do = fot S(t—o0)f(o)— flo)do=us(t) — fot f(s)ds

It is neccessary to check Fubini theorem for (s,0) = S(s—o0) f (o) 6 X we know that I;, I exist, it
remains to show: (f, 1) = (f, ) Vf € X*, i e, fgfos (f,S(s—o0o)f fof S(s—0o)f(o)) ...

holds true due to (scalar) Fubini theorem.
together fo uy (s) +ug (s)ds € D (A),

A(/Otu1(3)+u2(s)ds) :S(t)uo—uo—l—/OtS(t—s)f(s)ds—/Otf(s)ds

uz(t)

which was to be proven.

“ «<=" it suffices to show: the conditions in alternative definiton of mild solution are satisfied at most by one
function w (¢) (since the mild solution satisfies these conditions due to previous implication) Let u (¢),
u (t) satisfy the conditions. Denote w (t) = u (t) — w (t), therefore: w(t) € C (I,X) fo s)ds € D (A)
and w(t) = A (fot ) vt € I. We will show that w (¢) = 0 in I. Denote U (¢ fo
we know: U (0) = 0, dtU( ) = w(t) (due to the continuity of w(t)), U (t) € D (A), AU( ) = (t)
Therefore U (t) is a classical solution of jfu = Au, u (0) = 0. Therefore it is zero, see the proof of L. 4.2
(see ex. 6.4, auxiliary function y (t) = S(T'—t)U (t), zero derivative).

Corollaries:

(1) Strong solution is a mild solution: proof: strong solution w (t) = ug + fot Au(s)ds + fo s)ds for a.
e. t €1, u(t) € L' (I,D(A)), or more precisely its AC representative (due to L 4.4 we can “pull” A
outside the integral.

(2) There is at most one classical and/or strong solution. Proof: we know classical = strong = mild,
which is unique. (Up to sets of zero measure for the strong solution.)

Remarks:

(1) The mild solution is not neccessarily a neither strong or classical solution. E. g., consider (4.2) for
ug =0, f(t) = S(t)x, where x € X is such that S(t)z ¢ D (A) for any t > 0. I e., the mild solution
u(t) = S(¢) O—i—fot S(t—s)S(s)xds =tS(t)x ¢ D (A), t > 0 can be neither strong nor classical solution.

—_———
S(t)
(2) Every mild solution is a (locally uniform) limit of very nice classical solutionb

Dikaz: let u (¢) be a mild solution, i. e., u () = ug+ A (fo ds) + fo s)ds, t € I. Define uy, (t) =
L (s)ds, t € 0,7 — A, A > 0, h € (0,A). We know: up, () = u(t) in [o T — A] by the continuity
of u (t). Equation for up (¢)? ;t up (t) = Fu(t+h) —u(t)] = + [A( tt+h ) + ft+h } =

[
Auy, (t) = fi, (1), where fy, (1) = £ [/™" f (s) ds, up (0) € D (A).
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. (A4, D(4))

Laplace transform

S(t)

FiGURE 4.2.1. Relations between semigroup, generator and resolvent.

Theorem 4.4 [Regularity of mild solution].
(1) Let up € D (A), f(t) € C* (I, X). Then the mild solution is classical.
(2) Let ug € D (A), f(t) € C%' (I, X), moreover let X be reflexive. Then the mild solution is strong.
Proof: u(t) = S(t)up + fot S(t—3s)f(s)ds=mwuqy(t)+v(t), us(t) is classical solution (and therefore a strong
one) for f (t) = 0, it remains to show: v (¢) is a classical (strong) solution (4.2) for ug = 0. Let f (t) € C%! (I, X).
Then due to L. 4.5, 2 we know: v (t) € C%' (I,X) C W (I, X), moreover 34v () € X for a. e. t € I (see

Chapter 1: Th. 1.5, use reflexivity).
t
(h)/S(t—s ds—/St—s ds]
0

Trick: A(v(t)) =7
S(h) ~ 1o () =
t+h
[U(tJrh)—v(t)]—%/t S(t+h—s)f(s)ds,

S =
—

S =

t t+h
since (x) = /OS(t—l—h—s)f(s)ds:I:/t S(t+h—s)f(s)ds

= v(tJrh)/tJrhS(tJrhs)f(s)ds.

Take h — 07: RHS — Sv(t)— f(t) ... due to the existence of derivative a. e. and the continuity of integrand.
S+ h— h ti 3, 0 (0,0) = £ (2)).
(SELh—s)f(s) = ¢l 8) continuous, ¢ (0,0) = f (t))

-0
Le., fora. e t:v(t)€D(A), Av(t) = Lv(t)— f(t) € L' (I,X), L. 44 = v (t) € L* (I, D (A)), which was to
be proven.
Part one is proven similarly, the derivative Av (t) = Zv (t) — f (¢) is evaluated everywhere, L. 4.5, 3, we will get
a classical equation, v (t) is continuous.

Remarks: Exponential formula A — S(t) = ,,et4”.
(1) AeL(X)... S(t)y=er =372, %Ak € L(X) ... exactly all uniformly continuous semigroups, i. e.,
Sty —=1Iv L(X), t—0T" (see ex. 5).
tn2R(n,A)
——
(2) Hille-Yosida (Th. 4.3): S(t) = hmnﬁoo e e €£9 . “Yosida approximation”.
(3) Statement: S(t) is a cyg-semigroup, St)u = llmh_>0+ etAnt . holds for Vu € X fixed, uniformly
with respect tot € [0,T], where A, = = [ (h) —1].
An example of applicatlon. ex. 5.4: Shlft semigroup: S(t) : u(x) = u(z+t), u(z) € L?(R) = X,
generator: A = L (weakly), D (A) = W2 (R).

(
LHS: [S(t)u] (z) = u(x +1), RHS: Ay = L[S(h) —I]: u(x) s D — g0y (2),
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Then (e'nu) (z) = Y005 " (dp)" u(x), where d2u(z) = dy (dyu(z)) = + (dp (u+h) —dpu (z)) =
%2( (z + 2h) +u(x) — 2u (x + h)).
Together: u (z +t) = lim,_o+ Yoy & (dﬁu) (z) ... Taylor (formally: if dfu(x) — (i)ku (z), then
we get an approximation by Taylor expansmn rigorously for u (z) smooth.)

(4) Statement: S(t) is a co-semigroup generated by (A4, D (A)) , then S(t)u = lim, o (I — LA) " for
Vu € X fixed.

Remarks:
e an analogy of formula from basic analysis: e** = lim,_ (1 — %a) o

e expression on LHS makes sense: (I — %A)f1 = (L (21— A))f1 =2R(%,A) ... well defined for
n sufficiently large (see L. 4.3)

Def.: Let S(t) be a cp-semigroup on X generated by (A, D (A)). We say that S(t) is differentiable, if
S(t)ug € D (A) for ¥Vt > 0 and Vug € X.

Remark: It is casy to show that S(t)ug € D (A) <= limu_o+ 3 (S(t+ h) — S(t)) uo exists forvt > 0,

up € X and therefore lim--- = AS(t)ug. == S(t)uo satisfies (4.1) classically for V¢ > 0 ... “mollifying
property”.
Examples:
(1) Shift semigroup S(¢) : u(x) + u(x +t) is not differentiable since S(t)ug € D (A) = W12 (R) +—
Ug € w2 (R)

(2) Heat semigroup is differentiable (see below and ex. 6.3).

Remark: the heat semigroup is differentiable.
Proof: goal: S (t)uo =3, e~ Nityjwy € D(A) = Wy NW22 for t > 0, ug € L? arbitrary. Due to statement
~
6.3.2,b) < >, U2 < oo = > Ae *2>‘Jtu2 < 00 ... which follows by the followin:
\W_/

<ct

°* >, uf < oo
e A \2e72M is bounded with respect to A € [0, 00), A; > 0.

Remark:

d
(HE) P Au
u(0) = wuo

solution from the point of view of chapter 4: define an operator A : D (A) — L2, We want to show that it is a
generator ofcg-semigroup (moreover, a semigroup of contractions) on L2. Due to Th. 4.3 (Hille-Yosida) it suffices
(and at the same time we know that it is neccessary) to check that:

e A is densely defined and closed.

e \M[-A:D (A) — L2 is injective and onto for YA > 0

o [ =) fl < 51171l
%,_/
R(X,A)
(voluntary excercise), see below for the wave equation.

Example:

d2
(WE) —su = Au

dt?
w(0) = wug
iu 0) = w

dt
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we want to use the semigroup theory. How to deal with j—;: d’Alembert: U = ( Z >, v= 2y ... (WE)is

transformed to 40 = AU, A=  © Y x— Wy x L2 ug e Wy*,ve L2, D(A)= D(A) xW,~.
dt A 0 =
=Wy 2nw2.2
Goal: A is a generator of c¢g-semigroup of contractions on X ... by Hille-Yosida.
e density: D (A) is densein X ... WOI’2 NW?22 is dense in VVOL2 and WOI’2 is dense in L? ... known from

previous courses on PDE.
e closedness: U, € D (A), AU,, = F,, U, = U, F,, > Fin X, then U € D (A) and AU = F.

. 1,2
. o ug o fa vp=fn ... i Wy’ )
component-wise: U,, = ( o ), Fy = ( . ), therefore (WE) <— Mgy o 0 L2 For n — oo:
the first equation: v = f ... in WOI’Z, second equation: trick: a weak formulation — (Vu,, Vw) =

(gn,v), n — oo: — (Vu,Vw) = (g,w). Use elliptic regularity: —Au = —g weakly, g € L2, elliptic
regularity = u € W22,
e resolvent: we need: VA > 0,VF € X JWU € D(A) : M —-AU = F, (U=R(\NA)F), we want

to show that U]y < L[F|y. Componentwise: F = (g ) € Wi x 1230 — (U) .
Wy 2 NW22 x Wy? i e
Au—v = f /A-, add to second equation
A—Au = g
Trick:
<= v = Au—f
Nu—Au = g+ \f

There exists only one solution of second equation u € VVO1 2N W2 (Lax-Milgram & elliptic regularity
. weak formulation, RHS € L?) first equation: v € W01’2.

1
the “correct norm” on X = W2 x L% is ||(u,v)|| = <||Vu||§ + ||UH§) *. Trick:

Au—v = f /—Au,/Q

M—Au = g /v,/
Q

A|Vul} — (Vo,Vu) = (Vf.Vu)
Aol + (Vu, Vo) = (g,0)
sum:
A(I9alZ+1012) < 19715 19ully + gl ol

C.-S. in R? i
< (19713 +1g13) " (Il + 19013)

1
2

1 1
2 2\ 2 2 AR
Therefore A (||Vu||2 + ||v||2) < (”Vf”z + ||9||2) :

Example:
d
42) —u = A
(12) Zu = Autf()
uw(0) = wo

f(t): I — X and up € X are given.
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Recall: Mild solution: w (t) = S(t) ug + fg S(t—s) f(s)ds, t € I, where S(t) is a cp-semigroup genereated
by A.
Th. 4.4: ug € D (A), f(t) € C%! or C!, then the mild solution is strong or classical, respectively.

Example: %u = %u +f(tx),t>0, 2 €R, u=up for t =0, z € R. Transformation to (4.2) ... A= %,

D(A) = WY (R), ug € X = L>(R), f(t,z): I < L?*(R), t — f(t,-). We know: (A, D (A)) is generator of shift
co-semigroup: [S(t)u] = u(x +t). t
Mild solution: u (t) = [S(t) uo] (z) + fot [S(t—s) f(s,)] (x)ds =ug (x+1t)+ [5 f(s,x+t—s)ds € L* (R).

f(s,x+t—s)

Remark: formally (i. e., classically for ug, f smooth enough) it is a solution ... (voluntary excercise), but
the mild solution makes sense even for ug € L? (R), f (t) : I — L? integrable (and not better).
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Ex 1.1. Assume that u(t) € C(I, X) (always I = [0,T]) and prove the following propositions:
(1) u(I) C X is compact, and u(¢) : I — X is uniformly continuous.
(2) Prove that u(t) : I — X is strongly measurable (a) using the Pettis theorem and (b) directly from the
definition
(3) Prove that u(t) : I — X is Bochner integrable (a) using the Bochner theorem and (b) directly from the
definition
(4) Show that [;u(t)dt = limy, o0 + Y0 u(jT/n)

Ex 1.2.
(1) Let u(t) : I — X be Bochner integrable, let F': X — Y be linear, continuous. Then Fu(t) : I — Y is

Bochner integrable, and
F (/ u(t) dt) = /F(u(t)) dt
I I

In particular: (z*, [, u(t)dt) = [,(z*,u(t)) dt for any z* € X*.

(2) Prove the following version of Fatou’s lemma: let u,(¢) : I — X are (strongly) measurable, and u,,(¢) con-
verge weakly to u(t) for a.e. ¢t € I. Then u(t) is measurable and [} |lu(t)|| dt < liminf, o [; [|un(t)| dt.
In particular, if [, [|u,(t)| dt are bounded, then u(t) is integrable.

Ex 1.3. Let 9o(t) : R — R be convolution kernel, i.e. 1o(t) is bounded, zero outside [—1, 1] and fil Yo(t)dt =
1. Let u(t) : I — X be given and assume that u(t) is extended by zero outside of I. Let 1, (t) = niy(nt) and
finally let wp, (t) = u* ¢, (t) = [p u(t — s)n(s)ds
(1) Show that u,(t) € C(I,X) and if ¢ € C’l, then also u,(t) € C1(I, X) and u/,(t) = u x ¥/, (t).
(2) Show that norm of w,(t) is not larger than the norm of u(t) in the spaces C(I,X), LP(I X)
(3) Show that if u(t) € C(J, X) for some J strictly larger than I, then u,(t) =2 u(t) in C(I, X), for n — oo.

Ex 1.4.

(1) Prove the following Convergence Principle: Let F,, : X — X be a sequence of linear operators such that
the norms ||F,|| are bounded independently of n. Let there be a dense S C X such that F,v — v as
n — oo for any v € §. Then F,u — u as n — oo for any u € X.

(2) Apply the Convergence Principle to prove part 4 of Lemma 1.1.

Ex 2.1. Let X be reflexive, separable.

(1) Let p € (1,00). Show that any u(t) € W1P(I; X) has a a-Hélder continuous representative, with
a=1-1/p.

(2) Show that W°(I; X) = C%1(I; X) (the space of Lipschitz functions), in the sense of representative.

(3) Let uy(t) be weakly differentiable, and let u,(t) — wu(t), %un(t) — g(t) (weakly) in L*(I; X). Then
u(t) is weakly differentiable, With ( ) = g(t).

(4) Let u,(t) are bounded in LP(I; Y), Jiun(t) are bounded in L(I; Z), where p, ¢ € (1,00) and Y, Z are
reflexive, separable. Then there is a subsequence so that @, (t — u(t), %ﬂn(t) — ¢(t) in the respective
spaces, and %u(t) =g(t).

Ex 2.2.

(1) Prove that LP(I; LP(2)) = LP(I x Q) if p € [1,00), but L>=(I; L>°(Q2)) € L>=(I x Q).
(2) Prove that if u, — w in LP(I; L%(2)), and Q C R" is open, bounded, then

/ un (t, )Y(t, x) dtde — u(t, x)(t, x) didz
IxQ

IxQ

for any (say) bounded, measurable function ¥ (t, ).

Ex 2.3. Let H be a Hilbert space. Show that H is uniformly convex. Show directly that if w,, — u and
llunll 7 = [lull g, then u, — u.
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* Ex 2.4. Let u,(t) be bounded in LP(I; X), where p € (1,00], and X be reflexive, separable. Prove
that there is a weakly convergent (x-weak if p = co) subsequence, using only Theorem 1.9 and separability of
LY (I; X*).

Ex 2.5. Let u,(t) — u(t) in LP(I; X), v, (t) — v(t) in LP' (I; X*), where p, p’ are Hélder conjugate. Prove
that [, (un(t)on(t)) x x- dt = [, (u(t),v(t)) x x. dt.

Ex 3.1. Let u(t) € L>(I; Wy?), g(t) € L>(I; W~2) and ug € L?. Then the following are equivalent:

(i) Lu(t) = g(t) and u(0) = ug (in the sense of representative)

(i) for any v € W, %, ¢ € O°((—00,T)) one has
- [ 0¢ @) dt = [ t9(0). ) ()t + (un, )p(0)
1 1

Corollary: u (t) € L? (I, Wol’2> is w. s. with u (0) = up (for representative) iff

/ (u(t) v) @' (t) di+ / (0 (Vu(t) ,v) o () dt + / (f (u (1)) ,v) it

I I I

— [(h@).0)+ (w.0) ¢ 0)
I

Ex 3.2. Recall the notation and assumptions from Chapter 2: let f(z) : R — R, a(§) : R™ — R”™ be Lipschitz
continuous. Let the operators A : Wol’2 - W=b2and F: 1 x I/Vol"2 — W12 be defined as

(A(u),v) = / a(Vu(z)) - Vo(z) dx

Q

F(t,u) = —A(u) — of (u) + h(t)

where h(t) € L2(I; W~12) is a fixed function.

(1) Prove that u +— f(u) is Lipschitz as operator L? — L2, and also u(t) + f(u(t)) is Lipschitz as operator
L?(I;L?) — L2(I;L?). N. B. do not forget to verify that f(u) and f(u(t)) are measurable in the
appropriate sense.

(2) Deduce that also u(t) — ¢f(u(t)) is Lipschitz as operator L2(I; W,y'*) — L*(I; W—12).

(3) Prove that u — A(u) is Lipschitz continuous as operator W, () — W~12(Q).

(4) Show that [|F(t, u)||_y 5 < c(1+ ||lull; o+ [[R(t)]_; 5) With some constant only depending on the nonlin-
earities a(-) and f(-).

Ex 3.3. Let Wol’2 s L? — W12 be the Gelfand triple, with the embedding ¢ : Wol’2 — W2
(1) Observe that due to the Poincaré inequality, W, * is a Hilbert space with the scalar product ((u,v)) =
Jo Vu(z) - Vo (z) dz.
(2) By Riesz theorem, any f € W~12 can be represented by some ur € VVOI’2 so that

(fov) = ((ug,0)) Yo e Wg?

(3) Show that by a Green formula ((u,v)) = (—Au,v) for any v € W) and u € C°.

(4) Combine that above with the density of C'2° in WO1 ? to show that for any f € W12 there exists smooth
functions u,, such that tu,, — f.

(5) Finally, show that ¢ : Wol’2 — W52 is injective.

These are the reasons why no symbol “.” is normally employed and (-,-);. is simply seen as a generalization of

(- ~>W,1,27W01,2 without further notational ado.

Ex 4.1. Let X be reflexive, separable, X < Z, and let u(t) € L>°(I; X) N C(I;Z). Show that u(t) € X for
all t € I and moreover, ¢t — u(t) € X is weakly continuous.
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Ex 4.2. Let w; be the eigenfunctions of —Au = Au with zero Dirichlet b.c. Let Py be the ON projection
(in L?) on the space span {ws, ..., wx}. Clearly Py is continuous L? — L? with norm 1.

(1) Show that Py is also continuous I/Vol’2 — I/Vol’2 with norm 1, if VVOL2 is taken as a Hilbert space with
scalar product ((u,v)) = (Vu, Vv).
(2) Show that [[Pyull, 5 < c||ully, for any u € We2 N W22 (assume O sufficiently regular).

Ex 4.3. Let ¢(2) : R — R be smooth function with a bounded derivative. Show that u,, — u in W12 implies
P(uy) — P(u) in W2,
Ex 4.4. [d’Alembert’s transform|. Let u(t) : I — X, g(¢t) : I — X be integrable functions. Then the following
assertions are equivalent:

() jTZU(t) = g(t) weakly, i.e.

/ u(t)" (1) dt = / gty dt Vo(t) € C2(I)

I I
(ii) there is v(t) : I — X integrable such that Zu(t) = v(t) and Lv(t) = g(t) weakly in I.

Ex 5.1. Let S(t) be a cp-semigroup in X. Show that the following are equivalent:
(1) S(t) = et for some A € L(X)
(2) S(t) is uniformly continuous, i.e. S(t) — I in £(X) for t — 0+

Ex 5.2. Let u(t) € L*(I;Wy'*) N C(I; L?) be the (unique) weak solution to the heat equation

d
P Au =0, u(0) = uy

Verify that the solution operators S(t) : ug +— u(t) form a co-semigroup in L?.

Ex 5.3. Let (A, D(A)) be an unbounded operator in X, which is closed, and let D(A) be dense in X.
(1) Let v/(t) = limp—0 + (v(t + h) — v(t) be the classical derivative in X. Assuming that v'(t) and (Au)'(t)
exist, show that u/(t) € D(A) and A(v'(t)) = (Au)'(t).
(2) Assume that u(t) : I — D(A) be Bochner integrable, where D(A) is equipped with the graph-norm
[ull x + [l Aul] -
Show that both u(t) : I — X and Au(t) : I — X are Bochner integrable, and A( [, u(t) dt) =
J; Au(t) dt .

Ex 5.4. Let X = L?(R) and define the “shift” operators S(t) : X — X by S(¢) : f(z) = f(z +1).

Verify that S(t) form a cyo-semigroup
Show that ||S(t) — I||z(x) = 2 for any ¢ > 0, hence the semigroup is not uniformly continuous

Prove that if f(z) € WY2(R), then +(S(h)f(z) — f(z)) = & f(z) in L*(R), as h — 0*.

Prove conversely that if f(z), g(z) € L*(R) are such that +(S(h)f(z) — f(z)) = g(z) in L*(R), as
h — 0%, then f(z) € WH2(R) and £ f(z) = g(z)

(5) Observe that the above assertions imply that the generator of S(t) is the operator A : f(z) — - f()
with the domain of definition D(A) = W12(R).

1
2
3

(
(
(
(4

)
)
)
)

2.)1/2.

Ex 6.1. Consider space £2 of sequences {u;} with the norm (ZJ u3

Let \; be real numbers. Define operator A : D (A) C 2 — (? as

A {ui} — {\u,), D(A) = {u;} €% Y Nu? <0
J
(1) Observe that D (A) = ¢? and A € L({?) <= the sequence {)\;} is bounded.
(2) Show that (A4, D (A)) is closed, and D (A) is dense in ¢2.
(3) Assume that A\; < w for all j. Deduce that any A > w belongs to the resolvent set p(A). Write an
explicit formula for the resolvent R(A, A).
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(4) By Hille-Yosida theorem, A is a generator of a cp-semigroup in ¢?, which satisfies SOl zeezy < ewt
t > 0. Compute S(t) explicitely.

)

Ex 6.2. Let S(t) be a co-semigroup in X, satisfying [|S(¢)|[;x) < Me“t t > 0.
Let S(t) = e~“!S(t). Prove that:

(1) S(t) is also a cy-semigroup, and HS‘(t)HL(X) <M,t>0.

1) S(t
(2) Let (A, D (A4)), A, D(A)) be the generators of S(t), S(t), respectively. Show that D (A) = D(A) and
A=A—-uwl.

*Ex. 6.3. Let O C R? be a bounded domain with smooth boundary. Let \;, w; be the eigenvalues and
eigenfunctions of the Dirichlet laplacian, with ||w;||, = 1.
By Parseval’s theorem, we have ug = Zj ujwj, where u; = (u, w;) and the sum converges in L2
(1) Show that u(t) =3_; e~ *tujw; is a weak solution to the heat equation Lu — Au =0, u(0) = uo.
(2) Show that )\ju? < oo if and only if ug € Wy2. Show that > )\fu? < oo if and only if uy €
Wit nw?22,

(3) Observe that the “heat semigroup” (see Exercise 5.2) can thus be identified with a multiplicative semi-
d 9%y
i=1 amf ’

group (as in Exercise 6.1). It follows that the generator of heat semigroup is the operator A =)
with derivatives understood weakly on the domain of definition D(A) = Wy> N W22,

Ex 6.4. Let S(t) be a cp-semigroup on X.
(1) Show that the map (¢,z) — S(t)x is jointly continuous [0, 00) x X — X.

(2) Assuming that S(t) is another co-semigroup, show that y(t) = S(T — t)S(t)x is continuous [0, 7] — X,
where 7' > 0 and = € X are fixed.

(3) Assuming finally that S(¢) and S(t) have the same generator, show that y/(t) = 0 for any t € (0,T) if
x € D(A).

(4) Deduce that S(t) = S(t) for all t > 0, thus establishing Lemma 4.2.

Hints
Ex 1.1.

(1) Follows from compactness of I just as in the scalar case X = R.
(2) (a) compact implies separable, and continuous scalar is measurable; (b) set u,(t) = u(§7/n) for t €
[(j = 1)T/n,jT/n] — these are simple functions and u,,(t) = u(t) thanks to uniform continuity
parts 3 and 4 use very similar ideas

Ex 1.2. 1. Let u,(t) be simple functions from the definition of [, u(t)dt. Then Fuy(t) are simple... In
particular: set Y = R.
2. Use the fact that a separable set can be enlarged to a closed and convex (hence weakly closed) set. Use weak
lower semicontinuity of the norm and scalar version of Fatou’s lemma.

Ex 1.3. 1. Rewrite u,(t) = [ u(s)¥n(t — s) ds and show that usual theorems about dependence of integral
on parameter apply. (In fact for ¢y smooth enough, the dependence on ¢ is uniform, so the exchange of integral
and limit is trivial.)

2. For p = 1, this follows by Fubini’s theorem.
3. Use uniform continuity of u(t) on the neighborhood of I.

Ex 1.4. 1. Fix u € X, and let ¢ > 0 arbitrary be given. Pick v € S such that ||u — v|| < e. Write
Fou—u= F,(u—v)+ (F,v—v) 4 (v—u) and show that each term is estimated by (a multiple of) ¢ if n is large
enough.

2. Set X = LP(I; X), Fou=wux1, and S = C.(I; X). Use the results of Ex 1.3.2 and 1.3.3.
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Ex 2.1.

(1) By Lemma 1.5, there is a continuous representative 4 (t) such that @(t1) —a(t2) = fttf 4 4(s) ds. Estimate
the integral using the Hdélder inequality.

(2) Inclusion C is as above. For the converse, note that Lipschitz function is absolutely continuous, and its
derivative is L*°, cf. Theorem 1.5.

(3) Explain (in detail), that weak convergence is enough to pass in the definition of the weak derivative.

(4) Use Eberlein-Smulian and the previous problem.

Ex 2.3.

2 —y |2 2 2
) Use 2527, + 252, = lelfy+ ol
(2) Write [lu —wun|[y = llully = 2w, un) i + [lunly-

Ex 2.4. Let v,(t) be a countable dense set in L?' (I; X*) ...
Ex 2.5. Add and subtract (u, (¢),v (t)).

Ex 4.1. 3K >0, N C Ist. A(N)=0and |u(t)||y < K forallt € I\ N. Approximate ty € N with t,, — to,
t, € I'\ N to show that ||u(to)||x < K. Prove continuity by contradiction, using uniqueness of limits in Z.

Ex 4.2.

(i) Rewrite Py as ON (in W, * w.r. to ((-,-))) projection
(#4) Show that Py(—Au) = —APnu; use elliptic regularity for the laplacian

Ex 4.3. In view of Lemma 2.4, it is enough to show that u,, — u, Vu, — Vu in L? implies ' (un)Vu, —
Y’ (u)Vu in L2. By taking a subsequence we can in the first step assume u,, — u a.e. Show further by contradiction

(and step one) that convergence takes place even without taking a subsequence.

Ex. 5.3.2. Let w,(t) be simple functions and u,,(t) — u(t) in the norm of D(A) for ae. t €1, ...

Ex. 5.4.
2. Consider suitable f(z) € L?(R) with compact support
3. Working with AC representative, we have f(x + h fo s)ds, where g = d 7= f- Deduce
that +(f(z+h) — f(z)) can be written as convolutlon of g with sultable kernels, and use Lemma 1.1,
part 4.

4. Let p(x) € C°(R) be given test function and h > 0 be fixed. Prove that

/fx—i—h /f (‘O(x)d:c

Using the assumptions, show that you can take the limit h — 04 on both sides, to obtain that %f(x) =
g(z) in the sense of weak derivative.

Ex. 6.1. in part 2, for density, consider C C D (A) consisting of {u;} with only finitely many nonzero u;,
for 3. R\ A) : {v;} — {ﬁvj} in 4. use Yosida approximation.
Alternatively, one can guess that the answer S(¢) : {u;} — {e*'u;} and then verify that S(t) is a co-semigroup
on /2 and A is its generator. So S(t) must be the sought-for semigroup by Lemma 4.2.
For taking limits in ¢2, you can use the following version of Lebesgue’s theorem (where sum is seen as an integral):
if >, laj| < oo and b;(t) are bounded independently of j and ¢, and b;(t) — B;, then >, b;(t)a; — >, Bja;.
Ex. 6.4. for 1, use part 1 of Lemma 4.1; in writing y(t + h) — y(t), add +S(T — (t + h))S(t)x and use joint
continuity and definition of the generator, and Theorem 4.1; in 4. S(T)xz = S(T)x if x € D (A) and use deunsity.
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Solutions

1.2.

Let us first prove that Fu(t) is Bochner integrable. Since u(t) is Bochner integrable, there exist simple
functions w, (t) = Zf(:nl) Xar (t)2} such that u,(t) — u(t) for a. e. t € I and [} [u(t) — un(t)|[, dt — 0.
Denote s, (t) = Zj(znl) xar(t)F(z}). Then s, are clearly simple. By linearity of F' we have s,(t) =
F(un(t)). Since F is also continuous, it holds that

lim sp(t) = F (nlggo un(t)> — Fu(t)

n—oo

for a. e. t € I. By continuity and linearity of F' we have (|| F|| < oo)

J1Fu(®) = Fun(®lly de < 17 [ fute) = ua 0] de o
I I

Thus we see that Fu(t) is Bochner integrable.
It follows from the definition of Bochner integral and continuity and linearity F' that

F ( /1 ul?) dt) = F(lim | wn(t)dt) = lim F ( /1 Un(?) dt)

k(n) k(n)

= lim F > NAN)ay = lim_ > MANF(a)
j=1 j=1

=~ tim [ s (t) di = / Pu(t) dt.

In particular, if we choose Y = R, we obtain for every z* € X*

(2", /I w(t) dt) = / (2*, u(t) dt.

I
We begin by proving the measurability of u(t). Let z* € X* be arbitrary. Since u,(t) are measurable
and therefore weakly measurable, the scalar functions (z*, u, (t)) are measurable. But since w, (t) — u(t)
for a. e. t € I, we have
(2%, un(t)) = (2%, u(t))

for a. e. t € I. Scalar function (z*, u(t)) is for a. e. t € I pointwise limit of sequence of scalar measurable
functions and therefore it is a scalar measurable function. As z* € X* was chosen arbitrarily, the function
u(t) is weakly measurable.

Since u,(t) are measurable and therefore A-separably valued, there exist Lebesgue null sets N,
such that w,(I \ N,) are separable sets. Moreover, there exists Lebesgue null null set Ny such that
un(t) = u(t) for a. e. t € I'\ Ny. Denote

N = G Ny,
k=0

which is also a Lebesgue null set. Therefore u,, (I \ N) are separable sets and for every ¢t € I\ N we have
that u,(t) = u(t). As a countable union of separable sets is a separable set, the union

n=1

is a separable set and thus span < U un(I\ N )) is a separable subspace. Since subspace is clearly a
n=1
convex subset, it follows easily that
%) w %) w %) HHX
u(t) € |Jun(I\N) Cspan(| J un(I\N)) =span(| ] ua(I'\ N))
n=1 n=1 n=1

for every t € I\ N. Therefore u(t) is also A-separably valued and measurable by the Pettis theorem.
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By weak lower semicontinuity of the norm and by the scalar version of Fatou’s lemma it holds that
/||u(t)H dt < /limianun(t)H dt < liminf/ |lwn (8)|] dt.

Moreover, if the sequence [} |lun(t)|| dt is bounded, it follows easily that
S llu(@®)|| dt < liminf, o [; lun(t)|| dt < oo, therefore u(t) is integrable by the Bochner theorem.

Ex. 1.3. Convolution kernel: v (¢) : R — R, bounded, measurable nonnegative, o (t) = 0 outside [—1,1],
fu o (€t = 1. Define t (2) = nt (1), n (6) = 1 o (8) = fo 02— )t (5)ds = Jo hn (¢ —5) . (s) ds, we
set u (t) = 0 outside of I.

(1) u(t) e LY (I; X), ¢ (t) € Ct = w,, (t) € C* (I, X) and u/,(t) = u x4/, (t) for any n fixed.
Is uy, (t) continuous? Let ¢t € I be fixed. h; = 0 = w, (t+ hj) — uy (t), but u, (t + hj) —u, () =
J; [Wn (t+ Ry —s) —1py (t — s)]u(s)ds. By Th. 1.3 (Lebesgue) we have: v; (s) — 0, j — oo for a. e.

v;(s)
s € R fixed and [[o; ()] < ([ () + [6n (- )]} ()| < cllu(s)]| € LY (I;R).
Is u differentiable?

u%(t): %zwvz(t_S)U(S)dS

— lim [wn(t'Fh—S)—%bn(t—S) u(s)ds
h—0 J; h
— ! (t — s) for Vs fixed
[[...]| £C ... Lagrange mean value theorem (C = sup [¢]])

:/Iw;ufs)u(s)ds

(2) llun )|l £ < |lu(t)]| £ Vn, where F = C (I, X) or LP (I; X).

For LP:
«p—1:
o @llssy = [t @l = [ [ e as
< [ (L1l vn - sas)ar
P (o)l (e 5) ) s
= [ ([ vnte=9yar)as
1

:/RHU(S)Hds: lw ()l ()

dt
X

o for p = oo easy (same as C (I, X)).

e p € (1,00) : Holder inequality: (% + i = 1)

JE (/ﬂ|f|p)‘l“ (L)’

1
'Y
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Trick:
[[u x4 (B)]] < / [ (8) | (¢ = s) ds

/nu M (6 (¢ — ))F (thn (¢ — )73 ds
f(s) g(s)

H‘ﬂsder( JCIEN ds)’l’ ([ wnte=sas) ’

=1
= Jlux, )" < [ lu(s)]|” ¢n (t — s) ds, now as before: [, dt, Fubini

— [ ur v @ i< [ Ju s
R R
(3) Ifu(t) e C(J,X), J compact larger than I, then u, (f) =2 «(¢) in 1.

‘/ 5) tn t—s)ds—u()H
< [ ) = u @l = 5)ds

: 1
# only if [t —s] <

|un (t) —u ()| =

59

(t € I, we only consider s € [—2, 7'+ 1] C J for n large). Uniform continuity of u (¢ ) on J: € > 0 given

u
= 35>0s. t. [[u(t)—u(s)| <eforVt,s€ Js. t. |t—s| <5 Takens. t. - <

i (0= w (Ol < [ et (6= 5)ds =

3= 2

Ex. 2.1.
1. Since u(t) € WP (I; X), there exists a continuous representative @(t) € C(I; X). For r, s € I we have
S d d S d d
u(s) —u(r = —u(t)dt|| < —u(t t
fits) ~ ol = | [ Guwar| <| [ fu] o
Holder 1|l d
< s —rl || —ult)
dt Lo (I;X)

1
<ls=rl" [lu@lwir.x)

where 1% =1- %
Since r, s € I were chosen arbitrary, we have
[a(s) — a(r)ll,
Sup 1 < Nu@®llwrwr;x) -
r,s€l |s — r‘
r#s
Therefore 4(t) is a-Holder for a =1 — % .
3. Denote T = L'(I; X). Choose arbitrary fixed test function ¢ € D(I) and define

U(v(t)) = f/v(t)go(t) dt, wv(t)eT.

I

We see that ® and U are well-defined linear operators from T to X directly by the definition. Moreover,

they are continous since

Holder
[@(w(®)]lx < /Ilv ixle'®ldt < @y €' Ol Lo rry »
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where ¢/ ()| Lo (.r) < 00 as ¢ is a test function and therefore ¢’ is a continuous compactly supported

function. Similar arguments apply for proving the continuity of ¥. We thus have that ®, ¥ € £(T, X).
By the definition of weak derivative we have

B(u, (1)) = / un () () dt = — / o (B)p(t) dt = W

at" ®)
We now have that ®(u,(t)) —

®(u(t)) and ¥ (Lu,(t)) = ¥(g(t)) in X. By uniqueness of the weak
limit it holds that ®(u(t)) (t

) and thus

U(g

which means that u(t) is weakly differentiable and S-u(t) = g(t) since ¢ € D(I) was chosen arbitrarily.
We can write

/I<vn(t),un(t)>x*7x dt — /I@n(t) (), un(6))x- x di + /I(U(t),un(t))x*x dt.

If we denote YT = LP(I; X), T* = (LP(I; X))" and denote by F,, € T* the unique element of dual T
corresponding to the v, () € L? (I; X*) (and by F' € T* the element corresponding to v(t) € L? (I; X*))
by canonical dual mapping, then we have

/(U(t),un(t)>x*,x dt = (Foun(t))r-x "= (F,u(t))r-r = /(U(t)>u(t)>x*,x dt,

I I

as up(t) = u(t) in T. Moreover, we have that

[0 = 00t x 88| < [ 1) = Ol T O
1 1
Holder 00
< on(®) - v(0) Olga(rx "= 0.

since the sequence {u,(t)} is weakly convergent in LP(I; X) and therefeore bounded in L?(I; X) and

n—oo f

vp, — v in LP (I; X*). Now it is easily seen that S (on (), un (b)) x+ x dt = [, {v(t),u(t))x- x dt.

2.2. We will show only L? (I; LP (Q2)) = LP (I x Q) for p € [1,00):

Let w =0in LP (I x Q) <= wu(t,x) =0 for a. e. (t,z) € I x . By Fubini we know that this is
equivalent to u (t,r) =0 a. e. x € Q for a. e. t € I. Therefore u(t,-) =0in L?(Q) for a. e. t € I.
Moreover N C I x ) is zero set <= for a. e. t € I the set Ny = {x € Q,(¢,x) € N} is zero set.
Therefore u = 0 in LP (I x Q) <= u(t) =0in L? (I; L7 (Q))
1l 1y = Sy e (£ 2) |7 dtda "E™ [ ([ (t,2)[7 dee) dt = [l (8)]1%, 7.0 ge-

”u(tv‘)HZp(Q)
measurability: let u (¢t,z) € LP (I x Q). Then Ju, (t,z) € C (I x Q) such that u, (t,z) — u (¢, ) in
LP (I x Q). uy (t) : I — LP (Q) are continuous, therefore strongly measurable.
Therefore [} [luy, (t) — u ()l Lo () dt = 0 (un (t) is Cauchy since uy, (¢,2) is Cauchy in L (I x 2)), hence
Up (t) = w a. e. in LP (I; LP ()

3.1.

Let 1. be true. By part 1: %Luu(t) = ) in I and the function wu(t) : I — W~L2 is weakly
differentiable. By Lemma 1.3 = 3u(t) € AC (I, W—" 2) t. a(t) = w(t) a. e in I. But
also (by Thm. 1.12) Ja(t) € C (I,L2) t.ou(t) = a(t e. Hence clearly @ (t) = vii(t) for

u =
all t € T and wu(0) = ug. Take v € Wy2, ¢ (t) € C ((—oo0, )),clearlytH(w() >g0()1sAC.
%,_/

(t

g
t)
S.

c

z(t)
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—
' (t) = % ((tu (t),v) p (1) = <%Lu (t) ,’U> o)+ (La(t),v) ¢ (t) a. e, write z (T) —x (0) = [ 2’ (¢)dt
— —~—~ JI
=0 == (@ (0),v) ¢ (0)
since x (t) € AC' we have (ug,v) = [; (g () + (@ (¢),v) ¢’ (t) dt, hence 2. holds.

Let 2. be true: in particular for Yo (t) E Cc (( ,T)) we have
f/(u(t),v)gp' (t)dt:/(g(t),v)cp(t)dt,Vv€W01’2
I I

= thu( ) = g (t), hence we have first part of 1, hence by the above argument (integration by parts):

compare with 2. = (@ (0),v) ¢ (0) = (ug,v) ¢ (0), where v € W2 is arbitrary, W, is dense in L2
= ug = Ug-

3.2.

Let u € L?. Since f is [-Lipschitz continuous and in particular continuous, f(u) is measurable scalar
function as “continuousomeasurable” is a measurable scalar function. For u,v € L? we have

1) = FOIE = [ 1fu(e) = Fo@)P da
<12/|u —v(z clav—l2||u—vH27

therefore the mapping u € L? — f(u) € L? is [-Lipschitz.

Now let u(t) € L? (I; L?). In particular, u(t) is strongly measurable and therefore there exist simple
functions u, (t) such that u, (t) — u(t) in L? for a. e. ¢t € I. Denote by Ty : L? — L? the (nonlinear)
operator defined by the formula Ty (u) = f(w). This operator is Lipschitz and therefore continuous due
to previous part. Thus Ty o u,(t) — T ou(t) = f(u(t)) in L? for a. e. t € I. But Ty o u,(t) are simple
functions (they clearly map their deﬁnition domain to finitely many values), which means that f(u(t))
is strongly measurable mapping. For u(t),v(t) € L? (I L2) using previous parts, we have

LF ) = F@@O) 3o = / L () — F(o()]2 di
<P / () = o @I dt = 2 u(t) — o)l rop)

thus the mapping u(t) € L? (I; L?) — f(u(t)) € L? (I; L?) is I-Lipschitz.
Let u(t),v(t) € L? (I; Wol’z). Then in particular (for ¢ € I fixed) we have f(u(t)), f(v(t)) € L?, as f is
Lipschitz and u(t),v(t) € L. Fix arbitrary w € W2, |wll; 5 < 1. Then we obtain

|(f(u(t) = f(o(®), w)| < /Q [f (u(t)(2)) = f(o(t)(@)] |w(z)| dz

Sl/ u(®)(x) = o(t)(@)] |w(z)| dz
Q
< Hlu(t) = v(@)ly lwlly < Hu@) =v@)ll;

hence
llef (u(t)) = ef (W)l 1 5 < Tlu(t) = v(®)], - ()
Using , we have

lef (u(®)) = ef ) 72(r-1.2) = /I lef (u(®)) = ef (D)2, 5 di

< [ u)) o1 @< 2 [ uto) - o0)13,

= 2 u(t) = o Ol g2 (r,wa2)
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which means that the mapping u(t) € L? (I; W01’2) > of(u(t)) € L2 (I; W*I’Q) is [-Lipschitz.
(3) Let u,v € Wy2. Choose w € W2, |wll, o <1 arbitrary fixed. Then

[(A(u) — A(v), w)| < \a(Vu(x)) — a(Vo(2))[ [Vw(z)| dz

<a1/ Vu(z) — Vo(@)| [Vu(z)| do
< oy [V — Vo, [Veolly < o [V — Vo]

<apflu—of,,

thus [|A(u) — A(v)||_; 5 < a1llu—vl; 5. Therefore the mapping u € Wy? = A(u) € W12 is ay-
Lipschitz.

(4) Let t € T and u € W,">. Fix arbitrary v € W2 ||v||, , < 1. Then (we assumed that a (0) = 0 and
€] < o0)

a(Vu(z)) - Vo(z) de + (f(u),v)| =

(Vu( ))‘V’U(SE)dI+/ fu(z))v(z) de
Q
/|aVu )| Vo |dsc+/|f D lo(@)] da
/|aVu ) —a(o)| V(= |dm+/|f N |v(z)| dz
<a1/|w ) [Vo(a |dw+/|f D o(@)| do
< oy [Vull, [ Voll, + / (@) [o(a)] da
< oy | Vull, + / F(u(@) — FO)] ()] dz + [£(0) / jo(z)] da

< ay [[Vaull, +Z/Q [u(@)| [o(2)] do + |£(0)] €22

1
< ay [[Vally + Ulully + 1 £(0) 2] -

Therefore we have proven that

1= A(w) = of (w)]|_y » < max{a, L, |FO)] 1217 }(1 + [Jull, ,). (6)
By the inequality (6] it easily follows that
IF(Eu)ll—y o = I=A(w) = of (u) + R(E)]|_y 5 < [[-Aw) = ef (W)l _y 5 + [[RE)]] -y
< max{1, a1, L [F(O)] 212} + [[ull, , + 1Ay ),

which concludes the proof.

Ex. 3.3. Let Wol’2 — L? — W12 be the Gelfand triple, with the embedding ¢ : VVol’2 — W2,

(1) By Poincaré inequality, the norms [|-| : u = |[[Vul|, and [lu[[, , are equivalent on Wy, Therefore the
mapping ((-,-)) : Wy'? x Wy — R defined as ((u,v)) = (Vu, Vo) is a scalar product on W,>* and
(Wol’z, ((-, ))) is a Hilbert space.

(4) Let fe W12 = (VVO1 2) be given. By Riesz theorem, there exists uy € Wol’2 so that

(fov) = ((ug,0) Yo e Wy?



SOLUTIONS 63

By density of Cg° in VVO1 2 there exists a sequence u, € Cg° such that uw, — uy in Wol 2 hence
(f,v) =limp 00 ((tn, v)). NOW we can write

((up, v /Vun YV (z)de = / Auy, (2)v (z) de = (—Auy,v) = <L(—Aun),v>
~———
€ Cx® C [?

hence f = lim,, oo tfn, (limit in W=12), f, € L?
Ex. 3.4.
4. Let f € W12 be given. W12 = (Wol’2) , Wy? is a Hilbert space with scalar product ((u,v)) =

(Vu, Vo). By Riesz theorem we know: Jup € W, > s. t. (f,v) = ((uf,v)) = (Vus, Vo) Yo € W, >
We know: Ju, € C® s. t. w, — uy in I/Vol’2 and therefore (f,v) = lim, o (Vu,, Vv), but due

to Green’s theorem we have (Vu,Vv) = [, Vu, - Vode = — [, Aun vdr= (fp,v) = (tfn,v). We
ey
have shown: (f,v) = lim, o0 (tfn,v), 1. e, tfn, — f weakly (for v € WO 1,2 fixed). The same holds
even strongly: ||uf, — f|| = SUD ¢ yy 1.2 (tfn — f,v) = (Vup, —Vu,v) < [[Vu, — Vul|ly, = 0, i. e, the
ISt
convergence is strong. Therefore (¢L?) =W~

5. it suffices to show that tu = 0 in W12 = w=0in L% w =0 <= (wu,v) =0 for Yo € W, 2 i.
e., (u,v) = O¥v € Wy* but Wy** is dense in L? = (u,v) = 0 Yo € L?> = u =0 in L% Follow by
linearity.

Ex. 4.1. Let u(t) € L>*(I; X) N C(I; Z). 1. e., there exists a measurable subset N C I, |N| = 0 such that
for vt € I'\ N it holds that u(t) € X and |[u(t)|x < [[u()|lpe(r,x) = M < o0. We begin by proving that this
holds for every ¢t € I. Choose tg € N arbirtrary fixed. As |N| = 0 (and in particular N does not contain any
nondegenerate interval), there exists ¢, € I \ N such that ¢,, — to. For every n € N we thus have u(t,) € X and
lu(tn)|lx < M. As X is reflexive, we can choose a subsequence {s,} C {t,} such that u(s,) = zo € X in X.
Since X — Z, we also have u(s,) — z¢ in Z. But u(t) € C(I; Z), therefore u(s,) — u(ty) in Z as s, — tog. By
uniqueness of weak limit it follows that u(tg) = 2o € X and by weak lower semicontinuity of the norm we have
lu(to)ll x <liminfu(s,) < M. We have thus shown that

u(t) € X,
lu@lly <M, Veer. 7

Now we proceed to prove that the mapping ¢ € I — wu(t) € X is weakly continuous. I. e., we need to show
that for arbitrary ¢ € X* the mapping ¢t € I — (¢, u(t))x+ x is continuous. Fix ¢ € X*. By @ we have that
for every t € I it holds that (p,u(t))x+ x € [— ¢l x« M, [|¢] x« M]. Assume for contradiction that ¢t € I —
(p,u(t))x~ x is not continuous. Therefore there exists tg € I and a sequence ¢, € I such that ¢, — to. But
(o, u(tn))x=x 7 (o, u(to))x=x € [—|l¢ll x- M,|l¢ll x- M]. Thus there exists a chosen subsequence {s,} C {t,}
such that (¢, u(s,))x+x = co € [—|l¢ll x« M, |||l x« M]\ {{p,u(to)) x+ x}. But by similar reasoning as in first
part we know that we can choose a subsequence {r,,} C {s,} such that u(r,) — u(tg) in X. Therefore, in particular
(@, u(rp))x+ x — (p,u(to))x+ x. This contradicts our assumptions as (¢, u(r,))x+ x — co # (¢, u(to))x» x. The
mapping t € I — (p,u(t))x~ x is therefore continuous. It is obvious that ¢ € I — u(t) € X is weakly continuous
as ¢ € X* was chosen arbitrarily.

Ex. 4.2.

(1) For u € W, we have (we know that the eigenvalues Aj are positive)

N Ny N w
u= Z(u,wj)wj = ; Y(Vu,ij)wj = ;((u, \/E)) s

j=1

<

But the set { AT \7—7} is orthonormal in ON v W*? with the scalar product ((-,-)) as (Vw;, Vuy) =

dj1Aj. We have expressed Py as (nontrivial) orthonormal projection on span { \“’ﬁ, cee \7—7’} therefore
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the mapping Py : WO1 2 WO1 2 is continuous with norm equal to 1 if WO1 2 is considered Hilbert space

with the scalar product ((-,-)).

(2) Add extra assumption 9Q € C? for we need to use theorem about elliptic regularity. Application of

this theorem to eigenfunctions of laplacian for Dirichlet problem gives that w; € WO1 2N

W22 and in

particular Aw; = —\jw; a. e. in . Now we use second part of this theorem about estimate of W22

norm and we obtain that for every v € W22 it holds that
[vll22 < Cr([lvlly + [[Av]y),

(8)

where Cp is independent of v. Let u € Wy? N W22, Since % € Wh? and w; € W, %, we can use

integration by parts for Sobolev functions and obtain
ou 3w 0%u
I (z)de = — =
Q 81‘1 ox; q 027

(x)w;(x) de.

Therefore

8w
(Vu, Vw;) Z/ 6xz 8xj z)dx

. ; X a—é(m)wm) da

= _(Aua wj)7
by which it follows that

2

APNu—Zuw] JAw; = Z —Aj(u, wj)w

j=1

a. e. in 2. We have thus shown that
APNU = PNA’LL7

9)

a. e. in . Combining , @ and the fact that Py is orthonormal projection L? — L2, we obtain

that
[Pnullyy < Cr(IPNully + |APNully) = Cr(||[Prnully + [|PnAull,)
< Cr([Jully + [Aully) < Crllully, -

Ex. 4.3. By Lemma 2.3 we know that (for this part of the lemma the boundedness of first derivative
suffices) 1 (u) € W2 for u € W2 and that Vip(u) = ¢’ (u)Vu. Let u, — u in W12, The goal is to prove that

(up) — ¥P(u) in WH2. Obviously 9 (u,) — 1 (u) in L? since
[ tua)) = 0t do < |, [ funle) = u(@) dz >0,
Q Q

as ||¢'|| . < oo and u, — u v L?. It remains to show that
Vip(un) = Vi (u)
in L2. In first step we will prove with an additional assumption:
a. e. in . Then it holds that
19" (un) Vun — 9" (u) Vully < (19" (un) Vin — 9" (un) Vully + 19 (un) Vu — 9 (w) Va5 ,

since
9" (un) Vi = 9" (un) Vully < 19 [Vn = Vully = 0,

(10)
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< 0o and Vu,, — Vu in L? and moreover we have that

4" () Vi — ¢ (u) V]| = /Q ¥ (un () Vu(e) — ' (u(z)) Vu(@)]* dz — 0,

because [ (uy, (2))Vu(z) — ¢/ (u(z))Vu(z)]* = 0 a. e. in Q and

¥ (un () Vu(e) — ¢/ (u(2))Vu(@)]® < 4]10'|1%, |Vu(@)]® € L,

so we can use Lebesgue dominated convergence theorem. We have thus proved that ||¢' (uy,)Vu, — ¢’ (u)Vull, —
0, which concludes the proof of za with an additional assumption

It remains to prove the general case. Assusme for contradiction that Vi (u,) /4 Vi (u) in L. Therefore there
exists a chosen subsequence {v,} C {u,} such that

10 (0) Vo — ' () Vully = ¢ € (0, [¢/]] o (2 [Vl + 1))

But since v, — u in L? and L? — L! (we have |Q| < o0), we can choose a subsequence {z,} C {v,} such that
zn(z) — u(z) a. e. in Q. Due to the first step it holds that |V (z,) — V(u)|l, — 0, which contradicts our
assumptions as ||V¢(z,) — Vip(u)||, = ¢ # 0. Therefore holds, which remained to prove.

Ex.

(1)
(2)

5.1. S (t) is a cp-semigroup in X. The following statements are equivalent:
S(t) =€, kde A € L(X)
S(h)—=IvL(X),h—0t.

Remark: (2) ... uniform continuity: [|S(h) = I|[zx) = 0 = supj,j<1 [|S(h)z —z[ = 0, h — 0% (= 3.
S(h)x — x, h— 0", Vr € X fixed).

1) = (2

Ex.

let S(t)=ed =31 H:‘!‘n ... absolutely convergent in £ (X) for Vt € C, the proof is similar as in the
case of A € C"*" since £ (X) is complete and||AB|| ) < [| Al z(x) [ Bll £ (x)- Moreover 48 (t) = AS(t),
as a mapping t € C — S (t) € L(X) (differentiation temr by term), in particular, + (S (z) — z) — Auz,
Vo € X, i. e., we have shown that if (1217 D (A)) is a generator of S (t) = !4 then D (A) =X, Az = Az
for Vo € X.

let S (t) be a semigroup and S (h) — I, h — 07 in £ (X). Denote the generator of S (t) by (A4, D (A)).
We will show that D(A) = X, A € L(X) = the proof is done, define S(t) = e!4 in the sense
of (1). We know that A generates S(t), due to L. 4.2 we have: S(t) and S(t) are generated by
the same operator = S () S(t), i. e, S(t) = et4. Trick: S(s) — I, s —» 0% =

1 fo s)ds — I, 7 — 0t = B, =1 — (I — B,) is an invertible operator: (I — Q)™ " = S Q"
%/_/ ~——

B, small
if |Qllzx) < 1) MB =+ (SML[f5S(s)ds— [, S ) move S( ) inside the integral in the
first term, combine to S (h + s) and obtain % (f:+h5 Yds — ) h— 0" : 1(S(r)-1)

since 1 (S(h) —I)B, — L(S(r)—1I) in £(X), h — 0F, %(S(h)—[) L(S(h) - NB.B
L) -B' = A€ /.Z(X) Therefore + (S (h)x —x) — Az for Vo € X fixed, i. e, Ais a

bounded generator of S (t).

5.2. Heat equation (see Chap. 2) $u— Au=0,t >0, u(0) = up. Th. 2.3 = Vug € L*Flu(t) €

L? (I, W01’2> nc (I,LQ), where I = [0,T] is arbitrary. Denote S () ug = u (t) (operator which maps the initial
condition to solution at the time ).
We claim: S (¢) is a co-semigroup in L2

S(t+s)=S5()S(s)... concatenation of solutions (the solution at time ¢ is considered to be initial
condition for solution at time s).

S(t) € L(X) ... linearity of equation,

1S ()l g(r2y < 1, ¥t = 0. (Use difference of two solutions w = u—v as a test function = 14w (t)||§+
IVelz =0 = Jlw®)]; < |w(©)]3)

Third property: ¢ — S () ug = u (t) is continuous (follows from u (t) € C (I; L?)).
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? generator (A, D (A)): auxiliary idea: let ug € W,'? (better initial condition) Th. 2.5 = u () € L™ (I, W01’2> =
the mapping ¢ — w (t) is continuous into the weak topology Wol’2 (see ex. 4.1). On the other hand: by the weak
formulation we know: (u(t),v) = (ug,v) — fot Vu(s) - Vods ¥t > 0, v € W2, Moreover: (m v) =

1 fo Vu (s) Vvds. Take the limit ¢ — 0%: M — —Aug, where A is the weak laplacian from chapter 2:

H_/

continuous integrand

</~1u7v> = [ Vu-Voudz. I e, A in some form is the generator. Later we will show that D (A) = Wol’2 NW?22,
A:ur Au e L2

Ex. 5.3.

(1) Since (Au)'(t) exists, Au(t + h) is well-defined for small h, therefore there exists 6 > 0 such that
u(t+h) € D(A) for 0 < |h| < ¢ . For these h we thus have

M € D(A) — (1), h— 0.

By linearity of A we have

A(u(Hh)U(t))_ ut+h) = Ault) g, B o,

h h
By closedness of operator A it follows that u/(t) € D(A) and (Au)'(t) = A(u/(¢)).
(2) Denote [ul pay = llullx + [[Aulx for u € D(A). As A is closed, the space (D( ), ”'HD(A)) is Banach

so we can use the theory of Bochner integral. Since u(t) € L'(I; D(A)), there exist simple functions
un(t) : I — D(A) such that u,(t) — u(t) in D(A) for a. e. t € I. A fortiori we have u, (t) — u(t)

in X for a. e. t € I, since clearly (D(A), H-||D(A)) — (X, |||l x). Therefore u(t) : I — X is strongly
measurable. Moreover [, [|u(t)|ly dt < [; [u(®)[|pay dt < oo and so u(t) € LY(I; X) due to Bochner
theorem. By linearity of A the functions Au,(t) : I — X are simple and moreover

[Aun(t) — Au@®)[ x < [[un(t) —u(®)llpay — 0

for a. e. t € I. Therefore Au(t) : I — X is strongly measurable. Clearly [, ||Au(t)|y dt <
Ji ) pay dt < oo, thus Au(t) € LN(I; X).

We know that
/un(t)dt € D(A) — /u t)dt
I I

and by linearity of A and the fact that w,(t) are simple functions we have

A /1 (£ dt = / Au (£) dt —> /I Aut) dt

By closedness of A it therefore holds that [, u(t) dt € D(A)and A [, u(t) dt = [, Au(t) dt which concludes
the proof.

Ex. 5.4.
(1) S(t) form a cp-semigroup:
(1) S(t)S(s)=S(t+s),S(0)=1... clear
(ii) continuity: we know f (z +h) — f(x), h — 07 in L?(R). By Ex. 1.4 we know: S (h) f — f,
h — 07, moreover ||S (h)|| <1 independently of Vh.
(2) Fix ¢t > 0. Obviously for arbitrary f € By it holds that

1f(@+t) = f@)lly < If @+l + 1l =2l < 2.
Thus
1S(8) =1l zx) < 2. (11)
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To saturate the operator norm it is easily seen that we are looking for functions from unit ball for which
f(z +1t) is “almost equal” to — f(x). Define

1

fi(z) = 7or (X(0.0(®) = X(—t.0)(x)) -
Then clearly
[ fill, =1
and
filx +t) = —fi(z), for x € (—t,0).
Hence
t 1+4+1
[fi(@+1) = fr(@)]l, = \F\// 1dl’+ 4dx+/0 ldz:\/T
Define
1
fa(x) = Ti (X(=t.00u(t.20) () = X(—2t,—t)u(0,6) (T)) -
Clearly
||f2H2 =1
and
folx +1t) = —fo(x), for x € (—2t,1).
Thus

—2t 2t
1+3-4+1
Pz 1) — folo \// 1dx—|— 4dx+/ ldo = )220
| f2( ) — fa(@)]ly = \ﬁ » ) 1

1
ﬁﬂx)::;Eﬁi(XG%H—lﬁr%n—2ﬂﬂK—O%ﬂﬁr%n—ﬂﬂumudn—Utnﬂ(x)

In general, define

- X(—nt,—(n—l)t)U(—(n—2)t,—(n—3)t)U--»U((n—2)t,(n—1)t)(I))'
Then obviously
[fullo =1 (12)
and
falx +1t) = —fn(z), pro z € (—nt, (n — 1)t),
SO

1 —nt (n—1)t nt
n(x+1t)— fnlx = — / ldgc—i—/ 4dm—|—/ ldz
[fn(z+1) = fu(z)l, i\ )i . _—
14+4(2n—1 1 dn —1
:¢+(" H’:¢”—ﬁﬂ:2 (13)
n

2n

Therefore by and we see that

1S(t) = Il zx) = 2,
which togehter with gives the desired result:

1S(8) =1l g x) = 2-
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(3) Consider the regularization kernels

Yo(t) = X(=1,0)(t),
Un(t) = %wo (2) . h>o0.

We know that sptyy, C [—h,0], and for f € L? it holds that (f xvp)(z) — f(x) in L2. Let f € W12
We can assume that f is absolutely continuous and we will obtain, denoting g = % f € L2, the following:

S(Wf(x) = fl@)  fla+h) —fx) [T gls)ds

h h h
S —s)ds [, (@ — s)x(—no)(s)ds
o h o h
_ gl —oxcao(R)ds  [2, 9w —s)do(3) ds
B h h
0
— [ = sun(s)ds = [ oo~ syuns)ds
—h R

= (g vn)(e) — 9(e) = 7 (@)

in L2 for h — 0., as was to be shown.
(4) Choose an arbitrary, fixed test function ¢ € D(R). We have

/Rfl‘-&-hh— ) z)de = — [/ferh )dx—/f(x)w(x)dx}
[/f(ff) x—h dx—/f }
/f ple —h) = ¢l@) 4

_,_/
—4o=¢ by (3)

The proof is completed since the test function ¢ was chosen arbitrarily and therefore-% L f(x) = g(x) € L?
and f € WhH2,

Ex. 6.1.
(1) Let D(A) = ¢2 and let A € L(¢?). Therefore there exists C > 0 such that
[Aully < Cllull,

for every u € ¢2. In particular by the choice u = e; we obtain

o0
> N = | Aej||, < ey, =C
k=1

|Aj] =

and thus the sequence {)\;} is bounded.
On the other hand, let {\;} be bounded. Then clearly for every u € £ we have

[Aully =

YAkt < Al | D = Al Nully < oo
k=1 k=1

Hence D(A) = ¢? and A € L(£?), the linearity is evident.
(2) Let u™ € D(A) — u and Au™ — v in ¢2. We will choose a rapidly convergent subsequence which
converges pointwise. 1. e., we will choose {w"} C {u™} such that

wi — uj, N — 00 (14)
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and
(Aw"); = \jw} —vj, n— o0 (15)

for every j € N. By we thus have that
Ajwi — Ajuj, n — 00,
which along with gives the result
/\juj = Uy,
for every j € N, therefore u € D(A) and Au = v. Therefore the operator A is closed.

The operator is moreover densely defined as it is sufficient to consider finitely supported sequences,
which are dense in ¢ for p € [1,00) (in particular for p = 2). Finitely supported sequences are clearly
contained in the definition domain of A and since they are dense in ¢2, a fortiori D(A) is dense in ¢2.
Moreover, let A\; < w and A > w. The goal is to prove that A € p(4), i. e., the operator AT — A :
D(A) — 2 is bijective. Let AMu — Au = Av — Av for u,v € D(A). Therefore for every j € N we have
that

)\Uj - /\juj = /\Uj — )\jvj,
which means that u; = v; as A — A; # 0. Hence u = v, i. e., the operator Al — A is injective.

Let v € £2 be given. We are looking for u € D(A) such that Au — Au = v. The goal is to prove that

for every j € N it holds that
)\’U,j — /\juj = Uj,
thus the only candidate for the argument of A is

UZ{AWM}' (16)

It remains to show that this « is in the definition domain of A. Clearly u € £2, since

g2
Y Gy S Z = G Wl <o

]:1 :

Moreover ) s

o0 A 20)2 w2 o0

i7d 2

207 Sm“{w—w}z% <°O

7j=1 J=1
where the inequality (/\_Aﬁ < max{l7 ﬁ} can be easily obtained by analysis of the function
flz) = ﬁ on the interval (—oco,w]. Therfore u € D(A), hence the operatorA\I — A is onto.

From this it may be concluded that A € p(A4) and by we know that R(\, A)v = {/\fj/\j} for

A >wand v e £2.
Since the convergence in 2 in particular means that we are able to choose a pointwise convergent
subsequence, it is easy to guess a candidate for S (t):

S(tyu = {e*'u;} (17)

for u € £2 and t € [0,00). Operator defined in this way is clearly linear and bounded on ¢2, since

o0 o0
e2>\jtu2- S e?wt UQ-,

: : J : : J

Jj=1 Jj=1

therefore S(t) € L(£?). Moreover, it is evident that S(0) = I and S(t + s) = S(¢)S(s) for s,t > 0. Fix
u € /2. We want to show that

Sty —u, t—04. (18)

Clearly

e)‘jtuj — Uj, t— 0+ (19)

for every j € N and for 0 < ¢t < 1 we have
(€Mt — uy)? < 2(e*Vhu? +u?) < 2(e*hu? + u?) < 2(X@lu? + ud), (20)
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where {2 2|“|u2 + u } € (', hence by 1.' and Lebesgue dominated convergence theorem (using
the arihmetic measure on N) the equatlon 1.D holds. Thus S(t) is a ¢o—semigroup.

It suffices to show that (A, D(A)) is a generator of this semigroup. Let u € D(A). Clearly

Njh,, o .
e U

h — )\j’LLj, h — O+ (21)
for every j € N. Since
el — 1 ewh 1
<
h = h
there exists ho > 0 (independent on j) such that for everry h € (0, ho) it holds that

— w, h =04,

)\jh _ 1
h
Using the inequality e” > 1 4+ x we have

< 2|w].

1—eth  —)\h
< <N

Combining these steps together we obtain that for every j € N and every h € (0, hp) it holds that

oAb

-1
| e <l + . (22)

Using we get that for h € (0, hg) the following holds
Ajh 1

2 oAb 112
<2||——
<2 (|

where {5)\2u2 + 4w2u2} € (! as u € D(A), which together with and Lebesgue dominated conver-
gence theorem yields

Uj — Ajuj uj + A?uf) <2(2 (W + X)) uf + M),

S(h)u —u

N — Au, h—04.

It remains to show that D(A4) = {u € (% lim % € 32}.
h‘)0+

We already know that D(A) C {u € /2, lim % € 62}. To prove the opposite inclusion, consider

h—04

ue{veéz, lim S(h):_veﬁ}

h—04
and let lim S(Mu—u w
h*)0+ n

converging subsequence, i. e., choose a subsequence {7,,} C {h,} such that for every j € N we have

= v € (2. In particular, for h,, = % it holds that — v. Choose pointwise

e Ny —
— v, N — 00,
Tn

but
e Ny — u;
% — Ajuj, n— 00,
hence v; = A\ju;. L e., {\ju;} = v € (2, therefore u € D(A).
We have thus proven (two cg-semigroups generated by the same operator are identic, see L. 4.2)
that S(t) defined by is clearly a co-semigroup generated by the operator (A, D(A)).
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Ex. 6.2. Let S(t) be a co-semigroup generated by (A, D (A)) such that [|S(¢)]zx) < Me“*. Denote
~@tS (t). Then:

=e
i S < >
(1) S (t) is a semigroup, ’ S(t)Hﬁ(X) <MVt>0
)

(2) It (A D(A)) generates g(t),thenD(A):D(Z),;l:Awa
3) p () p(A)fw,R<)\,/~1>:R()\er,A)V)\ep(ﬁ).

Proof: 1., 3. ... easy (expand)
2. it suffices to show: = € D (A) :>QJ€D(/~1) and Az = Az — wa:
LIS(ha—x|=L[e“rSh)r—a+S(h)a] =<2=LSh)a+L[S(h)z—=x
FSe—a| =4 [ers (h) (W)a] = =5=LS(W)a+ L[S (h)w —a]

——w —x — Az

Ex. 6.3. Heat semigroup S (t) : L2 — L? ug +— u(t) ... weak solution (in the sense of chap. 2) of the heat

equation (HE) Lu— Au=0, uls—o =0, uloq =0, z € Q in the space L2 (1, Wol’Q) N C (I,L?). What is the
generator of S (t)?

Recall: we know: 3)\; > 0, w; € VVOL2 ... eigenfunctions of laplacian, i. e., —Aw; = Ajw; weakly in
(Vw;, Vo) = \j (w;,v) Yo € W2 Moreover {w;} form a complete ON basis of L?, i. e., Vu € L? can be

expressed as u = ZJ 1 Wjw;, where u; = (u,w;); Parseval: ||uHL2 =2 us.
Statement 6.3.2:
(a) up € Wy? = > Aju? < oo, in particular, Do AU = HV’LLOH;
(b) up € Wy NW?22 = > A3u? < oo, in particular, Do AU = ||Au0H§
Proof of (b):
“e="let uy € Wo Z)\i ? < o0, where u; = (ug,w;) = uo € W22, Denote uy = Pnuy =
Z;V:1 ujwj: we know: uy — ug v L?. Moreover: —Auy = Zjvzl uj (—Auj) = Zjvzl Ajujw;
—_———

denote by zy
2 2
weakly. We know: [|[—Auy||; = [lzn]l5 = HZ] 1)\§u]ij Zj 1)\? w? Z] 1)\31@ =c¢ < 0.
We will use elliptic regularity: [unllyo < Crllznll, < C’R\f, where Cr depends only on €.
Therefore {uy} C W22 is bounded = IJsubsequence iy — u € W01’2, therefore iy — u € L?

“ ” let ug € Wy> N W22 == doq Aju? < oo and is equal to | Aug )3 = Z?’:l % (weak derivative).

Recall: GaussCreen theorem: (Vu, Vw) = (—Au, w), Yu € W2, w € Wy»°.
Proof: 0= [, w(Vu-n)dS = [, div(wVu) dz = [, Vw- Vudx+fﬂ wAudz, ... u, w is smooth
\—,_/

Vw-Vut+wAu
and follow by density in given spaces.
Apply to u = ug € W% w = w; € I/Vol’2 and obtain: (Vug, Vw,) = (—Aug,w;) = z;. LS =
A; (ug, w;) since —Aw; = A\jw; weakly, ug € W,'? “test function”. Parseval: Y2 = |- A3, at the
same time we know that Y- 22 = Y7 Au3.

Statement 6.3.1: ug € L? are given, up = 2o ujwg = 3, e ity w; is a weak solution of

Corollary: the generator of heat semigroup is A with the definition domain WO1 2O W22,

n 92
i=1 922

Proof of corollary: the statement implies that (S (t) 7L2) > (g(t) ,62), where g(t) is a semi-
group generated by the operator A : {u;} —= {Aju;}, we know (see ex. 6.1 and ex. 6.3): D (ﬁ) =
{Z A2u? < oo} — D(A) =W 2nw?22.
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Proof of statement 6.3.1: we will show (i) u (t) € L? (I, Wom), (i1) & (u(t),v)+ (Vu(t), Vw) =
weakly in [0, T for Yw € W,'? fixed.

6.3. 2 a)
(4) IVu(t )H2 Z Aj 6_2)‘3%2 since u (t) = Z e~ Nt Ujwj.
9N\ oy, 1
[) [Vu (ﬂ”g dt = /O Z)\je QAJtu?dt = Z/O Aje QAJtu?dt < 3 ||Uo||§
J A ,

— . T
e 2>\]t u2
2 j
0

Remark: from chapter 2 we know: 1 [u (T)||§ + fOT IVu (t)||§ dt =1 ||u0||§

(i) due to the density it suffices to consider w = wy, where k = 1,2,... is arbitrary fixed. Then
(u(t),w) = (Z e~ ujwj,wk) QN e Mtuy. (Vu(t), Vw) = (VZ e ujwj,Vwk) =
Zj e 2ity; (Vw;, Vwy,) since the sum converges also in VVO coo= e Mty
—_——

= A,k =1;0 otherwise ... OG v I/Vol’2

Ex. 6.4.

(1) Let € > 0 be given and (tg, o) € [0,00) x X. Since the mapping t € [0,00) — S(t)zq is continuous,
there exists § > 0 such that

€
15()zo = S(to)zollx = 5 (23)
for every t € (tg — 0,t9 + ) N [0,00). Moreover we know that there exists constats M > 1 and w > 0
such that
IS®)z = S(t)zoll x < Me*! ||z — ol (24)

for every t > 0. For (t,z) € ((to — d,to + 6) N [0,00)) x B (zo, m) we obtain by and
the following:

15()x = S(to)zoll x < 1S(t)z = S(t)zollx + [15(H)xo — S(to)xoll x
< Me** |o — aolly + 5 < Moo+ flo — o]l + 5
<5tzee

thus the mapping (¢,2) € [0,00) x X — S(t)z is continuous.

(2) Fix T'> 0 and xz € X. Fix an arbitrary ¢y, € [0,T]. We know that
S(to + h)x — S(to)z, h— 0,
and by the first part we know that the mapping (¢,z) € [0,00) x X — S(¢)z is continuous, hence
S(T — (to 4+ h))(S(to + h)x) — S(T — to)S(to)z, h — 0,

and the mapping y(t) is continuous in ¢y, which was chosen arbitrarily (in the case of to =0 or to =T
it suffices to consider limit from the right or from the left, respectively).

(3) Denote by (A, D(A)) the common generator of S(t) and S(t). Let € D(A) and ¢ € (0,T). The goal is
to prove that y'(t) = 0. At first, compute the derivative from the right:

S(t+ h)x — S(t)z — 3 (*ngf) — S(t)Az, h— 04,

h h

as % — Az for h — 04 (z € D(A)) and S(t) € £(X). Using the first part:
S(T — (t+ h))S(t + h)x — S(T — (t + h))S(t)x
h

= S(T — (t + h)) (S(t * h)z - SW) — S(T — )S(t)Az, h — 0. (25)
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By properties of generator (x € D(A)) we know that S(t)z € D(A), so

S(t)x — S(h)S(t)x
h

and once more by using the continuity from the first part we get

— —AS(t)x, h— 04,

S(T — (t+h)S(t)x — S(T — )S(t)x
h

— S(T — (¢ + ) (g(t)‘”” - i(h)g(t)x> s _S(T—)AS(D)z, b — 0. (26)

By combining and we thus obtain
y(t+h) —y(t)

h
_S(T = (t+h)S(t + h)x — S(T — (t + h)S(t)x
B h

S(T — (t+ h))S(t)x — S(T — t)S(t)z

+ h

— S(T — t)S(t) Az — S(T — t)AS(t)z =0, h — 0L,

since S(t)Az = AS(t)z from the properties of generator it follows that y/(t,) = 0.
For the derivative from the left let us write

y(t —h) —y(t)
—h
_S(T —(t—h)S(t — h)x — S(T — (t — h))S(t)x
B —h
N S(T — (t — h))S(t)x — S(T — t)S(t)x

and then it is sufficient to apply similar reasoning.

(4) Fix an arbitrary T > 0 and « € D(A). By the second part we know that the mapping y(t) is continuous
on [0,7]. By the third part we know that y/(t) = 0 for ¢ € (0,T). Therefore y(t) is constant on [0, T,
which in particular means that

S(T)a = y(T) = y(0) = S(T)z.
As T > 0 and = € D(A) were chosen arbitrarily, we have derived that
S(t)e = S(t)x
for every t > 0 (for t = 0 it holds trivially ) and « € D(A).~ Since the generator of c¢p-semigroup is
densely defined, it follows by the continuity of operators S(t), S(t) (¢ fixed), that

S(t)z = S(t)z
for x € X, which concludes the proof.
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Properties of weak convergence

Let w, — u in X Then the following statements hold:

(1) Lup, = Luin Y if L: X — Y is linear continuous

(2) up ~uinYif X =Y
(a) up 2> uinY,if X 5= Y

Proof:

(1) goal: (g, Lun)y. y — (g, Lu)y. y for Vg € Y« fixed. Observe: mapping f: u — (g, Lu)y. y € X*, X —

R (is usually denoted L*g: L*: Y™* — X*).
pr

Conclusion follows as wu, — u, hence (f, u,) = (f,u).

(2) special case of 1: X — Y means: Id: X — Y is continuous.

(3) up, = uin X = |luy||y is bounded (Banach-Steinhaus), hence X << Y implies 3 subsequence

Uy —> U in Y, on the other hand #, — w in Y, hence u = 4, because the weak limit is unique
——

— Gp—u il Y

(Hahn-Banach).

We need more: u,, — u without taking subsequences. By contradiction:

U, - u, hence Je > 0Jsubsequence @, s. t. Hﬁn — uHY > £Vn, we can assume , —>) ainY, clearly

Hﬁ — uHY > ¢, but on the other hand @, — uinY ... contradiction.
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Time derivative of integral over time-dependent domain

Let e (t,x) be smooth.

d (1) (2)
—/ e(t,x)dz :/ Oe (t,x) dz —/ e(t,x) dS,
dt B(xzg,7—t) B(xg,7—t) OB (xo,7—t)

Proof: WLOG zy = 0, TRICK: substitution x = (7 —t)y, dov = (t —t)"dy, y € B(0,1), where n is
dimension.

/ e(t,z)dx suet. / e(t,(t—t)y) - (r—t)"dx
B(0,r—t) B(0,1)

LHS = Oe(t,(T—t)y)-(1—)" +e(t,(t—t)y) -71(7'—15)”_1 +Vee(t,(t—t)y)- (1 —t)"ydy
B(0,1)
T n
subst. y = x = / Oe (t,x) +Vye(t,z)  — + e(t,z)dz
B(0,7—t) N=——~— T—1 T—1

1
The two remaining terms result in (2) since

/ e(t,x) dS, = / [e (t,x) ’ ] -vdS,
OB(zo,m—t) OB(x0,7—1) T—t
= / div, [e (t,x) i ]dw
B(zo,7—x) T—1

~——
v ... outer normal

(Gauss) = / e(t,z) v dS,
OB (zo,T—t)

~—
1

7



Regularity of the heat equation

Consider the following problem:
—u—Au = F(t)
u(0) = 1w
Th. 2.3: ug (t) € L2, F (t) € L2 (I, W~12) = Jw. s. u(t) € L (I, [2)NL2 (I,Wol’2>, 4y (t) e L2 (I, W12)
Th. 2.5: ug () € W2, F(t) € L2 (I,1?) = u(t) € L® (I,Wol’2> NL2 (1, W22), Lo (t) € L2 (I, L?).

Th. R: let ug (t) € W2mtL2, i—iF (t) € L2 (I,W?m=2%2) 'k = 0,...,m and let the compatibility conditions
(Co) ... (Cyn) hold:

(Co) g0 = wugeWy?
(C1) g1 = F(0)+AgyeW,?
dm—l 19
(Cm) gm = S F(0)+ Agms €Wy

then jT’;u (t) € L2 (I,W2m+2=2k2) | = 0,... ,m+ 1.
Remarks concerning the proof of Theorem R.
e m = 0: assumptions: ug € W2, F(t) € L? (I,L?*), (Co): ug € W, 2. Conlusion: for k = 0: u(t) €

L2 (I,W22), k=1:4u(t) € L2 [ W2 |, i. e., Th. 2.5, already proven.
—L2

e m = 1: differentiate the equation with respect to time and use Th. 2.5 for the derivative. Denote
v = %u:
Lot Caw = Lrg
dt2  dt S dt
d d
—v—Av = —F(t
at’ al®
d th ti
v(0) = —u(0) ¢ LAY 1 (0) + A (0)

assumptions: (k=1) $F () € L? (I, WO»?), (C1): F(0) + Au(0) = v(0) € Wh?, due to Th. 2.5.

L2
k

we have: v (t) € L2 (I,W??), Ly (t) € L2 (I,L?). We want: Lru € L2 (I, W4 2%2) for k =

0,1,

For k = 1,2 it is already done due to Th. 2.5. Remains to show for k = 0: u(t) € LQ( 7W472)
. obtain from the equation for u (t) and th regularity of laplacian: —Au (t) = F (t) — Lu(t). L e
—_—————

Au(t) € W272regularity:of> laplacian

)

bl

ew?:2

u(t) € W2 and Hu(t)||4’2 <c (HF(t) - %“ (t)H2,2)'

e for m € N general follow by induction, the induction step is always Th. 2.5. Rigorous proof: approxi-

mation (e. g., Galerkin).
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Remark. Why do we need the compatibility conditions? We can not prescribe the initial and boundary
conditions completely arbitrarily. The compatibility conditions mean correspondence of boundary and initial
conditions for ¢ = 0, x € 02, where these two conditions overlap.

Other equations:

(1) Linear elliptic operator A (u) = —div (a (z) Vu) + b () Vu + c(z) w ... the same techniques work for
reasonable (e. g. smooth) a (z),b(x),c(z) ... See Evans: PDE.
(2) Nonlinear operator: more difficult to prove, but similar technique also works.
(3) Other terms in equation: dyu — Au+ f (u) = h(t) rewrite as: dyu — Au = h (t) — f (u), here additional
—_———

—F(t)
regularity of f(-) is needed.
Niemytskii operators: u(x) — f(u(x)) :LP(Q) — LP(Q), f(2) : R — R continuous, typically |f(z)| <
c(1+|2"), p>0.
e measurability f (u(z)) ... easy to show by Lebesgue theory,
e integrability: f (u(z)): u(z) € L? (Q) = f(u(x)) € L1(Q) for Vg s. t. pg < p,
proof: [, | f (u)|"dz < [, (c (1 + [u”))?dz < ¢1 [, 1+ |u|?dz < oo (estimate (a + b)? < ¢, (a? + b?) for
Ya,b,q > 0),
e actually we even have that the mapping u — f (u) is continuous LP — L7 as long as the assumptions
above hold. (See web pages http://www.karlin.mff.cuni.cz/~prazak/vyuka/Pdr2/|.)


http://www.karlin.mff.cuni.cz/~prazak/vyuka/Pdr2/
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