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0. Absolutely continuous functions

Here and below I, J are intervals (of arbitrary type).

Definition 1. Function x(t) : I → Rn is called absolutely continuous, denoted by x(t) ∈
AC(I), if for any ε > 0 there exists δ > 0 such that for arbitrary disjoint intervals (ai, bi) ⊂ I
it holds: ∑

i

|ai − bi| < δ =⇒
∑
i

|x(ai)− x(bi)| < ε

Function x(t) : I → Rn is called locally absolutely continuous, denoted by x(t) ∈ ACloc(I), if
x(t) ∈ AC(J) for any J ⊂ I compact.

Proposition 1. Let x(t) ∈ AC(I). Then x′(t) exists and is finite almost everywhere (a.e.)
in I. Moreover, x′(t) ∈ L1(I) and x(t2)− x(t1) =

∫ t2
t1

x′(s) ds for all t1, t2 ∈ I.

Proposition 2. Let h(t) ∈ L1(I) and t0 ∈ I is fixed. Then the function x(t) :=
∫ t
t0
h(s) ds

belongs to AC(I). Moreover, x′(t) = h(t) for a.e. t ∈ I.

1. Carathéodory solutions

Here and below Ω ⊂ Rn+1 is an open set of points (t, x) ∈ R × Rn; U = U(x0, δ) is an open
ball in Rn, Q(t0, x0; δ,∆) := U(x0, δ)× (t0 − δ, t0 + δ) is a cylinder in Rn+1.
For a given function x(t) : I → Rn we denote the graphx = {(t, x(t)); t ∈ I} ⊂ Rn+1.

Definition 2. Function f = f(t, x) : Ω → Rn is said to satisfy Carathéodory conditions,
denoted by f ∈ CAR(Ω), if for any (t0, x0) ∈ Ω there exists Q(t0, x0; δ,∆) ⊂ Ω and a function
m(t) ∈ L1(U(t0, δ)) such that:

(i) for any x ∈ U(x0,∆) fixed is the function f(·, x) measurable in U(t0, δ)

(ii) for almost every t ∈ U(t0, δ) fixed is the function f(t, ·) continuous in U(x0,∆)

(iii) |f(t, x)| ≤ m(t) for almost every t for all x in Q(t0, x0; δ,∆)

Definition 3. Let f ∈ CAR(Ω). The function x(t) : I → Rn is called a solution to

x′ = f(t, x) (1)

in the sense of Carathéodory (or AC solution), if graphx ⊂ Ω, x(t) ∈ ACloc(I) and x′(t) =
f(t, x(t)) for almost every t ∈ I.

Lemma 3. Let f ∈ CAR(Ω), and let x(t) : I → Rn be a continuous function such that
graphx ⊂ Ω. The the function t 7→ f(t, x(t)) belongs to L1

loc(I).

Proof. WLOG we assume that graphx ⊂ Q(t0, x0; δ,∆), the cylinder from Definition 2. Hence
m(t) is an integrable majorant. Let us prove that x(t) is measurable. By uniform continuity,
there exist piecewise continuous xn(t) such that xn(t) → x(t). Now xn(t) are measurable and
converge to x(t) a.e. by Carathéodory conditions (i), (ii).
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Lemma 4. Let f ∈ CAR(Ω), and let x(t) : I → Rn be a continuous function such that
graphx ⊂ Ω. Then x(t) is a solution to (1) in the sense of Carathéodory, if and only if

x(t2)− x(t1) =

∫ t2

t1

f(s, x(s)) ds (2)

for all t1, t2 ∈ I.

Proof. In view of Lemma 3, the right-hand side of (2) is well defined for all t1, t2 ∈ I. Both
implications then readily follow from Propositions 1 and 2.

Corollary 5. Note that the so-called descriptive definition of Lebesgue integral is a special
case: if h(t) ∈ L1(a, b), then

∫ b
a h(t) dt = H(b)−H(a), where H(t) ∈ AC([a, b]) is (arbitrary)

function for which H ′(t) = h(t) a.e.

Theorem 6 (Peano). Let f ∈ CAR(Ω) and (t0, x0) ∈ Ω are given. Then there exists x(t) a
solution to (1), defined on some I = U(t0, δ), such that x(t0) = x0.

Proof. Assume Q(t0, x0; δ,∆) and m(t) are as in Definition 2. Denote

X = {x(t) ∈ C([t0 − δ, t0 + δ],Rn); x(t0) = x0, graphx ⊂ Q(t0, x0; δ,∆)}

Cleary X is a non-empty, convex and closed subset of the Banach space C([t0− δ, t0+ δ],Rn).
Let us define operator T : x 7→ x̂ as

x̂(t) = x0 +

∫ t

t0

f(s, x(s)) ds t ∈ [t0 − δ, t0 + δ] (3)

We need to verify that T (X) ⊂ X. The only non-obvious part here is the condition concerning

the graph x̂. For this is enough to take δ > 0 small enough such that
∫ t0+δ
t0−δ m(t) dt ≤ ∆.

Functions from T (X) are equibounded; thanks to the estimate |x̂(t1) − x̂(t2)| ≤
∫ t2
t1

m(t) ds,
they are equicontinuous, as well. Hence by Arzelo-Ascoli’s theorem, T (X) is relatively compact
in X. Finally, Schauder’s theorem implies existence of a fixed-point. In view of Lemma 4, this
is the solution we look for.

2. Generalized Picard theorem

Theorem 7 (Generalized Banach contraction theorem.). Let Λ, X be metric spaces, where
X is complete and non-empty. Let Φ(λ, x) : Λ ×X → X is continuous w.r. to λ for each x
fixed. Let further (the key assumption of uniform contraction) there exists κ ∈ (0, 1) such that

∥Φ(λ, x)− Φ(λ, y)∥X ≤ κ∥x− y∥X for all λ ∈ Λ, x, y ∈ X. (4)

Then:

(i) for any λ ∈ Λ there is exactly one x(λ) ∈ X such that Φ(λ, x(λ)) = x(λ)

(ii) the mapping λ 7→ x(λ) is continuous Λ → X

(iii) ∥y − x(λ)∥X ≤ (1− κ)−1∥y − Φ(λ, y)∥X for all λ ∈ Λ, y ∈ X
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Proof. (i) Define functions xn : Λ → X as x0(λ) ≡ y, xn+1(λ) = Φ(λ, xn(λ)), where y ∈ X is
arbitrary, fixed. From (4) we obtain by induction

∥xn(λ)− xn−1(λ)∥X ≤ κn−1∥x1(λ)− x0(λ)∥X = κn−1∥Φ(λ, y)− y∥X , n ≥ 1

Hence, for any m > n

∥xm(λ)− xn(λ)∥X ≤
m∑

j=n+1

∥xj(λ)− xj−1(λ)∥X ≤
∞∑

j=n+1

κj−1∥Φ(λ, y)− y∥X

=
κn

1− κ
∥Φ(λ, y)− y∥X .

(5)

It follows that xn(λ) is a Cauchy sequence, for any λ fixed. Denote x(λ) its limit. It is easy to
see that x(λ) satisfies the equation in (i). Uniqueness is a consequence of (4). In particular,
we note that x(λ) is independent of the initial choice of y ∈ X in the sequence xn(λ).
(iii) Take n = 0 and m → ∞ in (5).
(ii) Use (iii) with y = x(λ0) and λ = λn. We obtain

∥x(λ0)− x(λn)∥X ≤ 1

1− κ
∥x(λ0)− Φ(λn, x(λ0))∥X =

1

1− κ
∥Φ(λ0, x(λ0))− Φ(λn, x(λ0))∥X .

Now λn → λ0 implies x(λn) → x(λ0) as Φ is continuous w.r. to the first argument.

Theorem 8 (Generalized Picard theorem). Let I ⊂ R be a bounded interval, let Π be a metric
space. Assume that f = f(t, x, p) : I × Rn ×Π → Rn satisfies:

1. f(·, ·, p) ∈ CAR(I × Rn) for each p ∈ Π fixed

2. there exists m ∈ L1(I) such that |f(t, x, p) − f(t, y, p)| ≤ m(t)|x − y| for a.e. t ∈ I for
all x, y ∈ Rn, p ∈ Π

3. the mapping p 7→
∫ t
t0
f(s, x(s), p) ds is continuous from Π to C(I), for arbitrary fixed

t0 ∈ I and x ∈ C(I)

Then for any given x0 ∈ Rn, t0 ∈ I and p0 ∈ Π there exists a unique x ∈ AC(I), which solves
x′ = f(t, x, p0), x(t0) = x0 in the sense of Carathéodory. This solution depends continuously
on x0 and p0. More precisely: if x0n → x0 and p0n → p0, then xn ⇒ x in I, where xn and x
respectively are the solutions corresponding to x0n, p0n and x0, p0, respectively.

Proof. For the sake of simplicity, let I = [0, T ] and t0 = 0. We will apply Theorem 7 with
Λ = Rn ×Π, X = C([0, T ],Rn), where Φ is the mapping

(x0, p0, x(·)) 7→ x0 +

∫ t

0
f(s, x(s), p0) ds.

By the third assumption, Φ is continuous w.r. to (x0, p0) for any x(·) fixed. The key as-
sumption (uniform contraction) will be verified for a special (yet equivalent) norm ∥x∥X =
supt∈[0,T ] |x(t)|e−Lt, where L > 0 will be specified later. Set x̂ = Φ(x0, p0, x), ŷ = Φ(x0, p0, y).
Then

|x̂(t)− ŷ(t)| =
∣∣ ∫ t

0
f(s, x(s), p0)− f(s, y(s), p0) ds| ≤

∫ t

0
m(s)|x(s)− y(s)| ds

≤ ∥x− y∥X
∫ t

0
m(s)eLs ds for any t ∈ I .
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Hence ∥x̂− ŷ∥X ≤ κ∥x− y∥X , where

κ = sup
t∈I

∫ t

0
m(s)e−L(t−s) ds .

Let us write1 m(s) = m1(s)+m2(s), m1(s) = m(s)χ{m>M}(s), m2(s) = m(s)χ{m≤M}(s). We
can choose M > 0 large enough so that

∫
I m1 < 1/4. Then∫ t

0
m1(s)e

−L(t−s) ds ≤
∫
I
m1(s) ds <

1

4
.

On the other hand,∫ t

0
m2(s)e

−L(t−s) ds ≤ M

∫
I
e−L(t−s) ds < M

∫ ∞

0
e−Ls′ ds′ =

M

L
<

1

4
,

since we finally take L > 4M . Hence κ < 1/2, which finishes the proof.

3. Maximal solution

Definition 4. A solution x(t) : I → Rn of (1) will be called maximal in Ω, if there exists no
proper extension (i.e. defined on some strictly larger Î ⊃ I).
It is right-maximal or left-maximal, if it cannot be extended after the endpoint of I or before
the initial point of I, respectively. Clearly, it is maximal if and only if it is both left- and
right-maximal.

If f ∈ CAR(Ω) and Ω is open, then solution x(t) : (a, b) → Rn is not right-maximal, if
and only if (i) b < ∞, (ii) there exists limt→b− x(t) = x0 ∈ Rn and (iii) (b, x0) ∈ Ω. These
conditions are clearly necessary. Sufficiency follows from the local existence (Theorem 6) and
the fact that solutions can be glued together in a continuous manner (Lemma 4).
Note that a maximal solution is always defined on an open interval, as long as Ω ⊂ Rn+1 is
open.

Theorem 9. Each solution has at least one maximal extension.

Proof. Let (x, (a, b)) is a given solution. We construct a sequence of right extensions as follows.
Set (x0, (a, b0)) = (x, (a, b)). As (xn+1, (a, bn+1) we take any extension of (xn, (a, bn)) with
bn+1 > (bn + βn)/2, where βn is the supremum of all the right points of possible extensions.
In case that βn = +∞, we take bn+1 > bn + 1.
We claim that the limit solution (x, (a, β)), where β = limn bn = supn bn, is right-maximal.
Assume not: then β < +∞ and there is a non-trivial extension (x̃, (a, β + δ)). Observe that
for any n, this is also an extension to (xn, (a, bn)) and thus βn ≥ β+ δ. However, bn → β. For
n large enough, this contradicts the conditions for the choice of bn+1.

Remark. The problem of finding maximal solution is to choose some continuation in possibly
uncoutably many points of non-uniqueness. Usually, this is overcome by Zorn’s lemma, i.e. the
axiom of choice (AC). Previous proof is a bit more complicated, but it only uses a countable
version of AC.
If the solutions are unique, no choice has to be done at all, since all extensions are equal on
the common interval of definition.

1χA is characteristic function of the set A.
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Theorem 10 (On leaving the compact). Assume f ∈ CAR(Ω), Ω ⊂ Rn+1 is open, and (x, I)
is a maximal solution to (1) in Ω. Let K ⊂ Ω be a compact set such that (t0, x(t0)) ∈ K for
some t0 ∈ I. Then there exists t1 > t0 in I such that (t1, x(t1)) /∈ K. Similarly, there exists
t2 < t0 in I such that (t2, x(t2)) /∈ K.

Proof. Let I = (a, b). Assume that the graph of the restriction x̃ = x[t0,b) is contained in K.
The function x(t) is locally AC, hence x̃(t) is globally AC on [t0, b). Consequently, there is a
finite limit x0 = x̃(b−). Clearly (b, x0) ∈ Ω and according to the remark after Definition 4,
we can extend x̃ beyond the point b, which contradicts the right-maximality of (x, I).

4. Uniqueness

Lemma 11 (Gronwall). Assume u ∈ C(I), ρ ∈ L1(I) are nonnegative and t0 ∈ I, c ≥ 0 such
that

u(t) ≤ c+
∣∣ ∫ t

t0

ρ(s)u(s) ds
∣∣ for all t ∈ I. (6)

Then

u(t) ≤ c exp
(∣∣ ∫ t

t0

ρ(s) ds
∣∣) for all t ∈ I.

Proof. WLOG we only consider t ∈ I ∩ [t0,∞), which means that integrals are nonnegative
and we can omit the absolute values. Set Φ(t) equal to the right-hand side of (6). Then

Φ′(t) = ρ(t)u(t) ≤ ρ(t)Φ(t) for a.e. t

By a standard procedure (integrating factor, yet in the class of AC functions) we get Φ(t) ≤
Φ(0) exp(

∫ t
t0
ρ(s) ds), for all t ∈ I ∩ [t0,∞). Noting that Φ(0) = c and u(t) ≤ Φ(t) finishes the

proof.

Lemma 12. Assume v ∈ AC(I), ρ ∈ L1(I), ρ ≥ 0 satisfy∣∣v′(t)∣∣ ≤ ρ(t)|v(t)| for a.e. t ∈ I. (7)

Then

|v(t)| ≤ |v(t0)| exp
(∣∣ ∫ t

t0

ρ(s) ds
∣∣) for all t0, t ∈ I. (8)

Proof. Let us fix t0 ∈ I. Then (see Proposition 1)

|v(t)| ≤ |v(t0)|+ |v(t)− v(t0)| = |v(t0)|+
∣∣ ∫ t

t0

v′(s) ds
∣∣

≤ |v(t0)|+
∣∣ ∫ t

t0

ρ(s)|v(s)| ds
∣∣ for all t ∈ I.

We now apply Lemma 11 with u(t) = |v(t)|, c = |v(t0)|.

Definition 5. We say that the equation (1) has in Ω the property of local uniqueness, if for
any two solutions (x, I), (y, J) in Ω, satisfying x(t0) = y(t0) for some t0 ∈ I ∩ J , there exists
δ > 0 such that x = y on I ∩ J ∩ U(t0, δ).
The equation has the property of global uniqueness, if x(t0) = y(t0) for some t0 ∈ I ∩ J
implies x = y everywhere in I ∩ J .
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Obviously, global uniqueness implies local uniqueness; however, both notions are equivalent
by the following argument: the set R = {t ∈ I ∩J ; x(t) = y(t)} is both closed2 (by continuity
of solutions) and open2 (thanks to local uniqueness). Hence R ̸= ∅ implies R = I ∩ J as the
intersection of two intervals is a connected set.

Definition 6. Function f(t, x) : Ω → Rn is locally Lipschitz continuous with respect to x in
the generalized sense, provided that for any (t0, x0) ∈ Ω there exists a cylinder Q(t0, x0; δ,∆) ⊂
Ω and a function l(t) ∈ L1(U(t0, δ)) such that |f(t, x)− f(t, y)| ≤ l(t)|x− y| for almost all t,
for all x, y in Q(t0, x0; δ,∆).

Theorem 13. Let f ∈ CAR(Ω) be locally Lipschitz continuous with respect to x in the
generalized sense. Then the equation has the property of local (and hence global) uniqueness
in Ω.

Proof. Let (x, I), (y, J) be solutions in Ω, and let x(t0) = y(t0) =: x0 for some t0 ∈ I ∩J . Let
δ, ∆ and l(t) be as in Definition 6. WLOG δ > 0 is small so that after the possible restriction
to Î = I ∩ J ∩ U(t0, δ), the graphs of x and y stay in Q(t0, x0; δ,∆).
Set v(t) = x(t) − y(t). Then |v′(t)| ≤ l(t)|v(t)| for a.e. t ∈ Î. Recall that v(t0) = 0. By
Lemma 12, we thus obtain v(t) = 0 in Î.

Definition 7. Nondecreasing, continuous function ω : [0,∞) → [0,∞) will be called general-
ized modulus of continuity of the function f = f(t, x) with respect to x in Ω, provided that for
any (t0, x0) ∈ Ω there exists a cylinder Q(t0, x0; δ,∆) ⊂ Ω and a function k(t) ∈ L1(U(t0, δ))
such that |f(t, x)− f(t, y)| ≤ k(t)ω(|x− y|) for almost all t for all x, y v Q(t0, x0; δ,∆).

Theorem 14 (Osgood). Let the function f = f(t, x) has a generalized modulus of continuity
ω with respect to x such that ∫ η

0

du

ω(u)
= ∞ (9)

for any η > 0. Then the equation x′ = f(t, x) has the property of local uniqueness.

Proof. Let x, y be solutions on [t0, t0 + δ] such that x(t0) = y(t0) and x(t0 + δ) ̸= y(t0 + δ).
Set u(t) = |x(t) − y(t)|. This is an AC function and u′(t) ≤ |x′(t) − y′(t)| ≤ k(t)ω(u(t)) a.e.
For ε > 0 arbitrary we have

u(t0+δ)∫
0

dy

ω(y) + ε
=

t0+δ∫
t0

u′(t) dt

ω(u(t)) + ε
≤

t0+δ∫
t0

k(t) dt (10)

The first two integrals are equal, as they are increments of a C1 and AC functions G(y) =∫
dy/(ω(y) + ε) and G(u(t)) respectively, on corresponding intervals, cf. Corollary 5.

Consider now ε → 0+. Since u(t0 + δ) > 0, the left-hand side goes to +∞ thanks to (9) and
Levi’s theorem. But the right-hand side is a fixed finite number - a contradiction.

Remark. This is an obvious generalization of the classical uniqueness result, based on Lip-
schitz continuity of f(t, x) w.r. to x (just set l(t) = L and ω(u) = u). Interestingly, the
condition (9) is optimal, as the following shows.

2Relative to I ∩ J .
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Proposition 15. Let ω : [0, η] → [0,∞) be nondecreasing continuous function such that
ω(0) = 0 and ∫ η

0

du

ω(u)
< ∞ (11)

Then there exists a nontrivial solution to x′ = ω(x), x(0) = 0.

Proof. Set G(y) :=
∫ y
0 du/ω(u) for y ∈ [0, η]. Clearly ω(u) > 0 for u > 0, hence G(y) is strictly

increasing. So is the function x := G−1, defined on [0, G(η)], and x′(t) = 1/G′(x(t)) = ω(x(t))
for t > 0.

5. Continuity of the solution map

Assume that f ∈ CAR(Ω) and the equation (1) has the property of local (and hence global)
uniqueness in Ω. We define the solution map φ via φ(t, t0, x0) = x(t), where x(·) is the
maximal solution to (1), subject to the initial condition x(t0) = t0.
Clearly φ is well-defind on a certain subset of R × R × Ω and φ(t0, t0, x0) = x0 for all
(t0, x0) ∈ Ω.
In various arguments, it is important to guarantee that the (maximal) solution is defined at
least on a certain interval. This is the content of the following lemma.

Lemma 16. Assume that Q = Q(t0, x0; δ,∆) and m(t) are as in Definition 2. Moreover let∫ t0+δ

t0−δ
m(t) dt < ∆/3 (12)

Let x be a solution, defined at least on U(t0, δ) such that x(t0) = x0. Let (y, J) be a maximal
solution, satisfying |y(t′) − x(t′)| < ∆/3 for some t′ ∈ (t0 − δ, t0 + δ). Then J contains the
interval [t0 − δ, t0 + δ], and |y(t)− x0| < ∆ for all t ∈ [t0 − δ, t0 + δ].

Proof. Let us first show that |y(t)− x0| < ∆ for all t ∈ J ∩ [t0 − δ, t0 + δ]. For contradiction,
let t′′ > t′ be smallest time such that |y(t′′)−x0| = ∆. Hence |y(t)−x0| < ∆ for all t between
t′, t′′, and so

|y(t′′)− x0| ≤ |y(t′′)− y(t′)|+ |y(t′)− x(t′)|+ |x(t′)− x0|

=
∣∣ ∫ t′′

t′
y′(t) dt

∣∣+ |y(t′)− x(t′)|+
∣∣ ∫ t′

t0

x′(t) dt
∣∣

< 2

∫ t0+δ

t0−δ
m(t) dt+∆/3 < ∆

– a contradiction. However, by Theorem 10 y has to leave the compact Q at certain times
both larger and smaller than t′. In view of the above, this is only possible if J ⊃ [t0−δ, t0+δ],
strictly.

Lemma 17. Let f ∈ CAR(Ω). Then the equation (1) has the property of local uniqueness in
Ω, if and only if the solutions are locally continuously dependent on the initial condition.
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Proof. By local continuous dependence on the initial condition we mean the following: for
any solution (x, I) and t0 ∈ I there exists U(t0, δ) ⊂ I such that if xn are solutions on U(t0, δ)
and xn(t

′) → x(t′) for at least one t′ ∈ U(t0, δ) fixed, then xn ⇒ x on U(t0, δ).
Ad ⇐: let y(t) be arbitrary solution with x(t0) = y(t0). By Lemma 16, we can assume that
y(t) is defined at least on U(t0, δ). Taking now t′ = x0 and xn = y for all n, the conclusion
follows trivially.
Ad ⇒: again by Lemma 16, we can assume that graphxn ⊂ Q(t0, x0; δ,∆). Repeating the
argument of Theorem 6, the sequence is relatively compact in C([t0 − δ, t0 + δ]). If xn ̸⇒ x,
we can find a subsequence such that xñ ⇒ x̃ ̸= x. On the other hand, as xn(t

′) → x(t′) for
some t′, we have x̃(t′) = x(t′). This contradicts the assumption of uniqueness.

Theorem 18. Let f ∈ CAR(Ω), where Ω ⊂ Rn+1 is open. Let the equation (1) has the
property of local uniqueness in Ω. Then the solution map is continuous and its domain of
definition is an open subset of R× R× Ω.
Moreover: the map (t0, x0) 7→ I which assigns to the initial condition the interval of existence
of the corresponding maximal solution is lower semicontinuous.

Proof. Let (t1, t0, x0) ∈ D(φ), let x(t) = φ(t, t0, x0) is the corresponding maximal solution,
defined on the interval (a, b). Let t1 > t0 be arbitrary fixed such that [t0, t1] ⊂ I.
The set {(t, x(t)); t ∈ [t0, t1]} is compact, and so can be covered by a finite number of cylinders
(see Definition 2) Qk = Qk(τk, x(τk); δk,∆k), 0 ≤ k ≤ N . WLOG τ0 = t0 and τN = t1,

Qk−1 ∩Qk ̸= ∅ , (13)

and finally ∫
Ik

mk(τ) dτ < ∆k/3 (14)

where we set Ik = [τk − δk, τk + δk]. Let for simplicity of notation write y(t) = φ(t, t′0, x
′
0),

albeit y(t) still depends also on t′0 and x′0. Then

|y(t′0)− x(t′0)| ≤ |x′0 − x0|+ |x(t0)− x(t′0)| < ∆0/3

whenever (t′0, x
′
0) is close enough to (t0, x0). By Lemma 16, y is defined at least on I0 and

graph (y|I0) ⊂ Q0. Thanks to |y′(t)| ≤ m0(t) we estimate

|y(t0)− x(t0)| ≤ |y(t0)− y(t′0)|+ |x′0 − x(t0)| ≤ |
∫ t′0

t0

m0(s) ds|+ |x′0 − x0| .

If (t′0, x
′
0) → (t0, x0), the right-hand side tends to zero and by Lemma 17 it follows that even

y ⇒ x in I0. In particular y(t′′) → x(t′′) at some t′′ ∈ I1, cf. (13) above.
By repeating this argument for k = 2, . . . , N , we eventually get that y ⇒ x on [t0−δ0, t1+δN ].
From here it clearly follows that

φ(t′1, t
′
0, x

′
0)− φ(t1, t0, x0) = y(t′1)− x(t′1) + x(t′1)− x(t1) → 0

for (t′1, t
′
0, x

′
0) → (t1, t0, x0), i.e. the continuity of the map φ. Moreover, we see that [t0 −

δ0, t1+∆N ]× I0×U(x(t0),∆
′) ⊂ D(φ) for suitable ∆′ > 0, i.e. the domain of definition D(φ)

is open.
By lower-semicontinuity of intervals we mean: if the (maximal) solution is defined on some
open I and K ⊂ I is compact, then any close enough (maximal) solution is defined on some
open J ⊃ K. And this also follows from the above argument.
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6. Differentiability of the solution map

In this section we will assume that f(t, x) is locally Lipschitz (with respect to all its variables)
on some open set Ω ⊂ Rn+1. By previous section, the solution map φ = φ(t, t0, x0) is con-
tinuous on its domain of definition D(φ). We claim that it is actually locally Lipschitz with
respect all the variables. Concerning x0, this follows from the proof of Theorem 13. Concern-
ing t and t0, this is a consequence of (local) boundedness of f , which implies that solutions
have (locally) bounded derivatives x′(t).
For simplicity of notation, all expressions of the form φ(t, t0, x0) are implicitly restricted to
(t, t0, x0) ∈ D(φ), i.e. whenever they make sense.

Lemma 19. Let N ⊂ Ω be set of measure zero, let t0 be fixed. Then for a.e. x fixed,
(t, φ(t, t0, x)) /∈ N for a.e. t.

Proof. If we show that
M = {(t, x) ∈ Ω; (t, φ(t, t0, x) ∈ N}

has measure zero, the conclusion is immediate by Fubini’s theorem, since a.a. x-cuts are null
sets of t.
However, φ(t, t0, x) = y ⇐⇒ x = φ(t0, t, y), and so

M = {(t, φ(t0, t, y)); (t, y) ∈ N}

By the Lipschitz continuity of φ, the set M is a Lipschitz image of a null set N ; hence also a
null set.

Theorem 20. Let t0 ∈ R be fixed. Then for a.e. x0 ∈ Rn such that (t0, x0) ∈ Ω, the function
u(t) = ∂φ

∂w (t, t0, x0) is defined for a.e. t and any w ∈ Rn. Moreover, u(t) is a AC solution to
the first variation equation

u′ = ∇xf(t, x̃(t))u, u(t0) = w (15)

where x̃(t) := φ(t, t0, x0).

Proof. Let t0 ∈ R be fixed. Let N ⊂ Ω be the set of all points where either φ(·, t0, ·) or f are
not differentiable. By Rademacher’s theorem, N is a null set. From Lemma 19, one deduces
that for a.e. x0 fixed, u(t) := ∂φ

∂w (t, t0, x0) is defined for a.e. t. Similarly, the matrix function
A(t) := ∇xf(t, x̃(t)) is defined for a.e. t.
Set y(t) := φ(t, t0, x0 + hw), for w ∈ Rd fixed and h ̸= 0 small, real number. We write

y(t)− x(t)

h
=

y(t0)− x(t0)

h
+

∫ t

t0

f(s, y(s))− f(s, x(s))

h
ds (16)

Letting h → 0, the first term goes to u(t). The second term is just w. In the last term, the
integrand goes to A(s)u(s), for a.e. s, and is bounded (by Lipschitz continuity of f and φ).
We thus conclude

u(t) = w +

∫ t

t0

A(s)u(s) ds (17)

again for a.e. t. Thus u(t) can be represented by an AC function, which in turn is a (unique)
solution to (15), cf. Lemma 4.

9



Corollary 21. If f = f(t, x) is C1, then ∂φ
∂w (t, t0, x0) is defined everywhere, and it can

computed as (now a classical) solution to (15).

Proof. Denote ũ(t) the solution to (15). We know by previous theorem that ũ(t) = ∂φ
∂w (t, t0, x0)

for almost all the arguments. However, x̃(t) and hence A(t) depends on these arguments con-
tinuously; hence by Theorem 8, also ũ(t) is continuous w.r. to its arguments. The conclusion
now follows by next lemma.

Lemma 22. Let F (x) be locally Lipschitz on open set Q ⊂ Rm. Let there exist a continuous
G(x) such that ∇F (x) = G(x) for a.e. x. Then F (x) is C1 and ∇F (x) = G(x) for all x.

Proof. Without loss of generality Q is a bounded cube, and G(x) is uniformly continuous on
Q. For m = 1 one has (cf. Proposition 1) F (x1) − F (x2) =

∫ x2

x1
G(x)dx for all x1, x2 ∈ Q.

Hence F ′(x) = G(x) everywhere and F ′(x) is continuous.
For m ≥ 2 general we will show that

∂F

∂xi
(x) = Gi(x) (18)

everywhere, hence also the continuity of∇F . WLOG let i = 1. Writing x = (x1, y) ∈ R×Rm−1,
by Fubini’s theorem (18) holds for almost every x1, unless y ∈ N , where N ⊂ Rm−1 is a null
set. By the already proven case m = 1, (18) holds for all x1 if y /∈ N . For y0 ∈ N , we can take
yn /∈ N such that yn → y0. Now

∂F
∂x1

(·, yn) = G1(·, yn) and the right-hand side goes uniformly
to G1(·, y0), thanks to uniform continuity of G. Hence (18) holds even with y = y0 and the
proof is finished.

7. Linear equation

By a linear ODE we mean
x′ = A(t)x+ b(t) (19)

where A(t) : I → Rn×n a b(t) : I → Rn. We assume that A(t) and b(t) are locally integrable.
Note that the right-hand side of (19) satisfies Carathéodory conditions: it is continuous w.r. to
x whenever ∥A(t)∥+ |b(t)| < ∞. In fact, it is Lipschitz continuous w.r. to x in the generalized
sense (cf. Definition 6) - we can take ℓ(t) = ∥A(t)∥.
This implies local existence and uniqueness of solutions. But an important property of linear
equations is global existence of solutions.

Theorem 23. Let A(t) ∈ L1
loc(I), b(t) ∈ L1

loc(I), where I ⊂ R is an open interval. Then for
any initial condition x(t0) = x0, where t0 ∈ I, there exists a unique solution to (19), defined
on I.

Proof. Denote Ω = I ×Rn. By Theorems 9 and 13 there exists exactly one maximal solution,
defined on some open interval J ⊂ I. Assume [α, β] ⊂ I is arbitrary compact interval such that

t0 ∈ [α, β]. Let us further set m(t) = ∥A(t)∥, c = |x0| +
∫ β
α |b(t)| dt, C = c exp

( ∫ β
α m(s) ds

)
.

One has

|x(t)| ≤ c+

∫ t

t0

m(t)|x(t)| dt (20)
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Hence, by Lemma 12, |x(t)| ≤ c exp
∣∣ ∫ t

t0
m(s) ds

∣∣ ≤ C for all t ∈ [α, β]. On the other hand,
by Theorem 10 there exist t1, t2 ∈ J such that t2 < t0 < t1 and (t1, x(t1)) a (t2, x(t2)) do not
lie in the compact set K = [α, β]× U(x0, C).
Now, as |x(t)| ≤ C for all α ≤ t ≤ β, one necessarily has t1 > β, t2 < α, hence J ⊃ [α, β].
Since [α, β] ⊂ I was arbitrary, we obtain that J = I.

Remark. Analogously, we can prove global existence for the general nonlinear problem (1),
provided that f ∈ CAR(I × Rn) and one has the estimate |f(t, x)| ≤ a(t)|x| + b(t) for some
a(t), b(t) ∈ L1

loc(I).

Theorem 24. Let b(t) ∈ L1
loc(I), A ∈ Rn×n is a constant matrix. Then the solution to

x′ = Ax+ b(t) (21)

can be written as

x(t) = e(t−t0)Ax(t0) +

∫ t

t0

e(t−s)Ab(s) ds (22)

for arbitrary t0, t ∈ I.

Proof. The equivalence of (21) a (22) is done by a routine computation, but in the class of
AC solutions, cf. Propositions 1 and 2. We also note that the integrand on the right-hand
side of (22) is L1

loc.
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