Problem 1 [7 pts] Show that the system

$$x' = -y$$

$$y' = x + 2\mu y - 24y^3$$

has a Hopf bifurcation for the parameter value $\mu = 0$ in the origin (x, y) = (0, 0). Determine the stability of the origin and the periodic solutions (in case these exist). Draw the bifurcation diagram in the half-plane (μ, r) , where $r = \sqrt{x^2 + y^2}$.

Problem 2 [5 pts] Consider the system

$$x' = x^{2} + \sin(\alpha y - u)$$

$$y' = 2x + \beta y$$

$$z' = \frac{1}{1 - \gamma y} - \frac{1}{1 + u} + z^{2}$$

where α , β , γ are real parameters. Under which conditions is the system locally controllable in the neighborhood of (x, y, z) = (0, 0, 0)? – Admissible controls are of the form $u : [0, \infty) \to (-\delta, \delta)$ and measurable, with some small $\delta > 0$ fixed.

Problem 3 [8 pts] Show that the system (with a real parameter a)

$$x' = ax^3 + x^2y$$

$$y' = -y + y^2 + xy - x^3$$

has a centre manifold of the form $y = \phi(x)$ in some neighborhood of (x, y) = (0, 0). Find a suitable approximation of $\phi(x)$ to determine the stability of the origin.