Definition. By solution to an ODE X' = F(t, X) we mean a function $X(t) : I \to \mathbb{R}^n$, where $I \subset \mathbb{R}$ is an open interval, such that, for any $t \in I$:

- 1. there exists a finite derivative X'(t)
- 2. and X'(t) = F(t, X(t))

Solution is called *maximal* if it cannot be extended to a strictly larger interval $\tilde{I} \supset I$.

Definition. [Stability.] Let X_0 be an equilibrium to X' = F(X). We say that X_0 is:

- 1. stable, if for any $\varepsilon > 0$ there is $\delta > 0$ such that any (maximal) solution X(t), satisfying $|X(t_0) X_0| < \delta$, is defined and satisfies $|X(t) X_0| < \varepsilon$ for all $t \ge t_0$;
- 2. *unstable*, if it is not stable;
- 3. asymptotically stable, if it is stable and moreover, there exists $\eta > 0$ such that any (maximal) solution X(t), satisfying $|X(t_0) X_0| < \eta$, is defined for all $t \ge t_0$ and moreover, $X(t) \to X_0$ as $t \to +\infty$.

Definition. [Prime integral.] Function $V(X) : \Omega \to \mathbb{R}$ is called *prime integral* to the equation X' = F(X) in Ω , provided that:

- 1. V(X) is not constant in Ω
- 2. for any solution $X(t): I \to \Omega$, the function $t \mapsto V(X(t))$ is constant in I

Definition. [Orbital derivative.] Let $V(X) : \Omega \to \mathbb{R}$ be a C^1 function. By orbital derivative of V with respect to solutions of X' = F(X) we mean

$$\dot{V}_F(X) := \nabla V(X) \cdot F(X)$$

where the right-hand side can also be written as $\sum_{i=1}^{n} \frac{\partial V}{\partial x_i}(X) F_i(X)$.

Definition. [Lyapunov function.] Let X_0 be an equilibrium to X' = F(X), let \mathcal{U} be a neighborhood of X_0 . We call $V(X) : \mathcal{U} \to \mathbb{R}$ a Lyapunov function (to the equation at point X_0), provided that:

- 1. $V(X_0) = 0$ and V(X) > 0 for all $X \in \mathcal{U} \setminus \{X_0\}$
- 2. the orbital derivative $\dot{V}_F(X) \leq 0$ for all $X \in \mathcal{U}$

Lyapunov function is called *strict*, if moreover $\dot{V}_F(X) < 0$ for all $X \in \mathcal{U} \setminus \{X_0\}$.