HW6. Consider the same system as in the previous homework, i.e.

$$
\begin{align*}
& x^{\prime}=x(2-x-y) \tag{1}\\
& y^{\prime}=y(x-1) \tag{2}
\end{align*}
$$

For all the three equilibria, i.e. $(0,0),(2,0)$ and $(1,1)$:
i) Find the linearization matrix and compute its spectrum, i.e. the eigenvalues.
ii) For any eigenvalue that is real, compute also the corresponding eigenvector(s).

Remark. Given the system $X^{\prime}=F(X)$, in more detail

$$
\begin{aligned}
x^{\prime} & =F_{1}(x, y) \\
y^{\prime} & =F_{2}(x, y)
\end{aligned}
$$

the linearization matrix is defined $A=\nabla \boldsymbol{F}\left(x_{0}, y_{0}\right)$, i.e. the gradient of the right-hand side, evaluated at a given equilibrium $\left(x_{0}, y_{0}\right)$. The gradient is a 2×2 matrix, defined as

$$
\nabla \boldsymbol{F}=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y}
\end{array}\right)
$$

