Theorem P. 1 [Solution of ODE with separated variables.] Consider the equation

$$
x^{\prime}=h(x) g(t)
$$

Let I, J be open intervals such that $g(t)$ is continuous on $I, h(x)$ is continuous and non-zero on J. Let

$$
H(x)=\int \frac{d x}{h(x)}, \quad x \in J, \quad G(t)=\int g(t) d t, \quad t \in I
$$

Let constant c and an open interval $I_{c} \subset I$ be chosen such that $G(t)+c \in H(J)$ for all $t \in I_{c}$. Then

$$
x(t)=H^{-1}(c+G(t)), \quad t \in I_{c}
$$

solves the equation. Moreover, all solutions $x(t): I \rightarrow J$ are of this form.
Theorem P. 2 [Solution of linear 1st order ODE.] Consider the equation

$$
x^{\prime}+a(t) x=b(t) .
$$

Let I be an open interval such that $a(t), b(t)$ are continuous on I. Let $A(t)=\int a(t)$ on I. Then

$$
x(t)=\exp (-A(t))\left[c+\int b(t) \exp (A(t)) d t\right], \quad t \in I
$$

solves the equation. Moreover, there are no other solutions on I.
Theorem P. 3 [Peano existence theorem.] Consider the equation $X^{\prime}=F(t, X)$. Let the right hand side F be continuous. Then through every point passes at least one solution.
Theorem P. 4 [Picard existence and uniqueness theorem.] Consider the equation $X^{\prime}=F(t, X)$. Let the right-hand side F be C^{1}. Then through every point passes exactly one solution.
Theorem P. 5 [Linearized stability theorem.]
Consider system of equations $X^{\prime}=F(X)$. Let X_{0} be stationary point (i.e. $F\left(X_{0}\right)=0$), let F be C^{1} close to X_{0}. Denote $A=\nabla F\left(X_{0}\right)$ the so called linearization matrix, and $\sigma(A)$ its spectrum. Then it holds:

1. If $\forall \lambda \in \sigma(A)$ one has $\operatorname{Re} \lambda<0$, then X_{0} is asymptotically stable.
2. If $\exists \lambda \in \sigma(A)$ such that $\operatorname{Re} \lambda>0$, then X_{0} is unstable.

Theorem P. 6 [Stable / unstable direction theorem.]
Let X_{0}, A and $\sigma(A)$ be as in the previous theorem. Let $\lambda \in \sigma(A)$ be a simple, real and non-zero eigenvalue. Let v be the corresponding eigenvector. Then it holds:

1. If $\lambda<0$, there exists a pair of solutions close to X_{0}, behaving like $X_{0} \pm e^{\lambda t} v$, for $t \rightarrow+\infty$ ("stable directions").
2. If $\lambda>0$, there exists a pair of solutions close to X_{0}, behaving like $X_{0} \pm e^{\lambda t} v$, for $t \rightarrow-\infty$ ("unstable directions").

Theorem P. 7 [Characterization of the first integral.] Consider autonomous system $X^{\prime}=F(X)$, for $X \in \Omega$. Let $V=V(X): \Omega \rightarrow \mathbb{R}$ be a C^{1} function. Then V is a first integral (in Ω) iff and only if there holds:

1. $\nabla V(X) \not \equiv 0$, i.e. $\frac{\partial V}{\partial x_{i}}(X)$ do not all vanish in Ω
2. $\nabla V(X) \cdot F(X)=\sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}}(X) F_{i}(X)=0$ everywhere in Ω

Theorem P. 8 [Linear homogeneous ODE with constant coefficients.] Consider the system

$$
\begin{equation*}
X^{\prime}=A X \tag{L-1}
\end{equation*}
$$

Furthermore, consider n-th order equation

$$
\begin{equation*}
a_{0} x^{(n)}+a_{1} x^{(n-1)}+\cdots+a_{n-1} x^{\prime}+a_{n} x=0 \tag{L-2}
\end{equation*}
$$

For both problems, solutions form n-dimensional space. For (L-1), solution is uniquely determined by initial condition of the form $X\left(t_{0}\right)=C \in \mathbb{R}^{n}$. For (L-2), the initial condition has the form

$$
x\left(t_{0}\right)=c_{1}, x^{\prime}\left(t_{0}\right)=c_{2}, \ldots, x^{(n-1)}\left(t_{0}\right)=c_{n}
$$

