Chapter XI

Linear Second Order Equations

1. Preliminaries

One of the most frequently occurring types of differential equations in
mathematics and the physical sciences is the linear second order differential
equation of the form

(L) W'+ g’ + f(Ou = h(r)
or of the form
(1.2) @OWY + gl = h(2).

Unless otherwise specified, it is assumed that the functions f(2), g(¥), A(t),
and p(t) # 0, ¢g(¢) in these equations are continuous (real- or complex-
valued) functions on some t-interval J, which can be bounded or un-
bounded. The reason for the assumption p(f) % 0 will soon become clear.

Of the two forms (1.1) and (1.2), the latter is the more general since
(1.1) can be written as

(1.3) (POu') + p(1)f(O)u = p(HA(D),
if p(¢) is defined as
(1.4) p(t) = expftg(s) ds

for some a €J. As a partial converse, note that if p(¢) is continuously
differentiable then (1.2) can be written as

AN () h(5)
u + - + —_— u=--,
p() ! p(t) p(1)
which is of the form (1.1).

When the function p(f) is continuous but does not have a continuous
derivative, (1.2) cannot be written in the form (1.1). In this case, (1.2)
is to be interpreted as the first order, linear system for the binary vector
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o = (2 &) = (u, p),

2

(1.5) =2 2= —g()2t + k(D).

p(1)
In other words, a solution u = u(¢) of (1.2) is a continuously differentiable
function such that p(£)u'(¢) has a continuous derivative satisfying (1.2).
When p(f) % 0, g(¢), h(t) are continuous, the standard existence and
uniqueness theorems for linear systems of §IV I are applicable to (1.5),
hence (1.2). [We can also deal with more general (i.e., less smooth) types
of solutions if it is only assumed, e.g., that 1/p(r), ¢(¢), h(f) are locally
integrable; cf. Exercise IV 1.2.]

The particular case of (1.2) where p(r) = 1 is

(L.6) u' + q(Hu = h(2).

When p(t) # 0 is real-valued, (1.2) can be reduced to this form by the
change of independent variables

t
(1.7 ds = At ) ie, s= dr + const.

p(?) a p(r)
for some a € J. The function s = s(¢) has a derivative ds/dt = 1/p(t) % 0
and is therefore strictly monotone. Hence s = s(¢) has an inverse function
t = t(s) defined on some s-interval. In terms of the new independent
variable s, the equation (1.2) becomes

(1.8) §§+MM®u=MM®,

where ¢ in p(£)g(t) and p(¢)h(t) is replaced by the function ¢ = #(s). The
equation (1.8) is of the type (1.6).

If g(t) has a continuous derivative, then (1.1) can be reduced to an
equation of the form (1.6) also by a change of the dependent variable
u — z defined by

t
(1.9) u =z exp (—%f g(s) ds)
for some a € J. In fact, substitution of (1.9) into (1.1) leads to the equation
2 ’ ¢
(1.10) 2 + l:f(t) - 5—% - 5—2(1’}2 = h(z) exp %f g(s) ds,

which is of the type (1.6).

In view of the preceding discussion, the second order equations to be
considered will generally be assumed to be of the form (1.2) or (1.6). The
following exercises will often be mentioned.
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Exercise 1.1. (a) The simplest equations of the type considered in this
chapter are

(1.11) "=, W' — o%u =0, u + otu =0,

where ¢ 0 is a constant. Verify that the general solution of these
equations is

(L12) u=c;, + cst, u=ce + cpe™™,  u = ¢;cosat+ cysin o,
respectively. (b) Let a, b be constants. Show that u = ¢* is a solution of
(1.13) u + b +au=0,
if and only if 4 satisfies
(1.14) 2+ bl +a=0.
Actually, the substitution u = ze™%2 [cf. (1.9)] reduces (1.13) to
2"+ a%2 =0, o =a — }b2
Hence by (a) the general solution of (1.13) is

(1.15) u=e"c, + cyt)  or u=ceMt 4 cyet

according as (1.14) has a double root A = b or distinct roots 4;, 4, =
—13b 4 (362 — a)*%. When a, b are real and }b? — a <0, nonreal
exponents in the last part of (1.15) can be avoided by writing

(1.16) u = e M2[¢, cos (a — 1b2)*t + ¢, sin (a — 1b2)%t).

(c) Let u be a constant. Show that u = #*is a solution of
(1.17) u + %u =0

if and only if 4 satisfies

(1.18) AA—=D+pu=0, e, A=}+ G —p*

Thus if 4 # }, the general solution of (1.17) is

(119) u=c 4 e, u},  and A, =134+G—wn

If u is real and u > }, the nonreal exponents can be avoided by writing
(1200  u = e, cos(u — D¥ log t + ¢, sin (u — 3% log 7).
Actually, the change of variables u = ¢*%z and ¢ = ¢* transforms (1.17)
Into

N 2 o u—be=o.
ds
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Thus by (a) the general solution of (1.17) is
(1.22) u=1t%c,+clogt) or u=ctM+ eyt

accordingas ¢ = } or u % 1.
Exercise 1.2. Consider the differential equation

(1.23) u + g(t)u = 0.
The change of variables
(1.24) t=¢  and u =t

transforms (1.23) into
d* 1

1.25 - tz[ ) — —jlz =0, where t = ¢
(1.25) T + £°|q(1) v
For a given constant u, consider the sequence of functions

qO = ;u - Zlf, ‘h(t) = ,ut_2, q2(t) = t—2(llf + :u IOg—2 t), LEERC )
defined by %[q,(t) — 1/4t*] =¢q,_,(s) if t = ¢°, so that q,(¢) = [} +
qn-l(log t)] or

n—2 / k ~2 n—1 —2
4 =1" [i 2 (II log, t) + 4 (1'[ log; t)
=1

k=0 \j=1

jl for n=1,

log, t =log t, log; t =log (log;, ,t), and the empty product is 1. If
q(t) = q,(t), n > 0, in (1.23), then the change of variables (1.24) reduces
(1.23) to the case where ¢, g,(t) are repl'éced by s, g, 1(s). In particular, if
u is real and ¢ = ¢,(¢), n = 0, then real-valued solutions of (1.23) have
infinitely many zeros for large + > 0 if and only if u > {.

2. Basic Facts

Before considering more complicated matters, it is well to point out the
consequences of Chapter IV (in particular, § IV 8) for the homogeneous
and inhomogeneous equation

@ (POY + qt)u =0,
(22) POW) + g()w = h(r).

To this end, the scalar equations (2.1) or (2.2) can be written as the binary
vector equations

(2.3) ¥ = A(t)x,

0
2.4 "= 4
(2.9) y Ny + (h(t)),
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wherez = (1, 2%),y = (3%, y® are the vectorsx = (i, p()u"), y = (w, p()w')
and A(¢) is the 2 X 2 matrix

o L
(2.5) A1) = 140)
—q 0

Unless the contrary is stated, it is assumed that p(t) % 0, ¢(7), h(r), and
other coefficient functions are continuous, complex-valued functions on a
t-interval J (which may or may not be closed and/or bounded).

(i) If £y e J and u,, u,’ are arbitrary complex numbers, then the initial
value problem (2.2) and

(2.6) w(to) = u,, w'(t)) = uy

has a unique solution which exists on all of J; Lemma IV 1.1.

(i) Inthe particularcase (2.1) of (2.2) and 4, = u," = 0, the correspond-
ing unique solution is 2(#) = 0. Hence, if #(¢) # 0 is a solution of (2.1),
then the zeros of #(f) cannot have a cluster point in J.

(iif) Superposition Principles. If u(t), v(t) are solutions of (2.1) and
¢4, C5 are constants, then cu(t) 4 c,0(f) is a solution of (2.1). If we(t) is a
solution of (2.2), then wy(¢) is also a solution of (2.2) if and only if u =
wi(2) — we(?) is a solution of (2.1).

(iv) If w(z), v(t) are solutions of (2.1), then the corresponding vector
solutions x = (u(t), p(Hu' (1)), (v(1), p()v' (1)) of (2.3) are linearly independent
(at every value of ¢) if and only if u(¢), v(f) are linearly independent in the
sense that if ¢;, ¢, are constants such that c u(t) 4 c0(¢) = 0, then
¢ = ¢, = 0; cf. § IV &(iii).

(v) If u(?), v(r) are solutions of (2.1), then there is a constant ¢, depending
on u(t) and v(t), such that their Wronskian W(t) = W(t; u, v) satisfies

c

Rf—) .

This follows from Theorem IV 1.2 since a solution matrix for (2.3) is
u(t) o(t)

ﬂmﬁ)ﬂmﬁ)

det X(¢£) = p(1)W(z) and tr A(t) = 0; cf. §IV 8(iv). A simple direct
proof is contained in the following paragraph.
(vi) Lagrange Identity. Consider the pair of relations

2.8) v + qu =/, @'y +qv=g

27 u(H'(1) — w' (@) =

mg=(
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where f = f(t), g = g(¢) are continuous functions on J. If the second is
multiplied by u, the first by v, and the results subtracted, it follows that

2.9 [pw’ — u'v)] = gu — fo
since [p(uwv’ — u'v)]’ = u(pv’) — v(pu’)’. The relation (2.9) is called the
Lagrange identity. Its integrated form

(2.10) [p(uv’ — u'v)],’ =ft(gu — fo) ds,

where [a, t] < J, is called Green’s formula.

(vii) In particular, (v) shows that u(¢) and v(¢) are linearly independent
solutions of (2.1) if and only if ¢ # 0 in (2.7). In this case every solution
of (2.1) is a linear combination c,u(t) + c,0(f) of u(t), v(¢) with constant
coefficients.

(viii) If p(t) = const. [e.g.,, p(r) = 1], the Wronskian of any pair of
solutions u(t), v(¢) of (2.1) is a constant.

(ix) According to the general theory of § IV 3, if one solution of u(¢) # 0
of (2.1) is known, the determination (at least, locally) of other solutions
v(t) of (2.1) are obtained by considering a certain scalar differential equa-
tion of first order. If u(f) % 0 on a subinterval J' of J, the differential
equation in question is (2.7), where u is considered known and v unknown,
If (2.7) is divided by u*(r), the equation becomes

2. Ly PR

(2.11) (u) p()u*(0)

and a quadrature gives

(2.12) o(t) = cqu(t) + cu(t )f e

if a, teJ’; cf. § IV 8(iv). It is readily verified that if ¢;, ¢ are arbitrary
constants and a, t €J’, then (2.12) is a solution of (2.1) satisfying (2.7) on
any interval J* where u(r) 7 0.

(x) Let u(r), v(¢) be solutions of (2.1) satisfying (2.7) with ¢ 0. Fora
fixed s €J, the solution of (2.1) satisfying the initial conditions u(s) = 0,
p(s) =1 is cu(s)o(f) — u(t)v(s)]. Hence the solution of (2.2)
satisfying w(ty) = w'(f,) =0 is

(2.13) w(t) = c‘lft[u(s)v(t) — u(v(s)1h(s) ds;

cf. § 1V 8(v) (or, more simply, verify this directly). The general solution of
(2.2) is obtained by adding a general solution cyu(t) + c,v(t) of (2.1) to
(2.13) to give

(2.14) w(t) = u(t)[cl - c‘lj;:v(s)h(s) ds:| + v(t)[c2 + c_IJ;:u(s)h(s) ds:|.



328  Ordinary Differential Equations

If the closed bounded interval [a, b] is contained in J, then the choice
. b
th=a, ¢ = c‘lf v(s)h(s)ds and ¢, =0

reduces (2.14) to the particular solution
2.15) w(t) = ¢ [v(t)ftu(s)h(s) ds + u(t)fbv(s)h(s) ds].

This can be written in the form

(2.16) w(t) =JbG(t, $)h(s) ds,
where ‘

G(t, 5) = ¢ w(t)u(s) if aSs=Zt,
2.17)

G(t, 5) = ¢ u(t)v(s) if t=s=<b.

Remark. 1f h(t) is (not necessarily continuous but) integrable over
[a, b], then w(?) is a “solution of (2.2) in the sense that w(f) has a con-
tinuous derivative w’ such that p(f)w'(f) is absolutely continuous and
(2.2) holds except on a t-set of measure 0.

Exercise 2.1 Verify that if «, 8, y, 0 are constants such that

au(a) + fpla’(@) = 0,  yu(b) + p(b)'(b) = 0,
then the particular solution (2.15) of (2.2) satisfies
aw(a) + Bp@w'(@) = 0,  yw(b) + Sp(B)w () = O.

An extremely simple but important case occurs if p = 1, ¢ = 0 so that
(2.1) becomes u" =0. Then u(t)=t—a and v(t) =b —t are the
solutions of (2.1) satisfying u(a) = 0, v(b) = 0, and (2.7) withc = a — b.
Hence

(2.18)
t b
w(t) = -——1—1;[(b — t)f (s — a)h(s)ds + (t — a)f (b — s)h(s) ds]
a — a t
is the solution of w” = h(r) satisfying w(a) = w(b) = 0.
Exercise 2.2. Let [a, b] < J. Show that most general function G(z, s)

defined fora < s,¢ < bfor which (2.16) isasolution of 2.2)fora £t £ b
for every continuous function h(t) is given by

2 2
G(t,s)=c' 3 Jazuus) if a=s=1,
k=1 j=1

2 2
G(t,9) = '3 Sbuuuls) if t=s=b,
k=1 j=1
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where 4 = (a;), B = (b;;) are constant matrices such that

01
B— 4=
S

and u; = u(t), u, = v(t) are solutions of (2.1) satisfying (2.7) with ¢ % 0.
In this case, G(¢, s) is continuous fora < s, t < b.

Exercise 2.3. Let a (andfor b) be a possibly infinite end point of J
which does not belong to J, so that p(¢), ¢(¢), h(t) and u(?), v(t) need not
have limits as # —a + 0 (and/or t — b — 0). Suppose, however, that
h, u, v have the property that the integrals in (2.15) are convergent (possibly,
just conditionally). Then (2.15) is a solution of (2.2) on J. [This follows
from the derivation of (2.15) or can be verified directly by substituting
(2.15) into (2.2).]

(xi) Variation of Constants. In addition to (2.1), consider another
equation

2.19 (Pl(OW) + qo(t)w = 0,

where py(f) 5 0, g,(?) are also continuous in J. Correspondingly, (2.19) is
equivalent to a first order system

(2.20) ¥ = A1)y,
where
0 1/po(t
@20)  y=@pf) and A= ( Pl )).
—90(t) 0
Let uy(t), vo(t) be linearly independent solutions of (2.19) such that
u v
2.22) Y(r) = ( o )
Poto Pobo

is a fundamental matrix for (2.20) with det Y(¢) = 1; i.e.,
PolUgby’ — uy'vg) = 1.

Hence

(2.23) Y-ir) = ( boto _U").
—Poto Uy
Consider the linear change of variables
Uy + voy?
Pt ¥ + Povoiyz)
for the system (2.3). The resulting differential equation for the vector y is

2.25) y' = C(t)y, where C(t) = YU (O)[A(F) — A()]Y();

(2.24) x= Y(t)y = (
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cf. Theorem IV 2.1. A direct calculation using (2.5), (2.21), (2.22), and
(2.23) shows that

1 1 ug'vy v Ugly Vo’
(226) C(») = (; - —) Poz( ) +( - qo)( . )

Po —ulr —ug'vy —u  —uglo
In the particular case, po(f) = p(t), so that (2.19) reduces to
(2.27) W) + qow =0,

the matrix C(t) depends on uy(t), vy(t) but not on their derivatives. Here,
(2.1) or equivalently (2.3) is reduced to the binary system

Ug g
(228) Y =(q— qo)( o )y
—Up"  —Ugly

Exercise 2.4. In order to interpret the significance of y, i.e.,, of the
components y*, y* of y in (2.28) for a corresponding solution u(f) of (2.1),
write (2.1) as (pw')’ + gow = h(t), where w = u(t), h = [g4(t) — g(t)]u(?).
Then it is seen that the solution u(r) of (2.1) is of the form (2.14) if ¢ = 1
and u(t), v(r) are replaced by w,(¢), vy(t). Using (2.24), where p = p, and
x is the binary vector (u(f), p(1)u'(t)), show that the coefficients of uy(t),
vo(f) in this analogue of formula (2.14) are the component %*, ¥ of the
corresponding solution y(¢) of (2.28).

(xii) If we know a particular solution #(¢) of (2.27) which does not
vanish on J, then we can determine linearly independent solutions by a
quadrature [cf. (ix)] and hence obtain the matrix in (2.28). Actually this
desired result can be obtained much more directly. Let (2.27) have a
solution w(t) £ 0 on the interval J. Change the dependent variable from
uto zin (2.1), where

(2.29) u = w(t)z.
The differential equation satisfied by 2 is

w(pz') + 2p2'w’ + [(pw') + qwlz = 0.
If this is multiplied by w, it follows that

(2.30) (pw*") + wl(pw') + gwle =0
or, by (2.27),
230D (pw*) + w¥(g — go)z = 0;

i.c., (2.29) reduces (2.1) to (2.30) or (2.31). Instead of starting with a
differential equation (2.27) and a solution w(f), we can start with a
function w(f) 4 0 such that w(f) has a continuous derivative w'(f) and
p(H)w'(7) has a continuous derivative, in which case g,(?) is defined by (2.27),
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50 go = —(pw')'/w. The substitution (2.29) will also be called a variation
of constants.

(xiii) Liouville Substitution. As a particular case, consider (2.1) with
r=1,
(2.32) u' + g(tyu = 0.
Suppose that g(f) has a continuous second derivative, is real-valued, and
does not vanish, say

(2.33) +q(H) >0, where 4 = sgng(?)
is independent of ¢. Consider the variation of constants
(2.39) u=w()z, where w=/|qg(H)" >0,
Then (2.32) is reduced to (2.30), where p = 1, i.e., to
@39 ey (- L %)z o

41q1” 16]q|
A change of independent variables 1 — s defined by
(2.36) ds = ld—lt%
transforms (2.35) into i
2.37) L2 4 fsp =0,

ds

where
(2.38) fo=1--94_ 4 %"

4lql* ~ 161q®

and the argument of g and its derivatives in (2.38) is t = #(s), the inverse of
the function s = s(¢) defined by (2.36) and a quadrature; cf. (1.7). In
these formulae, a prime denotes differentiation with respect to ¢, so that
q' = dgldt.

The change of variables (2.34), (2.36) is the Liouville substitution. This
substitution, or repeated applications of it, often leads to a differential
equation of the type (2.37) in which f(s) is “nearly”’ constant; cf. Exercise
8.3. For a simple extreme case of this remark, see Exercise 1.1(c).

(xiv) Riccati Equations. Paragraphs (xi), (xii), and (xiii) concern the
transformation of (2.1) into a different second order linear equation or
into a suitable binary, first order linear system. (Other such transfor-
mations will be utilized later; cf. §§ 8-9.) Frequently, it is useful to
transform (2.1) into a suitable nonlinear equation or system. In this
direction, one of the most widely used devices is the following: Let

(2.39) = POW
U
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so that r’ = (pu')' fu — p~*(pu’[u)?. Thus, if (2.1) is divided by u, the result
can be written as

2
(2.40) r 4+ < +q(Hr=0.
p(9)

This is called the Riccati equation of (2.1). (In general, a differential
equation of the form r’ = a(f)r2 + b(¢)r + (1), where the right side is a
quadratic polynomial in r, is called a Riccati differential equation.)

It will be left to the reader to verify that if u(¢) is a solution of (2.1)
which does not vanish on a t-interval J' (< J), then (2.39) is a solution of
(2.40) on J’; conversely if r = r(t) is a solution of (2.40) on a #-interval J’
(< J), then a quadrature of (2.39) gives

t
(2.41) u=c expf rs) ds ,
p(s)
a nonvanishing solution of (2.1) on J'.
Exercise 2.5. Verify that the substitution r = «'[u transforms

u" + g’ + f(u =0
into the Riccati equation
r 4+ glor + () =0.

(xv) Priifer Transformation. In the case of an equation (2.1) with real-
valued coefficients, the following transformation of (2.1) is often useful
(cf. §§3, 5): Let u = u(f) & 0 be a real-valued solution of (2.1) and let

(2.42) p=@+pud* >0, ¢=arctan L

pu
Since u and u’ cannot vanish simultaneously a suitable choice of ¢ at
some fixed point f, €/ and the last part of (2.42) determine a continuously
differentiable function ¢(#). The relations (2.42) transform (2.1) into

(2.43) ¥ = %cos ¥ + a(0) sint g,

(2.44) p = —[q( ) — -(—)}p sin @ cos ¢.
The equation (2.43) involves only the one unknown function ¢. If a
solution ¢ = ¢(f) of (2.43) is known, a corresponding solution of (2.44)
is obtained by a quadrature.

An advantage of (2.43) over (2.40) is that any solution of (2.43) exists on
the whole interval J where p, g are continuous. This is clear from the
relation between solutions of (2.1) and (2.43).
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Exercise 2.6. Verify that if 7(¢) > 0 is continuous on J and is locally of
bounded variation (i.e., is of bounded variation on all closed, bounded
subintervals of J) and if u = u(t) # 0 is a real-valued solution of (2.1),
then

(2.45) p = (7u® + pu’®* > 0, @ = arc tan lu—,
pu

and a choice of ¢(t,) for some ?, €J determine continuous functions
p(1), ¢(r) which are locally of bounded variation and

(246) do = (I cos® ¢ + 4 in? <p) dt + (sin @ cos @) d(log 7)
p T

(2.47) d(log p) = —[(‘1 - ‘157) sin ¢ cos <p:| dt + (sin® ¢) d(log 7),

The relations (2.46), (2.47) are understood to mean that Riemann,
Stieltjes integrals of both sides of these relations are equal. Conversely
(continuous) solutions of (2.46)—(2.47) determine solutions of (2.1), via
(2.45). Note that if g(t) > 0, p(¢) > 0, and g(1)p(¢) is locally of bounded
variation, then the choice 7(t) = p*¥(1)¢g*(t) > 0 gives g/t = 7/p =
P*/q"t and reduces (2.45) and (2.46), (2.47) to
%
(2.48) p = (pqu® + pw'»* >0, @=arc tan‘l% ,
u

and

18
(2.49) dg =‘-11;th + (& sin ¢ cos @) d(log pq),
(2.50) d(log p) = (4 sin? @) d(log pg).

3. Theorems of Sturm

In this section, we will consider only differential equations of the type
(2.1) having real-valued, continuous coefficient functions p(f) > 0, g(1).
“Solution” will mean “real-valued, nontrivial (s 0) solution.” The
object of interest will be the set of zeros of a solution u(f). For the study of
zeros of u(t), the Priifer transformation (2.42) is particularly useful since
u(ty) = 0 if and only if ¢(f,) = 0 mod =.

Lemma 3.1. Let u(f) # 0 be areal-valued solutionof 2.1)ont, =t < 19,
where p(t) > 0 and q(t) are real-valued and continuous. Let u(t) have
exactly n(Z 1) zeros t, <t; <+ - <t, on ty <t 1% Let ¢(t) be a
continuous function defined by (2.42) and 0 < @(t)) < w. Then ¢(t,) = k=
and (1) > kn fort, <t =t fork=1,...,n
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Proof. Note that at a ~value where u = 0, i.e., where ¢ = 0 mod =,
(2.43) implies that ¢' = p(t) > 0. Consequently @(¢) is increasing in the
neighborhoods of points where @(#) = jm for some integer j. It follows
that if £, < a < ° and jm < ¢(a), then @(f) > jm for a < t £ 1°; also if
Jm Z ¢(a), then @(t) < jr for t, = t < a. This implies the assertion.

In the theorems of this section, two equations will be considered

@3.1) @Y + g{t)u = 0, j=12,

where p/(t), q,(¢) are real-valued continuous functions on an interval J,
and

(3.2) p(OZp(>0  and  qi(t) = ¢.(1)-

In this case, (3.1y) is called a Sturm majorant for (3.1;) onJand (3.1,) is a
Sturm minorant for (3.1y). If, in addition,

(3.3) q:(1) < qa(0)
or
(3.3) PO >p() >0  and  g(1) # 0

holds at some point 7 of J, then (3.1,) is called a strict Sturm majorant for
3.1)onJ.

Theorem 3.1 (Sturm’s First Comparison Theorem). Let the coefficient
functions in (3.1,) be continuous on an interval J:ty = t = t° and let (3.1,)
be a Sturm majorant for (3.1,). Let u = u,(r) # 0 be a solution of (3.1,) and
let u,(t) have exactlyn (Z1) zeros t =1, < t, < - <t,ont, <t =1
Let u = uy(t) # 0 be a solution of (3.1,) satisfying

G.4) pi(uy'(0) > (), (1)
uy(1) us(t)

att = t,. (The expression on the right [or left] of (3.4) at t = tis considered
to be + o0 if uy(ty) = 0 [or u,(ty) = O1; in particular, (3.4) holds at t = ¢,
ifui(ty) = 0.) Then uy(t) has at least n zeroson ty < t = t,,. Furthermore
u,(t) has at least n zeros on t, < t < t,, if either the inequality in (3.4) holds
at t = ty or (3.1,) is a strict Sturm majorant for 3.1) on t, St < t,.

Proof. In view of (3.4), it is possible to define a pair of continuous
functions @,(?), @(f) on t = t = t° by

u,(t)
pLu; (1)
Then the analogue of (2.43) is

(3.5) @,(r) = arctan and 0= @y(t0) = @u(to) < 7.

12 1 H
(3.6) p; = m cos® @; + g sin® @, = f; (1, @)
§
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Since the continuous functions f(¢, ¢,) are smooth as functions of the
variable ¢;, the solutions of (3.6) are uniquely determined by their initial
conditions. It follows from (3.2) that f1(¢, ¢) = f,(¢, @) for 1, = t < t%and
all . Hence the last part of (3.5) and Corollary III 4.2 show that

3.7 p(S @) for ==

In particular, ¢,(#,) = nmimplies that nm < @,(¢,) and the first part of the
theorem follows from Lemma 3.1.

In order to prove the last part of the theorem, suppose first that the
sign of inequality holds in (3.4) at t = ;. Then @,(¢,) < @a(t). Let @a()
be the solution of (3.6,) satisfying the initial condition @,4(,) = @1(%,), so
that @a(t)) < @a(t,). Since solutions of (3.6,) are uniquely determined by
initial conditions, @ae(f) < @a(f) for 1y = ¢t = ¢° Thus the analogue of
(3.7) gives @1(1) < @aot) < @ut), and so gu(t,) > nm. Hence uy(t) has n
zeros on ty < t < ¢,.

Consider the case that equality holds in (3.4) but either (3.3;) or (3.3,)
holds at some point of [t,, #,]. Write (3.6,) as

1 .
@y = — cos’ g, + g, sin® @, + (1),
P1
where

)= (£ =2) co pu + (@ —a)sin® g, 2 0
P2 D

If the assertion is false, it follows from the case just considered that
@1(t) = @u(1) for t, = t = t,. Hence, ¢,'(f) = @, (¢) and so «(¢) = 0 for
1, =t =t,. Since sin @,(#) = 0 only at the zeros of uy(¢), it follows that
ge(t) = qy(t) for t, =t =t, and that (p;! — p;!)cos? ¢, = 0. Hence,
pz (1) — pr'(r) > 0 at some timplies cos @,(¢f) = 0; i.e.,uy’ = 0. If (3.3)
does not hold at any ¢ on [#,, t,], it follows that (3.3,) holds at some ¢ and
hence on some subinterval of [t,, ¢,]. But then u,’” = 0 on this interval,
thus (p,u,)’ = O on this interval. But this contradicts ¢,(¢) % 0 on this
interval. This completes the proof.

Corollary 3.1 (Sturm’s Separation Theorem). Let (3.1,) be a Sturm
majorant for (3.1,) on an interval J and let u = u(t) # 0 be a real-valued
solution of (3.1,). Let uy(t) vanish at a pair of points t = t,, t, (>t;) of J.
Then uy(t) has at least one zero on [t,, t,]. In particular, if p1 = py, ¢ = q,
and uy, u, are real-valued, linearly independent solutions of (3.1,) = (3.1,),
then the zeros of u, separate and are separated by those of u,.

Note that the last statement of this theorem is meaningful since the
zeros of uy, u, do not have a cluster .point on J; see § 2(ii). In addition,
u,(1), uy(t) cannot have a common zero t = #;; otherwise, the uniqueness of
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the solutions of (3.1,) implies that u,(r) = cuy(t) with ¢ = u,'(t))/uy'(t1)
[so that u,(t), up(?) are not linearly independent].

Exercise 3.1. (a) [Another proof for Sturm’s separation theorem
when pi(£) = py(t) > 0,¢:(t) = q:1(¢).] Suppose thatu,(#) > Ofors; <t <
1, and that the assertion is false, say uy(t) > Ofor ¢; < ¢t < t,. Multiplying
(3.1,) where u = u; by u, and (3.1,) where u = u, by u,, subtracting, and
integrating over [z, t] gives

POy uy — uyuy’) Z 0 for t, St =1,

where p = p; = p,; cf. the derivation of (2.9). This implies that (u;/u,)’ =

0; hence u,/u, > 0 fort; <t < t, (b) Reduce the case py(t) = p(t) to the

case p,(f) = p,(t) by the device used below in the proof of Corollary 6.5.
Exercise 3.2. (a) In the differential equation

(3.8) u” + g(t)u =0,

let ¢(r) be real-valued, continuous, and satisfy 0 <m Zg() = M. 1If
u=u(t) #0 is a solution with a pair of zeros r =t;, #,(> t,), then
alm% = t, — t; = 7/M*. (b) Let g(t) be continuous for = 0 and
g(t)— 1 as t — co. Show that if u = u(t) # 0 is a real-valued solution of
(3.8), then the zeros of u(r) form a sequence (0 =) t; < f, < ...such that
t, —t,.1— mas n— . (c) Observe that real-valued solutions u(s) # 0
of (1.17) have at most one zero for ¢ > 0 if 4 =< } and have infinitely
many zeros for t+ > 0 if x > }. In the latter case, the zeros cluster at
t =0and t = w. (d) Consider the Bessel equation

’ 2
(39) o+t (1 - /ti) —o,
where u is a real parameter. The variations of constants u = t*% trans-
forms (3.9) into

(3.10) u” + (1 - j—;)u =0, where a=p*—1}.

Show that the zeros of a real-valued solution v(¢) of (3.9) on ¢ > 0 form a
sequence #; < f, < ...suchthat¢, — ¢, ; —masn— cc.

Theorem 3.2 (Sturm’s Second Comparison Theorem). Assume the
conditions of the first part of Theorem 3.1 and that uy(t) also has exactly n
zeros on ty < t £ 1% Then (3.4) holds at t = t° (where the expression on
the right [or left] of (3.4) at t = t° is taken to be + oc if u)(t®) =0 [or
u;(t% = 0]). Furthermore the sign of inequality holds at t = t° in (3.4) if
the conditions of the last part of Theorem 3.1 hold.

Proof. The proof of this assertion is essentially contained in the proof
of Theorem 3.1 if it is noted that the assumption on the number of zeros of
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uy(t) implies the last inequality in nm < @1(t%) < ,(t°) < (n + Dm. Also,
the proof of Theorem 3.1 gives (%) < @a(¢°) under the conditions of the
last part of the theorem. -

4, Sturm-Liouville Boundary Value Problems

This topic is one of the most important in the theory of second order
linear equations. Since a full discussion of it would be very lengthy and
since very complete treatments can be found in many books, only a few
high points will be discussed here.

In the equation

4.12) @PO) + [g(t) + iAu=0,

let p(t) > O, g(¢) be real-valued and continuous for a £ ¢ =< b and 1 a
complex number. Let «, f be given real numbers and consider the problem
of finding, if possible, a nontrivial (3 0) solution of (4.14) satisfying the
boundary conditions

(4.2) u(a)cos o — p(a)u'(@)sina =0, u(b)cos f — p(b)u'(b)sin f = 0.

Exercise 4.1. Show that if 4 is not real, then (4.14) and (4.2) do not
have a nontrivial solution.
Exercise 4.2. Consider the following special cases of (4.14), (4.2):

4.3) W4 =0,  u0) =u(m)=0.

Show that this has a solution only if A =(n 4+ 1)2for i =0, 1,...and
that the corresponding solution, up to a multiplicative constant, is
u = sin (n + 1)t.

It will be shown that the results of Exercise 4.2 for the special case (4.3)
are typical for the general situation (4.11), (4.2).

Theorem 4.1. Let p(t) > 0, g(t) be real-valued and continuous for
a 2t £ b. Then there exists an unbounded sequence of real numbers 4, <
Ay < ... such that (i) (4.12), (4.2) has a nontrivial (# 0) solution if and
only if A = A, for some n; (ii) if A = 4, and u = u,(t) # 0 is a solution of
(4.14,), (4.2), then u,(t) is unique up to a multiplicative constant, and u,(t)
has exactly n zeros on a <t < b for n =0,1,...; (iii) if n % m, then

b
4.4) f u, (Hu,(t) dt = 0;

a

(iv) if 4 is a complex number A % A, for n =0, |, ..., then there exists a
continuous function G(t,s; 1) = G(s,t;4) for a<s, t =b with the
property that if h(t) is any function integrable ona < t £ b, then

(4.5%) (POW) + [g(t) + Alw = k(1)
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has a unigue solution w = u(t) satisfying
(42) w(a) cos « — p(a)w'(a) sina = 0, w(b) cos f — p(b)w'(h) sin f = 0
and w(t) is given by

(4.6) : w(t) =be(t, s; Ah(s) ds,

also G(t,s; A) is real-valued when 1 is real; (V) if A =4, and h(t) is a
function integrable on a < t < b, then (4.54,), (4.2") has a solution if and
only if

@7 ~fbun(t)h(r) dt = 0;

in this case, if w(t) is a solution of (4.54,), (4.2"), then w(t) + cu,(t) is also
a solution and all solutions are of this form; (vi) if the functions u,(t) are
chosen real-valued (uniquely up to a factor +1) so as to satisfy

(4.8) f bu,f(r)dr =1,

then uy(t), uy(t), ... form a complete orthonormal sequénce for L%¥a, b);
i.e, if h(t) € L¥a, b), then h(t) has the Fourier series

4.9 h(t) ~ i c i (D), where ¢, =fbh(t)un(t) dt

and
(4.10) f "ty = 3 euun()

If A(t) is not continuous in (iv) or (v), then a solution of (4.54) is to be
interpreted as in the Remark in § 2(x).

Note the parallel of the assertions concerning the solvability of (4.54),
(4.2") with the corresponding situation for linear algebraic equations
(Al — L)w = h, where Lis a d X d Hermitian symmetric matrix, [ is the
unit matrix and w, h vectors: (Al — L)u = 0 has a solution # £ 0 if and
only if 4 is an eigenvalue 4;, ..., A4, 0f L; 4y, ..., A arereal; if 1 % 4,
then (A — L)w = h has a unique solution w for every h; finally,if A = 4,,
then (A — L)w = h has a solution w if and only if A is orthogonal (i.e.,
u+h=0) to all solutions u of (A/ — L)u = 0.

Proof. This proof will only be sketched; details will be left to the
reader.

On (i) and (ii). In view of Exercise 4.1, it suffices to consider only real
4. Let u(t, A) be the solution of (4.11) satisfying the initial condition

2
dt—0 as n — oC.

4.11) u(a) = sin «, pla)d(a) = cos «,
so u(t, A) satisfies the first of the two conditions (4.2). It is clear that
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(4.17), (4.2) has a solution (3 0) if and only if u(z, 1) satisfies the second
condition in (4.2).
For fixed 4, define a continuous function ¢(t, A) of t on [a, b] by

4.12) o(t, A) = arc tanM—, » wa, d) =«
p(Du'(z, 1)

Then ¢(¢, 4) has a continuous derivative satisfying
@13) ¢ = —('-) cost g + [q(0) + Alsin* g, (@) = x5

p(t
cf. § 2(xv). If follows from Theorem V 2.1 that the solution ¢ = ¢(¢, 1)
of (4.13) is a continuous function of (1, ) fora £t = b, —0 < 4 < .
The proof of the Sturm Comparison Theorem 3.1 shows that p(b, 4) is an

increasing function of 4. Without loss of generality, it can be supposed
that « satisfies 0 < « < 7. Note that

(4.19) (b, ) > as A— cc.

In order to see this, introduce the new independent variable defined by
ds = dt[p(t) and s(a) = 0, so that (4.14) becomes
(415 a4+ paD) + Au =0, t=1s), u= %‘ .

If M > 0 is any number, A > 0 can be chosen so large that p(£)[g(¢) +
Al Z M2 for a £t £ b. Sturm’s Comparison Theorem 3.1 applied to

(4.15) and G4 Mu=0

shows that if n is arbitrary and M is sufficiently large, then a nontrivial

real-valued solution of (4.15) has at least n zeros on the s-interval, 0 <

s éfbdt/p(t); ie., @b, &) Z nif A > 0 is sufficiently large by Lemma 3.1.
It will be verified that

(4.16) b, ) -0 as A— —oc.

By Lemma 3.1, (b, 1) 2 0. Let —4 > 0 be so large that p(1)[q(t) + ] =
—M? < 0. The solution of
i— Mu=0

satisfying the analogue of (4.11), where a = 0and p = 1, is

u(s) = sin « cosh Ms + —Al/—[cosoc sinh Ms.

The analogue of (!, 4) is

w(s, M) = arctan % s w0, M) = a.
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For any fixed s > 0,

%%—::—; —0
hence y(by, M)— 0 as M — oc, where b, =det/p(t). By Sturm’s Com-
parison Theorem 3.1, p(b, 1) = y(b,, M). Thi: proves (4.16)

The limit relations (4.14), (4.16) and the strict monotony of ¢(b, 1) as
a function of 4 show that there exist Aq, 4, ... such that

as M— oc;

b, 4,) =B + n= for n=0,1,...,

where it is supposed that 0 < f < #. Furthermore ¢(b, ) #  mod =
unless 4 = 4,. This implies (i) and (ii).

On (iii). In order to verify (iii), multiply (4.14,) by u,,, (4.14,,) by u,,
subtract and integrate over ¢ < ¢t < b; i.e., apply the Green identity
210) to f = —A,u, (1), g = — A u,(0).

On (iv). See §2(x) and Exercise 2.1. Choose u = u(t, ), and v(¢) as a
solution of (4.17) satisfying the second condition in (4.2).

On (v). Suppose first that (4.54,), (4.2") has a solution w = w(¢).
Apply the Green identity (2.10) in the case where g is replaced by g +
Ao f=hw=uv=u,g=0Iin(2.8) in order to obtain (4.7).

Conversely, assume that (4.7) holds. Let u(t) = u,(f) and let o(¢) be a
solution of (4.14,) linearly independent of u, (), say p()uv’ — u'v] =
¢ 54 0. Then (2.15) is a solution of (4.54,). Furthermore w(¢) satisfies the
first of the boundary conditions in (4.2') since u = u,, does; cf. Exercise
2.1. On the other hand, (4.7) and (2.15) show that w(b) = w'(b) = 0.
Hence w(t) is a solution (4.51) satisfying the boundary conditions (4.2").

On (vi). Although the assertion (vi) is the main part of Theorem 4.1,
it is a consequence of elementary theorems on completely continuous,
self-adjoint operators on Hilbert space. For the sake of completeness, the
proof of the necessary theorems will be sketched and (vi) will be deduced
from them. A knowledge of Fourier series (involving, e.g., Bessel’s
inequality, Parseval’s relation, and the theorem of Fischer-Riesz) will be
assumed. In order to minimize the required discussion of topics on Hilbert
space, some of the definitions or results, as stated, will involve redundant
hypotheses.

Introduce the following notation and terminology:

(4.17) (f, 8 =Lf(t)§(t) dt, Nfl=UN*zo,
where f, g € L*a, b). Thus {(£, &)l = | fIl - Igll and |/ + gl =1 /1 + lgll

by Schwarz’s inequality. A sequence of functions f1(?), fx(?), . . . in L*(a, b)
will be said to tend to f(r) in L%(a, b)if || f, — f| = 0 as n — cc. They will
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be said to tend to f(r) weakly in L%(a, b) if the sequence | fill, | £oll, . .. is
bounded and, for every ¢(f) € L¥a, b), (f,, ) = (f, ¢) as n — . (In this
last definition, the condition on || fill, | 3], . . . is redundant but this fact
will not be needed below.) A subset H of L(a, b) is called a linear manifold
if f, g € Himplies that ¢, f + c,g € H for all constants c,, ¢, and it is called
closedif f,e Hforn = 1,2,..., fel¥a,byand || f, — f| > 0asn— c
imply that fe H. A linear manifold H of L%a, b) will be called weakly
closedif f, e Hforn = 1,2,..., fe L¥a, b) and f, — f weakly as n —
imply that fe H. (The fact that the notions of “closed”” and “weakly
closed” are equivalent for linear manifolds will not be needed here.)

Lemma4.1. Letf,, f,, ... beasequence of elements of L%(a, b) satisfying
| f.l = 1. Then there exists an f(t) € L*(a, b) and a subsequence f, (1),
Su)(t)s . .. of the given sequence such that || f|| < 1 andf,;, — f(t) weakly
as j— cc.

Proof. Without loss of generality, it can be supposed that [a, b] =
[0, #]. Thus each f,(#) has a sine Fourier series

S ~3 ¢, sin kt,
k=1

where, by Parseval’s relation, Y |c.|> = [f,I>2 =< 1. It follows from
%

Cantor’s diagonal process (Theorem I 2.1) that there exists a sequence of
integers 1 < n(l) < n(2) < ... such that

(4.18) ¢, =limc,; ),  existsas j— o for k=1,2,....

Note that

m m

Dled* =1lim ¥ e, ul* = 1.
k=1 j—= o k=1

Hence Z |2 = 1 and so, by the theorem of Fischer-Riesz, there exists an

f(#) € L¥a, b) such that

fO~2esinkt,  |fI*=3lel 2 1.
k=1

It follows from (4.18) that (f,(;), ) — (f, @) as j— coc holds if ¢ = sin k¢
for k = 1,2,.... Henceit holds for any sine polynomial p(t) = a, sin¢ +
-+ 4+ a,sinmt. For any ¢(f) € L¥O0, =), there exists a sine poly-
nomial p(f) such that |p — p| is arbitrarily small and |(f,; — f; ¢)| =
|y =P+ 1 fan = frp — @l while (i —fip — ) = | fay —
SUllp — @l £2|p — ¢|. Hence the lemma follows.

Lemma 4.2. Let G be a self-adjoint, linear operator defined on a weakly
closed linear manifold H of L*(a, b) satisfying (Gh, h) = 0 for all he H.
Then Gh = 0 for all h € H.
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To say that G is a linear operator on H means that to every h € H there
is associated a unique element w = Ghe H and that if w, = Gh, for
j=1,2, then ¢yw; + cowy, = G(cihy + c;hy) for all complex constants
¢1, ¢;. The assumption that G is self-adjoint means that (Gh, f) = (h,Gf)
forall £, he H.

Proof. Iff, h € L%a, b) and cis a complex number, then 0 = (G(h + ¢f),
h + ¢f) = 2 Re &Gh, f) since (Gf, /) = (Gh, k) = 0. By thechoices ¢ =1
and ¢ = i, it follows that (Gh, f) = 0. On choosing f' = Gh, it is seen that
Gh = 0.

Lemma 4.3. Let G be a completely continuous, self-adjoint linear
operator on a weakly closed linear manifold H of L*(a, b) and let Gh # 0 for
some h € H. Then G has at least one (real) eigenvalue u £ 0; i.e., there
exists a (real) number u 5% 0 and an hy € H, hy # 0, such that Ghy = uh,,.

A linear operator G on H is called completely continuous if h,,he H
and h, — h weakly as n — oc imply that |Gh, — Gh| —0 as n — cc.

Proof. It follows from Lemma 4.1, the complete continuity of G, and
the fact that H is weakly closed that G is bounded, i.e., that there exists a
constant C such that |Ghl| < C for all h € H satisfying ||A] = I.

By Schwarz’s inequality, |(Gh, h)| < ||Gh|| - ||h|| = Cif [|k|] = 1. Hence
sup (Gh, h) and inf (Gh, h) for all |h] =1 exist and are finite. Since
Gh 5 0 for some h e H, it follows from Lemma 4.2 that at least one of
these two numbers is not zero. For the sake of definiteness, let 4 =
sup (Gh, h) £ 0. The choice & = 0 shows that 4 = 0, hence u > 0.

It will be shown that there exists an h, € H such that (Ghy, hy) = p and
holl £ 1. For there exist elements h,, h,, . . . in H such that |4, < 1 and
(Gh,, h,) > p as n— cc. In view of Lemma 4.1, we can suppose that
there exists an hye L*a, b) such that h, — h, weakly as n— cc and
lholl = 1. Since H is weakly closed, hy € H. The complete continuity of
G shows that |Gh,, — Ghy|| — 0 as n — oc. Also (Ghg, hy) = (Gh,,, h,) +
2Re (G(hy — h,), h,) + (G(hy — h,), hy — h,). From the boundedness
of G and Schwarz’s inequality, we conclude, by letting n— o, that
(Gho, ho) = p.

Note that u 5 0 implies h, 5% 0. Also, since x > 0, it follows that
Aol = 1, otherwise (Gh, h) = u/l|hyl|2 > u for h = hyf||hell and [h| = 1.

In order to verify that Ghy = uh,, let h be any element of H satisfying
Ik = 1and (hy, k) = 0. Let h, = (hy + €h)/(1 + €?)*é fora real ¢, so that
[ l2 = 1. Then the function

(Gh,, h,) = (1 + €7 Y(Ghq, hy) + 2¢ Re (Ghy, h) + €(Gh, h)}

of € has a maximum at ¢ = 0 and hence Re (Gh,, h) = 0. Since h can be
replaced by ih, it follows that (Gh,, h) = 0 for all h € H satisfying (hy, h) =
0. In particular, (Ghy, ) =0 if h = Ghy — uh,. This implies that
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pt = |Gho|? and hence |Ghy — pholl2 = | Ghyll2 — 2(Ghq, ho) + 42 = 0.
This proves Ghy = uh, and completes the proof of the lemma.
Completion of Proof of (vi). A standard theorem on Fourier series
implies that (vi) is false if and only if there exist functions h(t) € L2(a, b),
7] s 0, having zero Fourier coefficients (h, u,) =0 for n =10,1,....
Suppose, if possible, that (vi) is false and let H denote the set of all elements
h(t) € L¥a, b) satisfying (h,u,) =0 for n=0,1,.... Then H is a
weakly closed, linear manifold in L2(a, b) and contains elements # 5 0.
Choose a real number A £ 4, forn =0, 1,.... Then (4.6) defines a
linear operator G, w = Gh, on L*a, b). This operator is self-adjoint since

(Gh, f) =Lbf:G(t, s; Dh(s) f(£) ds dt = (h, Gf)

follows from the fact that G(¢, s; 4) is real-valued and G(¢, s; 1) = G(s, t; 7).
Also G is completely continuous. In order to verify this, let s, — &
weakly as n — o and w, = Gh,, w = Gh, then

w. () — w(?) =JbG(t, s; DA, () — h(s)lds = (h,, — h, G(¢t, - ; A))

tends to 0 as n— oc for every fixed r. Furthermore, by Schwarz’s
inequality

b
Iw.(f) — w(®)|® = ZCJ |G(t, s; A)|* ds < const.

if [,]2 < C, () < C. Thus [w, — w2 = f [w,(r) — w(t)|2 dt — O as
n — o by Lebesgue’s theorem on dominated convergence. [Actually, by
Theorem I 2.2, w,(f) — w(f) as n — o uniformly for @ < ¢t < b since it is
easily seen that the sequence wj, w,, ... is uniformly bounded and
equicontinuous.]

Finally, note that if h € H, then w = Gh is in H. In fact, (h, u,) =0
implies that (w, u,) = 0 as can be seen by applying the Green identity
2.10)tou=u,, f= —iu, v=w,g = —iw + h. Thus the restriction
of G to the weakly closed linear manifold H gives a completely continuous,
self-adjoint operator on H.

From (4.54) and (4.6), it is seen that & # 0 implies that w = Gh # 0.
Since H contains elements /& £ 0, Lemma 4.3 is applicable. Let Ghy, =
phy, where hy € H, ||hy|l = 1, u 52 0. Thus, if w, = Gh,, it follows from
(4.57), (4.6) that u = wy(t) £ 0 is a solution of (4.1 1 — 1/u) satisfying the
boundary conditions (4.2). Hence, by part (i), there is a non-negative
integer k such that 4 — 1/u = 4, and w, = cu, for some constant ¢ 5 0.
But this contradicts (wy, u,) = 0 forn = 0, 1, .. . and proves the theorem.



344  Ordinary Differential Equations

Exercise 4.3. Let py(t) > 0, ro(t) > 0 and ¢(¢) be real-valued con-
tinuous functions on an open bounded intervala < t < b. Let 4y, < 4; <
. Suppose that

4.19) (PO + [go(t) + A, ro(H)]u =0, n=0,1,...,

has a (real) solution u,(f) on a < ¢ < b having at most n zeros and such
that the limits lim u,(¢)/uy(t), t — a and ¢t — b, exist and are not zero.
(@) Show that if py(t) = 1/ry()u(t) > 0, ri(t) = 1/po(t)ue(t) > 0 and
q:1(t) = —Ao[po(t)ue™(t), then v, (1) = poughy,1 — Ug'u,, ) is a solution of

(4.20) () + (@) + Ayl =0, n=0,1,...,

having at most n zeros on @ < ¢t < b and such that the limits lim v,(t)/
v(t), t = a and t — b, exist and are not zero. (b) Show that there exist
positive continuous functions ay(t), a,(t), . . ., a,,(f) on a < t < b, such
that uy(?), . . ., u,_1(¢t) are solutions of the kth order linear differential
equation

(4.21) @1 - - . {aslar(agw)]y ...Y = 0.

Exercise 4.4 (Continuation). (a) Let py, rq, qo, 4,, 4, be as in Exercise
43 Leta <t < " <ty1 < banday, ..., o, be arbitrary numbers.
Then there exists a unique set of constants ¢, . . ., ¢, such that

(4.22) coug(t) + - + cult) = o4 for j=1,...,k+1

Use induction on & (for all systems u,, 4y, ...) or use Exercise IV 8.3.
[This result is, of course, applicable to (real-valued) u,(¢) in Theorem 4.1.
If the functions p,, ro, g, have derivatives of sufficiently high order, then the
interpolation property (4.22) can be generalized, as in Exercise IV 8.3(d).]
(b) Leta <ty <---<t,<b. Then D(t,,...,1t,) = det (ult,)), where
Jk=0,...,n, is different from 0. (¢) Let ¢, . . ., ¢, be real numbers
and U,(t) = couo(t) + - - - + c,u,(¢). Then U,(t) = 0 if U,(¢) vanishes at
n + 1 distinct points of a < t < b, and if U, () # 0 vanishes at n distinct
points, then it changes sign at each. (d) Every real-valued continuous
b

function o(t) orthogonal to u,,...,u, on [a,b] (ie., | vu;dt =0 for

a
J =0, ..., n) changes sign at least n + | times. (e) For any choice of
constants ¢,,, . . ., ¢,, the function ¢, u, () + - - - + c,u,(t) changes sign
at least m times and at most »n times, where m < n.

5. Number of Zeros

This section will be concerned with zeros of real-valued solutions of an
equation of the form

(5.1) W + g(Hu = 0.
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Theorem 5.1. Let ¢(t) be real-valued and continuous for a <t = b.
Let m(t) = 0 be a continuous function fora <t = b and

m(t)
(t—a)b—1)

If a real-valued solution u(t) # 0 of (5.1) has two zeros, then

(5.2) VYm = inf for a<t<hb.

b
(5.3) f m(q* () dt > y,(b — a),
where q*(t) = max (gq(¢), 0); in particular,

b
(5.4) f (t —a)b — Hg@®)dt > b — a.
Exercise 5.1. Show that the inequality (5.3) is *“sharp™ in the sense
that (5.3) need not hold if y,, is replaced by y,, + € for ¢ > 0.
Proof of Theorem 5.1. Assume that (5.1) has a solution (# 0) with two
zeros on [a, b]. Since g*(¢) = ¢(t), the equation

(5.5) W +qg@®u=0

is a Sturm majorant for (5.1) and hence has a solution u(¢) # 0 with two
zeros t = «, B on [a, b]; cf. Theorem 3.1. Since 4" = —qu, it follows
that

t B
(B—au(t) = (B — t)f (s —a)g*(shu(s) ds + (r — M)L (B — 99" (s)u(s) ds;

cf. Exercise 2.1, in particular (2.18). Suppose that «,  are successive
zeros of u and that u(¢) > 0 for « < t < . Choose t = t, so that u(t), =
max u(f) on («, B). The right side is increased if u(s) is replaced by
u(t,). Thus dividing by u(t,) > 0 gives

t B
poa<—0[6-0a@ds+ (- |6 = oreas

where t =1, Since f—t=<f—sfort=sand t —a =5 — a for
s =,

B
(5.6) B — <f B — s)(s — 2)q*(s) ds.

Finally, note that (r — a)b — 1)/(b — a) = (t — x)(8 — t)/(8 — «) for
a < a=<tZ B = b; infact, differentiation with respect to § and « shows
that (r — 2)(8 — t)/(8 — o) increases with § if # = « and decreases with
a if 1 £ B. Hence (5.4) follows from the last display. The relation (5.3)
is a consequence of (5.2) and (5.4). This proves Theorem 5.1.
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Since (t — a)(b — t) = (b — a)?/4, the choice m(t) = | in Theorem 5.1
gives the following:

Corollary 5.1 (Lyapunov). Let g(t) be real-valued and continuous on
a=t=b. A necessary condition for (5.1) to have a solution u(t) # 0
possessing two zeros is that

g 4
(5.7) Lq () dt > =—— .

Exercise 5.2. Let g(t) = 0 be continuous on ¢ = ¢t = b and let (5.1)
have a solution u(t) vanishing at t = a, b and u(t) > 0 in (a, ). (a) Use

b
(5.7) to show thatf g(t)dt > 2M|A, where M = max u(t) and 4 =
b a
f u(t) dt. (b) Show that the factor 2 of M/A4 cannot be replaced by a

larger constant.

Exercise 5.3. (a)Consider a differential equation u” + g(Hu’ + f(H)u =
0 with real-valued continuous coefficients on 0 = ¢ = b having a solution
u(t) # 0 vanishing at t = 0, 5. Show that

<th(b — Of*(¢) dt + max Uobt lg| dt, Lb(b — 1 lgl dt} .

(b) In particular, if [g| = M, and |f| £ M,, then | < Mb2 + M b?6.
But this inequality can easily be improved by the use of Wirtinger’s

mequalltyf wdt = (b/n-)zf ‘2dt (which can be proved by assuming

b= m, expanding u into a Fourier sine series, and applying Parseval’s
relation for u, u’). Show that 1| £ Mb/m + Myb* 7% (c) The result of
part (b) can further be improved to | < 2M,b/n? + M,b*n?. See Opial
[3]. (d) An analogous result for a dth order equation, d = 2, is as follows:
Let the differential equation u'® + p,()u'* ™V + - -+ + p,(u =0 have
continuous coefficients for 0 <t < b and a solution u(¢) # 0 with d
zeros on [0, b]. Let |p,(t)] £ M,. Then | < Mb + Mpb%2! 4+ -+ +
M, b7 (d — D+ (M d)I(d — 1)%7]d%].

When ¢(t) = ¢*(t) is a positive constant on [0, T], the number N of
zeros of a solution (g 0) of (5.1) on (0, T] obviously satisfies

. T T 14
69 =@ T=[ @ as(r] eod),
0 0
where the last inequality follows from Schwartz’s inequality. It turns out

that a similar inequality holds for nonconstant, continuous ¢(1):
Corollary 5.2. Let ¢(t) be real-valued and continuous for 0 =t = T.
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Let u(t) # 0 be a solution of (5.1) and N the number of its zeros on 0 <
t = T. Then

(5.9) N < %(TJ;TqJ’(t) dt)%+ 1

Proof. In order to prove this, let N = 2 and let the N zeros of u on
0, TIbe(0<)t; <t < - <ty(= T). By Corollary 5.1,

if u = tk’ v = tk+1’

(5.10) f a7 dt > -

—u

for k=1,..., N — . Since the harmonic mean of N — | positive
numbers is majorized by their arithmetic mean,

= N R ty =1
= — t )= >,

[N_lkgltk+l_tkjl _N_lkg(h&l lc) N —1
Thus adding (5.10) for k =1,..., N — 1 gives

iy — 1) _1)\2
f 7@ dt > 4N —1) > 4N—-1) ,
i t.V el tl T

hence (5.9).
Exercise 5.4. Show that N also satisfies

(5.11) N <f tq* (1) dt + 1.

To this end, use (5.3) with m(t) = ¢t — a in place of (5.7)..
Note that if g(¢) is a positive constant, then

T
wN—f q%dt‘é'rr.
0

An analogous inequality holds under mild assumptions on nonconstant ¢:

Theorem 5.2. Let g(t) > 0 be continuous and of bounded variation on
O0=t=T. Let u(t) #0 be a real-valued solution of (5.1) and N the
number of its zeros on 0 < t £ T. Then

N — [ ‘ . zrly_q@
N foq(t)dt = tal q(t)

Proof. In terms of u(t) define a continuous function ¢(t) by

(5.12)

_ /( Hu
o(t) = arc tan 132 ) 0= ¢(0) < 7.
Then [cf. Exercise 2.6; in partlcular (2.49) where p(t) = 1]

T T
o(T) = p(0) + f 0 di+1 f sin 2¢(1) d(log 4).
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By Lemma 3.1, N is the greatest integer not exceeding ¢(7)/m, so that
7N = ¢(T) £ =(N + 1). This implies (5.12).

Exercise 5.5. (a) Let g(t) be continuouson 0 =+ = 7. Let u(t) #£0
be a real-valued solution and N the number of its zeros on 0 <t < T.
Show that

T
N =TI S w4 11— gl .
0

(b) If, in addition, ¢(t) > 0 has a continuous second derivative, then

Tl T '2 "
wN—qu(t)dt‘§rr+f M _ 4
0 0

—— — = | dt.
164  4q*

Corollary 5.3. Let q(t) > 0 be continuous and of bounded variation on
[0, T] for every T > 0. Suppose also that

T T

(5.13) [ q'ldgl = o(f q* dt) as T— oo
v 0

e.g., suppose that q(t) has a continuous derivative q'(t) satisfying

(5.14) q(t) = o(g*(t)) as t— .

Let u(t) £ 0 be a real-valued solution of (5.1) and N(T) the number of its
zeroson 0 < t £ T. Then

T
(5.15) ﬂN(T)~f g%@t)dt as T— .
0

This is clear from (5.13) and the formula (5.12) in Theorem 5.2. It
should be mentioned that if, e.g., g is monotone and ¢(t) — o as t — oo,
then (5.14) imposes no restriction on the rapidity of growth of g(z) but is a
condition on the regularity of growth. This can be seen from the fact that

the integral
gra Tq dt 2
57 = ;. +const.
q q7(T)

tends to a limit as T— co; thus, in general, ¢'/¢* is “small” for large 1.
The conditions of Corollary 5.3 for the validity of (5.15) can be lightened
somewhat, as is shown by the following exercises.
Exercise 5.6. (a) Let g(t) > 0 be continuous for t = 0 and satisfy

(5.16) sup Logﬁt_(_mﬁo
sSt<oo 1 +fq%(r) dr

Let u(t) # 0 be a solution of (5.1) and N(T) the number of its zeros on
0 <t =T Then (515) holds. (b) Necessary and sufficient for (5.16) is

as §— 0.
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the following pair of conditions: f gt dt = oo and q(t + cqg*(1))/

q(t)— 1 as t — co holds uniformly on every fixed bounded c-interval on
—wo<c< w0

Exercise 5.7. Part (b) of the last exercise can be generalized as follows:
Let g(t) > 0 be continuous for t = 0. Let m(z) > 0 be continuous for
t > 0 and satisfy [m(t)/m(s)]= = C(t/s)” for 0 < s <t < o0 and some
pair of non-negative constants C, y. Necessary and sufficient for

|log g(t)/q(s)]
t
1+ [ mia dr
is that ~[‘wm(q(t)) dt = oo and that g(t + ¢/m[q()])/q(t) — | as min [,

sup —0 as §— o

sSi<oo

t + ¢/m(q(t))] = oo holds uniformly on every bounded c-interval on
—o0 < ¢ < o,

An estimate for N of a type very different from those just given is the
following:

Theorem 5.3. Let p(t) >0, q(t) be real-valued and continuous for
0= t=T. Letu(),v(t) be real-valued solutions of

(5.17) (pu) +qu=0
satisfying
(5.18) PO () — u(t)'(t)] = ¢ > 0.

Let N be the number of zeros of u(t) on 0 < t < T. Then '

(5.19)

r dt
aN —c¢ 5 5 =
o p(O[u (1) + v°(1)]
Proof. Let o« be an arbitrary real number. Consider the solutions
u*(t) = u(t) cos o + v(¢) sin a, v*(t) = —u(t) sin o + v(t) cos a
of (5.17). They satisfy
(5.20) w4 0?2 = u* 4 0¥, plutv* —utv¥]=c > 0.
Choose « so that u*(0) = 0 and let N* be the number of zeros of u*(z) on
0<t=T
Since (5.20) implies that u*, v* are linearly independent, they have no
common zeros. Hence it is possible to define a continuous function by

u*()
v*(1)
This function is continuously differentiable and, by (5.20),

C
(5.22 (1) = >0
(522 PO = o + R0

(5.21) (1) = arc tan and  @(0) = 0.
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Hence ¢(t) is increasing; also ¢(t) = 0 mod = if and only if u(r) = 0.
Thus N* is the greatest integer not exceeding ¢(T)/7 and a quadrature of
(5.22) gives T it
* < *

VS e <
Sturm’s separation theorem implies N* = N < N* 4 1, thus (5.19)
follows.

Exercise 5.8. Let p(1), (1), u(t), v(t), and N be as in Theorem 5.3 and,
in addition, let g(f) Z 0. Show that

T
N — Cf P ?Z(t) dt = =<2r
o p (™) + (1]

(Ifg > 0, the relations (5.19) and (5.23) are particular cases of “duality” in
which (u, v, g, dt) are replaced by (pu’, —u, 1/q,q dt); cf. Lemma XIV 3.1.)

Exercise 5.9. (a) Let g(t) be continuous for ¢+ = 0. Using (5.9) and
(5.19), show that if all solutions of u” + ¢g(t)u = 0 are bounded, then, for
large ¢,

t
(5.24) %f q*(s) ds = const. > 0.
0

(5.23)

Replacing u, v in (5.19) by u/e, ev, show that if, in addition, a nontrivial
solution u(t) — 0 as t — oo, then

t
(5.25) %J q*(s) ds — © as t— oo.
0

(b) Let g(z) = 0 for t 2 0. Using (5.9) and (5.23), show that if the first
derivatives of all solutions of u” + g(t)u = 0 are bounded, then, for large ¢,

t
(5.26) % f q*(s) ds = const.
0
If, in addition, u'(tf) >0 as t— oo for some solution u(t) # 0, then
t
(5.27) L J q*(s)ds - 0 as t— 0.
tJo

(¢) Generalize (a) [or (b)] for the case when u” + qu = 0 is replaced by
(pv') + qu = 0 and the assumption that solutions [or derivatives of
solutions] are bounded is replaced by the assumption that all solutions
satisfy u(t) = O(1/®()) [or u' () = O(1/D(¢))], where O(s) > 0 is con-
tinuous.

6. Nonoscillatory Equations and Principal Solutions

A homogeneous, linear second order equation with real-valued
coefficient functions defined on an interval J is said to be oscillatory on J
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if one (and/or every) real-valued solution (# 0) has infinitely many zeros
on J. Conversely, when every solution (# 0) has at most a finite number
of zeros on J, it is said to be nonoscillatory on J. In the latter case, the
equation is said to be disconjugate on J if every solution (# 0) has at most
one zero on J. If t = w is a (possibly infinite) endpoint of J which does
not belong to J, then the equation is said to be oscillatory at t = o if one
(and/or every) real-valued solution (# 0) has an infinite sequence of zeros
clustering at t = w. Otherwise it is called nonoscillatory at t = .

Extensions of many of the results of this section to higher order equations
or more general systems will be indicated in §§ 10, 11 of the Appendix.

Theorem 6.1. Let p(1) > 0, ¢(t) be real-valued, continuous functions on
a t-interval J. Then

6.1) (W) + g(u =0

is disconjugate on J if and only if for every pair of distinct points t, t, €J
and arbitrary numbers uy, uy; there exists a unique solution u = u*(t) of
(6.1) satisfying

(6.2) u*(t) =u, and u*(t,) = u?;

or, equivalently, if and only if every pair of linearly independent solutions
u(t), v(t) of (6.1) satisfy
(6.3) u(to(ty) — u(tx)o(ty) # 0

for distinct points t, t, € J.

Proof. Let u(t), v(t) be a pair of linearly independent solutions of
(6.1). Then any solution u*(t) is of the form u* = c,u(t) + c(t). This
solution satisfies (6.2) if and only if

cy(ty) + cov(ty) = uy, cyu(ty) + cov(ty) = us.

These linear equations for ¢;, ¢, have a solution for all u;, u, if and only if
(6.3) holds. In addition, they have a solution for all u;, u, if and only if
the only solution of

cyu(ty) + col(ty) = 0, cru(ty) + cpt(ty) = 0

is ¢; = ¢, = 0; i.e., if and only if the only solution u*(t) of (6.1) with
two zeros t = ty, ty is u*(t) = 0. )

Corollary 6.1. Let p(t) > 0, ¢(t) be as in Theorem 6.1. If J is open or is
closed and bounded, then (6.1) is disconjugate on J if and only if (6.1) has a
solution satisfying u(t) > 0 on J. If J is a half-closed interval or a closed
half-line, then (6.1) is disconjugate on J if and only if there exists a solution
u(t) > 0 on the interior of J.

The example ¥” + u =0o0nJ: 0 =t < = shows that, in the last part
of the theorem, there need not exist a solution u(t) > 0 on J.
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Exercise 6.1. Deduce Corollary 6.1 from Theorem 6.1 (another proof
follows from Exercise 6.6).

Exercise 6.2. Let p(t) > 0, g(t) Z 0 be continuous on an interval
Jia=<t<w(EZ wsuch thatf dt/p(t) = oo, then (6.1) is disconjugate

on J if and only if it has a solution u(t) such that u(t) > 0, v'(t) = 0 for
a<t< o

A very useful criterion for (6.1) to be disconjugate is a “variational
principle” to be stated as the next theorem. A real-valued function #7(t)
on the subinterval [a, b] of J will be said to be admissible of class A,(a, b)
[or Ay(a, b)] if (i) n(a) = n(b) = 0, and (ii,) n(¢) is absolutely continuous
and its derivative %(¢) is of class L2 ona =t =< b [or (iiy) n(t) is contin-
uously differentiable and p(t)5'(¢) is continuously differentiable on
a=t=b] Put

b
(6.4) I(n; a, b) =f (pn® — qn*)dt  for 5 € Ay(a, b).

If # is admissible Ay(a, b), the first term can be integrated by parts and it
is seen that

b
6.5y I(n;a,b)= —f nl(pn) +qnldt  for 7€ Aya, b).

Theorem 6.2, Let p(t) > 0, ¢(t) be real-valued continuous functions on a
t-interval J. Then (6.1) is disconjugate on J if and only if, for every closed
bounded subinterval a <t = b of J, the functional (6.4) is positive-definite
on Ay(a, b) [or Aya,b)]; ie., I(n;a,b)=0 for neAya,b) [or ne
Aya, b)] and I(n; a, b) = 0 if and only if n = 0.

The “only if”* half of the theorem is stronger for A4,(a, b) and the “if”
half is stronger for Ay(a, b).

Proof (“‘Only if”’). Suppose that (6.1) is disconjugate ona =t < b.
Then, by Corollary 6.1, there is a solution u(t) >0 ona=<t=b. If
n(t) € Ay(a, b), put {(t) = n(t)/u(t). Then

b
(6.6) I(n; a, b) =f [¥(pu'® — qu®) + p(u®L"® + 2L uu")] dt.

An integration by parts [integrating «’ and differentiating (pu’){%] shows
that the first term is

b b
f Cputdt = [(Ppuu’],? —f [Cu(pu’) + 2pLluu’l dt.

The integrated terms vanish since 7(a) = n(b) = 0 imply that {(a) =
{(b) =0. The last two formula lines and Z%u[(pu’)’ + qu] = 0 give

b
(6.7) I(n; a, b) =f put’®*dt  for n = ul e Ay(a, b).



Linear Second Order Equations 353

It is clear that /(%; a, b)) = 0 and I(n; a, b) = 0 if and only if {(t) = 0.
This proves the “only if”’ part of the theorem

Proof (“If””). Suppose that I(»; a, b) is positive definite on Ay(a, b
for every [a, b] = J. Let %(t) be a solutlon of (6.1) having two zeros
t =a, beJ. It will be shown that 5(¢) = 0. In fact 5(¢t) € 45(a, b); thus
(6.5) holds. Hence, I(%; a, b)) = 0 because 7 is a solution of (6.1). Since
(6.4) is positive definite on A4,(a, b), it follows that #(t) = 0. This implies
that (6.1) is disconjugate on J and completes the proof of the theorem.

Exercise 6.3. Suppose that J is not a closed bounded interval. Show
that, in Theorem 6.2, (6.1) is disconjugate on J if /(%; a, b) = 0 for all
[a, b] = J and all 5 € Ay(a, b).

Exercise 6.4. Deduce Sturm’s separation theorem (Corollary 3.1)
from Theorem 6.2.

If P is a constant positive definite Hermitian matrix, then there exists
a positive definite Hermitian matrix P, which is the “square root” of P
in the sense that P = P2 = P,* P;; cf. Exercise XIV 1.2. An analogue
of this algebraic fact will be obtained for the differential operator

Lin] = —(@t)n') — q(t)n.
Note that (6.5) can be written as

I(n;a,b)=(Llnl,n)  for e Aya,b);
cf. (4.17). Also, (6.7) can be written as

I(n; a, b) =f P—("—“—u——)dt

In addition to the quadratic functional (6.4), consider the bilinear form
1(n1, ms; a, b) =Lb(pm’nz’ — qm7e) dt
for n,, g, € Ay(a, b). If 5, € Ay(a, b), an integration by parts shows that
113 @, 8) = — | Y + an)di = (L}, o).

If u() is a solution of (6.1) and u(t) > 0 on [g, b], it is readily verified
that, for n,, 7, € Ay(a, b) and §; = n,/u, {; = n/u,

b
I(ny, my; a, b) =f puly 'Ly’ dt.
or

2

b ro_ ’ o ,
1(m, 25 a, b) =f pOnu muu)(n? u — nau’) dt
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Thus if the first order differential operator L, is defined by

I/E ’ ! !
_POu@) —qu' (D] _ % (7
L[yl = u(0) =p u( )

u

i.e., by

]/é ’ !
R ” PPN 2 OO U O 7 I /|
(63) Ltnl = pon =P pu(}
then it follows that
6.9 (LIml ne) = (Lilml, Lilme])  for 4, ma € Ay(a, b).

Consequently, if L [i.e., (6.4)] is positive definite on 4,(a, b), so that there
exists a positive solution u(t) > 0 of (6.1) on [a, b], then formally

L=L*L,

In fact this relation is not only formally correct but is correct in the
following sense:

Corollary 6.2. Let p(t) > 0, g(t) be continuous on J and let (6.1) have a
solution u(t) > OonJ. Let L, be defined by (6.8) and L,* its formal adjoint

<O% %, v
Ly*[n] = —(p/é(t)n)' — M,ﬂ - — (p”um) :
u(t) u

Lln] = Ll*{Ll["?]}

for all continuously differentiable functions v for which p(t)y’ is absolutely
continuous (i.e., for all n for which L[n] is usually defined).

This can be deduced from the identity (6.9) or, more easily, by a
straightforward verification. See Appendix for generalizations of this
result.

Theorem 5.3 and its proof have the following consequence.

Theorem 6.3. Let p(t) > 0, g(t) be real-valued and continuous on a
t-interval J. ThenJ is nonoscillatory on J if and only if every pair of linearly
independent solutions u(t), v(t) of (6.1) satisfy

of. § IV 8 (viii). Then

f dt <w®
7 p(O)(lul* + [v])
Furthermore, (6.1) is disconjugate on J if and only if

b dt
Mﬁmmm+ﬁ<"

for every pair of real-valued solutions u(t), u(t) satisfying p(u'v — w') =
¢ # 0 and every interval [a, b] < J.
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If Jis a half-open interval, say J:a = t < w (£ ) and (6.1) is non-
oscillatory at t = w, then (6.1) has real-valued solutions u(¢) for which

f dt/pu® is convergent and solutions for which it is divergent. The

latter type of solution will be called a principal solution of (6.1) at t = w.

Theorem 6.4. Let p(t) > 0, g(t) be real-valued and continuous on J:
a=t<w (= w©) and such that (6.1) is nonoscillatory at t = w. Then
there exists a real-valued solution u = uy(t) of (6.1) which is uniquely
determined up to a constant factor by any one of the following conditions in
which u,(t) denotes an arbitrary real-valued solution linearly independent

of uy(t): (i) ug, u, satisfy

(6.10) WO L0 as 1w
uy(1)
(ii) uq, uy satisfy
© 4 o 4
11 _ar d (6.11, __dr
(©110 f T f 0w

(iii) if T € J exceeds the largest zero, if any, of u)(t) and if u,(T) # 0O, then
uy(t) has one or no zero on T < t < w according as

6.12) L <X o (612) LSk
Uy U, U U
holds at t = T; in particular, (6.12,) holds for all t (€ J) near w.

It is understood that in (6.10) and (6.11) only r-values exceeding the
largest zeros, if any, of u,, u; are considered. A solution u,(t) satisfying
one (and/or) all of the conditions (i), (ii), (iii) will be called a principal
solution of (6.1) (at t = w). A solution u(t) linearly independent of u,(t)
will be termed a nonprincipal solution of (6.1) (at t = w). In view of (6.10),
(6.11), the terms ““principal” and “nonprincipal” might well be replaced
by “small” and “large.” The expressions “small,” “large” will not be
used in this context because of the relative nature of these terms. Consider,
e.g., the equations ¥’ —u =20, " =0 and u" + u/4t2 =0 for t = 1.
Examples of principal and nonprincipal solutions at ¢t = co for the first
equation are u = e~* and u = ¢*; for the second, u =1 and u = ¢; for
the third, u = ¢t and u=1t"logt; cf. Exercise 1.1. The proof of
(ii) will lead to the following:

Corollary 6.3. Assume the conditions of Theorem6.4. Letu = u(t) # 0
be any real-valued solution of (6.1) and let t = T exceed its last zero. Then

b ds

(6.13) () = ()| e
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is a nonprincipal solution of (6.1) on T =t < w. If, in addition, u(t) is a
nonprincipal solution of (6.1), then

(6.14) uy(t) = u(t )f p(s)u ©

is a principal solutionon T = t < w.

Proof of Theorem 6.4 and Corollary 6.3

On (i). Let u(t), u(t) be a pair of real-valued linearly independent
solutions of (6.1) such that

6.15) pW'v —uw')=c#0.

If T exceeds the largest zero, if any, of u(r), then (6.15) is equivalent to

(616) (4 =< =0
v pv
for T < t < w. Hence ujv is monotone on this t-range and so
(6.17) C =lim u(®)
two U(I)

exists if C = 4 oo is allowed.

It will be shown that u, v can be chosen so that C = 0in (6.17). If this
is granted and if u(z) is called uy(r), then (i) holds. In fact, a solution u,(z)
is linearly independent of uy(t) if and only if it is of the form uy(¢) =
Cop(1) + c,o(t) and ¢; % 0; in which case, C = 0 implies that u;, =
fe; + o(D]u(1); thus uy = o(u,) as t — w.

If C= 4o in (6.17) and if u, v are interchanged, then (6.17) holds
with C = 0. If |C| < o and if u(t) — Cu(t) is renamed u(z), then (6.15)
still holds and (6.17) holds with C = 0. This proves (i).

On (ii). Note that (6.16), (6.17) give

_um), [_ds
B o(T) + cf T p(s)o(s)

whether or not |C]| = o or |C| < o0. If u,v is a pair uy, u;, so that
C =0, then (6.11)) holds. If u, v is a pair u,, g, so that C = £ o, then
(6.114) holds.

On Corollary 6.3. Note that if u(r) is a solution of (6.1) and u(t) # 0
for T = t < w, then (6.13) defines a solution u,(¢) linearly independent of
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u(t) and that the same is true of (6.14) when the integral is convergent;
see § 2 (ix). By (i), this implies Corollary 6.3.

On (iii). Since uy, u, can be replaced by —u,, —u,, respectively, with-
out affecting the zeros of u, or the inequalities (6.12), it can be supposed
that

(6.18) u(t) > 0 for T=t<w and u(T)> 0.

Multiplying (6.12) by uo(T Yu;(T) > 0 shows that the case (6.15), where
(u, v) = (uy, up) holds with ¢ < 0 or ¢ > 0 according as (6.12,) or (6.12,)
holds. Hence u;(1)/uy(t) — F oo as t — w according as (6.12,) or (6.12,)
holds. Since u;(T )/uy(T) > 0 and, by the Sturm separation theorem, u,
has at most one zero on T < t < w, the statement concerning the zeros
ofu; on T< t < w follows.

It remains to show that property (iii) is characteristic of a principal
solution; i.e., if u,(t) has the property (iii) for every solution u,(t) linearly
independent of uy(t), then uy(r) is a principal solution. In particular (6.12;)
holds for t (€ J) near w. Consequently |uy(1)| = const. |uy(1)| for t — .
This is a contradiction if uy(z) is not a principal solution and uy(z) is
chosen to be a principal solution.

Exercise 6.5. Assume (i) that the conditions of Theorem 6.4 hold;
(i) that (6.1) has a nonvanishing real-valued solutionfor (¢ £) T = t < w;
and (iii) that u,,(t) is the unique solution of (6.1) satisfying u,(T) = 1,
Uo(r) =0, where T < r < w; cf. Theorem 6.1. (a) Show that u,(t) =
lim u,,(t) exists as r — w uniformly on compact intervals of J and is the
principal solution of (6.1) at t = w satisfying uo(T) = 1. (b) Show that
(a) is false if condition (ii) is relaxed to the condition that (6.1) is
disconjugate on T = t < w.

Exercise 6.6. Let p(t) > 0, g(t) be real-valued and continuous func-
tions such that (6.1) is disconjugate on a t-interval J having t = o (£ )
as right endpoint. Let u,(t) be a principal solution of (6.1) at t = w.
Then uy(t) # 0 on the interior of J.

Sturm’s comparison theorem implies that “q(t) < 0 on J” is sufficient
for (6.1) to be disconjugate on J. In this case, we can give some additional
information about a principal solution.

Corollary 6.4. Let p(1) > 0, g(t) = 0 be continuous on J : a =t < w.
Then (6.1) has a principal solution satisfying

(6.19) uy(1) > 0, u =20 for aft<w
and a nonprincipal solution u,(t) such that

(6.20) u,(t) > 0, u,'(t)>0 for a2t < w.
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Exercise 6.7. (a) In Corollary 6.4, the conditions (6.19) uniquely
determine u,(t), up to a constant factor, if and only if
(6.21) & _w o — f (6) dt =
p(?)
(b) Assume the first part of (6.21). Using Corollary 9.1, show that a
principal solution in Corollary 6.4 satisfies uy(t) — 0 as t — w if and only

it = [ g (["aripto ) =

For generalizations, related results, and a different proof of Corollary
6.4, see XIV §§ 1, 2.
Proof. Assume first that p(t) = 1, so that (6.1) is of the form

(6.22) u" + g(u =0,

where ¢ < 0. Hence the graph of a solution u = u(t) of (6.22) in the
(t, u)-plane is concave upwards when u(t) > 0. Let u(t) be the solution of
(6.22) determined by u(a) = 1, u'(a) = 1. Then u = u(t) has a graph
which is concave upward for a £ t < w. In particular, u(t) > u(a) =

@) Z u'(a)=1; sothat u(t) = 1 +¢t. Thus f dt/u’(t) is convergent,

and so u(t) is a nonprincipal solution of (6.22). By Corollary 6.3,

u(t) = “(t) 2( )
is a principal solution of (6.22). leferentlatmg this formula gives
uo'(t) = (t)f 2— - L
() u®
Since u'(¢) is nondecreasing,
uo’(t)<fu() S T )
t ) u@) s o U(s)

This gives (6.19). The case p(t) > 0 can be reduced to the case p(t) = 1

by the change of independent variables (1.7). This completes the proof.
Exercise 6.8. Give a proof of the part of Corollary 6.4 concerning

uy(t) along the following lines: Leta < T < w and let uy(t) be the solution

of (6.1) satisfying up(a) = 1, up(T) = 0; cf. Theorem 6.1. Show that

uy(t) = lim up(t) exists as T — o uniformly on compact intervals of

[a, w), is a principal solution of (6.1) and satisfies (6.19); cf, Exercise 6.5.
Corollary 6.5. In the two differential equations

(6.23) P + g =0,
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where j = 1,2, let pi(t) > 0, q,(t) be real-valued and continuousonJ : a <
t < w; let (6.23;) be a Sturm majorant for (6.23,), i.e.,
(6.24) P1Zp>0 and ¢, S¢y;

let (6.23,) be disconjugate [so that (6.23,) is also]. Let uy(t) 5 0 be a real-
valued solution of (6.235). Then (6.23;) has principal and nonprincipal
solutions, uy,(t) and uy(t), which satisfy

' ’ '

u u u
(6.25) Piltig < Pals < PiYyy
Ujo Ug Un

for all t beyond the last zero, if any, of uy(t).

The rough content of this corollary is that the principal [nonprincipal]
solutions of (6.22,) are smaller [larger] than the principal [nonprincipal]
solutions of (6.23;). If p; = p, and u,, uyq, 4y, are normalized by suitable
constant factors, (6.25) implies that u;q < uy < u;, for ¢ near w.

Exercise 6.9. In Corollary 6.5, the principal solutions u,y of (6.23,)

satisfyf uiy(ge — q1) dt < co. In particular, if ¢ =0 in (6.1), then a

principal solution u, of (6.1) satisﬁesf U2 |q| ds < oo.

Proof.

Case 1 (p, = p;). Suppose that uy(t) > 0for T =t < w. Makethe
variations of constants u = uyz in (6.23;). Then (6 231) is transformed
[cf. (2.31) of § 2 (xii)] irito

(6.26) (P1us2") + uX(q, — g2)2 = 0,
where ¢, — g, = 0 and

(6.27) =gl
u

By Corollary 6.4, (6.26) has solutions z,(t), z,(¢) satisfying z, > 0, z,’ = 0,
and 2, > 0,2, > 0 for T <t < w. The desired solutions of (6.23,) are
Uyg = Ugkg, Uy = UgZy.

Case 2 (p, # p;). The function r = p,u,'[u, satisfies the Riccati equa-
tion ' + r%/p, + ¢, = 0 belonging to (6.23,); cf. § 2 (xiv). This equation
can be written as

2
(6.28) F 4+ 4 40=0,
P1
where g =gy + (1/py — 1/p)(patts [us)* Z q» Z g But (6.28) is the
Riccati equation belonging to

(6.29) () + qou = 0,
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which is a Sturm majorant for (6.23,). In addition, (6.29) has the solution

[cf. § 2 (xiv)]
t t ’
u= expf (L) ds = expf (M) ds
T\Py T \pyly

? ?
P14 _ Palz

u’ Uy

satisfying

Thus application of the Case 1 to (6.23,), (6.29) gives the desired result.
Exercise 6.10. In the differential equations

(630 u + g’ — fi{u =0,

where j = 1,2, let f}, g, be continuous for 0 £t < w (Z w); let 0 =
S1(t) = fo(t) and g,(1) = go(1); let uy(t) be a solution of (6.30,) satisfying
w(0)=1 and u,(1) >0, /(1) £ 0 for 0 =1 < w; cf. Corollary 6.4.
Then (6.30;) has a solution u,(t) satisfying u,(0) = 1, u,’(t) =0 and
O0<u(t) S uy(t) for 0=t < w [in fact, satisfying u,(0)=1 and
0= uy/u; 21, (upfuy)) = 0for0 2t < wl

The following is a “selection or ‘“continuity” theorem for principal
solutions:

Corollary 6.6. Let pi(t), ps(t), . . ., p(t) and q:(t), qo(1), . . ., g (1) be
continuous functions for a £ t < o satisfying

6.31) p(1)>0, g(1)=0 for a=t<w and j=1,2,...,
and
(6.32) P = po(t),  q(t) > qo(t)  as j—o> o

uniformly on every closed interval of a =t < w. For 1 £j< 0, let
uo(t) be a principal solution of

(6.33,) (') + g =0

satisfying (6.19) and

6.34) u(@) = 1.

Then there exists a sequence of positive integers j(1) < j2) < - - - such that
(6.35) UL () = lim U 0(1), where j = j(n),

exists uniformly on every closed interval of a = t < w and is a solution of
(6.33,,) satisfying (6.19) and (6.34).

Of course, a selection is unnecessary (i.e., j(n) = n is permitted) if
(6.33,,) has a unique solution satisfying (6.19) and (6.34); cf. Exercise 6.7.



Linear Second Order Equations 361

Exercise 6.11. This corollary is false if the condition g,(t) =0 is
replaced by the assumption that (6.33;) is nonoscillatory and (6.19) is
deleted from both assumption and assertion.

Proof. Let u,,() be the solution of (6.33;) determined by

(6.36) uy(a) =1, pi@u;(a) = 1.

Then (6.20) holds and u;,(¢) is a nonprincipal solution of (6.33,); cf. the
proof of Corollary 6.4. Hence, by Corollary 6.3, the principal solution
u(t) of (6.33,) satisfying (6.34) is given by

(637) J‘uJO(t) = “Jl( )f VRN for a é t < o,
P (5)“;1(5)
where

¢ ds
6.38 C =f _—
( ) ’ a pj(s)“gl(s)

Differentiation of (6.37) gives

02 Culo(t) = uﬂ(t)f

so that, if t = a,

1
pJqu pi(t)ujl(t) ’

, 1
0= pla@)ujla)=1——.
o

Thus the sequence p(@)ujy(a), j = 1, 2, ..., is bounded if
(6.39) C,=const. >0 for j=1,2,...

In order to verify (6.39), note that (6.36) and the assumption on (6.32)
imply that wu;,(t) — u,,(t) as j— o uniformly on closed intervals of
a £t < w. Thus, by (6.38),

T T
C,->f ds2 _)f ds2 as j— o0
a pn a PolUxpl

for any fixed T, @« < T < w. This implies (6.39).

Since the sequence of numbers u;(a) = 1 and ujy(a) for j = 1,2, .
are bounded, there exist subsequences which have limits. If _](1) <
J(2) < - - - are the indices of such a subsequence and

1 = lim u,4(a), Uo = lim uje(a) for j = j(n) — oo,

then the assumption on (6.32) implies (6.35) uniformly on every interval
[a, T] < [a, w), where u(t) is the solution of (6.33 ) satisfying u(a) = I,
u,'(@) = ul,. The solution u,(r) clearly satisfies (6.19) and (6.34). This
proves Corollary 6.6.
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7. Nonoscillation Theorems

This section will be concerned with conditions, necessary and/or
sufficient, for

a.n W+ qtu=0

to be nonoscillatory. In view of the Sturm comparison theorem, the
simplest (and one of the most important) sufficient conditions for (7.1)
to be nonoscillatory [or oscillatory] is for (7.1) to possess a nonoscillatory
[or oscillatory] Sturm majorant [minorant]. For example, if g(¢) < 0 [so
that 4" = 0 is a Sturm majorant for (7.1)], then (7.1) is nonoscillatory. If
q(t) = pt2, then (7.1) is nonoscillatory or oscillatory at ¢ = oo according
asu < }or u > }; see Exercise 1.1(c). This gives the following criteria:

Theorem 7.1. Let g(t) be real-valued and continuous for large t > 0.

If
(7.2) —oo Zlimsup g(r) < —;: |:or o = lim inf £’g(r) > ﬂ,
t—=w

t> o
then (7.1) is nonoscillatory [or oscillatory] at t = .
If, e.g., t2q(t) — { as t — oo, then Theorem 7.1 does not apply. In this
case, Exercise 1.2 shows that (7.2) can be replaced by

17 1
— o0 < lim sup 12 log? 1 | g(t) — — | < =
o = lim sup 1 log [q() 4t2}<4
or
ooZliminft2log2tl:q(t)__1_:]>_1_
- t— o 442 4

In fact, the sequence of functions in Exercise 1.2 gives a scale of tests for
(7.1) to be nonoscillatory or oscillatory at t = 0.

The criterion given by Sturm’s comparison theorem can be cast in the
following convenient form:

Theorem 7.2 Let g(t) be real-valued and continuous for J : a St <
o (= ©). Then (1.1) is disconjugate on J if and only if there exists a
continuously differentiable function r(t) for a < t < ® such that

(7.3) r+rr4+q9)=0.

Exercise 7.1. Formulate analogues of Theorem 7.2 when J is open or
J is closed and bounded.

Remark. 1t is clear from § 1 that analogues of Theorem 7.2 remain

valid if (7.1) is replaced by an equation of the form (pu’) + qu =10
oru” + gu' + fu = 0 provided that (7.3) is replaced by the corresponding
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Riccati differential inequality r' + r2jp + g < Oorr' + rt + gr+ f =<0,
respectively.

Proof. First, if (7.1) is disconjugate on J, then (7.1) has a solution
u = uyt) > 0 for a < t < w; see Corollary 6.1. In this case, r = uy[u,
satisfies the Riccati equation

(1.4 Fr+rr+q)=0

fora < t < w. This proves the “only if” part of the theorem.

If there exists a continuously differentiable function r(¢) satisfying
(7.3), let go(t) = O denote the left side of (7.3) for a < ¢t < w, so that
r'"+rt+q—q,=0. Then

u' +1q(t) — qo()]u =0
is a Sturm majorant for (7.1) ona < t < w and, by § 2 (xiv), possesses the
¢
positive solution u = expf r(s) ds, where a < ¢ < w. This shows that

(7.1) is disconjugate on a < t < w. In order to complete the proof, we
must show that if u,(¢) # 0 is the solution of (7.1) satisfying u;(a) = 0
and u,’(a) = 1, then u,(t) # 0 for a < t < w. Suppose that this is not
the case, so that u,(t,) = 0 for some #y, a < t, < w. Since u; changes
sign at t =1, and solutions of (7.1) depend continuously on initial
conditions, it follows that if € > 0 is sufficiently small, then the solution
of (7.1) satisfying u(a + €) = 0, u'(a + €) = 1 has a zero near t,. This
contradicts the fact that (7.1) is disconjugate on a < t < w and proves
the theorem.

Exercise 1.2. (a) Using the Remark following Theorem 7.2, show that
if, in the differential equations

(7.5) U’ + gt + fi(t)u =0,

where j = 1, 2, the coefficient functions are real-valued and continuous on
J:a =t < w(Z o) such that

(7.6) &) 2 g1, fi(t) = fo(1)

and if (7.5,) has a solution u(z) satisfying u > 0, v’ Z 0 for a < t < o,
then (7.5,) is disconjugate on J. [For an application in Exercise 7.9, note
that the conditions on (7.5;) hold if (7.5;) is disconjugate on J, fo(¢) Z 0

w t
andf [exp —fgz(s) ds} dt = o; cf. Exercise 6.2.] (b) Let f(t) be

continuous and g(¢) continuously differentiable real-valued functions on
a=<t=bh. Then

U+ gt + f(Hu=0
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is disconjugate on [a, b] if there exists a real number ¢ such that

SO —cg'(t) + cc — Dg¥1) =0
fora<t=b.
Corollary 7.1. Let g(t) be real-valued and continuous on J:a =t < w,
C a constant, and

o)) Q0 =C —f q(s) ds.
If the differential equation
(7.8) U+ 4Q%(Hu=0

is disconjugate on J, then (1.1) is disconjugate on J.

Exercise 7.3. Show that this corollary is false if the 4 in (7.8) is
replaced by a constant y < 4.

Proof of Corollary 7.1. In the Riccati equation (7.4) belonging to (7.1),
introduce the new variable

(7.9 p=r—Q,

so that p" = r’ 4+ g, and (7.4) becomes

(7.10) P+ pt+20p+ Q*=0.

Since 2Qp = p? + 02, a solution of

(7.11) P22+ 05)=0

on some interval satisfies

(7.12) P+ pE+20p+ Q2 =0.

The differential equation (7.11) can be written as

(7.13) o +024+402=0 if o=2p.

Finally, (7.13) is the Riccati equation for (7.8).

Thus if (7.8) has a solution u(t) > 0 on J, then o = u'/u satisfies (7.13).
Hence p = }osatisfies (7.12) and r = p + Qisa solution of the differential
inequality (7.3) on J. In virtue of Theorem 7.2, this proves the corollary.

Exercise 7.4. A counterpart of Corollary 7.1 can be stated as follows:
Let g(t) be real-valued and continuous for 0 =t < b. Let a be fixed,
0 = a < b. Suppose that

o) = f 4(s) ds

has the properties that Q(r) Z 0 for @ = t < b and that if 2(¢) is a solution
of 2" + Q¥t)z = 0,2'(a) = 0, then z(t)has a zero on a < t £ b. Then a
solution u(t) of (7.1) satisfying 4'(0) = 0 has a zero on 0 <t < b.
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One of the main results on equations (7.1) which are nonoscillatory at
t = oo will be based on the following lemma.

Lemma 7.1. Let q(t) be real-valued and continuous on 0 £ t < o with
the property that (1.1) is nonoscillatory at t = . Then a necessary and
sufficient condition that

=] ul 2
(7.14) f (——) dt <
u
holds for one (and|or every) real-valued solution u(t) # 0 of (7.1) is that
1 T t
(7.15) lim —f (f q(s) ds) dt=C exists
r-<xTJo \Jo

(as a finite number).
Remark. For the application of this lemma, it is important to note
that the proof will show that condition (7.15) can be relaxed to

(7.16) lim inf;l“LT(J:q(s) ds) dt > —oo.

I
In other words, when (7.1) is nonoscillatory at t = co, then (7.16) implies
(7.15); in fact, it implies the stronger relation

2
dt—0 as T— oo.

(7.17) %‘[)T C —fotq(s) ds

Exercise 1.5. Let g(t) be as in Lemma 7.1. Show that

’

(7.18) 2.0 as 1>
u

holds for one (and/or every) real-valued relation u(t) # 0 of (7.1) if and
1
(7.19) sup —

only if
t+a
5)ds
t<o<o ] 4 ¢ J; q()

[Note that (7.19) holds if, e.g., g(t) — 0 as 1 — o or f lg(s)I? ds < <o for
some y = 1.]

Proof. Suppose first that (7.14) holds for a real-valued solution
u(t) # 0 of (7.1). Let t = a exceed the largest zero, if any, of u(r). Put
r=1u'fu for t Z a, so that r satisfies the Riccati equation (7.4). A
quadrature gives

t
(7.20) r(t) +ftr2(s) ds = r(a) —f q(s) ds

—-0 as t— oo.
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for t Z a. Then (7.14) implies that (7.20) can be written as

(7.21) 1) — f “R(s)ds = C — f 465) ds,

where C = r(a) —fwrz(s) ds +faq(s) ds. By(7.14),
a 0

lfTrz(t) dt lfT(fwrz(s) ds)2 dt—>0 as T—
TJa ’ T 4 '

a

Hence (7.21) implies (7.17) [by virtue of the inequality (« + )2 <
2(o® + $?) for real numbers o, B]. Since Schwarz’s inequality [cf. (7.22)]
shows that (7.15) is a consequence of (7.17), it follows that (7.15) is
necessary for (7.14).

In order to prove the converse, assume (7.16), that u(¢) # 0 is any real-
valued solution of (7.1), and that u(¢) > 0 for t = a. Then (7.20) holds
for r = u'[/u and a quadrature of (7.20) gives

lt f ‘Hs) ds + ltf(frz(a) do) ds

- ltr(a)(t _a)— %Lt(fq(o) do) ds.

The assumption (7.16) implies that the right side is bounded from above.
Suppose, if possible, that (7.14) does not hold, then the second term on the
left tends to oo as t — <0, thus

t ¢ 8
- lf r(s)ds = L f (f r*(o) da) ds  for large t.
tJa 2t Ja a
Schwarz’s inequality implies

1t 1 [t ]
(7.22) —f r(s)ds| = (— f r’(s) ds)

tJa tJa
and, consequently,

4t f sy ds = ( f t( f 1%(0) da) ds)2 for large 1.

This can be written as

¢ s
4tS' = S*  where S(p) =f (f r’(0) da) ds — o
as t > . A quadrature gives o

const. — 4 = logt for large ¢.
S(1)
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This contradiction shows that the hypotheses that (7.14) fails to hold is
untenable and proves the theorem.

Theorem 7.3. Let q(t) be real-valued and continuous for 0 <t < oo.
A necessary condition for (1.1) to be nonoscillatory at t = <o is that either

(7.23) lim inf%fT(fotq(s) ds) dt = —

I>w 0

or that (1.15) holds [and, in the latter case, (7.17) holds].
It follows, e.g., that if g(t) = 0, then, in order for (7.1) to be non-

@
oscillatory at ¢t = co, it is necessary that| g¢(z)dt < co. In fact, as is

seen from Exercise 7.8, it is necessary thatf t’q(t) dt < oo for every
y < L.

Proof. Suppose that (7.1) is nonoscillatory at t = oo and that (7.23)
fails to hold, so that (7.16) holds. The validity of (7.17) must be verified.
But this is clear from the proof of Lemma 7.1 which shows that, on the one
hand, (7.16) implies (7.14) for every real-valued solution u(¢) # 0 of
(7.1) and, on the other hand, that (7.14) for some solution assures (7.17).

Exercise 7.6. Let g(t) be as in Theorem 7.3 and, in addition, satisfy

(7.24) q@t)— 0 as t—

or, more generally, (7.19). Then a necessary condition for (7.1) to be
nonoscillatory at ¢ = oo is that either

T
(7.25) f g(t) dt > — 0 as T— o
0
or that
© T
(7.26) f q(t) dt = lim f q(t) dt converges
0 IT-0J0

(possibly conditionally).
Exercise 7.7. (a) Give examples to show that (7.15) in Theorem 7.3 is
compatible with each of the possibilities

T/t
(7.27) limsup %f (fq(s)ds) dt is —oo, finite, or <4 o0.
0 0

I'->w

(b) Show that if, in Theorem 7.3, ¢(¢) is half-bounded or, more generally,
if there exists an € > 0 such that

s+t
f q(o) do is half-bounded for 0=t < 0, 0=ZLs =L
t

then a necessary condition that (7.1) be nonoscillatory is that either
(7.15) or (7.25) hold. See Hartman [11].
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Changes of variables in (7.1) followed by applications of Theorem 7.3
(and its consequences) give new necessary conditions for (7.1) to be non-
oscillatory. This is illustrated by the following exercise.

Exercise 7.8. (a) Introduce the new independent and dependent
variables s = 7, y > 0 and z = t""V/%y, and state necessary conditions
for the resulting equation and/or (7.1) to be nonoscillatory at t = co.
() In particular, show that if g(t) = 0 and (7.1) is nonoscillatory at

t = oo, then| #~7g(t)dt < o for ally > 0.

The next result gives a conclusion very different from (7.17) in Theorem
7.3 in the case (7.15).

Theorem 7.4. Let q(t) be as in Theorem 7.3 such that (1.1) is non-
oscillatory at t = o0 and (7.23) does not hold [so that (7.15) does). Then

(7.28) jwexp (—yftQ(s) ds) dt = © for 0<y=4,
0

where
(7.29) on==¢C —ftq(s) ds.
0

In applications, interesting cases of this theorem occur if (7.26) holds,
so that

(7.30) o@) =‘£mq(s) ds.

It is readily verified from g(r) = u/t? t = 1, that the “4” in (7.28) cannot
be replaced by a larger constant. It is rather curious that the proof of
Corollary 7.1 and Theorem 7.4 depend on the inequality 20p < p* 4+ Q2.
In the proof of Corollary 7.1, this inequality is used to deduce (7.12) from
(7.11); in the proof of Theorem 7.4, it is used to deduce

(7.31) pP+40p=0

from (7.10).

Proof. Letu = u(t) # 0 be a real-valued solution of (7.1) and suppose
T is so large that u(t) O for t = T. Since it is assumed that (7.15) holds,
the relation (7.14) holds. Thus if » = u'/u, a quadrature of the corre-
sponding Riccati equation gives (7.21) as in the proof of Lemma 7.1.
Rewrite (7.21) as r(t) = p(t) + Q(t), where

(7.32) o() =fmr2(s) ds.

Since p' = —r2 = —(p + Q)% the equation (7.10) holds. This gives
(7.31). In particular, if O(t) Z 0, then

(7.33) p+y0p =0 for 0 <y =4
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Note that if Q < 0, then (7.33) holds since p’ <0, p = 0. Hence
(7.33) holds for ¢+ = T. Since the result to be proved is trivial if g(r) = 0
for large ¢, it can be supposed that this is not the case. Hence r # 0 for
large ¢ and so, p(t) > 0. Consequently, (7.33) gives

(7.34) p(t) = p(T)exp (—yj; 0(s) ds) for t+= T

Suppose, if possible, that (7.28) fails to hold, then (7.32), (7.34) show
that

f p(t)dt < o,  hence f tri(Hdt < o

holds for r = u'/u, where u(t) # 0 is an arbitrary real-valued solution of
(7.1). Tt will be shown that this leads to a contradiction. To this end, note

that
ut) _ [*
log o(T) —L' r(s) ds.

Thus Schwarz’s inequality gives

[os 3] = ([roa) ([[%).

Consequently there exist constants ¢, ¢ such that [u(r)| = ¢, exp c(log t)*
for large ¢. It follows that

f ® dt
O
for all real-valued solutions (# 0) of (7.1). This contradicts the existence

(Theorem 6.4) of nonprincipal solutions and completes the proof.
Exercise 7.9. In the differential equations

(7.35)) W+ q;(Hu =0,
where j = 1, 2, let g(¢) be real-valued and continuous for large ¢t and such

that
® T
040 =£ g,(s)ds = lim .£

TI'-w

exp [—2c(log 1)** 1dt = oo

converges (possibly conditionally), |Q,(7)| = Qx(t), and (7.35;) is non-
oscillatory at = co. Show that (7.35,) is nonoscillatory at 1 = 0.

8. Asymptotic Integrations. Elliptic Cases

In the next two sections, we will consider the problem of the asymptotic
integration of equations

8.1) W +qtu=0,
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where ¢(¢) is continuous for large ¢. Except for the last part of this section,
the main interest will center around the situations where the coefficient
¢(t) is nearly a constant or (8.1) can be reduced to this case. The last part
of this section (see Exercises 8.6, 8.8) deals with bounds for |u’| when
g(¢) is bounded from above.

When ¢(2) is a constant, say 4, and 1 is real and positive, then the solu-
tions are, roughly speaking, of the same order of magnitude. On the
other hand, if 1 is not real and positive, then essentially there is one small
solution, as ¢t — oo, and the other solutions are large. These facts indicate
that different techniques will be needed when ¢(¢) is nearly a constant 4,
and 1 is or is not real and positive. In this section, the first case will be
considered.

Theorem 8.1. In the differential equations (8.1) and

®2) W+ go(t)w =0,

let g(t), qo(t) be continuous, complex-valued functions for 0 =t <
satisfying

8.3) f "I 16(1) — 4(0)l dt < oo

for every solution w(t) of (8.2). Let uy(t), v(t) be linearly independent
solutions of (8.2). Then to every solution u(t) of (8.1), there corresponds at
least one pair of constants «, f§ such that

u(t) = [ + o(DJug(t) + [8 + o(1)]vg(1),
8.9

w(t) =[x + o(D]uy' (1) + [8 + o(1)]vy'(2),

as t — oo; conversely, to every pair of constants «, f3, there exists at least
one solution u(t) of (8.1) satisfying (8.4).

Note that for a given u(t), (8.4) might hold for more than one pair of
constants («, f). Thisistrue, e.g., if vy(t) = o(uy(t)) as t — 0.

An interesting aspect of Theorem 8.1 is the fact that the main condition
(8.3) does not involve the derivatives w'(z) of solutions w(z) of (8.2). This
advantage is lost if (8.1) or (8.2) is replaced by a more complicated equation
as in the Exercise 8.4 below.

Proof. It can be supposed that det Y(¢) = 1, where

Uy U
Yt) = I
uy vy

Write (8.1) as a first order system x’ = A(¢)x for the binary vectors
xz = (u,u’); cf. (2.5). Then the variations of constants * = Y(¢)y reduce
the system x’ = A(f)z, say to ¥ = C(t)y, in (2.28); cf. §2(xi). Thus
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Theorem 8.1 follows from the linear case of Theorem X 1.2, cf. Exercise
X 1.4.

Corollary 8.1. Let q(t) be a continuous complex-valued function on
0 = t < oo satisfying

8.5) fmu —g()] dt < .

Then if o, § are constants, there exists one and only one solution u(t) of
(8.1) satisfying the asymptotic relations

u=[a+o0o)]cost+ [+ o(l)]sin ¢,
(8.6)
W = —[a+ ol)]sint + [ + o(1)] cos ¢.
The relations (8.6) can also be written as u = d cos [t + ¥ + o(1)],
W = —0dsinft 4+ y + o(1)] as t — oo for some constants y and 6.
Exercise 8.1. Show that if «, § are constants, there exists a unique
solution u(?) of the Bessel equation 20" + tv' + (12 — pu?)v = 0 for ¢t > 0
such that u(t) = t*4u(t) satisfies (8.6) as t — .
Exercise 8.2. Show that the conclusion of Corollary 8.1 is correct if
(8.5) is relaxed to the following conditions in which f(t) = 1 — ¢(z): the
integrals

g2o(d) =j f(®ds, g(v =‘f f(s) cos 2s ds, gu(t) =‘f f(s) sin 2s ds
t t t
® T
exist as (possibly conditional) improper Riemann integrals ( j = lim‘f
as T — oo) andjmlgk(t)f(t)l dt < oo fork=0,1,2.

Exercise 8.3. (a) Let g(t) be a positive function on 0 = 1 < oo possess-
ing a continuous second derivative and such that
5q12 _ —q—u_

a0 l/é a0
8.7 fq (t)ydt = oo and j 168 4g°

Then the assertion of Corollary 8.1 remains valid if (8.6) is replaced by

q%dt < 0.

q"u = [a + o(1)] cos L tq%(s) ds + [B + o(1)] sin L tq%(s) ds,

@™ = —lo+ o sin [ 4¥5) ds + 18 + o] cos [ 49 ds

(b) Show that (8.7) in (a) holds if 0 ¢ o > —3}, g(¢) = const. > 0 for
0 =t < o, and f(#) = ¢*(t) = 0 has a continuous second derivative such

thatf |f(8)] dt < oo. [Infact, for the validity of the conclusion of (a), it



372 Ordinary Differential Equations

can be merely supposed that f() has a continuous first derivative which is
2o}

of bounded variation on 0 < ¢t < o0, i.e.,f ldf'(1)] < o0; e.g, f'(2)is

monotone and bounded. This last refinement follows from the first part
by approximating ¢(¢) by suitable smooth functions.]
Exercise 8.4. (a) In the differential equations

(8.8, puY +rw +qu=0, j=0,1,

let pt) # 0, g(t), r(t) be continuous complex-valued functions for
0 <t < o such that

<) t
f lwl* g, — qol . expf o ds dt < o,
Do
<) t
(8.9) f [ pow’|? 1_1 .\expf o ds dt < oo,
D1 Do Do
“lrn_n , ‘ro ds
— — =111 4+ | poww exp dt < o©
D D1 Do

hold for all solutions u = w(t) of (8.8y). Let uy(z), v4(?) be linearly in-
dependent solutions of (8.8,). Then to every solution u(¢) of (8.8,), there
corresponds at least one pair of constants «, § such that (8.4) holds;
conversely, if «, 8 are constants, then there is at least one solution u(t) of
(8.8,) satisfying (8.4). (b) In the differential equation (8.1), let g(r) < 0 be
a continuous, complex-valued function for 0 = ¢t < oo such that ¢(¢) is

of bounded variation over 0 < ¢t < (i.e., fw ldg] < oo); Co =
0
lim ¢(¢), ¢ — oo, is a positive constant; and the solutions u(z) of (8.1) are
bounded (e.g., if ¢(¢)is real-valued or, more generally, f [Img(¢)| dt < o0,
then solutions u(¢) and their derivatives u'(t) are bounded). Let «, 8 be
constants. Then (8.1) has a unique solution u(¢) satisfying, as t - o,
t t
u =[x + o(1)] cosf q*(s) ds + [B + o(1)] sinf g% (s) ds,
0 0
(8.10)
t t '
u = la+ o(l)]c:,’é sinf q%(s) ds + [f + o(l)]cl{f cosf q’é(s) ds,
0 0
where ¢*% (¢) is any fixed continuous determination of the square root of 4.

Exercise 8.5. Let f(t) be a nonvanishing (possibly complex-valued)
function for ¢ = 0 having a continuous derivative satisfying

J"l4(7)

.S 2
< o, = lim 5, and # 1.
y {20 4f/é y
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Suppose further that

4 ' fl2 Ls
(8.11) exp + iff’é(l - —) dr  are bounded
16/
as t — oo, Then the differential equation
(8.12) W4 f(Hu=0

has a pair of solutions satisfying, as t — oo,

u~f"texp £ i‘rf%(l - I%;)A dr,

W~ [—y i1 =y .

Here all powers of f(¢) that occur can be assumed to be integral (positive
or negative) powers of a fixed continuous fourth root f*(z) of f(z). Condi-
tion (8.11) is trivially satisfied if f(¢) is real-valued and positive and
0<y<lL.

The object of the next exercise is to obtain bounds for derivatives of
solutions of (8.1) or, more generally, the inhomogeneous equation

(8.13) W + gt = f(0).

Exercise 8.6. Let ¢(1), f(t) be continuous real-valued functions on
0 < t < t,. Let the positive constants €, 1/6 > 1, C be such that

6
(8.149) 0<e= ro
and
, .
(8.15) jq(‘r) dr=C if b—a é-CQ

and 0 = a < b =ty [The inequality (8.15) holds, e.g., is g(t) = C?%6
for0 <t £ t,.] Letu = u(z) be a real-valued solution of (8.13). Consider
the case

u' Z20att=T,0=T=<t,—6/C,S=T+0/C,U=T+ ¢
or the case
' < 0att=T,0/C=ET=t,S=T—0/C,U=T—c¢.
(a) Show that, in either case,

U
L[ df\ + max [Cl'—”(%" (c + 1)|u(U>|}.

. T & —
(8.16) (DI = —
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(b) Show that (8.16) holds if [u(U)| is replaced by 2¢e™!
(@) implies that if 6/C < t < t, — 6/C, then

. {(¢) Part

U
f |u| dr
T

@17) () = l—i——é ttjc If] dr + Cufe) i_lw(t +jo)l,
where Cy() = max (C/(1 — 6), C + 1/¢). (d)Put
3.19) 1) = (0] + Clu().

Show that there exists a nondecreasing function K(A) for 0 < A <
min (6, 1 — 6)/C such that

319 r(= K(A){r(a) + r(b) +fb|f| d'rl for a<t=<b

ifb—a=Aand0=<a<b=t,
The results of the last exercise can be extended to an equation of the
form

(8.20) u' + p(t' + q(tu = f(1);

see Exercise 8.8. In fact, the results for (8.20) can be derived from those
on (8.13) by the use of the lemma given in the next exercise which has
nothing to do with differential equations.

Exercise 8.7. Let h(t) = 0 be of bounded variation and g(¢) continuous
on an interval a £ t £ b. Then

b B
8.21) f h(t) dg(t) < (inf h 4+ var h) sup dg(),

a asa<BsSb Jg
where the integrals are Riemann-Stieltjes integrals and var & denotes the
total variation of A(t)ona = t = b.

Exercise 8.8. Let p(t), q(t), f(t) be continuous real-valued functions on

0 <t < ¢, and u(?) a real-valued solution of (8.20). Let 1/6 > 1, C be
positive constants such that (8.15) holds. Consider the two cases in
Exercise 8.6, with (8.14) replaced by

s
(8.22) 0 < e < 6/CE?, where E = exp f | p(7)| dr
T

(@) Then parts (a), (b) of Exercise 8.6 hold if |u'(T)| in (8.16) is replaced by
[ (T)I/E. (b) Part (c) of Exercise 8.6 holds if |1'(¢)| in (8.17) is replaced by
[t (¢)|/E, where

(8.23) 0<e=<6/CE and

t+6/C
E = max epr |p(9)| dr for 0<t=<1—0/C.
i
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(¢) Part (d) of Exercise 8.6 holds if A is restricted to 0 <A <
min (0, 1 — 0)/CE?, where E is defined in (8.23).

9, Asymptotic Integrations. Nonelliptic Cases

Asymptotic integrations of u” 4 g(t)u = 0, where g(¢) is ““nearly” a real,
but not positive constant, can be based on Chapter X as were the results
of the last section. Instead a different technique will be used in this section;
this technique takes greater advantage of the special structure of the
second order equation

0.1) (p(ye'Y + gty = 0.
This equation is equivalent to a binary system of the form
.2 v = B(t)z, 2= y(

in which the diagonal elements vanish. [This system cannot be reduced
to an equation of the form (9.1) unless either B(¢) or y(z) does not vanish.]
The main results on (9.1) will be based on lemmas dealing with (9.2).

A system of the form (9.2) on 0 = ¢ < w (= 0) will be called of type Z
att = o if . .
Hw) = lim z(¢) existsas t—w
for every solution (v(¢), z(#)), and z(w) 3 0 for some solution. It is easy
to see that (9.2) is of type Z if and only if there exist linearly independent
solutions (v,(2), 2,(¢)), j = 0, 1, such that lim z(f) = 0 and lim z(t) = 1.

Lemma 9.1. Let B(2), y(t) be continuous complex-valued functions for
0=t < w(=w). Suppose that

9.3) fw|y(t)|dt<oo; ©.3) f”mm (ftlﬁ(s)l ds) it < o

or, more generally, that

™ T
(94, fy(t)dt=lim f y(f)dt  exists
T o

(possibly conditionally) and that

jwy(r) dr
t

9.4,) fwlﬁ(s)l I'(s) ds < o, where ['(s) = sup

sst<o
Then (9.2) is of type Z.
Unless B(z) = 0, the condition (9.3,) implies (9.3,). If the order of
integration is reversed, it is seen that (9.3,) is equivalent to

f‘" |ﬂ(s)|(f o)l dt) ds < .

This shows that (9.3) implies (9.4). Lemma 9.1 has a partial converse.
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Lemma 9.2. If f(t) and y(t), where 0 = t < w (= 0), are continuous
real-valued functions which do not change sign (i.e., § =2 0 or § =0 and
y20ory =< 0)andif (9.2) is of type Z, then (9.3,)-(9.3,) hold.

Exercise 9.1, Generalize Lemma 9.1 to the case where (9.2) is replaced
by a d-dimensional system of the form v’" = y,(t)v’+!, wherej=1,...,d
and v+l = vl

Proof of Lemma 9.1. Two quadratures of (9.2) give

¢
©5) o) =Lﬂ(s)z(s) s+ en  o=ol),

06 0= o[ pra ards +erf A ds +en =D,
T T T

On interchanging the order of integration, the last formula becomes

.7 (1) =J:ﬂ(r)z(r).[‘:y(s) ds dr 4+ cl.[; y(s) ds + c,.

Ift = T, then T = r £ t and the definition of " in (9.4,) imply that

(9.8) J‘t'y(s) ds| < fwy(s) ds| + fwy(s) ds| < 20(r).
T L ¢
Consequently
t
%) = 2fT|ﬂ(s)| [(s) |=(s)| ds + C,
where
9) C =2 I(T) + ey

By Gronwall’s inequality (Theorem III 1.1),

(9.10) |1 = Cexp 2f;|/3(5)| ['(s)ds = Cexp 2f:lﬂ(S)I [(s) ds

for T = t < w. Hence (9.4,) implies that z(t) is bounded. The relations
(9.7) and (9.4,) then show that z(w) = lim 2(¢) as t — w exists.

The limit z(w) is obtained by writing t = w in (9.7). In order to show
that z(w) £ 0 for some solution of (9.2), choose the initial conditions
aq=v(T)=0and ¢, =2(T)=1 in (9.5), (9.6). Thus C=1 in (9.9)
and (9.10) and so (9.7), (9.8), and (9.10) give

() — 11 < 2( Lwlﬂ(r)l T() dr) exp 2 f:lﬂ(s)l I(s) ds.

Since the right side tends to 0 as T — w, it follows that if T is sufficiently
near to w, then z(w) £ 0. This proves Lemma 9.1.
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Proof of Lemma 9.2. Let (v(¢), 2(¢)) be a solution of (9.2) such that
(w) = 1. It can also be supposed that v(T) = 0 for some 7. Otherwise
it is possible to add to (v(z), 2(z)) a suitable multiple of a solution (vy(t),
zo(1)) # 0 for which 2(w) = 0. In fact vy(t) = 0 cannot hold, for then
(9.2) shows that 24(t) = z,(w) = 0.

Thus ¢, = 0in (9.6) and z(w) = 1 shows that (9.3,) holds (since 8, y do
not change sign). If B(t) # 0 for ¢ near w, (9.3,) follows. If, however,
B(t) = 0 and (9.2) is of type Z, then (9.3;) holds when y does not change
signs. This completes the proof.

Let (v(2), (1)), (v1(2), 2,(2)) be solutions of (9.2). Then

.11) 2(Du(1) — vi(1)2(1) = ¢,
is a constant. This follows from Theorem IV 1.2 (or can easily be verified
by differentiation). If z)(t) # 0 and (9.11) is multiplied by y(2)/2,%(¢), it is

seen from (9.2) that (2/z,)" = c4y/7,%, and hence there is a constant ¢, such
that

¢ y(s) ds
(9.12) A1) = cx() + Cozl(t)f Z'(’z)_
T 2%(5)
if 2, 0 on the interval [7,¢]. Similarly, if v, % 0 for [T,¢] then
(v/v)) = —coffv,? and
. £ B(s) ds
(9.13) () = cy5(8) — covl(t)f /3(2) .
T 0;(s)
Conversely, if z; # 0 [or v, # 0] in the t-interval [T, 1], then (9.12) [or
(9.13)] and (9.11) define a solution (v(¢), 2(t)) of (9.2).
Exercise 9.2. Suppose that (9.2) is of type Z and that (v,(¢), 2,(2)) is
a solution of (9.2) satisfying z,(w) = 1. (a) Show that

w T
f M =lim f M exists
T—w

2°(8) 2°(1)
and that (9.2) has a solution (vy(2), 24(¢)) in which
0.14) ) =) [
¢ 21(5)

for ¢ near w. (b) If (v(2), 2(2)) is any solution of (9.2), then
t
v(t) = 0(1 +f |B(s)I ds) as t— w.

If, in addition, (9.3) holds, then (9.14) satisfies

(9.15) 2(t) = 0( fwly(s)l ds),
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¢ = lim py(t) exists as t — w, and
(9.16)  v(t)=c+ O(J |/3(s)|f |p(r)| dr ds) as t—w.
t 8

Also, if (¢) is real-valued and does not change signs, then (9.15) can be
improved to

(9.17) () NJ;w'y(s) ds.

Lemma 9.3. Let (1), y(¢) be as in Lemma 9.1. In addition, suppose that
B(t) = 0 and that

(9.18) fw,s(t) dt = .

Then (9.2) has a pair of solutions (v,(1), z(1)) for j = 0, 1, satisfying, as

t—w,

(9.19,) o~1, zg=o0 ‘71— :
[aas

(9.19;) v NJtﬁ(s)ds, 2z~ 1.

This has a partial converse.

Lemma 9.4. Let 5(t), y(t) be continuous real-valued functions such that
B(t) = 0 satisfies (9.18) and y(t) does not change signs. Let (9.2) have a
solution satisfying either (9.19,) or (9.19,). Then (9.3) holds [so that (9.2)
has solutions satisfying (9.19,) and (9.19,)].

Exercise 9.3. Prove Lemma 9.4.

Proof of Lemma 9.3. By Lemma 9.1, (9.2) has a solution (v(¢), z,(t))
such that z;(w) = 1. Thus the first part of (9.19,) follows from the first
equation in (9.2). Note that

(9.20) ft(——ﬂ(i)d—s— = const. — L

[rar) f&;;

tends to const. as t —>w by (9.18). Consequently, the integral ¢, =
f B(s) ds/v,*(s) is absolutely convergent (for T near w). It follows from
T
(9.13) with the choice ¢, = 1, that (9.2) has a solution (v, 2) = (v, z,)
satisfying (9.11) with ¢, = 1 and
© B(s)ds
v() = 0,()| ——.
o(t) = 0,(1) . 020s)

Then vy~ 1 follows from the first part of (9.19,) and (9.20). Letting
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(v, 2, cg) = (Vg 29, 1) in (9.11) and solving for z, gives the last part of
(9.19y). This completes the proof.

Theorem 9.1. Let p(t) be a positive and q(t) a real-valued continuous
Sunction for 0 < t < w such that

9.21) (Pr) + g()r =0
is nonoscillatory at t = w and let xy(t), z,(t) be principal, nonprincipal

solutions of (9.21); cf. § 6. Suppose that q(t) is a continuous complex-valued
Sfunction satisfying

9.22) f oo - 1g(t) — qo()l di < o0

or, more generally,

(9.23)) f (g — qo)x° dt —11m f (g — qo)x’ dt exists,

(9.23,) ﬂ%@ w0, where I'(s)= sup f@—wﬁm.
P(8)y°(s) sst<o | Jt
Then (9.1) has a pair of solutions uy(t), uy(t) satisfying, as t — w,
(9.24) Us ~
(9.25) &=&+41y
u; Z; | %oy |
forj=0,1.

Exercise 9.4. Verify that if ¢(r) is real-valued, g(f) — g,(t) does not
change signs, and (9.1) has a solution wuy () satisfying (9.24)—(9.25) for
either j = 0 or j = 1, then (9.22) holds.

Condition (9.22) in Theorem 9.1 should be compared with (8.3) in
Theorem 8.1. The analogue of (8.3) is the stronger condition

w
f |21|%* |g — qol dt < since  xz, = o(x,) as t— .

Remark. 1t will be clear from the proof of Theorem 9.1 that if g(r)
is complex-valued but has a pair of solutions asymptotically proportional
to real-valued positive functions z(¢), x,(¢) satisfying (9.22) [or (9.23)] and

@ ) t
f ds[px? < oo,f ds|pry? = w0, x, Nxof ds/px,?, then Theorem 9.1

remains valid.

Exercise 9.5. Let p(t) % 0, g(t), q,(t) be continuous complex-valued
functions for 0 < t < w (= ) such that (9.21) has a solution x,(¢) which
does not vanish for large ¢ and satisfies

® dt . (T )
o = lim as T—ow exists
p(D)=, (1)
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and

f lg — qol * |2,|>T dt < o, where ['(t) = sup

t<s<w

[
s pa”
Then (9.1) has a pair of nontrivial solutions uy(t), u,(t) such that

uy = o(|uy|), U~

Py pxl (| E f lg — qol - |2;? ds) as t-»o.
x)

u, x,

Proof of Theorem 9.1. The variations of constants ¥ = z(t)v reduces
(9.1) to

(9.26) (pxo’0') + 2Mg — goJv = 0
for t near w; cf. (2.31). Write this as a system (9.2), where

. 1
(927) ?= px02v P = "> Y= —xoz(q - 40)
pPxy
It will be verified that Lemma 9.3 is applicable. Note that condition
(9.18) holds since xz(t) is a principal solution of (9.21); Theorem 6.4. A
nonprincipal solution x(t) of (9. 21) is given by

9.28) 2() = ) [ =2 - ()—xo<r)fﬁ<s)ds

and any other nonprincipal solution is a constant times [1 4+ o(1)]x,() as
t— w; Corollary 6.3. The condition (9.4) is equivalent to (9.23).

Thus Lemma 9.3 is applicable. Let (vy, zy), (v, 2,) be the corresponding
solutions of (9.2) and u, = xyv,, #; = xyv, the corresponding solutions of
(9.1). Then the first part of (9.19;) for j =0, 1 gives (9.24) for j = 0, 1.
Note that u = x,v implies that pu’ju = pxy'[x, + pv’/v, so that, by (9.27),

1
pu'fu = pay [y + z[xPv. Since z4fvy = o(l/f B(s) ds),the casej = 0 of

(9.25) follows. Also, 2 /z.%v; = [1 + o(l)]/x(,?ft B(s) ds = [1 + o(1)]/z4x,

and, from (9.28), px,/x; = px'[x, + 1/xyx,. Consequently, the case
j = 10f(9.25) holds. This proves the theorem.
Corollary 9.1. In the equation

9.29) u" — q(t)u =0,

let g(t) be a continuous complex-valued function for large t satisfying

(9.30) Jmt lq(D)| dt < o
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or, more generally,
@© T @©

9.31) Q@) Ef q(s) ds = lim f exists and f sup |Q(r)| dt <
t T Ji tsr<ow

Then (9.29) has a pair of solutions u\(t), u,(t) satisfying, as t — co,

(9.32) u)~1,  ug(t) = 0(;1)

(9.33) u(ty~t,  u'(t)~1.

Conversely, if q(t) is real-valued and does not change signs and if (9.29) has
a solution satisfying (9.32) or (9.33), then (9.30) holds.

The first part of the corollary follows from Theorem 9.1, where (9.29)
and " = 0 are identified with (9.1) and (9.21), respectively. The latter has
the solutions z,(t) =1, = (t) =1t [Under the condition (9.30), the
existence of u,, u, is also contained in Theorem X 17.1.] The last part of
the corollary follows from Lemma 9.4 or Exercise 9.4.

Corollary 9.2. In the equation

9:34) u — (22 4 g(0)]u = 0,

let 1> 0 and q(t) be a complex-valued continuous function for large t
satisfying
935 [lawrar <

or, more generally,

© T
(9.36) f q(s)e 2* ds = lim f exists and

T«
@©
f e2}.t Sup
t<s<aw

Then (9.34) has solutions u(t), u,(t) satisfying

dt < 0.

f q(r)e®* " dr

(9.37) Uy~ —ugfh~e™  u~u'jA~e"

Conversely, if q(t) is real-valued and does not change signs and if (9.34) has
a solution uy(t) or u,(t) satisfying the corresponding conditions in (9.37),
then (9.35) holds.

The first part follows from Theorem 9.1 if (9.34) and " — A2x = 0 are
identified with (9.1) and (9.21), respectively. The latter has solutions
ro(t) = e, x,(t) = e*'. [Under condition (9.35), the existence of ug, u, is
also implied by Theorem X 17.2.]



382 Ordinary Differential Equations

Exercise 9.6. Let g(r) > 0 be a positive function on 0=t < ©
possessing a continuous second derivative and satisfying

a0 l/é a0
t)dt = oo and f
f 0 16> 44°

Then u” — ¢(t)u = 0 has a pair of solutions satisfying

”

59° ¢

q%dt < 0.

t
q"u ~ exp :tfq”(S) ds, q%q"u) ~ +q"u

as t - co. (Compare this with Exercise X 17.5.)
Exercise 9.7. Find asymptotic formulae for the principal and non-
principal solutions of Weber’s equation

uw ' —2u=0

(where 4 is a real number) by first eliminating the middle term using the
analogue of substitution (1.9) and then applying Exercise 9.6 to the
resulting equation; cf. Exercise X 17.6.

Corollary 9.3. In equation (9.29), let q(t) be a continuous complex-
valued function for large t such that Q(t) in (9.31) satisfies

© T
f o dt = limf exists as T — 0.

Then a sufficient condition for (9.29) to have solutions uy(t), u(t) satisfying

(9.38) ut) ~ 1,  uy(t) = o(l),
9.39) u(t) ~ t, (1) ~ 1,
as t — 0, is that

(9.40) fmt Q)2 dt < 0.

This condition is also necessary if q(t) is real-valued.
Proof. It is easily verified that

(9.41) xo(t) = exp (—ftQ(s) ds)
is a solution
(9.42) " — [q(t) + Q¥1)]x = 0.

One of the conditions on Q implies that lim x,(¢) exists as t —> co and is
not 0. Correspondingly, the solution of (9.42) given by

t
©0.43) 7)) = )| 4

xoz(s)

is asymptotically proportional to ¢, as t — co.
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Thus (9.42) has solutions asymptotically proportional to the (positive)
functions 1, . Hence if (9.29) and (9.42) are identified with (9.1), (9.21),
respectively, and if (9.40) holds, the Remark following Theorem 9.1 shows
that the conclusions of that theorem are valid. Consequently (9.29) has
solutions uy, u, satisfying uy ~ %), u; ~ 2, as t > co. The analogues of
(9.25) are

u—=—Q+0(1), li‘—=—Q+1+0( L )
ZoZy

Uy t Uy

Since Q(r)— 0 as ¢ — <0, it is clear that certain constant multiples of
Uy, U, satisfy (9.38), (9.39). The last part of the theorem follows from the
fact that ¢ + Q2 = ¢ when ¢ is real-valued; cf. Exercise 9.4.

By the use of a simple change of variables, a theorem about (9.29) for
“small” ¢(r) can be transcribed into a theorem about (9.34) for “small”
(1), and conversely:

Lemma 9.5. Let () be a continuous complex-valued function for large t.
Then the change of variables, where 1 > 0,

(9.44) u=ve, 5= Q7™
transforms (9.34) into

2
(9.45) dgs—s — e g = 0;

while the change of variables
(9.46) u =t = e, s=1}logt
transforms (9.29) into

d*
(9.47) T L+ (Ol =0,

Exercise 9.8. Verify this lemma.
Exercise 9.9. (a) Let 2 > 0 and ¢(r) be a continuous complex-valued
function for large ¢ such that

© T
0.() =f q(s)e”*** ds = lim f exists,
t t

I'- o

® T ®
f Q,(He*** dt = lim f exists and f |Q(1)|? e**t dt < 0.

I'-w

Then u” — [A? 4 g(¢)]Ju = O has a pair of solutions satisfying, as t — <o,

u~et Lo a4 e*Q,(t) + o(1).
u
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(b) Let g(t) be a continuous complex-valued function for ¢ = 0 such that
12771 g(1)|? dt < o for some p on the range 1 < p < 2. Then 1" —

g(t)u = 0 has a solution satisfying

¢ u' 1
U ~ exp —fsq(s) ds and — = o(—)
u t
and a solution satisfying
t '
U~ texp fsq(s)ds and y—~l,
u t
ast— 0.

APPENDIX: DISCONJUGATE SYSTEMS

10. Disconjugate Systems

This appendix deals with systems of equations of the form

(10.1) [Py + R()z) ~ [R*@)' — Q(1)z] = 0
or, more generally, systems of the form
(10.2) ' =A@z + B(tyy, y =C(@t)x — A*(t)y.

Here x, y are d-dimensional vectors; A(t), B(t), C(¢), P(t), Q(t), R(t) are
d x d matrices (with real- or complex-valued entries) continuous on a
t-interval J. The object is to obtain generalizations of some of the results
of §6. The difficulty arises from the fact that the theorems of Sturm in
§ 3 do not have complete analogues.

In dealing with (10.1), it will usually be assumed that

(10.3) P=P* and Q = Q%
(10.4) det P 5 0.

If the vector y is defined by

(10.5) y = P(H)x’ + R(t)x,

then (10.1) is of the form (10.2), where

(106) A= —P'R, B=P' (C=—(Q ~— R*PIR;
so that

(10.7) B=B* and = C=CH

(10.8) det B 5 0.



