Practicum 1 - February 17
Introduction: ODE -- definition, concept of solution
ODE type: with separated variables
demo: x'=3t², x'=5x , x' = -t/x
class: x'=x²+1, x'=e^x(t+1) , x'=(x^2-x)/t
Theorem P.1 - sketch of the proof
demo: x'=2√|x|.exp(-t) (only for x>0)
============================================================
Practicum 2&3 - February 24
finishing x'=2√|x|.exp(-t) (for x=0 and x<0)
ODE type: first order linear
class: x'-x=te^t
x'-x/t = t^2e^t
x-x/t^2 = 1/t^3
x'+2x=cos t
demo: tx'-3x=t³ + initial condition: x(1)=-1
+ remark on maximal solutions
ODE type: homogeneous
demo: x'=(x-t)/(x+t) ... (can't be solved)
1. x'=exp(x/t)+x/t
5. t²x' = x² + 2tx
6. 2txx' + t²-x² = 0
ODE type: Bernoulli
demo: ex.6) above via z=x²
============================================================
Practicum 4 - March 3
topic: EQA (elementary qualitative analysis)
demo: x'=x²+t²-1
class:
1. x'=t²(x+1)
2. x'=(x-1)/(t-1)
3. x'=t(x+1)
4. x'=x/t+t²
5. x'=2tx-2
theory: Peano & Picard,
symmetries: proof for f(-t,-x)=f(t,x)
============================================================
Practicum 5 - March 10
topic: EQA 2
demo: x'=3y² , y'=-2x
class: 0. x'=y , y'=-x
1. x'=x(1-x)-xy , y'=-2y+xy
2. x'=x(1-x/2-y) , y'=y(2-2x-y)
3. x'=x(2-2x-y) , y'=y(1-x/2-y)
Note: 1--3 in 1st quadrant only (x,y>0)
on board: no. 0 (prime integral preview)
no. 1 (demo by student)
============================================================
Practicum 6 - March 17
Review of theory:
- general system of ODEs, Peano & Picard (Thm P.4 & P.5)
- prime integral: definition, characterization (Thm P.7)
demo: x'=3y² , y'=-2x (prime integral: y³+x²=c)
class: find prime integral(s) for the systems:
1. x'=x, y'=-y
2. x'=xy, y'=xy
3. x'=y, y'=x-x² (or x"+x²-x=0)
4. x'=xy, y'=xz, z'=yz
theory: stability, asymptotic stability, instability
Theorem P.5 [Linearized (in)stability theorem]
application: example above ... conclusion?
============================================================
Practicum 7 - March 24
Recall (informally) concept(s) of stability
Examples (by prime integrals):
x'=x, y'=-y (stable, not asymptotically)
y³+x²=c (unstable)
Linearization: general motivation
Theorem of linearized (instability)
class: 1. x'=x(2-x-y), y'=y(x-1)
2. x'=x(1-x-y/(x+1/4)), y'=y(1-4y/3x) {H-T}
Ad 1) E₁=(1,1) ... stable spiral
E₂=(2,0) unstable direction v=(1,-3/2)
Theorem P.6 [Stable/unstable direction]
... see example E₂=(2,0) above ...
============================================================
Practicum 8 - March 31
Recall (1) X'=F(X) and its linearization
(2) U'=AU
Theorems P.5,P.6 and Hartman-Grobman
... motivation to study (2)
Some (informal) remarks on incomplete (yet) theory to (2):
∙ matrix exponential
∙ solution(s) in the form exp(λt)v
∙ reformulate as one equation of order n
(example: A=[0 1;4 0], x=exp(±2t)
Class - for team 1 - 5, let A=
1) diag(1,2)
2) diag(-2,1)
3) [-2,1;0,-2]
4) [-1,-2;2,-1]
5) [0,1;0,0]
(On board, solutions to 1,2,4 were presented.)
Preliminary info on the "final project".
============================================================
Practicum 9 - April 7
(Problems 3) and 5) from the last class.)
Theorem P.8 -- on solutions to (L-1) and (L-2)
matrix exponential: some properties
Example: exp(tA₃) = diagonal + nilpotent
linear n-th order with const. coeff.: Ansatz -> characteristic poly
Class - matrix exponential:
1) [ a 0 ; b 0 ]
2) [ 0 1 10 ; 0 0 -1 ; 0 0 0]
3) [ α -β ; β α ]
characteristic poly + general solution:
4) x"" + 16x = 0
5) x"" = 0
6) x"+3x'-40x=0
7) x'''-3x"+3x'-x=0
============================================================
Practicum 10 - April 14
topic: stability part 2 - Lyapunov functions
motivation: HW3.3
Definition: (strict) Lyapunov function
Theorem P.9 [Lyapunov theorem]
Example: pendulum (with friction)
Class - L.f. & stability:
0) verify that \dot{V}_F \le 0 for the pendulum above
1) x'=-2y-x³ , y'=3x-y³
2) x'=-x/2-y² , y'= xy - 7x²y
3) x'=-2y³ , y'=x
4) x'=-y+2x³ , y'=2x+y³
Hint: V=ax²+by² with a,b>0; more generally ax^{2n}+by^{2m}, m,n natural numbers
============================================================
Practicum 11 - April 28
topic: numerical methods
1) Euler's method + error estimate
- class problems: solve (exactly) / code Euler
2) method of curvature / osculating circle
============================================================
Practicum 13 - May 12
Final project - presentations part I
HW 1.1, HW 1.3, HW 2.3, matrix (symbolic) calculus
Remarks on number classes (rational, algebraic, constructible, computable)
Impossibility of (some) Euclidean construction(s).
============================================================
Practicum 14 - May 19
HW 1.2, HW 2.3, orbital derivative (symbolic)