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Abstract We show the existence of continuous periodic solutions of the 3D
incompressible Euler equations which dissipate the total kinetic energy.

1 Introduction

In what follows T
3 denotes the 3-dimensional torus, i.e. T

3 = S
1 × S

1 × S
1.

In this note we prove the following theorem.

Theorem 1.1 Assume e : [0,1] → R is a positive smooth function. Then there
is a continuous vector field v : T

3 ×[0,1] → R
3 and a continuous scalar field

p : T
3 × [0,1] → R which solve the incompressible Euler equations{

∂tv + div(v ⊗ v) + ∇p = 0

divv = 0
(1)

in the sense of distributions and such that

e(t) =
∫

|v|2(x, t) dx ∀t ∈ [0,1]. (2)
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Obviously, if we choose a strictly decreasing function e(t), Theorem 1.1
yields continuous solutions of the incompressible Euler equations which “dis-
sipate” the total kinetic energy 1

2

∫ |v|2(x, t) dx. This is not possible for C1

solutions: in that case one can multiply the first equation in (1) by v to derive

∂t

|v|2
2

+ div

(
u

( |u|2
2

+ p

))
= 0.

Integrating this last identity in x we then conclude

d

dt

∫
T3

|v|2
2

(x, t) dx = 0. (3)

Theorem 1.1 shows therefore that this formal computation cannot be justified
for distributional solutions, even if they are continuous. The pair (v,p) in
Theorem 1.1 solves (1) in the following sense:

∫ 1

0

∫
T3

(∂tϕ · v + ∇ϕ : v ⊗ v + p divϕ)dxdt = 0 (4)

for all ϕ ∈ C∞
c (T3 × (0,1);R

3) and

∫ 1

0

∫
T3

v · ∇ψ dxdt = 0 for all ψ ∈ C∞
c

(
T

3 × (0,1)
)
.

Remark 1 In the usual definition of weak solution, (4) is replaced by the
same condition for divergence free test fields: therefore p disappears from
the identity. With this alternative definition, for every weak solution v which
belongs to L2 a corresponding pressure field can then be recovered using

−�p = div div(v ⊗ v). (5)

p is then determined up to an arbitrary function of t : this arbitrariness can be
overcome by imposing, for instance,

∫
�p(x, t) dx = 0. However, as it is well-

known, (5) and the continuity of v does not guarantee the continuity of p.

1.1 Onsager’s conjecture

The possibility that weak solutions might dissipate the total kinetic energy
has been considered for a rather long time in the fluid dynamics literature:
this phenomenon goes under the name of “anomalous dissipation”. In fact, to
our knowledge, the existence of dissipative solutions was considered for the
first time by Lars Onsager in his famous 1949 note about statistical hydrody-
namics, see [18]. In that paper Onsager conjectured that
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(a) C0,α solutions are energy conservative when α > 1
3 ;

(b) There exist dissipative solutions with C0,α regularity for any α < 1
3 (note

that, though Onsager’s definition of “weak solution” is, strictly speaking,
different from the one given above, it can be easily shown that the two
concepts are equivalent).

The first part of the conjecture, i.e. assertion (a), has been shown by Eyink
in [11] and by Constantin, E and Titi in [3]. The proof of the last paper
amounts to give a rigorous justification of the formal computation sketched
above and leading to (3): this is done via a suitable regularization of the equa-
tion and some careful commutator estimates. The second part of the conjec-
ture, i.e. statement (b), is still widely open. A first result in that direction was
the groundbreaking work of Scheffer [20] which proved the existence of a
compactly supported nontrivial weak solution in R

2 × R. A different con-
struction of the existence of a compactly supported nontrivial weak solution
in T

2 × R was then given by Shnirelman in [21]. In both cases the solutions
are only square summable (as a function of both space and time variables): it
is therefore not clear whether there are intervals of time in which the total ki-
netic energy is a monotone function (indeed it is not even clear whether these
solutions belong to the energy space L∞

t (L2
x)). The first proof of the existence

of a solution for which the total kinetic energy is a monotone decreasing func-
tion has been given by Shnirelman in [22]. Shnirelman’s example is only in
the energy space L∞([0,∞[,L2(R3)).

1.2 h-principle

Our previous work [6, 7] showed the existence of dissipative solutions for
which both pressure and velocity are bounded. Besides the obvious improve-
ment (and the discovery of quite severe counterexamples to the uniqueness
of admissible solutions, both for incompressible and compressible Euler), in
this work we introduced a new point of view in the subject, highlighting con-
nections to other counterintuitive solutions of (mainly geometric) systems
of partial differential equations: in geometry these solutions are, according
to Gromov, instances of the h-principle. In particular Onsager’s conjecture
bears striking similarities with the rigidity and flexibility properties of iso-
metric embeddings of Riemannian manifolds, pioneered by the celebrated
work of Nash [17]. Indeed, results of the same flavor as statements (a) and (b)
can be proved in the case of isometric embeddings (see for instance [4] and
the references therein): in comparing Onsager’s conjecture and these results,
the reader should take into account that, in this analogy, the velocity field of
the Euler equations corresponds to the differential of the embedding in the
isometric embedding problem. All these aspects (and further developments
for some PDEs in fluid dynamics inspired by our work) are surveyed in the
note [8]. See also [1, 5, 23, 26–28].
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1.3 Comments on the proof

As in all applications of convex integration, the solution of (1) is constructed
by an iteration scheme: at each stage of this iteration we produce an “al-
most solution” which solves Euler with an additional error term. We name
the resulting “perturbed” system of equations Euler-Reynolds system, since
the error term has the typical form of the so-called Reynolds stress in the fluid
dynamics literature (see [8] for an informal discussion of this point). This er-
ror term converges to 0, while the sequence of almost solutions converge to an
exact solution, uniformly in C0. At each stage the new approximate solution
is generated from the previous one by adding fast oscillatory perturbations.
Being oscillatory, the linear terms in the perturbation are negligible whereas
the nonlinear (quadratic) term is the leading order, which should cancel the
previous error.

Although this general underlying philosophy is the same as in our previous
papers [6, 7], in the actual proof we need to substantially depart from the
previous strategy and introduce several new ideas.

(1) First of all, recall that in [6] we rewrite the Euler equations as a dif-
ferential inclusion and thus we are able to apply some of the machinery de-
veloped in the context of Lipschitz differential inclusions. In particular, in
all our results for bounded weak solutions there are two routes: a Baire cat-
egory approach and a more direct convex integration approach. In fact these
approaches are in some sense equivalent, see [25].

For continuous solutions the Baire category approach does not work as
there is no way to extract a uniform continuity estimate for approximating
sequences. In this paper we are therefore forced to abandon this, essentially
“soft” functional analytic technique in favor of a more “hard” PDE approach
based on Schauder estimates and oscillatory integrals. This seems to be en-
tirely new in the context of convex integration, even compared to the original
proof of Nash [17] for rough isometric embeddings.

(2) In all applications so far of convex integration to fluid mechanics [1, 5,
8, 23, 26–28] a key starting point is a plane-wave analysis, in order to identify
compatible plane-waves that will be used in the subsequent construction. In-
deed, the use of suitably localized plane-waves for an iteration scheme goes
back to the work of Nash [17] and has been widely generalized by Gromov
[13] as the technique of convex integration—the simple reason being that
one-dimensional oscillations can be “integrated”, hence the name convex in-
tegration. In the scheme of Nash simple plane-waves suffice to produce a C1

solution. Nevertheless, it is crucial here that one has an extra dimension (the
codimension of the range) to absorb linear errors.

For the Euler equations we have no extra dimension and simple plane-
waves do not work for continuous solutions. This leads to two points of de-
parture from existing schemes: we use genuinely multi-dimensional building



Dissipative continuous Euler flows 381

blocks, the Beltrami flows, and we retain a linear “transport term” in the iter-
ation, which needs to be controlled with new ideas.

(3) As mentioned above, the main building blocks of our iteration scheme
are Beltrami flows, which are truly three-dimensional oscillations. The issue
of going beyond one-dimensional oscillations has been raised by Gromov
(p. 219 of [13]) as well as Kirchheim-Müller-Šverák (p. 52 of [15]), but as
far as we know, there have been no such examples in the literature so far.
As a result of using Beltrami flows, the final result of our iteration scheme is
the superposition of infinitely many (perturbed) and weakly interacting Bel-
trami flows. Curiously, the idea that turbulent flows can be understood as a
superposition of Beltrami flows has been proposed almost 30 years ago in the
fluid dynamics literature: see the work of Constantin and Majda [2]. Indeed,
it was Peter Constantin who suggested to us to try Beltrami flows in a convex
integration scheme.

(4) The “transport term” is perhaps the most important new aspect of our
scheme in comparison with Nash. This arises, roughly speaking, as the lin-
earization of the first equation in (1): this term is typical of an evolution equa-
tion, whereas, instead, the equations for isometric embeddings are “static”.
Moreover, the linear terms in the Nash scheme are set to zero by choosing
suitable coordinates and working with the extra dimension. At a first glance
this transport term makes it impossible to use a scheme like the one of Nash
to prove Theorem 1.1. To overcome this obstruction we need to introduce a
phase-function that acts as a kind of discrete Galilean transformation of the
(stationary) Beltrami flows, and to introduce an “intermediate” scale along
each iteration step on which this transformation acts.

(5) A further difference to the approach in [6, 7] is that we cannot use sim-
ple potentials to generate space-time localized versions of the Beltrami flows.
One reason is that, in a sense, we cannot simply “integrate” Beltrami flows.
More importantly, a space-time cutoff would result in error terms which can-
not be controlled in C0. In order to overcome this issue we introduce a “cor-
rector term” to the main perturbation. This corrector term is not “explicit”: it
is determined by solving some appropriate elliptic equations.

(6) In comparing Theorem 1.1 to the main result in [7] an important dif-
ference is that, whereas in the bounded case e is a function of (x, t), here
it is a function of t only. In other words, whereas for bounded solutions we
can prescribe (x, t) �→ |v(x, t)|, for continuous solutions we are only able
to prescribe t �→ ∫ |v(x, t)|2 dx. As a consequence, our solutions in this pa-
per cannot deal with the local energy inequality (cf. with the discussion in
Sect. 3.1 of [8]). We do not know whether this is just a technical issue or a
new feature of continuous solutions.

As a minor comment we remark that obviously the smoothness of e in
Theorem 1.1 can be relaxed, but we do not pursue this issue here. Moreover,
the same theorem can be proved if we replace [0,1] with [0,∞[: in this case
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we require in addition that e and its derivatives are uniformly bounded and
that there is a positive constant c0 with e ≥ c0.

(7) In Theorem 1.1 our aim was to construct continuous weak solutions.
In particular we did not address issues concerning the initial-value problem.
Thus, setting aside the difference between bounded and continuous solutions,
our Theorem 1.1 is weaker than the results proved in [7]. In particular, in this
paper we do not prove any non-uniqueness statement.

However, this is a typical way to proceed with problems involving the h-
principle. In general one may distinguish two aspects: a local and a global
one. In geometric situations the local one is typically a differential constraint
whereas the global one is topological (cf. [10]). The flexibility (in other words
the lack of uniqueness) that one observes in instances of the h-principle is tied
to the specifics of the local aspect. Thus, our Theorem 1.1 deals exclusively
with the “local” aspect for the Euler equations, whereas a possible analogue of
the global aspect would be the imposition of an initial data, possibly together
with an admissibility condition (as in [7]). In subsequent papers we plan to
address such “global” issues (e.g. initial data, compactly supported ancient
solutions, etc.).

2 Setup and plan of the paper

The proof of Theorem 1.1 will be achieved through an iteration procedure.
Along the iteration the maps will be “almost solutions” of the Euler equa-
tions. To measure “how far” a solenoidal field is from being a solution of in-
compressible Euler we introduce a system of differential equations which we
call Euler-Reynolds system. The name is justified by the fact that the matrix-
field R̊ is a well known object in the theory of turbulence, called “Reynolds
stress” (cf. with [8] and the references therein). In what follows S 3×3

0 denotes
the vector space of symmetric trace-free 3 × 3 matrices. Moreover we will,
as it is usual, use the word smooth for C∞ maps.

Definition 2.1 Assume v,p, R̊ are smooth functions on T
3 × [0,1] tak-

ing values, respectively, in R
3,R, S 3×3

0 . We say that they solve the Euler-
Reynolds system if {

∂tv + div(v ⊗ v) + ∇p = div R̊,

divv = 0.
(6)

We are now ready to state the main proposition of this paper, of which
Theorem 1.1 is a simple corollary.

Proposition 2.2 Let e be as in Theorem 1.1. Then there are positive constants
η and M with the following property.
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Let δ ≤ 1 be any positive number and (v,p, R̊) a smooth solution of the
Euler-Reynolds system (6) such that

3δ

4
e(t) ≤ e(t) −

∫
|v|2(x, t) dx ≤ 5δ

4
e(t) ∀t ∈ [0,1] (7)

and

sup
x,t

∣∣R̊(x, t)
∣∣ ≤ ηδ. (8)

Then there is a second smooth triple (v1,p1, R̊1) which solves as well the
Euler-Reynolds system and satisfies the following estimates:

3δ

8
e(t) ≤ e(t) −

∫
|v1|2(x, t) dx ≤ 5δ

8
e(t) ∀t ∈ [0,1], (9)

sup
x,t

∣∣R̊1(x, t)
∣∣ ≤ 1

2
ηδ, (10)

sup
x,t

∣∣v1(x, t) − v(x, t)
∣∣ ≤ M

√
δ (11)

and

sup
x,t

∣∣p1(x, t) − p(x, t)
∣∣ ≤ Mδ. (12)

As already mentioned, Theorem 1.1 follows immediately from Proposi-
tion 2.2.

Proof of Theorem 1.1 We start by setting v0 = 0, p0 = 0, R̊0 = 0 and δ := 1.
We then apply Proposition 2.2 iteratively to reach a sequence (vn,pn, R̊n)

which solves (6) and such that

3

4

e(t)

2n
≤ e(t) −

∫
|vn|2(x, t) dx ≤ 5

4

e(t)

2n
for all t ∈ [0,1] (13)

sup
x,t

∣∣R̊n(x, t)
∣∣ ≤ η

2n
(14)

sup
x,t

∣∣vn+1(x, t) − vn(x, t)
∣∣ ≤ M

√
1

2n
(15)

sup
x,t

∣∣pn+1(x, t) − pn(x, t)
∣∣ ≤ M

2n
. (16)

Then {vn} and {pn} are both Cauchy sequences in C(T3 × [0,1]) and con-
verge uniformly to two continuous functions v and p. Similarly R̊n converges
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uniformly to 0. Moreover, by (13)∫
T3

|v|2(x, t) dx = e(t) ∀t ∈ [0,1].

Passing into the limit in (6) we therefore conclude that (v,p) solves (1). �

2.1 Construction of v1

The rest of the paper will be dedicated to prove Proposition 2.2. The construc-
tion of the map v1 consists of adding two perturbations to v:

v1 = v + wo + wc =: v + w. (17)

To specify the form of the perturbation wo, which is a highly oscillatory func-
tion and for which we give a rather explicit formula, we need several ingre-
dients. The vectorfield v + wo is not in general divergence free. Therefore
we add the correction wc to restore this condition. Having added the correc-
tion, the main focus will then be on finding maps R̊1 and p1 with the desired
estimate and such that

∂tv1 + divx(v1 ⊗ v1) + ∇p1 = divx R̊1.

The perturbation wo will depend on two parameters, μ and λ, which will
satisfy the following conditions

λ,μ,
λ

μ
∈ N. (18)

In order to achieve the estimates, λ and μ will be chosen quite large, depend-
ing on appropriate norms of v. As already mentioned, the building blocks for
the perturbation wo are Beltrami flows. In order to give the formula leading
to the definition of wo we must, therefore, study closer the particular “geom-
etry” of these flows. This will be done in the next section. We will then be
ready to define the perturbations wo and wc: this task will be accomplished
in Sect. 4 where we also prescribe the constants η and M of the estimates in
Proposition 2.2. After recalling some classical Schauder theory in Sect. 5, in
the Sects. 6 and 7 we will prove the relevant estimates of the various terms
involved in the construction, in terms of the parameters λ and μ. The choice
of these parameters will be finally specified in Sect. 8, where we conclude the
proof of Proposition 2.2.

3 Geometric preliminaries

In this paper we denote by R
n×n, as usual, the space of n × n matrices,

whereas S n×n and S n×n
0 denote, respectively, the corresponding subspaces
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of symmetric matrices and of trace-free symmetric matrices. The 3 × 3 iden-
tity matrix will be denoted with Id. For definitiveness we will use the matrix
operator norm |R| := max|v|=1 |Rv|. Since we will deal with symmetric ma-
trices, we have the identity |R| = max|v|=1 |Rv · v|.

3.1 Beltrami flows

We start by recalling a celebrated example of stationary periodic solutions
to the 3D Euler equations, the so called Beltrami flows. One important fact
which will play a central role in our paper is that the space of Beltrami flows
contains linear spaces of fairly large dimension.

Proposition 3.1 (Beltrami flows) Let λ0 ≥ 1 and let Ak ∈ R
3 be such that

Ak · k = 0, |Ak| = 1√
2
, A−k = Ak

for k ∈ Z
3 with |k| = λ0. Furthermore, let

Bk = Ak + i
k

|k| × Ak ∈ C
3.

For any choice of ak ∈ C with ak = a−k the vectorfield

W(ξ) =
∑

|k|=λ0

akBke
ik·ξ (19)

is divergence-free and satisfies

div(W ⊗ W) = ∇ |W |2
2

. (20)

Furthermore

〈W ⊗ W 〉 =
∫
�

T3
W ⊗ W dξ = 1

2

∑
|k|=λ0

|ak|2
(

Id− k

|k| ⊗ k

|k|
)

. (21)

In other words W(ξ) defined by (19) is a stationary solution of (1) with

pressure p = −|W |2
2 . For the rest of this paper we will treat the vectors Ak ∈

R
3, Bk ∈ C

3 as fixed (the choice of Ak as prescribed in the proposition is not
unique, but this is immaterial for our purposes). The proof of Proposition 3.1
is a classic in the fluid dynamics literature, but we include it for the reader’s
convenience.



386 C. De Lellis, L. Székelyhidi Jr.

Proof First of all observe that a−kB−k = akBk . Thus the vector field defined
in (19) is real valued. Next notice that

divW(ξ) =
∑

|k|=λ0

ik · Bkake
ik·ξ = 0,

because k · Bk = 0 for every k.
Observe also that

curlW(ξ) =
∑

|k|=λ0

ik × Bkake
ik·ξ .

On the other hand

ik × Bk = λ0

(
i

k

|k| × Ak − k

|k| ×
(

k

|k| × Ak

))

= λ0

(
i

k

|k| × Ak + Ak

)
= λ0Bk.

We therefore infer curlW = λ0W . Since W is divergence free, div(W ⊗W) =
(W · ∇)W and we can use the well known vector identity

div(W ⊗ W) = (W · ∇)W = ∇ |W |2
2

− W × (curlW).

Since we have just seen that curlW and W are parallel, (20) follows easily.
Finally, we compute

W ⊗ W =
∑
k,j

akajBk ⊗ Bje
i(k+j)·ξ =

∑
k,j

akajBk ⊗ Bje
i(k−j)·ξ .

Averaging this identity in ξ we infer

〈W ⊗ W 〉 =
∑

|k|=λ0

|ak|2Bk ⊗ Bk.

However, since Bk = B−k , we get

〈W ⊗ W 〉 =
∑

|k|=λ0

|ak|2 Re(Bk ⊗ Bk)

=
∑

|k|=λ0

|ak|2
(

Ak ⊗ Ak +
(

k

|k| × Ak

)
⊗

(
k

|k| × Ak

))
.
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On the other hand, observe that the triple
√

2Ak,
√

2 k
|k| × Ak,

k
|k| forms an

orthonormal basis of R
3. Thus,

2Ak ⊗ Ak + 2

(
k

|k| × Ak

)
⊗

(
k

|k| × Ak

)
+ k

|k| ⊗ k

|k| = Id .

This shows (21) and hence completes the proof. �

3.2 The geometric lemma

One key point of our construction is that the abundance of Beltrami flows
allows to find several such flows v with the property that

〈v ⊗ v〉(t) := 1

(2π)3

∫
T3

v ⊗ v(x, t) dx

equals a prescribed symmetric matrix R. Indeed we will need to select these
flows so as to depend smoothly on the matrix R, at least when R belongs to a
neighborhood of the identity matrix. In view of (21), such selection is made
possible by the following lemma.

Lemma 3.2 (Geometric Lemma) For every N ∈ N we can choose r0 > 0 and
λ0 > 1 with the following property. There exist pairwise disjoint subsets

Λj ⊂ {
k ∈ Z

3 : |k| = λ0
}

j ∈ {1, . . . ,N}
and smooth positive functions

γ
(j)
k ∈ C∞(

Br0(Id)
)

j ∈ {1, . . . ,N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k ;

(b) For each R ∈ Br0(Id) we have the identity

R = 1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
(

Id− k

|k| ⊗ k

|k|
)

∀R ∈ Br0(Id). (22)

Remark 2 Though it will not be used in the sequel, the cardinality of each
set Λj constructed in the proof of the lemma is indeed bounded a priori
independently of all the other parameters. A close inspection of the proof
shows that it gives sets with cardinality at most 98. This seems however far
from optimal: one should be able to find sets Λj with cardinality 14.
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The proof of the Geometric Lemma is based on the following well-known
fact.

Proposition 3.3 The set Q
3 ∩ S

2 is dense in S
2.

Proof Let s : R
2 → S

2 be the inverse of the stereographic projection:

s(u, v) :=
(

2v

u2 + v2 + 1
,

2u

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

It is obvious that s(Q2) ⊂ Q
3. Since Q

2 is dense in R
2 and s is a diffeomor-

phism onto S
2 \ (0,0,1), the proposition follows trivially. �

Indeed, much more can be proved: 1
n
Z

3 ∩ S
2, distributes uniformly on the

sphere for n ∈ N large whenever n ≡ 1,2,3,4,5,6 (mod 8). This problem
was raised by Linnik (see [16]), who proved a first result in its direction, and
solved thanks to a breakthrough of Iwaniec [14] in the theory of modular
forms of half-integral weight (see, for instance, [9] and [19]).

Proof of Lemma 3.2 For each vector v ∈ R
3 \ {0}, we denote by Mv the 3 × 3

symmetric matrix given by

Mv = Id− v

|v| ⊗ v

|v| .

With this notation the identity (22) reads as

R = 1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
Mk. (23)

Step 1 Fix a λ0 > 1 and for each set F ⊂ {k ∈ Z
3 : |k| = λ0} we consider

the set c(F ) which is the interior of the convex hull, in S 3×3, of {Mk : k ∈ F }.
We claim in this step that it suffices to find a λ0 and N disjoint subsets Fj ⊂
{k ∈ Z

3 : |k| = λ0} such that

(d) −Fj = Fj ;
(e) c(Fj ) contains a positive multiple of the identity.

Indeed, we will show below that, if Fj satisfies (d) and (e), then we can find a

r0 > 0, a subset Γj ⊂ Fj and positive smooth functions λ
(j)
k ∈ C∞(B2r0(Id))

such that

R =
∑
k∈Γj

λ
(j)
k (R)Mk.

We then find Λj and the functions γ
(j)
k by
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• defining Λj := Γj ∪ −Γj ;

• setting λ
(j)
k = 0 if k ∈ Λj \ Γj ;

• defining

γ
(j)
k :=

√
λ

(j)
k + λ

(j)
−k

for every k ∈ Λj .

Observe that the functions and the sets satisfy both (a) and (b). Moreover,
since at least one of the λ

(j)
±k is positive on B2r0(Id), γ

(j)
k is smooth in Br0(Id).

We now come to the existence of the set Γj . For simplicity we drop the
subscripts. The open set c(F ) contains an element α Id with α > 0. Then
there are seven matrices A1, . . . ,A7 in c(F ) such that α Id belongs to the
interior of their convex hull, which is an open convex simplex S. We choose
ϑ so that the ball Ũ of center α Id and radius ϑ is contained in S. Then each
point R ∈ Ũ can be written in a unique way as a convex combination of the
elements Ai :

R =
7∑

i=1

βi(R)Ai

and the functions βi are positive and smooth on Ũ .
By Caratheodory’s Theorem, each Ai is the convex combination∑
λi,nMvi,n

of at most 7 Mvi,n
with vi,n ∈ F , where we require that each λi,n

is positive (observe that Caratheodory’s Theorem guarantees the existence of
7 points Mvi,n

such that Ai belongs to the closed convex hull of them; if we
insist on the property that the corresponding coefficients are all positive, then
we might be obliged to choose a number smaller than 7).

Set r0 := ϑ
2α

. Then,

R =
∑
i,n

1

α
βi(αR)λi,nMvi,n

∀R ∈ B2r0(Id)

and each coefficient
1

α
βi(αR)λi,n

is positive for every R ∈ B2r0(Id).
The set Γj is then given by {vi,n}. Note that we might have vi,n = vl,m for

two distinct pairs (i, n) and (l,m). Therefore, for k ∈ Γj , the function λk will
be defined as

λk(R) =
∑

(i,n):k=vi,n

1

α
βi(αR)λi,n.
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Step 2 By Step 1, in order to prove the lemma, it suffices to find a number
λ0 and N disjoint families F1, . . . ,FN ⊂ λ0S

2 ∩ Z
3 such that the sets c(Fi)

contain all a positive multiple of the identity. By Proposition 3.3 there is a
sequence λk ↑ ∞ such that the sets S

2 ∩ 1
λk

Z
3 converge, in the Hausdorff

sense, to the entire sphere S
2.

Given this sequence {λk}, we can easily partition each λkS
2 ∩ Z

3 into N

disjoint symmetric families {Fk
j }j=1,...,N in such a way that, for each fixed j ,

the corresponding sequence of sets { 1
λk

F k
j }k converges in the Hausdorff sense

to S
2. Hence, any point of c(S2) is contained in c( 1

λk
F k

j ) provided k is large

enough. On the other hand it is easy to see that c(S2) contains a multiple of
the identity α Id (for instance one can adapt the argument of Lemma 4.2 in
[6]). By Step 1, this concludes the proof. �

4 The maps v1, R̊1 and p1

We have now all the tools to define the maps v1, R̊1 and p1 of Proposition 2.2.
Recalling (17) and the discussion in Sect. 2.1, w := v1 − v is the sum of two
maps, wo and wc. wo is a highly oscillatory function based on “patching
Beltrami flows” and it will be defined first, in Sect. 4.1. wc will then be added
so as to ensure that v1 is divergence free: in order to achieve this we will
use the classical Leray projector, see Sect. 4.3 for the precise definition. p1 is
related to wo by a simple formula, given in Sect. 4.4. Finally, in Sect. 4.5 we
will define R̊1. Essentially, this last matrix field can also be thought of as a
“corrector term”, analogous to wc. In fact, if we consider the point of view of
[6], the Euler-Reynolds system can be stated equivalently as the fact that the
4 × 4 matrix

U :=
(

v1 ⊗ v1 + p1 Id−R̊1 v1
v1 0

)

is a divergence-free in space-time. R̊1 has therefore the same flavor as wc and
is also defined through a suitable (elliptic) operator, cf. with Definition 4.2.

4.1 The perturbation wo

We start by defining a partition of unity on the space of velocities, i.e. the

state space. We choose two constants c1 and c2 such that
√

3
2 < c1 < c2 < 1

and we fix a function ϕ ∈ C∞
c (Bc2(0)) which is nonnegative and identically

1 on the ball Bc1(0). We next consider the lattice Z
3 ⊂ R

3 and its quotient by
(2Z)3, i.e. we define the equivalence relation

(k1, k2, k3) ∼ (�1, �2, �3) ⇐⇒ ki − �i is even ∀i.
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We then denote by Cj , j = 1, . . . ,8 the 8 equivalence classes of Z
3/ ∼. For

each k ∈ Z
3 denote by ϕk the function

ϕk(x) := ϕ(x − k).

Observe that, if k �= � ∈ Ci , then |k − �| ≥ 2 > 2c2. Hence ϕk and ϕ� have
disjoint supports. On the other hand, the function

ψ :=
∑
k∈Z3

ϕ2
k

is smooth, bounded and bounded away from zero. We then define

αk(v) := ϕk(v)√
ψ(v)

and

φ
(j)
k (v, τ ) :=

∑
l∈Cj

αl(μv)e
−i(k· l

μ
)τ

.

Since αl and α
l̃

have disjoint supports for l �= l̃ ∈ Cj , it follows that for all
v, τ, j ∣∣φ(j)

k (v, τ )
∣∣2 =

∑
l∈Cj

αl(μv)2, (24)

and in particular
∑8

j=1 |φ(j)
k (v, τ )|2 = 1. Furthermore, for the same reason

there exist for any m = 0,1,2, . . . constants C = C(m) such that

sup
v,τ

∣∣Dm
v φ

(j)
k (v, τ )

∣∣ ≤ C(m)μm. (25)

Fix next any (v, τ ) and j . Observe that there is at most one l ∈ Cj with the
property that αl(μv) �= 0 and this l has the property that |μv − l| < 1. Thus,
in a neighborhood of (v, τ ) we will have

∂τφ
(j)
k + i(k · v)φ

(j)
k = ik ·

(
v − l

μ

)
φ

(j)
k . (26)

Combining (25) and (26), for any m = 0,1,2, . . . we find constants C =
C(m, |k|) such that

sup
v,τ

∣∣Dm
v

(
∂τφ

(j)
k + i(k · v)φ

(j)
k

)∣∣ ≤ C
(
m, |k|)μm−1. (27)

We apply Lemma 3.2 with N = 8 to obtain λ0 > 1, r0 > 0 and pairwise dis-
joint families Λj together with corresponding functions γ

(j)
k ∈ C∞(Br0(Id)).
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Next, set

ρ(t) := 1

3(2π)3

(
e(t)

(
1 − δ

2

)
−

∫
T3

|v|2(x, t) dx

)

and

R(x, t) := ρ(t) Id−R̊(x, t),

and define

wo(x, t) := √
ρ(t)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R(x, t)

ρ(t)

)
φ

(j)
k

(
v(x, t), λt

)
Bke

iλk·x. (28)

4.2 The constants η and M

Note that wo is well-defined only if R
ρ

∈ Br0(Id) where r0 is given in
Lemma 3.2. This is ensured by an appropriate choice of η. Indeed,

ρ(t) ≥ 1

3(2π)3

δ

4
e(t) ≥ cδ min

t∈[0,1] e(t) =: cδm,

where c is a dimensional (positive) constant and m > 0 by assumption. Then∥∥∥∥ R

ρ(t)
− Id

∥∥∥∥ ≤ 1

cδm
‖R̊‖ ≤ η

cm
.

Thus, it suffices to choose

η := 1

2
cmr0 = r0

24(2π)3
min

t∈[0,1] e(t). (29)

Observe that this choice is independent of δ > 0.
Notice next that, by our choice of ρ(t) and by (7), ρ(t) ≤ δe(t). Thus there

exists a constant M > 1 depending only on e (in particular independent of δ)
so that

sup
t∈[0,1]

sup
x∈T3

∣∣wo(x, t)
∣∣ ≤

√
Mδ

2
. (30)

This fixes the choice of the constant M in Proposition 2.2.

4.3 The correction wc

We next define the Leray projector onto divergence-free vectorfields with zero
average.



Dissipative continuous Euler flows 393

Definition 4.1 Let v ∈ C∞(T3,R
3) be a smooth vector field. Let

Qv := ∇φ +
∫
�

T3
v,

where φ ∈ C∞(T3) is the solution of

�φ = divv in T
3

with
∫
�T3φ = 0. Furthermore, let P = I − Q be the Leray projection onto

divergence-free fields with zero average.

The vector field v1 is then the sum of v with the Leray projection w of wo,
namely

v1(x, t) := v(x, t) + Pwo(x, t) =: v(x, t) + w(x, t)

and hence

wc(x, t) := −Qwo(x, t) = w(x, t) − wo(x, t).

4.4 The pressure p1

We define

p1 := p − |wo|2
2

. (31)

4.5 The Reynolds stress R̊1

In order to specify the choice of R̊1 we introduce a new operator.

Definition 4.2 Let v ∈ C∞(T3,R
3) be a smooth vector field. We then define

Rv to be the matrix-valued periodic function

Rv := 1

4

(∇Pu + (∇Pu)T
) + 3

4

(∇u + (∇u)T
) − 1

2
(divu) Id,

where u ∈ C∞(T3,R
3) is the solution of

�u = v −
∫
�

T3
v in T

3

with
∫
�T3u = 0.

Lemma 4.3 (R = div−1) For any v ∈ C∞(T3,R
3) we have

(a) Rv(x) is a symmetric trace-free matrix for each x ∈ T
3;

(b) div Rv = v − ∫
�T3v.
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Proof It is obvious by inspection that Rv is symmetric. Since Pv is
divergence-free, we obtain for the trace

tr(Rv) = 3

4
(2 divu) − 3

2
divu = 0.

Similarly, we have

div(Rv) = 1

4
�(Pu) + 3

4
(∇ divu + �u) − 1

2
∇ divu. (32)

On the other hand recall that Pu = u − ∇φ − ∫
�u = u − ∇φ, where �φ =

divu. Therefore �(Pu) = �u − ∇ divu. Plugging this identity into (32), we
obtain

div(Rv) = �u

and since u solves �u = v − ∫
�v, (b) follows readily. �

Then we set

R̊1 := R
(
∂tv1 + div(v1 ⊗ v1) + ∇p1

)
.

Note that [∂tv1 + div(v1 ⊗ v1) + ∇p1] has average zero. Indeed:

• the vector field div(v1 ⊗ v1) + ∇p1 has average 0 because it is the diver-
gence of the matrix field v1 ⊗ v1 + p1 Id;

• for the same reason, the identity ∂tv = −div(v ⊗ v + p Id−R̊) shows that
∂tv has average 0; on the other hand w = Pwo has average 0 because of
the definition of P ; this implies that ∂tw has also average zero and thus we
conclude as well that ∂tv1 = ∂tv + ∂tw has average zero.

Therefore from Lemma 4.3 it follows that R̊1(x, t) is symmetric and trace-
free and that the identity

∂tv1 + div(v1 ⊗ v1) + ∇p1 = div R̊1

holds.
The rest of this note is devoted to prove that the triple (v1,p1, R̊1) satisfies

the estimates (9), (10), (11) and (12). This will be achieved by an appropri-
ate choice of the parameters μ and λ. In particular, we will show that the
estimates hold provided μ is sufficiently large and λ much larger than μ.

5 Schauder estimates

In the following m = 0,1,2, . . . , α ∈ (0,1), and β is a multiindex. We intro-
duce the usual (spatial) Hölder norms as follows. First of all, the supremum
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norm is denoted by ‖f ‖0 := supT3 |f |. We define the Hölder seminorms as

[f ]m = max|β|=m

∥∥Dβf
∥∥

0,

[f ]m+α = max|β|=m
sup
x �=y

|Dβf (x) − Dβf (y)|
|x − y|α .

The Hölder norms are then given by

‖f ‖m =
m∑

j=0

[f ]j

‖f ‖m+α = ‖f ‖m + [f ]m+α.

Recall the following elementary inequalities:

[f ]s ≤ C
(
εr−s[f ]r + ε−s‖f ‖0

)
(33)

for r ≥ s ≥ 0 and all ε > 0, and

[fg]r ≤ C
([f ]r‖g‖0 + ‖f ‖0[g]r

)
(34)

for any 1 ≥ r ≥ 0.
Finally, we recall the classical Schauder estimates for the Laplace operator

and the corresponding estimates which we can infer for the various operators
involved in our construction.

Proposition 5.1 For any α ∈ (0,1) and any m ∈ N there exists a constant
C(α,m) with the following properties. If φ,ψ : T

3 → R are the unique solu-
tions of {

�φ = f,∫
�φ = 0,

{
�ψ = divF,∫
�ψ = 0,

then

‖φ‖m+2+α ≤ C(m,α)‖f ‖m,α and ‖ψ‖m+1+α ≤ C(m,α)‖F‖m,α. (35)

Moreover we have the estimates

‖Qv‖m+α ≤ C(m,α)‖v‖m+α (36)

‖Pv‖m+α ≤ C(m,α)‖v‖m+α (37)

‖Rv‖m+1+α ≤ C(m,α)‖v‖m+α (38)∥∥R(divA)
∥∥

m+α
≤ C(m,α)‖A‖m+α (39)
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∥∥

m+α
≤ C(m,α)‖A‖m+α. (40)

Proof The estimates (35) are the usual Schauder estimates, see for instance
[12, Chap. 4]. The meticulous reader will notice that the estimates in [12]
are stated in R

n for the potential-theoretic solution of the Laplace operator.
The periodic case is however an easy corollary. Take for instance φ and f

and consider them as periodic functions defined on R
3. Consider g = f χ ,

where χ is a cut-off function supported in B6π(0) and identically 1 on B4π(0).
Let φ̃ be the potential-theoretic solution in R

3 of �φ̃ = g. For φ̃ we can
invoke the Schauder estimates as in [12, Chap. 4]. Moreover φ − φ̃ is an
harmonic function in B4π(0). Obviously ‖φ‖L2(B4π (0)) can be easily bounded
using �φ = f ,

∫
�φ = 0 and the Parseval identity. Thus, standard properties of

harmonic functions give ‖φ − φ̃‖Cm,α([2π ]3) ≤ C(m,α)‖f ‖0.
The estimates (36), (37), (38) and (39) are easy consequences of (35) and

the definitions of the operators. The estimate (40) requires a little more care.
Let u : T

3 → R
3 be the unique solution of

��ui = ∂i

∑
j,n

∂2
jnAjn

with
∫
�u = 0. Then

‖u‖m+1+α ≤ C(m,α)‖A‖m+α. (41)

First of all, with the argument above, one can reduce this estimate to a cor-
responding one for the potential-theoretic solution of the biLaplace opera-
tor in R

3. For this case we can then invoke general estimates for elliptic
k-homogeneous constant coefficients operators (see for instance [24, Theo-
rem 1]) or use the same arguments of [12, Chap. 4] replacing the fundamental
solution of the Laplacian with that of the biLaplacian. Finally, (40) follows
from the identity

R Q(divA) = 1

4

(∇Pu + (∇Pu)T
) + 3

4

(∇u + (∇u)T
) − 1

2
(divu) Id

and the estimates (41) and (37). �

In what follows we will use the convention that Greek subscripts of Hölder
norms denote always exponents in the open interval (0,1).

Proposition 5.2 Let k ∈ Z
3 \ {0} and λ ≥ 1 be fixed.

(i) For any a ∈ C∞(T3) and m ∈ N we have∣∣∣∣
∫

T3
a(x)eiλk·x dx

∣∣∣∣ ≤ C
[a]m
λm

. (42)
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(ii) Let λ ∈ N\{0} and φλ ∈ C∞(T3) be the solution of

�φλ = fλ in T
3

with
∫

T3 φλ = 0, where

fλ(x) := a(x)eiλk·x −
∫
�

T3
a(y)eiλk·y dy.

Then for any α ∈ (0,1) and m ∈ N we have the estimate

‖∇φλ‖α ≤ C

λ1−α
‖a‖0 + C

λm−α
[a]m + C

λm
[a]m+α, (43)

where C = C(α,m).

Proof For j = 0,1, . . . define

Aj(y, ξ) := −i

[
k

|k|2
(

i
k

|k|2 · ∇
)j

a(y)

]
eik·ξ ,

Fj (y, ξ) :=
[(

i
k

|k|2 · ∇
)j

a(y)

]
eik·ξ .

Direct calculation shows that

Fj (x,λx) = 1

λ
div

[
Aj(x,λx)

] + 1

λ
Fj+1(x, λx).

In particular for any m ∈ N

a(x)eiλk·x = F0(x, λx) = 1

λ

m−1∑
j=0

1

λj
div

[
Aj(x,λx)

] + 1

λm
Fm(x,λx).

Integrating this over T
3 and using that |k| ≥ 1 we obtain (42).

Next, using (33) and (34) we have, for any j ≤ m − 1,∥∥Aj(·, λ·)∥∥
α

≤ C
(
λα[a]j + [a]j+α

)
≤ Cλj+α

(
λ−m[a]m + ‖a‖0

)
and similarly ∥∥Fm(·, λ·)∥∥

α
≤ C

(
λα[a]m + [a]m+α

)
.
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Moreover, according to the standard estimate (35),

‖∇φ‖α ≤ C

(
1

λ

m−1∑
j=0

1

λj

∥∥Aj(·, λ·)∥∥
α

+ 1

λm

∥∥Fm(·, λ·)∥∥
α

+
∣∣∣∣
∫
�

T3
F0(x, λx) dx

∣∣∣∣
)

,

hence, using (42) for the last term,

‖∇φ‖α ≤ C

λ1−α
‖a‖0 + C

λm−α
[a]m + C

λm
[a]m+α

as required. �

Corollary 5.3 Let k ∈ Z
3 \ {0} be fixed. For a smooth vectorfield a ∈

C∞(T3;R
3) let F(x) := a(x)eiλk·x . Then we have

∥∥R(F )
∥∥

α
≤ C

λ1−α
‖a‖0 + C

λm−α
[a]m + C

λm
[a]m+α,

where C = C(α,m).

Proof This is an immediate consequence of the definition of R, the Schauder
estimate (37) for P and Proposition 5.2 above. �

6 Estimates on the corrector and the energy

In all subsequent estimates, unless otherwise stated, C denotes a generic con-
stant that can vary from line to line, and depends on e, v, R̊ as well as on λ0, α

and δ, but is independent of λ and μ. Smallness of the respective quantities
will be achieved by an appropriate choice of λ,μ in Sect. 8. Moreover, all
estimates will implicitly assume (18), in particular that 1 ≤ μ ≤ λ.

Our aim is to estimate the space-time sup-norm of v1 − v = w = wo + wc

and R̊1. Since wc and R̊1 are defined in terms of the singular integral operators
P, Q and R, which act in space, instead of obtaining directly estimates of
the C0 norm, we will use Schauder estimates to obtain bounds on spatial
Hölder norms. Thus, in the sequel the Hölder norms will denote spatial norms,
and are understood to be uniform in time t ∈ [0,1]. Moreover, if the Hölder
exponent is denoted by a Greek letter, then it is a number in the open interval
(0,1).

It will be convenient to write wo as

wo(x, t) = W(x, t, λt, λx),
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where

W(y, s, τ, ξ) :=
∑

|k|=λ0

ak(y, s, τ )Bke
ik·ξ

= √
ρ(s)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R(y, s)

ρ(s)

)
φ

(j)
k

(
v(y, s), τ

)
Bke

ik·ξ .

(44)

We summarize the main properties of the coefficients W :

Proposition 6.1 (i) Let ak ∈ C∞(T3 × [0,1] × R) be given by (44). Then for
any r ≥ 0 ∥∥ak(·, s, τ )

∥∥
r
≤ Cμr,∥∥∂sak(·, s, τ )

∥∥
r
≤ Cμr+1,∥∥∂τ ak(·, s, τ )

∥∥
r
≤ Cμr,∥∥(

∂τ ak + i(k · v)ak

)
(·, s, τ )

∥∥
r
≤ Cμr−1.

(ii) The matrix-function W ⊗ W can be written as

(W ⊗ W)(y, s, τ, ξ) = R(y, s) +
∑

1≤|k|≤2λ0

Uk(y, s, τ )eik·ξ , (45)

where the coefficients Uk ∈ C∞(T3 × [0,1] × R; S 3×3) satisfy

Ukk = 1

2
(trUk)k (46)

and for any r ≥ 0 ∥∥U
μ
k (·, s, τ )

∥∥
r
≤ Cμr,∥∥∂sU

μ
k (·, s, τ )

∥∥
r
≤ Cμr+1,∥∥∂τUk(·, s, τ )

∥∥
r
≤ Cμr,∥∥(

∂τU
μ
k + i(k · v)U

μ
k

)
(·, s, τ )

∥∥
r
≤ Cμr−1.

In all these estimates the constant C depends on r and e, v, R̊ but is indepen-
dent of (s, τ ) and μ.

Proof The estimates for ak are a consequence of (25) and (27). Indeed, since
the constants in the estimates are allowed to depend on e, v, R̊, one only needs
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to keep track of the number of derivatives of φ
(j)
k with respect to v. Then the

estimates on ak, ∂sak and ∂τ ak + i(k · v)ak immediately follow. From the
triangle inequality we can then also conclude the estimate on ∂τ ak .

Next, consider the expansion of ξ �→ W ⊗W into a Fourier series in ξ , i.e.

(W ⊗ W)(y, s, τ, ξ) = U0(y, s, τ ) +
∑

1≤|k|≤2λ0

Uk(y, s, τ )eik·ξ .

Since each Uk is the sum of finitely many terms of the form ak′ak′′ , the esti-
mates for Uk follow from those for ak .

Next, since U0 is given by the average (in ξ ), in order to obtain (45) we
need to show that ∫

�

T3
W ⊗ W(y, s, τ, ξ) dξ = R(y, s).

To this end we calculate:∫
�

T3
W ⊗W dξ

(21)= ρ

2

∑
j

∑
k∈Λj

(
γ

(j)
k

(
ρ−1R

))2∣∣φ(j)
k (v, τ )

∣∣2
(

Id− k

|k| ⊗ k

|k|
)

(24)= ρ

2

∑
j

∑
k∈Λj

∑
l∈Cj

(
γ

(j)
k

(
ρ−1R

))2(
αl(μv)

)2
(

Id − k

|k| ⊗ k

|k|
)

(22)= R
∑
j

∑
l∈Cj

(
αl(μv)

)2 = R
∑
l∈Z3

(
αl(μv)

)2 = R.

Finally, (46) is a direct consequence of Proposition 3.1, in particular
of (20). �

After this preparation we are ready to estimate all the terms in the perturba-
tion scheme. First of all we verify that the corrector term wc is indeed much
smaller than the main perturbation term wo:

Lemma 6.2 (Estimate on the corrector)

‖wc‖α ≤ C
μ

λ1−α
. (47)

Proof We start with the observation that, since k · Bk = 0,

wo(x, t) = 1

λ
∇ ×

( ∑
|k|=λ0

−iak(x, t, λt)
k × Bk

|k|2 eiλx·k
)

+ 1

λ

∑
|k|=λ0

i∇ak(x, t, λt) × k × Bk

|k|2 eiλx·k.
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Hence

wc(x, t) = −1

λ
Quc(x, t), (48)

where

uc(x, t) =
∑

|k|=λ0

i∇ak(x, t, λt) × k × Bk

|k|2 eiλx·k.

The estimate (47) then follows from the Schauder estimate (36) for Q com-
bined with

‖uc‖α ≤ Cμλα.
�

Next, we verify the estimate on the energy (9).

Lemma 6.3 (Estimate on the energy)∣∣∣∣e(t)
(

1 − 1

2
δ

)
−

∫
T3

|v1|2 dx

∣∣∣∣ ≤ C
μ

λ1−α
. (49)

Proof Taking the trace of identity (45) in Proposition 6.1 we have∣∣W(y, s, τ, ξ)
∣∣2 = trR(y, s) +

∑
1≤|k|≤2λ0

ck(y, s, τ )eik·ξ

for some coefficients ck ∈ C∞(T3 × [0,1] × R), which satisfy the estimates∥∥ck(·, s, τ )
∥∥

r
≤ Cμr.

From part (i) of Proposition 5.2 with m = 1 we deduce∣∣∣∣
∫

T3
|wo|2 − trR dx

∣∣∣∣ ≤ C
μ

λ

and ∣∣∣∣
∫

T3
v · wo dx

∣∣∣∣ ≤ C
μ

λ
.

Hence, combining with (47) we see that∣∣∣∣
∫

T3
|v1|2 − |v|2 − |wo|2 dx

∣∣∣∣ ≤ C
μ

λ1−α
.

Recalling that

trR = 3ρ = 1

(2π)3

(
e(t)

(
1 − 1

2
δ

)
−

∫
T3

|v|2 dx

)
,

we conclude (49). �



402 C. De Lellis, L. Székelyhidi Jr.

7 Estimates on the Reynolds stress

Rewrite

∂tv1 + div(v1 ⊗ v1) + ∇p1

= [∂two + v · ∇wo] +
[

div

(
wo ⊗ wo − 1

2
|wo|2 Id+R̊

)]

+ [
∂twc + div(v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc + v ⊗ wo)

]
. (50)

In other words we split the Reynolds stress into the three parts on the right
hand side. We will refer to them as the transport part, the oscillation part,
and the error. In the following we will estimate each term separately.

Lemma 7.1 (The transport part)

∥∥R(∂two + v · ∇wo)
∥∥

α
≤ C

(
λα

μ
+ μ2

λ1−α

)
. (51)

Proof Observe that

R(∂two + v · ∇wo) = λR
( ∑

|k|=λ0

(
∂τ ak + i(k · v)ak

)
(x, t, λt)Bke

iλk·x
)

+ R
( ∑

|k|=λ0

(∂sak + v · ∇yak)(x, t, λt)Bke
iλk·x

)
.

For the first term Corollary 5.3 with m = 2 implies the bound

λα

μ
+ μ

λ1−α
+ μ1+α

λ
,

whereas for the second term Corollary 5.3 with m = 1 implies the bound

μ

λ1−α
+ μ2

λ1−α
+ μ2+α

λ
.

Since 1 ≤ μ ≤ λ, we obtain (51). �

Lemma 7.2 (The oscillation part)

∥∥∥∥R
(

div

(
wo ⊗ wo − 1

2
|wo|2 Id+R̊

))∥∥∥∥
α

≤ C
μ2

λ1−α
. (52)
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Proof Recall the formula (45) from Proposition 6.1. Since ρ is a function of
t only, we can write the oscillation part in (50) as

div

(
wo ⊗ wo − 1

2

(|wo|2 − ρ
)

Id+R̊

)

= div

(
wo ⊗ wo − R − 1

2

(|wo|2 − trR
)

Id

)

= div

[ ∑
1≤|k|≤2λ0

(
Uk − 1

2
(trUk) Id

)
(x, t, λt)eiλk·x

]

(46)=
∑

1≤|k|≤2λ0

divy

[
Uk − 1

2
(trUk) Id

]
(x, t, λt)eiλk·x.

Corollary 5.3 with m = 1 then implies (52). �

Concerning the error, we are going to treat three terms separately, as fol-
lows.

Lemma 7.3 (Estimate on the error I)

∥∥R(∂twc)
∥∥

α
≤ C

μ2

λ1−α
. (53)

Proof Recall from (48) that wc = − 1
λ

Quc. Now

∂tuc(x, t) = λ
∑

|k|=λ0

i(∇∂τ ak)(x, t, λt) × k × Bk

|k|2 eiλx·k

+
∑

|k|=λ0

i(∇∂sak)(x, t, λt) × k × Bk

|k|2 eiλx·k.

Moreover, for any ck ∈ C∞(T3;R
3) we have

ck(x, t, λt)eiλx·k = 1

iλ
div

[
ck(x, t, λt) ⊗ k

|k|2 eiλx·k
]

− 1

iλ

[(
k

|k|2 · ∇
)

ck(x, t, λt)

]
eiλx·k.

Therefore ∂tuc can be written as

∂tuc = divUc + ũc,
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where

‖Uc‖α ≤ Cμλα, ‖ũc‖α ≤ Cμ2λα.

Therefore we have R∂twc = − 1
λ
(R Q divUc + R Qũc). From the Schauder

estimate (40) for the operator R Q div, we conclude that

‖R∂twc‖α ≤ 1

λ

(‖R Q divUc‖α + ‖R Qũc‖α

)
≤ C

λ

(‖Uc‖α + ‖ũc‖α

) ≤ C
μ2

λ1−α
. �

Lemma 7.4 (Estimate on the error II)∥∥R
(
div(v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc)

)∥∥
α

≤ C
μ

λ1−2α
. (54)

Proof We first estimate

‖v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc‖α

≤ C
(‖v1‖0‖wc‖α + ‖v1‖α‖wc‖0 + ‖wc‖0‖wc‖α

)
(47)≤ C

μ

λ1−α

(‖v1‖α + ‖wc‖α

)
≤ C

μ

λ1−α

(‖v‖α + ‖wc‖α + ‖wo‖α

)
≤ C

μ

λ1−α

(
C + C

μ

λ1−α
+ Cλα

)
.

Recall that 1 ≤ μ ≤ λ and hence 1 ≤ μ

λ1−α ≤ λα . Thus we conclude

‖v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc‖α ≤ C
μ

λ1−2α
.

(54) follows from the latter inequality and the Schauder estimate (39). �

Lemma 7.5 (Estimate on the error III)

∥∥R
(
div(v ⊗ wo)

)∥∥
α

≤ C
μ2

λ1−α
. (55)

Proof Since Bk · k = 0, we can write

div(v ⊗ wo) = wo · ∇v + (divwo)v

=
∑

|k|=λ0

[
ak(Bk · ∇)v + v(Bk · ∇ak)

]
eiλk·x.
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The claim follows from Corollary 5.3 with m = 1. �

8 Conclusion: proof of Proposition 2.2

In this section we collect the estimates from the preceding sections. For sim-
plicity we set

μ = λβ.

It should be noted, however, that due to the requirement (18) we can only
ensure μ ∼ λβ for large λ.

We claim that for an appropriate choice of α and β , the estimates (9), (10),
(11) and (12) will be satisfied for sufficiently large λ. First of all recall that,
by the choice of M we have

‖wo‖0 ≤
√

Mδ

2
(56)

(cf. with (30)) and M > 1. Therefore (11) follows from the estimate ‖wc‖α ≤
Cμλα−1 (cf. with (47)) if, for instance, we can prescribe

C
μ

λ1−α
= Cλα+β−1 ≤

√
δ

2
.

On the other hand (12) follows easily from (56) and the identity p1 − p =
−1

2 |wo|2.
Also, from (49) it follows that (9) is satisfied provided

Cλα+β−1 ≤ 1

8
δ min

t∈[0,1] e(t).

Finally, (51), (52), as well as the estimates on the error (53)–(55) imply that

‖R̊1‖α ≤ C
(
λα−β + λα+2β−1 + λ2α+β−1).

Therefore, any choice of α,β such that

α < β, α + 2β < 1 (57)

will ensure that (9), (10), (11) and (12) will be valid for sufficiently large λ.
This completes the proof. As a side remark observe that (57) requires α < 1

3 .
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