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Annals of Mathematics, 170 (2009), 1417–1436

The Euler equations as a differential inclusion
By CAMILLO DE LELLIS and LÁSZLÓ SZÉKELYHIDI JR.

Abstract

We propose a new point of view on weak solutions of the Euler equations,
describing the motion of an ideal incompressible fluid in Rn with n � 2. We
give a reformulation of the Euler equations as a differential inclusion, and in this
way we obtain transparent proofs of several celebrated results of V. Scheffer and
A. Shnirelman concerning the non-uniqueness of weak solutions and the existence
of energy-decreasing solutions. Our results are stronger because they work in any
dimension and yield bounded velocity and pressure.

1. Introduction

Consider the Euler equations in n space dimensions, describing the motion of
an ideal incompressible fluid:

(1) @tvC div.v˝ v/Crp�f D 0 and div v D 0:

Classical (i.e. sufficiently smooth) solutions of the Cauchy problem exist locally in
time for sufficiently regular initial data and driving forces [MB02, Chap. 3.2]. In
two dimensions, such existence results are available also for global solutions (see
e.g. [MB02, Chaps. 3.3 and 8.2] and the references therein). Classical solutions of
Euler’s equations with f D 0 conserve the energy, that is, t 7!

R
jv.x; t/j2dx is a

constant function. Hence the energy space for (1) is L1t .L
2
x/.

A recurrent issue in the modern theory of PDEs is that one needs to go beyond
classical solutions, in particular down to the energy space (see for instance [Daf00],
[DM87], [MB02], [Tao06]). A divergence-free vector field v 2 L2loc is a weak
solution of (1) if Z �

v@t'Chv˝ v;r'iC' �f
�
dxdt D 0

for every test function ' 2 C1c .R
n
x � Rt ;R

n/ with div' D 0. It is well known
that then the pressure is determined up to a function depending only on time; see
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[Tem84]. In the case of the Euler equations, strong motivation for considering weak
solutions comes also from mathematical physics, especially the theory of turbulence
laid down by Kolmogorov in 1941 [Cho94], [Fri95]. A celebrated criterion of
Onsager related to Kolmogorov’s theory says, roughly speaking, that dissipative
weak solutions cannot have a Hölder exponent greater than 1=3 [CET94], [DR00],
[Eyi94], [Ons49]. It is therefore of interest to construct weak solutions with limited
regularity.

Weak solutions are not unique. In a well-known paper [Sch93], Scheffer
constructed a surprising example of a weak solution to (1) with compact support
in space and time when f D 0 and n D 2. Scheffer’s proof is very long and
complicated, and a simpler construction was later given by Shnirelman in [Shn97].
However, Shnirelman’s proof is still quite difficult. In this paper we obtain a short
and elementary proof of the following theorem.

THEOREM 1.1. Let f D 0. There exists a v 2 L1.Rnx � Rt IR
n/ and a

p 2 L1.Rnx � Rt /, solving (1) in the sense of distributions, such that v is not
identically zero, and supp v and suppp are compact in spacetime Rnx �Rt .

In mathematical physics, weak solutions to the Euler equations that dissipate
energy underlie the Kolmogorov theory of turbulence. In another groundbreaking
paper [Shn00], Shnirelman proved the existence of L2 distributional solutions with
f D 0 and energy that decreases in time. His methods are completely unrelated to
those in [Sch93] and [Shn97]. In contrast, the following extension of his existence
theorem is a simple corollary of our construction.

THEOREM 1.2. There exists .v; p/ as in Theorem 1.1 such that, in addition,

�
R
jv.x; t/j2dx D 1 for almost every t 2 ��1; 1Œ and

� v.x; t/D 0 for jt j> 1.

Our method has several interesting features. First of all, our approach fits nicely
in the well-known framework of L. Tartar for the analysis of oscillations in linear
partial differential systems coupled with nonlinear pointwise constraints [DP85],
[KMŠ03], [Tar79], [Tar83]. Roughly speaking, Tartar’s framework amounts to
a planewave analysis localized in physical space, in contrast with Shnirelman’s
method in [Shn97], which is based rather on a wave analysis in Fourier space. In
combination with Gromov’s convex integration or with Baire category arguments,
Tartar’s approach leads to a well-understood mechanism for generating irregular
oscillatory solutions to differential inclusions; see [Kir03], [KMŠ03], [MŠ03].

Second, the velocity field we construct is in the energy space L1t .L
2
x/. This

was not the case for the solutions in [Sch93], [Shn97], and it was a natural question
whether weak solutions in the energy space were unique. Our first theorem shows
that even higher summability assumptions of v do not rule out such pathologies. The
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pressure in [Sch93], [Shn97] is only a distribution solving (1). In our construction
p is actually the potential-theoretic solution of

(2) ��p D @2xixj
.vivj /:

However, being bounded, it has slightly better regularity than the BMO given by
the classical estimates for (2).

Next, our point of view reveals connections between the apparently unrelated
constructions of Scheffer and Shnirelman. Shnirelman considers sequences of
driving forces fk converging to 0 in some negative Sobolev space. In particular, he
shows that for a suitable choice of fk the corresponding solutions of (1) converge in
L2 to a nonzero solution of (1) with f D 0. Scheffer builds his solution by iterating
a certain piecewise constant construction at small scales. On the one hand, both
our proof and Scheffer’s are based on oscillations localized in physical space. On
the other hand, our proof gives as an easy byproduct the following approximation
result in Shnirelman’s spirit.

THEOREM 1.3. All of the solutions .v; p/ constructed in the proofs of The-
orems 1.1 and 1.2 have the following property. There exist three sequences
fvkg; ffkg; fpkg � C

1
c solving (1) such that

� fk converges to 0 in H�1,

� kvkk1Ckpkk1 is uniformly bounded, and

� .vk; pk/! .v; p/ in Lq for every q <1.

Our results give interesting information on which kind of additional (entropy)
condition could restore uniqueness of solutions. As already remarked, belonging to
the energy space is not sufficient. In fact, in view of our method of construction, there
is strong evidence that neither energy-decreasing nor energy-preserving solutions
are unique. This issue is investigated further in [DLSJ07].

The rest of the paper is organized as follows. In Section 2, we carry out the
plane wave analysis of the Euler equations in the spirit of Tartar, and we formulate
the core of our construction, Proposition 2.2, which we then prove in Section 3.
In Section 4, we show how our main results follow from that proposition. We
emphasize that the concluding argument in Section 4 appeals to the — by now
standard — methods for solving differential inclusions, either by appealing to the
Baire category theorem [BF94], [Cel80], [DM97], [Kir01] or by using the more
explicit convex integration method [Gro86], [MŠ03], [MS01]. In our opinion, the
Baire category argument developed in [Kir03] and used in Section 4 is, for the
purposes of this paper, the most efficient and elegant tool. However, we include in
Section 5 an alternative proof which follows the convex integration approach, as it
makes easier to visualize the solutions constructed in this paper.
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2. Plane wave analysis of Euler’s equations

We start by briefly explaining Tartar’s framework [Tar79]. One considers
nonlinear PDEs that can be expressed as a system of linear PDEs (conservation
laws)

(3)
mX
iD1

Ai@iz D 0

coupled with a pointwise nonlinear constraint (constitutive relations)

z.x/ 2K � Rd almost everywhere,

where z W��Rm!Rd is the unknown state variable. The idea is then to consider
planewave solutions to (3), that is, solutions of the form

(4) z.x/D ah.x � �/;

where h W R! R. The wave cone ƒ is given by the states a 2 Rd such that, for any
choice of the profile h, the function (4) solves (3), that is,

(5) ƒ WD
˚
a 2 Rd W 9� 2 Rm n f0g with

Pm
iD1 �iAiaD 0

	
:

The oscillatory behavior of solutions to the nonlinear problem is then determined
by the compatibility of the set K with the cone ƒ.

The Euler equations can be naturally rewritten in this framework. The domain
is Rm D RnC1, and the state variable z is defined as z D .v; u; q/, where

q D pC 1
n
jvj2 and uD v˝ v� 1

n
jvj2In;

so that u is a symmetric n� n matrix with vanishing trace; here In denotes the
n�n identity matrix. From now on the linear space of symmetric n�n matrices
will be denoted by Sn and the subspace of trace-free symmetric matrices by Sn0 .
The following lemma is straightforward.

LEMMA 2.1. Suppose v 2 L1.Rnx � Rt IR
n/, u 2 L1.Rnx � Rt IS

n
0/, and

q 2 L1.Rnx �Rt / solve

(6) @tvC divuCrq D 0 and div v D 0

in the sense of distributions. If in addition

(7) uD v˝ v� 1
n
jvj2In almost everywhere in Rnx �Rt ;

then v and p WD q � 1
n
jvj2 solve (1) with f � 0. Conversely, if v and p solve (1)

distributionally, then v, u WD v˝v� 1
n
jvj2In and q WD pC 1

n
jvj2 solve (6) and (7).

Consider the .nC 1/� .nC 1/ symmetric matrix in block form

U D

�
uC qIn v

v 0

�
;
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where In is the n�n identity matrix. Notice that by introducing new coordinates
y D .x; t/ 2 RnC1, system (6) becomes simply divy U D 0. Here, as usual, a
divergence-free matrix field is a matrix of functions with rows that are divergence-
free vectors. Therefore the wave cone corresponding to (6) is given by

ƒD

�
.v; u; q/ 2 Rn �Sn0 �R W det

�
uC qIn v

v 0

�
D 0

�
:

Remark 1. A simple computation in linear algebra shows that for every v 2 Rn

and u 2 Sn0 , there exists a q 2 R such that .v; u; q/ 2 ƒ, which reveals that the
wave cone is very large. Indeed, let V ? � Rn be the linear space orthogonal to v,
and consider on V ? the quadratic form � 7! � �u�. Then detU D 0 if and only if
�q is an eigenvalue of this quadratic form.

In order to exploit this fact for constructing irregular solutions to the nonlinear
system, one needs planewave-like solutions to (6) that are localized in space. Clearly
an exact planewave as in (4) has compact support only if it is identically zero.
Therefore this can only be done by introducing an error in the range of the wave,
deviating from the line spanned by the wave state a 2 Rd . However, this error can
be made arbitrarily small. This is the content of the following proposition, which is
the building block of our construction.

PROPOSITION 2.2 (Localized plane waves). Let a D .v0; u0; q0/ 2 ƒ with
v0¤ 0, and denote by � the line segment in Rn�Sn0�R joining the points�a and a.
For every " > 0, there exists a smooth solution .v; u; q/ of (6) with the properties
that
� the support of .v; u; q/ is contained in B1.0/� Rnx �Rt ,
� the image of .v; u; q/ is contained in the "-neighborhood of � , and
�
R
jv.x; t/jdxdt � ˛jv0j,

where ˛ > 0 is a dimensional constant.

3. Localized plane waves

For the proof of Proposition 2.2 there are two main points. First, we appeal
to a particular large group of symmetries of the equations in order to reduce the
problem to some special ƒ-directions. Second, to achieve a cutoff that preserves
the linear equations (6), we introduce a suitable potential.

Definition 3.1. We denote by M the set of symmetric .nC1/�.nC1/matrices
A such that A.nC1/.nC1/ D 0. Clearly, the map

Rn �Sn0 �R 3 .v; u; q/ 7�! U D

�
uC qIn v

v 0

�
2M

is a linear isomorphism.
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As already observed, in the variables y D .x; t/ 2 RnC1, the system (6) is
equivalent to divU D 0. Therefore Proposition 2.2 follows immediately from
another proposition:

PROPOSITION 3.2. Let U 2M be such that detU D 0 and UenC1 ¤ 0, and
consider the line segment � with endpoints �U and U . Then there exists a constant
˛ > 0 such that for any " > 0 there exists a smooth divergence-free matrix field
U W RnC1!M with the properties

(p1) suppU � B1.0/,

(p2) dist .U.y/; �/ < " for all y 2 B1.0/, and

(p3)
R
jU.y/enC1jdy � ˛jUenC1j,

where ˛ > 0 is a dimensional constant.

The proof of Proposition 3.2 relies on two lemmas. The first deals with the
symmetries of the equations.

LEMMA 3.3 (The Galilean group). Let G be the subgroup of GLnC1.R/ defined
by ˚

A 2 R.nC1/�.nC1/ W detA¤ 0; AenC1 D enC1
	
:

For every divergence-free map U W RnC1!M and every A 2 G, the map

V.y/ WD At �U.A�ty/ �A

is also a divergence-free map V W RnC1!M.

The second deals with the potential.

LEMMA 3.4 (Potential in the general case). LetEklij 2C
1.RnC1/ be functions

for i; j; k; l D 1; : : : ; nC 1 such that the tensor E is skew-symmetric in ij and kl ,
that is,

(8) Eklij D �E
lk
ij D �E

kl
j i DE

lk
j i :

Then

Uij D L.E/D
1

2

X
k;l

@2kl.E
il
kj CE

jl

ki
/

is symmetric and divergence-free. If in addition

E
.nC1/j

.nC1/i
D 0 for every i and j ,

then U takes values in M.
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Remark 2. A suitable potential in the case nD 2 can be obtained in a more
direct way. Indeed, let w 2 C1.R3;R3/ be a divergence-free vector field and
consider the map U W R3!M given by

U D

0B@ @2w1
1
2
@2w2�

1
2
@1w1

1
2
@2w3

1
2
@2w2�

1
2
@1w1 �@1w2 �

1
2
@1w3

1
2
@2w3 �

1
2
@1w3 0

1CA :
Then it can be readily checked that U is divergence-free and that w is the curl of a
vector field !. However, this is just a particular case of Lemma 3.4. Indeed, givenE
as in the lemma, define the tensorDkij D

P
l @lE

kl
ij . Note thatD is skew-symmetric

in ij and, for each ij , the vector .Dkij /kD1;:::;nC1 is divergence-free. Moreover,

Uij D
1

2

X
k

@k.D
i
kj CD

j

ki
/:

Then the vector field w is simply the special choice where Dk12 D�D
k
21 Dwk and

all other D’s are zero; a corresponding relation can be found for E and !.

We postpone the proofs of the two lemmas until the end of the section.

Proof of Proposition 3.2.

Step 1. First we treat the case when U 2M is such that

Ue1 D 0 and UenC1 ¤ 0:

Let

(9) E
j1
i1 D �E

j1
1i D �E

1j
i1 DE

1j
1i D U ij

sin.Ny1/
N 2

;

and let all the other entries equal 0. Note that by our assumption, U ij D 0 whenever
one index is 1 or both of them are nC 1. This ensures that the tensor E is well
defined and satisfies the properties of Lemma 3.4.

We remark that in the case nD 2 the matrix U takes necessarily the form

U D

0@ 0 0 0

0 a b

0 b 0

1A
with b ¤ 0, and we can use the potential of Remark 2 by simply setting

w D
1

N
.0; a cos.Ny1/; 2b cos.Ny1//;

! D
1

N 2
.0; 2b sin.Ny1/;�a sin.Ny1//:

We come back to the general case. Let E be defined as in (9), fix a smooth
cutoff function ' such that
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� j'j � 1,

� ' D 1 on B1=2.0/, and

� supp.'/� B1.0/,

and consider the map U D L.'E/. Clearly, U is smooth and supported in B1.0/.
By Lemma 3.4, U is M-valued and divergence-free. Moreover

U.y/D U sin.Ny1/ for y 2 B1=2.0/;

and in particularZ
jU.y/enC1jdy � jUenC1j

Z
B1=2.0/

jsin.Ny1/jdy � 2˛jUenC1j;

for some positive dimensional constant ˛ D ˛.n/ for sufficiently large N .
Finally, observe that U � 'eU D L.'E/ � 'L.E/ is a sum of products of

first-order derivatives of ' with first-order derivatives of components of E and of
second-order derivatives of ' with components of E. Thus,

kU �'eU k1 � Ck'kC2kEkC1 �
C 0

N
k'kC2 ;

and by choosing N sufficiently large we obtain kU � 'eU k1 < ". On the other
hand, since j'j � 1 and eU takes values in � , the image of 'eU is also contained
in � . This shows that the image of U is contained in the "-neighborhood of � .

Step 2. We treat the general case by reducing to the situation above. Let U 2M

be as in the proposition, so that Uf D 0 and UenC1 ¤ 0, where f 2 RnC1 n f0g

is such that ff; enC1g are linearly independent. Let f1; : : : ; fnC1 be a basis for
RnC1 such that f1 D f and fnC1 D enC1, and consider the matrix A such that
Aei D fi for i D 1; : : : ; nC1. Then A 2 G (compare with the definition of G given
in Lemma 3.3), and the map

T WX 7! .A�1/tXA�1

is a linear isomorphism of RnC1. Set

V D AtUA;

so that V 2 M satisfies V e1 D 0 and V enC1 ¤ 0. Given " > 0, using Step 1 we
construct a smooth map V W RnC1!M supported in B1.0/ with the image lying
in the kT k�1"-neighborhood of the line segment � with endpoints �V and V , and
such that V.y/D V sin.Ny1/. Let U be the M-valued map

U.y/D .A�1/tV.Aty/A�1:

By our discussion above, the isomorphism T W X 7! .A�1/tXA�1 maps the line
segment � onto � . Therefore,
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� U is supported in A�t .B1.0// and smooth,

� U is divergence-free by Lemma 3.3,

� U takes values in an "-neighborhood of the segment � ,

and furthermore

(10)

Z
A�t .B1.0//

jU.y/enC1jdy D

Z
A�t .B1.0//

jA�tV.Aty/enC1jdy

D

Z
B1.0/

jA�tV.z/enC1j
dz

jdetAt j

�
2˛jA�tV enC1j

jdetAj
D

2˛

jdetAj
jUenC1j:

To complete the proof we appeal to a standard covering/rescaling argument. That
is, we can find a finite number of points yk 2 B1.0/ and radii rk > 0 such that the
rescaled and translated sets A�t .Brk

.yk// are pairwise disjoint, all contained in
B1.0/, and

(11)
X
k

jA�t .Brk
.yk//j �

1
2
jB1.0/j:

Let Uk.y/D U..y � yk/=rk/ and eU DPk Uk . Then eU W RnC1!M is smooth,
clearly satisfies (p1) and (p2), andZ

jeU.y/enC1jdy DX
k

Z
A�tBrk

.yk/

jUk.y/enC1jdy

�

X
k

2˛jUenC1jjdetAj�1
jBrk

.yk/j

jB1.0/j
by (10)

D 2˛jUenC1j

P
kjA
�t .Brk

.yk//j

jB1.0/j

� ˛jUenC1j by (11). �

Proof of Lemma 3.3. First of all we check that B 2M implies AtBA 2M for
all A 2 G. Indeed, AtBA is symmetric, and since A satisfies AenC1 D enC1, we
have

.AtBA/.nC1/.nC1/ D enC1 �A
tBAenC1 D AenC1 �BAenC1

D enC1 �BenC1 D B.nC1/.nC1/ D 0:

Now, let A, U and V be as in the statement. The argument above shows
that V is M-valued. It remains to check that if U is divergence-free, then V is
also divergence-free. So let � 2 C1c .R

nC1IRnC1/ be a compactly supported test
function, and consider Q� 2 C1c .R

nC1IRnC1/ defined by Q�.x/D A�.Atx/. Then
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r Q�.x/D Ar�.Atx/At , and by a change of variables we obtainZ
tr
�
V.y/r�.y/

�
dy D

Z
tr
�
AtU.A�ty/Ar�.y/

�
dy

D

Z
tr
�
U.A�ty/Ar�.y/At

�
dy

D

Z
tr
�
U.x/Ar�.Atx/At

�
.detA/�1dx

D .detA/�1
Z

tr
�
U.x/r Q�.x/

�
dx D 0;

since U is divergence-free. But this implies that V is also divergence-free. �

Proof of Lemma 3.4. First, U is clearly symmetric and U.nC1/.nC1/ D 0.
Hence U takes values in M. To see that U is divergence-free, we calculateX

j

@jUij D
1

2

X
k;l;j

@3jkl.E
il
kj CE

jl

ki
/

D
1

2

X
l

@l

�X
jk

@2jkE
il
kj

�
C
1

2

X
k

@k

�X
jl

@2jlE
jl

ki

�
;

which vanishes by (8). This completes the proof of the lemma. �

4. Proof of the main results

For clarity we now state the precise form of our main result. Theorems 1.1,
1.2 and 1.3 are direct corollaries.

THEOREM 4.1. Let � � Rnx �Rt be a bounded open domain. There exists
.v; p/ 2 L1.Rnx �Rt / solving the Euler equations

@tvC div.v˝ v/Crp D 0 and div v D 0

such that

� jv.x; t/j D 1 for almost all .x; t/ 2�, and

� v.x; t/D 0 and p.x; t/D 0 for almost all .x; t/ 2 .Rnx �Rt / n�.

Moreover, there exists a sequence of functions .vk; pk; fk/ 2 C1c .�/ such that

� @tvkC div.vk˝ vk/Crpk D fk and div vk D 0,

� fk converges to 0 in H�1,

� kvkk1Ckpkk1 is uniformly bounded, and

� .vk; pk/! .v; p/ in Lq for every q <1.
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We remark that the statements of Theorems 1.1 and 1.3 are just subsets of the
statement of Theorem 4.1. As for Theorem 1.2, note that it suffices to choose, for
instance, �D Br.0/� ��1; 1Œ, where Br.0/ is the ball of Rn with volume 1.

We recall from Lemma 2.1 that for the first half of the theorem it suffices to
prove that there exist .v; u; q/2L1.Rnx�Rt IR

n�Sn0�R/, with support in�, such
that jvj D 1 almost everywhere in � and (6) and (7) are satisfied. In Proposition
2.2 we constructed compactly supported solutions .v; u; q/ to (6). The point is thus
to find solutions that also satisfy the pointwise constraint (7). The main idea is to
consider the sets

(12) K D
˚
.v; u/ 2 Rn �Sn0 W uD v˝ v�

1
n
jvj2In; jvj D 1

	
;

and

(13) UD int.Kco
� Œ�1; 1�/;

where int denotes the topological interior of the set in Rn�Sn0�R, andKco denotes
the convex hull of K. Thus, a triple .v; u; q/ solving (6) and taking values in the
convex extremal points of U is indeed a solution to (7). We will prove that 0 2U,
and therefore there exist planewaves taking values in U. The goal is to add them so
to get an infinite sum .v; u; q/D

P1
iD1.vi ; ui ; qi / with the properties that

� the partial sums
Pk
iD0.vi ; ui ; qi / take values in U,

� .v; u; q/ is supported in �,

� .v; u; q/ takes values in the convex extremal points of U almost everywhere
in �, and

� .v; u; q/ solves the linear partial differential equations (6).

There are two important reasons why this construction is possible. First, since the
wave cone ƒ is very large, we can always get closer and closer to the extremal
point of U with the sequence .vk; uk; pk/. Second, because the waves are localized
in spacetime, by choosing the supports smaller and smaller we can achieve strong
convergence of the sequence. In view of Lemma 2.1, this gives the solution of Euler
that we are looking for. The partial sums give the approximating sequence of the
theorem.

This sketch of the proof is philosophically closer to the method of convex
integration, where the difficulty is to ensure strong convergence of the partial sums.
The Baire category argument avoids this difficulty by introducing a metric for the
space of solutions to (6) with values in U, and proving that in its closure a generic
element takes values in the convex extreme points. An interesting corollary of the
Baire category argument is that, within the class of solutions to the Euler equations
with driving force in some particular bounded subset of H�1, the typical (in the
sense of category) element has the properties of Theorem 4.1 .
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We split the proof of Theorem 4.1 into several lemmas and a short concluding
argument, which is given at the beginning of Section 4.3. For the purpose of this
section, we could have presented a shorter proof, avoiding Lemma 4.3 and without
giving the explicit bound (17) of Lemma 4.6. However, these statements will be
needed in the convex integration proof of Section 5.

4.1. The geometric setup.

LEMMA 4.2. Let K and U be defined as in (12) and (13), that is,

K D
˚
.v; u/ 2 Sn�1 �Sn0 W uD v˝ v� In=n

	
:

Then 0 2 intKco, and hence 0 2U.

Proof. Let � be the Haar measure on Sn�1, and consider the linear map

T W C.Sn�1/! Rn �Sn0; � 7!

Z
Sn�1

.v; v˝ v� In=n/ �.v/d�:

Clearly, if

(14) � � 0 and
Z

Sn�1

�d�D 1;

then T .�/ 2Kco. Notice that T .1/D
R

Sn�1.v; v˝ v� In=n/d�D 0; and hence
0 2Kco. Moreover, whenever  2 C.Sn�1/ is such that

(15) ˛ D 1�

Z
Sn�1

 d�� k kC.Sn�1/;

�D˛C satisfies (14), and hence T . /DT .�/2Kco. Since (15) holds whenever
k kC.Sn�1/<1=2, it suffices to show that T is surjective to prove thatKco contains
a neighborhood of 0.

The surjectivity of T follows from orthogonality in L2.Sn�1/. Indeed, letting
� D vi for each i , we obtain

T .�/D ˇ1.ei ; 0/; where ˇ1 D
Z

Sn�1

v21 d�:

Furthermore, setting � D vivj with i ¤ j , we obtain

T .�/D ˇ2
�
0; ei ˝ ej C ej ˝ ei

�
; where ˇ2 D

Z
Sn�1

v21v
2
2 d�:

Finally, setting � D v2i � 1=n we obtain

T .�/D ˇ3

�
0; ei ˝ ei �

1

.n�1/

X
j¤i

ej ˝ ej

�
;

where ˇ3 D
R

Sn�1.v
2
1 � 1=n/

2d�. This shows that the image of T contains nC
1
2
n.nC 1/� 1 linearly independent elements, hence a basis for Rn �Sn0 . �
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LEMMA 4.3. There exists a dimensional constant C > 0 such that for any
.v; u; q/ 2U, there exists . Nv; Nu/ 2Rn�Sn0 such that . Nv; Nu; 0/ 2ƒ, the line segment
� with endpoints .v; u; q/˙ . Nv; Nu; 0/ is contained in U, and

j Nvj � C.1� jvj2/; min
z2�

dist.z; @U/�
1

2
dist..v; u; q/; @U/:

Proof. Let z D .v; u/ 2 intKco. By Carathéodory’s theorem, .v; u/ lies in
the interior of a simplex in Rn �Sn0 spanned by elements of K. In other words
z D

PNC1
iD1 �izi ; where �i 2 �0; 1Œ, zi D .vi ; ui / 2 K,

PNC1
iD1 �i D 1, and

N D n.nC 3/=2� 1 is the dimension of Rn�Sn0 . Assume that the coefficients are
ordered so that �1 Dmaxi �i . Then for any j > 1

z˙ 1
2
�j .zj � z1/ 2 intKco:

Indeed, z˙ 1
2
�j .zj � z1/D

P
i �izi ; where �1D �1� 1

2
�j , �j D �j ˙ 1

2
�j and

�i D �i for i … f1; j g. It is easy to see that �i 2 �0; 1Œ for all i D 1; : : : ; N C 1.
On the other hand, z� z1 D

PNC1
iD2 �i .zi � z1/, so that in particular

jv� v1j �N max
iD2;:::;NC1

�i jvi � v1j:

Let j > 1 be such that �j jvj � v1j DmaxiD2:::NC1 �i jvi � v1j, and let

. Nv; Nu/D 1
2
�j .zj � z1/:

The line segment with endpoints .v; u/˙ 2. Nv; Nu/ is contained in Kco, hence by the
convexity of U, the segment � with endpoints .v; u; q/˙ . Nv; Nu; 0/ satisfies

min
z2�

dist.z; @U/�
1

2
dist..v; u; q/; @U/:

Furthermore

1

4N
.1� jvj2/�

1

2N
.1� jvj/�

1

2N
.jv� v1j/� j Nvj:

Finally, we show that . Nv; Nu; 0/ 2 ƒ. This amounts to showing that whenever
a; b 2 Sn�1, the matrix�

a˝ a� In=n a

a 0

�
�

�
b˝ b� In=n b

b 0

�
has zero determinant and hence lies in the wave cone ƒ defined in (5). Let P 2
GLn.R/ with PaD e1 and Pb D e2. Note that�

P 0

0 1

��
a˝ a a

a 0

��
P t 0

0 1

�
D

�
Pa˝Pa Pa

Pa 1

�
;
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so that it suffices to check the determinant of�
e1˝ e1 e1
e1 0

�
�

�
e2˝ e2 e2
e2 0

�
:

Since e1C e2� enC1 is in the kernel of this matrix, it has indeed determinant zero.
This completes the proof. �

4.2. The functional setup. We define the complete metric space X as follows.
Let X0 be the set of elements .v; u; q/ 2 C1.Rnx �Rt / such that

� supp.v; u; q/��,

� .v; u; q/ solves (6) in Rnx �Rt , and

� .v.x; t/; u.x; t/; q.x; t// 2U for all .x; t/ 2 Rnx �Rt .

We equip X0 with the topology of L1 weak* convergence of .v; u; q/, and we let
X be the closure of X0 in this topology.

LEMMA 4.4. The set X with the topology of L1 weak* convergence is a
nonempty compact metrizable space. Moreover, if .v; u; q/ 2 X is such that
jv.x; t/jD1 for almost every .x; t/2�, then v and p WDq� 1

n
jvj2 is a weak solution

of (1) in Rnx �Rt such that v.x; t/D 0 and p.x; t/D 0 for all .x; t/ 2 Rnx �Rt n�.

Proof. In Lemma 4.2 we showed that 0 2 U, and hence X is nonempty.
Moreover, X is a bounded and closed subset of L1.�/; hence with the weak*
topology it becomes a compact metrizable space. Since U is a compact convex
set, any .v; u; q/ 2 X satisfies supp.v; u; q/ � �, solves (6), and takes values in
U. In particular, .v; u/.x; t/ 2Kco almost everywhere. Finally, observe also that
if .v; u/.x; t/ 2Kco, then .v; u/.x; t/ 2K if and only if jv.x; t/j D 1. In light of
Lemma 2.1, this concludes the proof. �

Fix a metric d�1 inducing the weak* topology of L1 in X , so that .X; d�1/ is
a complete metric space.

LEMMA 4.5. The identity map I W .X; d�1/!L2.Rnx�Rt / defined by .v; u; q/
7! .v; u; q/ is a Baire-1 map, and therefore the set of points of continuity is residual
in .X; d�1/.

Proof. Let �r.x; t/D r�.nC1/�.rx; rt/ be any regular spacetime convolution
kernel. For each fixed .v; u; q/ 2X , we have

.�r � v; �r �u; �r � q/! .v; u; q/ strongly in L2 as r! 0:

On the other hand, for each r > 0 and .vk; uk; qk/ 2X ,

.vk; uk; qk/
�
*.v; u; q/ in L1 implies �r�.v

k; uk; qk/!�r�.v; u; q/ in L2:
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Therefore each map Ir W .X; d�1/! L2, .u; v; q/ 7! .�r � v; �r � u; �r � q/ is
continuous, and I.v; u; q/D limr!0 Ir.v; u; q/ for all .v; u; q/ 2 X: This shows
that I W .X; d�1/!L2 is a pointwise limit of continuous maps; hence it is a Baire-1
map. Therefore the set of points of continuity of I is residual in .X; d�1/; see
[Oxt80]. �

4.3. Points of continuity of the identity map. The proof of Theorem 4.1 will
follow from Lemmas 4.4 and 4.5 once we prove this:

CLAIM. If .v; u; q/ 2X is a point of continuity of I , then

(16) jv.x; t/j D 1 for almost every .x; t/ 2�:

Indeed, if the claim is true, then the set of .v; u; q/2X such that jvjD 1 almost
everywhere is nonempty, yielding solutions of (1). Furthermore, any such .v; u; q/
must be the strong L2 limit of some sequence f.vk; uk; qk/g �X0. Therefore, with
pk D qk �

1
n
jvkj

2 and

fk D div
�
vk˝ vk �

1
n
jvkj

2 Id�uk
�
;

we obtain div vk D 0 and @tvkC div vk˝ vkCrpk D fk . Also, fk! 0 in H�1.
Therefore it remains to prove our claim. Observe that since jv.x; t/j � 1 for

almost all .x; t/2�, (16) is equivalent to kvkL2.�/Dj�j
1=2, where j�j denotes the

.nC 1/-dimensional Lebesgue measure of �. The claim then follows immediately
from the following lemma.

LEMMA 4.6. There exists a dimensional constant ˇ > 0 with the property that
given .v0; u0; q0/ 2X0 there exists a sequence .vk; uk; qk/ 2X0 such that

(17) kvkk
2
L2.�/

� kv0k
2
L2.�/

Cˇ
�
j�j � kv0k

2
L2.�/

�2
;

and .vk; uk; qk/
�
* .v0; u0; q0/ in L1.�/.

Indeed, assume for a moment that .v; u; q/ is a point of continuity of I . Fix a
sequence f.vk; uk; qkg�X0 that converges weakly� to .v; u; q/. Using Lemma 4.6
and a standard diagonal argument, we can produce a second sequence . Qvk; Quk; Qqk/
that converges weakly� to .v; u; q/ and satisfies

lim inf
k!1

k Qvkk
2
2 � lim inf

k!1

�
kvkk

2
2Cˇ.j�j � kvkk

2
2/
2
�
:

Since I is continuous at .v; u; q/, both vk and Qvk converge strongly to v. Hence

kvk22 � kvk
2
2Cˇ

�
j�j � kvk22

�2
:

Therefore, kvk22 D j�j. On the other hand, since v D 0 almost everywhere outside
�, and jvj � 1 almost everywhere on �, this implies (16).
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Proof of Lemma 4.6.

Step 1. Let .v0; u0; q0/ 2X0. By Lemma 4.3, for any .x; t/ 2� there exists
a direction . Nv.x; t/; Nu.x; t// 2 Rn �Sn0 such that the line segment with endpoints
.v0.x; t/; u0.x; t/; q0.x; t//˙. Nv.x; t/; Nu.x; t/; 0/ is contained in U, and j Nv.x; t/j�
C.1 � jv0.x; t/j

2/. Moreover, since .v0; u0; q0/ is uniformly continuous, there
exists an " > 0 such that for any .x; t/; .x0; t0/ 2� with jx�x0jC jt � t0j< ", the
"-neighborhood of the line segment with endpoints

.v0.x; t/; u0.x; t/; q0.x; t//˙ . Nv.x0; t0/; Nu.x0; t0/; 0/

is also contained in U.

Step 2. Fix .x0; t0/ 2� for the moment. Use Proposition 2.2 with

aD . Nv.x0; t0/; Nu.x0; t0/; 0/ 2ƒ

and " > 0 to obtain a smooth solution .v; u; q/ of (6) with the properties stated in
the proposition, and for any r < " let

.vr ; ur ; qr/.x; t/D .v; u; q/
�
x�x0
r

;
t�t0
r

�
:

Then .vr ; ur ; qr/ is also a smooth solution of (6), with the properties that

� the support of .vr ; ur ; qr/ is contained in Br.x0; t0/� Rnx �Rt ,

� the image of .vr ; ur ; qr/ is contained in the "-neighborhood of the line-segment
with endpoints ˙. Nv.x; t/; Nu.x; t/; 0/, and

�

Z
jvr.x; t/jdxdt � ˛j Nv.x0; t0/j jBr.x0; r0/j:

In particular, for any r < ", we have .v0; u0; q0/C .vr ; ur ; qr/ 2X0.

Step 3. Next, observe that since v0 is uniformly continuous, there exists an
r0 > 0 such that for any r < r0 there exists a finite family of pairwise disjoint balls
Brj .xj ; tj /�� with rj < r such that

(18)
Z
�

.1� jv0.x; t/j
2/dxdt � 2

P
j .1� jv0.xj ; tj /j

2/jBrj .xj ; tj /j:

Fix k 2N with 1=k <minfr0; "g, and choose a finite family of pairwise disjoint
balls Brk;j

.xk;j ; tk;j /�� with radii rk;j < 1=k such that (18) holds. In each ball
Brk;j

.xk;j ; tk;j /, we apply the construction above to obtain .vk;j ; uk;j ; qk;j /, and
in particular we then have

.vk; uk; qk/ WD .v0; u0; q0/C
P
j .vk;j ; uk;j ; qk;j / 2X0;
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and

(19)

Z
jvk.x; t/� v0.x; t/jdxdt D

P
j

R
jvk;j .x; t/jdxdt

� ˛
P
j j Nv.xk;j ; tk;j /jjBrk;j

.xk;j ; tk;j /j

� C˛
P
j .1� jv0.xk;j ; tk;j /j

2/jBrk;j
.xk;j ; tk;j /j

�
1
2
C˛

Z
�

.1� jv0.x; t/j
2/dxdt:

Observe that, since
R
.vk;j ; uk;j ; qk;j /D 0, by letting k!1, the above construc-

tion yields a sequence .vk; uk; qk/ 2X0 such that

(20) .vk; uk; qk/
�
* .v0; u0; q0/:

Hence,

(21)

lim inf
k!1

kvkk
2
L2.�/

D kv0k
2
2C lim inf

k!1

�
2hv0; .vk � v0/i2Ckvk � v0k

2
2

�
D kv0k

2
2C lim inf

k!1
kvk � v0k

2
2 by (20)

� kv0k
2
2Cj�j lim inf

k!1

�
kvk � v0kL1.�/

�2
:

Combining (19) and (21), we get

lim inf
k!1

kvkk
2
L2.�/

� kv0k
2
L2.�/

C
1
4
j�jC 2˛2

�
j�j � kv0k

2
L2.�/

�2
;

which gives (17) with ˇ D 1
4
j�jC 2˛2. �

5. A proof of Theorem 4.1 using convex integration

In this section we provide an alternative, more direct proof for Theorem 4.1,
following the method of convex integration as presented for example in [MŠ03].

In fact the two approaches (i.e. Baire category methods and convex integration)
can be unified to a large extent. For a discussion comparing the two approaches we
refer to the end of [Kir03, �3.3]; see also the paper [Syc06] for a different point of
view. Nevertheless, in order to get a feeling for the type of solution that Theorem 4.1
produces, it helps to see the direct construction of the convex integration method.

We will freely refer to the notation of the previous sections. In particular the
proof relies on Lemmas 4.2, 4.3, 4.4 and 4.6. These results enable us to construct
an approximating sequence, as explained briefly at the beginning of Section 4, by
adding (almost-)planewaves on top of each other. It is only the limiting step that is
more explicit in this approach. The following argument is essentially from [MŠ03,
�3.3].
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Alternative proof of Theorem 4.1. Using Lemma 4.6, we construct inductively
a sequence .vk; uk; qk/ 2 X0 and a sequence of numbers �k > 0 as follows. Let
�" be a standard mollifying kernel in RnC1 D Rnx �Rt , and set .v1; u1; q1/� 0 in
Rnx �Rt .

Having obtained zj WD .vj ; uj ; qj / for j � k and �1; : : : ; �k�1 we choose

(22) �k < 2
�k so that kzk � zk � ��k

kL2.�/ < 2
�k :

Then we apply Lemma 4.6 to obtain zkC1 D .vkC1; ukC1; qkC1/ 2X0 such that

kvkC1k
2
L2.�/

� kvkk
2
L2.�/

Cˇ
�
j�j � kvkk

2
L2.�/

�2
; and(23)

k.zkC1� zk/� ��j
kL2.�/ < 2

�k for all j � k:(24)

The sequence fzkg is bounded in L1.Rnx �Rt /, therefore by passing to a suitable

subsequence we may assume without loss of generality that zk
�
*z in L1.Rnx�Rt /

for some z D .v; u; q/ 2 X , and that the sequence fzkg and the corresponding
sequence f�kg satisfy the properties (22), (23) and (24). Then, for every k 2 N

kzk � ��k
� z � ��k

kL2.�/ �
P1
jD0kzkCj � ��k

� zkCjC1 � ��k
kL2.�/

�
P1
jD0 2

�.kCj / � 2�kC1;

and since

kzk�zkL2.�/�kzk�zk���k
kL2.�/Ckzk���k

�z���k
kL2.�/Ckz���k

�zkL2.�/;

we deduce that vk! v strongly in L2.�/.
Therefore, passing into the limit in (23), we conclude

kvk2
L2.�/

� kvk2
L2.�/

Cˇ
�
j�j � kvk2

L2.�/

�2
and hence kvk22 D j�j. Since v vanishes outside � and jvj � 1 in �, we conclude
that jv j D 1�. Since .v; u; q/ 2X , we also have that .v; u/.x; t/ 2Kco for almost
all .x; t/ 2�. From this we deduce that .v; u/.x; t/ 2K for almost all .x; t/ 2�,
thus concluding the proof. �
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