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Abstract
We consider 3D incompressible non-Newtonian fluid, subject to a dynamic boundary

condition. Using an iteration scheme in Nikolski-Bochner spaces, we obtain additional
fractional time regularity of arbitrary weak solution, provided the power-law exponent is
above the critical value r = 11/5. This implies uniqueness of solutions. We also show
existence of the global attractor and even a finite-dimensional exponential attractor.
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1 Introduction
We consider a general class of incompressible, non-Newtonian fluids of power-law type (also
called Ladyzhenskaya model), confined to a bounded 3D domain. Such problems have been
extensively studied before; however, mostly in the setting of a homogenenous Dirichlet bound-
ary condition, or still analytically simpler, but physically not very realistic periodic boundary
condition. There is certainly a recent surge of interest in more exotic boundary setting, moti-
vated by the study of fluid-structure interaction problem on the one hand, and more generally
related to the systems whose boundary is open to exchange of the mass, energy, or forces with
the exterior.

In the present paper, we focus on a rather general class of the so-called dynamic slip bound-
ary conditions

u · n = 0
β∂tu + s = −

[︁
Sn

]︁
τ

where n is the outer normal, τ the tangential projection, S the Cauchy stress and β some
positive constant. The quantity s has a non-linear, possibly even implicit relation to u. Note
that a number of well-known boundary conditions can be obtained as a special case. For
example, β = 0 and s = αu is the Navier slip, and α → +∞ leads to the Dirichlet boundary
condition.

We remark that related problems have been studied before, as for example the so-called
Tresca boundary condition (which includes a maximal monotone relation in the form of a
convex subdifferential), see [14]. Systems involving the Cauchy stress on the boundary have
been extensively studied by [2] and the references therein. The main novelty of the present
paper is the explicit presence of the time derivative, and hence nonlinear dynamics taking place
on the boundary. This in particular requires an extended mathematical setting, which has been
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recently developed in [1], see also [11]. Basic existence and uniqueness results in the class of
weak solutions were obtained in the last two mentioned works.

Our aim here is to extend this analysis in two ways. Firstly, we use the approach of [7], to
obtain additional time regularity of arbitrary weak solution, provided that the power-law ex-
ponent r stands above the critical value 11/5. Unlike most regularity techniques, this approach
works with time differences only and is thus largely independent of the boundary setting. The
consequence is well-posedness in the class of weak solutions in the supercritical range r ≥ 11/5.
The case r = 11/5 can also be included, using a delicate argument based on the reverse Hölder
inequality, see [8]. Note also that for r ≥ 12/5, the time derivative becomes an admissible test
function, whence the improved regularity can be obtained in straightforward way, together with
reasonable explicit estimates [5].

As a natural corollary, we establish existence of the global attractor. Assuming further that
the boundary nonlinearity s is represented as a function of polynomial growth in u, we show that
the attractor is finite-dimensional. Exponential attractor can then also be constructed. Let us
emphasize here that the mere existence of attractor can be obtained even if s and u are related
via an maximal monotone graph; on the other hand, it seems that its finite-dimensionality
requires explicit (though rather general) functional relation s = s(u). Resolving the problem
(perhaps in terms of an explicit counterexample) is a problem to be addressed in our future
research.

The paper is organized as follows. Section 1 defines the studied system, and collects nec-
essary mathematical preliminaries about the function spaces and their properties. Our main
results: Theorem 1.1 (on time regularity and uniqueness) and Theorem 1.2 (on global and ex-
ponential attractors) are formulated. Concepts from the abstract theory of dynamical systems
are also recalled.

In section 2, we introduce the concept of weak solution, and derive basic a priori estimates.
Continuous dependency on the data (a weak-strong uniqueness type result) is also established
here.

Section 3 is the main technical part of the paper. The improved time regularity of weak
solution is obtained by iterative estimates in Nikolskii spaces, completing in particular the proof
of Theorem 1.1.

The final Section 4 is devoted to the large time dynamics. We recall a general abstract
scheme of the so-called method of ℓ-trajectories given in [12], and show how the previous
analysis leads to Theorem 1.2.

1.1 Problem formulation
Let Ω be a bounded Lipschitz domain in R3. We employ small boldfaced letters to denote
vectors and bold capitals for tensors. The symbols “·” and “:” stand for the scalar product
of vectors and tensors, respectively and “⊗” means the tensor product. Outward unit normal
vector is denoted by n and for any vector-valued function x : ∂Ω → R3, the symbol xτ stands
for the projection to the tangent plane, i.e. xτ = x − (x · n)n.

Standard differential operators, like gradient (∇), or divergence (div), are always related to
the spatial variables only. By Du we understand the symmetric gradient of the velocity field,
i.e. 2Du = ∇u + (∇u)⊤. We denote the trace of Sobolev functions as the original function,
and if we want to emphasize it, we use the symbol “tr”. Generic constants, that depend just on
data, are denoted by c or C and may vary from line to line.

Our problem is the following. Let f : (0, T ) × Ω → R3 is a given external force and
u0 : Ω → R3 is the initial velocity. We are looking for the velocity field u : (0, T ) × Ω → R3

and the pressure p : (0, T ) × Ω → R solutions to the generalized Navier-Stokes system

∂tu + div (u ⊗ u) − div S(Du) + ∇p = f in (0, T ) × Ω, (1)
div u = 0 in (0, T ) × Ω, (2)

completed by the boundary and initial conditions

β∂tu + s = −[S(Du)n]τ on (0, T ) × ∂Ω, (3)
u · n = 0 on (0, T ) × ∂Ω, (4)
u(0) = u0 in Ω, (5)
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By S : R3×3 → R3×3 we understand the viscous part of the Cauchy stress such that S(0) = 0
which moreover satisfy for any D1, D2 ∈ R3×3

sym the coercivity conditions

(S(D1) − S(D2)) : (D1 − D2) ≥

{︄
c1|D1 − D2|2 + c1|D1 − D2|r,

c1(1 + |D1|r−2 + |D2|r−2)|D1 − D2|2,
(6)

and the growth condition

|S(D1) − S(D2)| ≤ c2(1 + |D1|r−2 + |D2|r−2)|D1 − D2|. (7)

The boundary term s is connected with u via the constitutive relation

(s, u) ∈ G, (8)

with G being a maximal monotone 2-graph. It means that G ⊂ R3 × R3 and there hold four
conditions, namely

(G1) (0, 0) ∈ G.

(G2) For any (s1, u1), (s2, u2) ∈ G:

(s1 − s2) : (u1 − u2) ≥ 0.

(G3) If for some (s1, u1) ∈ R3 × R3 and all (s2, u2) ∈ G there holds

(s1 − s2) : (u1 − u2) ≥ 0,

then (s1, u1) ∈ G.

(G4) There exists c3, c4 ≥ 0 such that for all (s, u) ∈ G there holds

s · u ≥ c3(|s|2 + |u|2) − c4.

Moreover, to show that the attractor is finite-dimensional, we will introduce two other
conditions. First of all, we require that

(G5) G is graph of a function s = s(u) such that for some q ≥ 2 and c4 > 0

|s(u1) − s(u2)| ≤ c4
(︁
1 + |u1|q−2 + |u2|q−2)︁

|u1 − u2|. (9)

In certain situations, we will also need an analogous lower-bound, i.e.

(G6) there exists c5 > 0 such that

(s(u1) − s(u2)) · (u1 − u2) ≥ c5
(︁
|u1|q−2 + |u2|q−2)︁

|u1 − u2|2. (10)

Note that these conditions allow for certain degeneracy of the function s(u) so that the
derivative can vanish at some points or even intervals. This corresponds to horizontal com-
ponents of the graph G. On the other hand, vertical components of G are excluded if (G5)
holds.

Remark. By data we henceforth understand the domain Ω, right-hand side f , initial condition
u0, as well as the constants and exponents describing the growth of S and s; in particular the
exponents r and q.

Further generalizations of our results are possible, involving boundary with external forcing,
or some mix of various boundary conditions on different parts of ∂Ω. Such modifications can
be rather straightforward, after the function spaces and the (abstract) weak formulation are
modified accordingly.
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1.2 Function spaces
For a Banach space X over R, its dual is denoted by X∗ and ⟨x∗, x⟩X is the duality pairing. For
r ∈ [1, ∞] we denote (Lr(Ω), || · ||Lr(Ω)) and (W 1,r(Ω), || · ||W 1,r(Ω)) the Lebesgue and Sobolev
spaces with corresponding norms. We often write just || · ||r or || · ||1,r. The space of functions
u : [0, T ] → X which are Lr integrable or (weakly) continuous with respect to time is denoted
by Lr(0, T ; X), C([0, T ]; X) or Cw([0, T ]; X) respectively.

To properly introduce the notion of a weak solution we need to pay close attention to
boundary terms. Thus, we need more refined function spaces. We will follow the notation of
[1, Chapter 3].

For r ∈ (1, ∞) we introduce the spaces

V := {(u, g) ∈ C0,1(Ω) × C0,1(∂Ω); div u = 0 in Ω, u · n = 0 and u = g on ∂Ω},

Vr := V ||·||Vr , where ||(u, g)||Vr := ||u||W 1,r(Ω) + ||u||L2(Ω) + ||g||L2(∂Ω),

H := Vr
||·||H

, where ||(u, g)||2H := ||u||2L2(Ω) + β||g||2L2(∂Ω).

Space Vr is both reflexive and separable. Observe that, thanks to the Trace theorem, for
r = 2 the norm on V2 is equivalent to || · ||1,2. Also, H is Hilbert space identified with its own
dual H∗, with the inner product

((ũ, u), (g̃, g))H :=
∫︂
Ω

ũ · u dx + β

∫︂
∂Ω

g̃ · g dS.

Moreover, for r > 6/5, W 1,r(Ω) is compactly embedded into L2(Ω) and for r > 3/2, the
trace operator is compact from W 1,r(Ω) into L2(∂Ω). Therefore,

Vr ↪→↪→ H if r >
3
2 .

The duality pairing between Vr and V ∗
r is defined in a standard way as a continuous extension

of the inner product (·, ·)H on H. As usual, we see that there is a Gelfand triplet

Vr ↪→ H ≡ H∗ ↪→ V ∗
r ,

where both embeddings are continuous and dense.
We also briefly recall main properties of the so-called Nikolski spaces; for a detailed treat-

ment, see [3] or [13]. For u : I → X, where I ⊂ R is a time interval and h > 0, we set

Ih = {t ∈ I; t + h ∈ I},

τhu(t) = u(t + h), t ∈ Ih,

dhu(t) = u(t + h) − u(t), t ∈ Ih.

For r ∈ [1, ∞] and s ∈ [0, 1], the Nikolskii space Ns,r(I; X) is defined by the norm

||u||Lr(I;X) + sup
h>0

h−s||dhu||Lr(Ih;X).

It is clear that for s = 0 the above norm is equivalent to Lr(I; X) and similarly for s = 1 the
norm is equivalent to W 1,r(I; X). The following embedding can be obtained, see e.g. [13],

Ns,r(I; X) ↪→ Lq(I; X) if 1
q

>
1
r

− s ≥ 0. (11)

Nikolskii spaces are not the best choice in view of interpolation or embedding properties. On
the other hand, their definition is fairly simple and as we will see, it is rather straightforward
to obtain estimates of the Ns,r-norm.
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1.3 Dynamical systems
Our main goal is to show existence of a finite-dimensional (exponential) attractor. We recall
some basic notions from the theory of dynamical systems. Let X be (a closed subset to) a
normed space. Family of mappings {Σt}t≥0 : X → X is called a semigroup provided that
Σ0 = I and Σt+s = ΣtΣs for all s, t ≥ 0. Requiring also continuity of the map (t, x) ↦→ Σtx,
the couple (Σt, X ) is referred to as a dynamical system.

Set A ⊂ X is called a global attractor to the dynamical system (Σt, X ) if

(i) A is compact in X ,

(ii) ΣtA = A for all t ≥ 0 and

(iii) for any bounded B ⊂ X there holds

dist(ΣtB, A) → 0 as t → ∞,

where dist(B, A) is the standard Hausdorff semi-distance of the set B from the set A,
defined as dist(B, A) = supa∈A infb∈B ||b − a||X .

Let us note that a dynamical system can have at most one global attractor. The condition (ii)
says that the global attractor is (fully) invariant with respect to Σt.

Fractal dimension of a compact set K ⊂ X is defined by

dX
f (K) := lim sup

ε→0+

log NX
ε (K)

log 1
ε

,

where NX
ε (K) denotes the minimal number of ε-balls needed to cover the set K.

Finally, we say that the set E ⊂ X is an exponential attractor to (Σt, X ) if

(i) E is compact,

(ii) ΣtE ⊂ E for all t ≥ 0,

(iii) dX
f (E) is finite and

(iv) there exist σ, ω > 0 such that for any B ⊂ X bounded there exist t0 > 0 such that
dist(ΣtB, E) ≤ ωe−σt for all t ≥ t0.

We note that the exponential attractor is not uniquely defined and necessarily, it contains the
global attractor.

1.4 Main results
Main results of this article are summarized in the following two theorems. Their proofs will be
given in Sections 3 and 4, respectively.

We remark that
r := 2r

2r − 3 (12)

is the critical integrability exponent which implies uniqueness in the class of weak solutions, cf.
Theorem 2.2 below.

Theorem 1.1 (Regularity and uniqueness). Let Ω be a bounded Lipschitz domain in R3, u0 ∈
H, r ≥ 11/5 and f ∈ Lr′(0, T ; V ∗

r ). If r ∈ (11/5, 5/2), assume moreover f ∈ Nδ,r′(0, T ; V ∗
r )

with some δ > δ, where

δ := (r − 1)
(︃

5
2r

− 1
)︃

.

Moreover, if r = 11/5 assume that f ∈ Lq0(0, T ; V ∗
r ) for some q0 > r′.

Fix t0 < T/2. Then for an arbitrary weak solution u of (1)–(8) we have u ∈ Lr(2t0, T ; Vr).
Moreover,

||u||Lr(2t0,T ;Vr) ≤ Creg,

where Creg depends only on Ω, r, T, t0, ||f ||Lr′ (0,T ;V ∗
r ), ||u||L∞(0,T,H) and ||u||Lr(0,T,Vr).

In particular, any weak solution has a uniquely determined continuation after arbitrary
positive time.

Finally, if u0 ∈ Vr, the conclusion holds even for t0 = 0.
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Theorem 1.2 (Attractor). Assume that for any T > 0, f satisfies the assumptions of the
previous theorem. Then the system (1)–(8) has a global attractor.

Moreover, suppose that (9) holds and if q > r/2 + 1, we further assume that (10) holds too.
Then the global attractor has finite fractal dimension, and there exists an exponential attractor.

1.5 Auxiliary inequalities
For reader’s convenience, we summarize below some estimates that will be used throughout the
paper.

Theorem 1.3 (Trace theorem). Let r ∈ [1, ∞), then there exists unique, continuous and linear
operator tr : W 1,r(Ω) → Lr(∂Ω) such that for all u ∈ C1(Ω) there holds tr u = u on ∂Ω.
In particular, there exists a constant CT > 0 depending only on r and Ω such that for all
u ∈ W 1,r(Ω) there holds

||tr u||Lr(∂Ω) ≤ CT ||u||1,r.

Proof. See Theorem 6.4.3 in [10]. ■

Theorem 1.4 (Korn’s inequality). Let Ω be a bounded Lipschitz domain, let r ∈ (1, ∞). Then
there exists a constant CK > 0, depending only on Ω and r, such that for all u ∈ W 1,r(Ω)
which has tr u ∈ L2(∂Ω), the following inequalities hold

||u||1,r ≤

{︄
CK(||Du||r + ||tr u||L2(∂Ω))
CK(||Du||r + ||u||L2(Ω))

.

Proof. See Lemma 1.11 in [9]. ■

Theorem 1.5 (Interpolations). The following estimates hold true:

(i) If r ∈ [9/5, 3), then

||u||2r′ ≤ C||u||
5r−9
5r−6
2 ||u||

3
5r−6
Vr

. (13)

(ii) If r > 3, then

||u||2r′ ≤ C||u||
2r−3

2r
2 ||u||

3
2r

Vr
. (14)

(iii) Finally, for any r ≥ 2, one has

||u||2r′ ≤ C||u||
2r−3

2r
2 ||u||

3
2r

V2
. (15)

Proof. The proof is a straightforward consequence of Hölder’s inequality

||u||p ≤ ||u||αp1
||u||1−α

p2
with 1

p
= α

p1
+ 1 − α

p2
, α ∈ [0, 1] (16)

and Sobolev embeddings: in case (i), we use α = 5r−9
5r−6 and W 1,r ↪→ L

3r
3−r . For (ii), the

embedding W 1,r ↪→ L6 is used and α = 2r−3
2r . Finally, to prove (iii), one takes α = 2r−3

2r
together with W 1,2 ↪→ L6. ■

Theorem 1.6 (Aubin-Lions-Simon). Let r ∈ [1, ∞) and X1, X2, X3 be Banach spaces such that

X1 ↪→↪→ X2 ↪→ X3,

then
{u ∈ Lr(0, T ; X1); ∂tu ∈ L1(0, T ; X3)} ↪→↪→ Lr(0, T ; X2).

Proof. See Theorem II. 5. 16 in [4]. ■
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2 Weak solution, existence and uniqueness
To properly define a notion of a weak solution to the problem (1)–(8), we start with formal
derivation of a priori estimates. We take scalar product of (1) with an arbitrary smooth function
φ ∈ Vr, integrate over Ω and use Gauss’s theorem to get∫︂

Ω

∂tu · φ −
∫︂
Ω

(u ⊗ u) : ∇φ +
∫︂

∂Ω

(u ⊗ u)n · φ +
∫︂
Ω

S(Du) : ∇φ −
∫︂

∂Ω

[S(Du)n]τ · φ

=
∫︂
Ω

f · φ −
∫︂
Ω

p div φ +
∫︂

∂Ω

p n · φ.

We realize that n · φ = 0 on ∂Ω and div φ = 0 in Ω and the fact that S(Du) is symmetric
matrix to obtain∫︂

Ω

∂tu · φ +
∫︂
Ω

S(Du) : Dφ −
∫︂

∂Ω

[S(Du)n]τ · φ =
∫︂
Ω

f · φ +
∫︂
Ω

(u ⊗ u) : ∇φ.

Now, we employ the boundary condition (3) to get∫︂
Ω

∂tu · φ +
∫︂
Ω

S(Du) : Dφ +
∫︂

∂Ω

β∂tu · φ + s · φ =
∫︂
Ω

f · φ +
∫︂
Ω

(u ⊗ u) : ∇φ.

For f ∈ V ∗
r we identify the first integral on the right hand side with ⟨f , φ⟩Vr

. Using of the
definition of H we finally obtain (formally) the equality

(∂tu, φ)H +
∫︂
Ω

S(Du) : Dφ +
∫︂

∂Ω

s · φ = ⟨f , φ⟩Vr
+

∫︂
Ω

(u ⊗ u) : ∇φ. (17)

To find the energy equality we set φ := u, the above equation reads now as

1
2

d
dt

||u||2H +
∫︂
Ω

S(Du) : Du +
∫︂

∂Ω

s · u = ⟨f , u⟩Vr
+

∫︂
Ω

(u ⊗ u) : ∇u.

The last integral vanishes, as usual, because of (2) and (4). For the second term we use the
r-coercivity of S, i.e. (6) and for the third one we have condition (8), which enables us to use
property (G4) from the definition of 2-graph. We obtain

1
2

d
dt

||u||2H + c1

∫︂
Ω

|Du|2 + |Du|r + c3

∫︂
∂Ω

|s|2 + |u|2 ≤ c4 + ⟨f , u⟩Vr
.

Duality on the right hand side can be estimated as follows

⟨f , u⟩Vr
≤ ||f ||V ∗

r
||u||Vr

= ||f ||V ∗
r

(||u||W 1,r(Ω) + ||u||L2(Ω) + ||tr u||L2(∂Ω))
≤ ||f ||V ∗

r
(c(||Du||r + ||tr u||L2(∂Ω)) + ||u||L2(Ω) + ||tr u||L2(∂Ω))

≤ c||Du||r||f ||V ∗
r

+ c||f ||V ∗
r

||u||H
≤ ε||Du||rr + cε||f ||r

′

V ∗
r

+ c(1 + ||u||2H)||f ||V ∗
r

,

where we successively used the Korn’s inequality, the trivial inequality a+ b ≤
√

2
√

a2 + b2 and
Young’s inequality twice. On the left hand side we can estimate, using the Korn’s inequality
and the Trace theorem, that

c1

∫︂
Ω

|Du|2 + c3

∫︂
∂Ω

|u|2 ≥ c(||u||1,2 + ||tr u||L2(∂Ω)) ≥ c||u||2H .
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Altogether we get (for ε > 0 small enough)

1
2

d
dt

||u||2H + c1

2

∫︂
Ω

|Du|r + c3

∫︂
∂Ω

|s|2 + c||u||2H ≤ c4 + cε||f ||r
′

V ∗
r

+ c(1 + ||u||2H)||f ||V ∗
r

.

This implies the inequality

1
2

d
dt

||u||2H + c||u||2H ≤ c4 + cε||f ||r
′

V ∗
r

+ c||f ||V ∗
r

+ c||f ||V ∗
r

||u||2H ,

from which follows, using of Grönwall’s inequality, the uniform estimate

sup
t∈(0,T )

||u(t)||2H ≤ C.

Integrating the preceding inequality over time and using assumption on data (in particular
f ∈ Lr′(0, T ; V ∗

r ), r′ > 1) and the uniform estimate above we obtain

c1

2

t∫︂
0

∫︂
Ω

|Du|r + c3

t∫︂
0

∫︂
∂Ω

|s|2 + c

t∫︂
0

||u||2H ≤ C.

By the Korn’s inequality we obtain that

u ∈ L∞(0, T ; H) ∩ Lr(0, T ; Vr) and s ∈ L2(0, T ; L2(∂Ω)).

Concerning the boundary force s, we invoke (G4) and Young’s inequality to obtain

c3(|s|2 + |u|2) − c4 ≤ s · u ≤ c3

2 |s|2 + c|u|2.

This implies that
s ∈ L∞(0, T ; L2(∂Ω)).

To estimate the time derivative we use duality argument and the relation (17)

||∂tu||V ∗
r

= sup
φ

⟨∂tu, φ⟩Vr

= sup
φ

⎡⎣−
∫︂
Ω

S(Du) : Dφ −
∫︂

∂Ω

s · φ + ⟨f , φ⟩Vr
+

∫︂
Ω

(u ⊗ u) : ∇φ

⎤⎦
≤ sup

φ

[︂
||S(Du)||r′ ||Dφ||r + ||s||L2(∂Ω)||φ||L2(∂Ω) + ||f ||V ∗

r
||φ||Vr

+ ||u||22r′ ||∇φ||r
]︂
,

where suprema are over all φ ∈ Vr from the unit ball. Therefore, by Korn’s and Trace inequal-
ities,

||∂tu||V ∗
r

≤ ||S(Du)||r′ + ||s||L2(∂Ω) + ||f ||V ∗
r

+ ||u||22r′ .

For the first term we use the growth condition and obtain

||S(Du)||r′ ≤ c(1 + ||Du||r−1
r ).

Suppose that r ∈ [11/5, 3). We then interpolate the last term by (13) , i.e.

||u||22r′ ≤ ||u||2(1−a)
2 ||u||2a

1,r , where a = 3
5r − 6 .

Because u ∈ L∞(0, T ; H), s ∈ L∞(0, T ; L2(∂Ω)) and 2a ≤ r − 1 (which is equivalent to
r ≥ 11/5), we obtain

||∂tu||V ∗
r

≤ c(1 + ||u||r−1
Vr

+ ||f ||V ∗
r

).

If r = 3, then 2r′ = 3 and so ||u||22r′ = ||u||r−1
r ≤ ||u||r−1

Vr
. Finally, assuming that r > 3, then

we use (14), i.e.
||u||22r′ ≤ C||u||

2r−3
r

2 ||u||
3
r

Vr
.
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Observe that 3
r ≤ r − 1 and so, by the same argument as in the case r < 3, we conclude that

||∂tu||V ∗
r

≤ c(1 + ||u||r−1
Vr

+ ||f ||V ∗
r

) for r ≥ 11
5 . (18)

This in particular gives us that
∂tu ∈ Lr′

(0, T ; V ∗
r )

and together with u ∈ Lr(0, T ; Vr) we obtain

u ∈ C([0, T ]; H).

Definition 1. (Weak solution) We say that the couple (u, s) is a weak solution to the problem
(1)–(8) if

u ∈ Lr(0, T ; Vr) ∩ C([0, T ]; H),

∂tu ∈ Lr′
(0, T ; V ∗

r ),
s ∈ L∞(0, T ; L2(∂Ω))

and for a. e. t ∈ (0, T ) satisfies relations

∂tu + L(u) = K0(u) + f in V ∗
r , (19)

(u, s) ∈ G a. e. on ∂Ω, (20)

where

⟨L(u), φ⟩Vr
:=

∫︂
Ω

S(Du) : Dφ +
∫︂

∂Ω

s · φ,

⟨K0(u), φ⟩Vr
:=

∫︂
Ω

(u ⊗ u) : ∇φ.

The initial condition is attained strongly, i.e.

lim
t→0+

||u(t) − u0||H = 0.

We say that the solution satisfies the energy equality if for all t ∈ (0, T )

1
2 ||u(t)||2H +

t∫︂
0

∫︂
Ω

S(Du) : Du +
t∫︂

0

∫︂
∂Ω

s · u = 1
2 ||u0||2H +

t∫︂
0

⟨f , u⟩Vr
. (21)

Theorem 2.1 (Existence of weak solution). Let u0 ∈ H, r ≥ 11/5 and f ∈ Lr′(0, T, V ∗
r ).

Then there exists at least one weak solution satisfying the energy equality.

Proof. We use formal estimates above on the level of Galerkin approximation. Usual com-
pactness and monotonocity argument are used. For further details we refer e.g. to [1]. ■

Let us emphasize that the condition r ≥ 11/5 guarantees that any weak solutions is an
admissible test function, in particular, one always has the energy equality. This will be crucial
for our regularity estimates in Section 3. On the other hand, the mere existence of a weak
solution can be shown for r > 6/5, see [1].

Theorem 2.2 (Relative energy inequality). Let (u1, s1), (u2, s2) be weak solutions to the prob-
lem (1)–(8) and let r ≥ 11

5 . Then

d
dt

||w||2H+c1

2 (||Dw||22 + ||Dw||rr) + c1

∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2)|Dw|2 (22)

≤ c
(︁
1 + ||u2||rVr

)︁
||w||2H ,

where w := u1 − u2, the constant c depends only on Ω, r and r = 2r
2r−3 .

In particular, if u2 ∈ Lr(0, T ; Vr), then u2 is unique in the class of weak solutions.
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Proof. We take the difference of (19) for u1 and u2 and use φ := w as a test function, which
can be done, because r ≥ 11/5. We get

⟨∂tw, w⟩Vr
+

∫︂
Ω

(S(Du1) − S(Du2)) : Dw +
∫︂

∂Ω

(s1 − s2) · w

=
∫︂
Ω

(u1 ⊗ u1 − u2 ⊗ u2) : ∇w.

The third term is non-negative thanks to the monotonicity, i.e. property (G2) of our 2-graph.
We know that the first term is equal to 1

2
d
dt ||w||2H , for the second one we use r-coercivity of S,

i.e.∫︂
Ω

(S(Du1)−S(Du2)) : Dw ≥ c1

2 (||Dw||22 +||Dw||rr)+ c1

2

∫︂
Ω

(1+|Du1|r−2 +|Du2|r−2)|Dw|2.

We need to deal with the convective term:⃓⃓⃓⃓
⃓⃓∫︂
Ω

(u1 ⊗ u1 − u2 ⊗ u2) : ∇w

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓− ∫︂

Ω

∇u2 : (w ⊗ w)

⃓⃓⃓⃓
⃓⃓ ≤ ||∇u2||r||w||22r′

≤ c||u2||Vr
||w||

2r−3
r

2 ||w||
3
r
1,2

≤ c||u2||Vr
||w||

2r−3
r

2 (||Dw||2 + ||w||H) 3
r

≤ c||u2||Vr
||w||

2r−3
r

2 (||Dw||
3
r
2 + ||w||

3
r

H)
≤ ε||Dw||22 + cε

(︁
1 + ||u2||rVr

)︁
||w||2H .

where we used the interpolation (15), the definition of V2, Jensen’s inequality (if 3/r > 1,
otherwise it is a trivial estimate) and Young’s inequality. Hence (22) follows.

Concerning the second part, we apply Grönwall’s lemma to obtain

||w(t)||2H ≤ K||w(s)|| , 0 ≤ s ≤ t ≤ T, (23)

where K depends on the norm of u2 in Lr(0, T ; Vr). ■

3 Time regularity
The aim of this Section is to prove Theorem 1.1, i.e. improved local time r-integrability of an
arbitrary weak solution. Note that for r ≥ 5/2, one has r ≥ r. Furthermore, for r > 12/5, one
can test the equation by the time derivative (or time difference).

Hence, the main interest of the following approach lies in the low regularity regime r ∈
[11/5, 12/5].

3.1 Auxiliary estimates
Lemma 3.1. Let (u, s) be a weak solution of (1)–(8), r ≥ 11/5, f ∈ Lr′(0, T ; V ∗

r ). Assume
that τ ∈ (0, T ) is a semi-Lebesgue point of f , i.e.

sup
h∈(0,T −τ)

1
h

τ+h∫︂
τ

||f(t)||r
′

V ∗
r

dt < ∞

and u(τ) ∈ Vr. Then there exists a constant C > 0 such that for all h ∈ (0, T − τ) :

||u(τ + h) − u(τ)||2H ≤ Ch

⎛⎝1 + ||u(τ)||rVr
+ 1

h

τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ .
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Proof. There holds

||u(τ + h) − u(τ)||2H = (u(τ + h) − u(τ), u(τ + h) − u(τ))H

= (u(τ + h) − u(τ), u(τ + h) + u(τ) − 2u(τ))H

= ||u(τ + h)||2H − ||u(τ)||2H − 2(u(τ + h) − u(τ), u(τ))H .

Due to the energy equality we have

||u(τ + h)||2H − ||u(τ)||2H =
τ+h∫︂
τ

⎛⎝⟨f , u⟩Vr
−

∫︂
Ω

S(Du) : Du −
∫︂

∂Ω

s · u

⎞⎠
and we will apply again Hölder’s, Korn’s and Young’s inequalities together with (6) and (8) to
obtain

||u(τ + h)||2H − ||u(τ)||2H ≤
τ+h∫︂
τ

(cε||f ||r
′

V ∗
r

+ ε||Du||rr + ε||u||rH) − c1

τ+h∫︂
τ

(||Du||rr + ||Du||22)

− c3

τ+h∫︂
τ

(||s||2L2(∂Ω) + ||u||2L2(∂Ω) − c4)

≤ c3c4h + c

τ+h∫︂
τ

||f ||r
′

V ∗
r

− c1

2

τ+h∫︂
τ

||Du||rr

+ εc

τ+h∫︂
τ

||u||2H − C

τ+h∫︂
τ

(||Du||22 + ||u||2L2(∂Ω)).

Now, because of Korn’s inequality we have

εc

τ+h∫︂
τ

||u||2H − C

τ+h∫︂
τ

(||Du||22 + ||u||2L2(∂Ω)) ≤ εc

τ+h∫︂
τ

||u||2H − C

τ+h∫︂
τ

||Du||2V2
,

and therefore, for ε > 0 sufficiently small,

||u(τ + h)||2H − ||u(τ)||2H ≤ C

⎛⎝h +
τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ − c

τ+h∫︂
τ

(||Du||rr + ||Du||2V2
).

Furthermore, observe that

−2(u(τ + h) − u(τ), u(τ))H = −2
τ+h∫︂
τ

⟨∂tu(s), u(τ)⟩Vr
ds

and thanks to (18) we get

|−2(u(τ + h) − u(τ), u(τ))H | ≤ 2c

τ+h∫︂
τ

(1 + ||u(s)||r−1
Vr

+ ||f(s)||V ∗
r

)||u(τ)||Vr
ds.

11



By Young’s and Korn’s inequalities, we have⃓⃓
− 2(u(τ + h) − u(τ), u(τ))H

⃓⃓
≤ C

τ+h∫︂
τ

(1 + ||u(τ)||rVr
+ ||f(s)||r

′

V ∗
r

) ds + ε

τ+h∫︂
τ

||u(s)||r
′(r−1)

Vr
ds

≤ Ch(1 + ||u(τ)||rVr
) + C

τ+h∫︂
τ

||f ||r
′

V ∗
r

+ ε

τ+h∫︂
τ

||u||rVr

≤ Ch(1 + ||u(τ)||rVr
) + C

τ+h∫︂
τ

||f ||r
′

V ∗
r

+ ε

τ+h∫︂
τ

(||Du||rr + ||u||rH)

≤ Ch(1 + ||u(τ)||rVr
) + C

τ+h∫︂
τ

||f ||r
′

V ∗
r

+ ε

τ+h∫︂
τ

||Du||rr + εc

τ+h∫︂
τ

||u||2H ,

where we used in the last inequality that u ∈ L∞(0, T ; H). Altogether

||u(τ + h) − u(τ)||2H ≤ ||u(τ + h)||2H − ||u(τ)||2H + |2(u(τ + h) − u(τ), u(τ))H |

≤ C

⎛⎝h + h||u(τ)||rVr
+

τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ − c

τ+h∫︂
τ

(||Du||rr + ||Du||2V2
)

≤ Ch

⎛⎝1 + ||u(τ)||rVr
+ 1

h

τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ .

■

In the following lemma we show, in an elementary way, that u ∈ N
1
2 ,2(0, T ; H).

Lemma 3.2. Let (u, s) be a weak solution of (1)–(8). Then there exists C > 0, depending only
on the data, such that for all h ∈ (0, T ) there holds

T −h∫︂
0

||u(τ + h) − u(τ)||2H dτ ≤ Ch.

Proof. Let us take h ∈ (0, T ) and τ ∈ (0, T −h). Observe that h ∈ (0, T −τ) for all τ ∈ (0, T −h).
Because almost all τ ∈ (0, T ) are semi-Lebesgue points of f and u(τ) ∈ Vr, the previous lemma
says that

T −h∫︂
0

||u(τ + h) − u(τ)||2Hdτ ≤ Ch

T −h∫︂
0

⎛⎝1 + ||u(τ)||rVr
+ 1

h

τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ dτ.

We assume that u ∈ Lr(0, T ; Vr) and thus

T −h∫︂
0

||u(τ + h) − u(τ)||2Hdτ ≤ Ch

⎛⎝T + ||u||rLr(0,T ;Vr) +
T −h∫︂
0

⎛⎝ 1
h

τ+h∫︂
τ

||f ||r
′

V ∗
r

⎞⎠ dτ

⎞⎠
≤ Ch

(︂
T + ||u||rLr(0,T ;Vr) + ||f ||r

′

Lr′ (0,T ;V ∗
r )

)︂
,

where we used a simple boundedness of averaging operators on Lp(R) for any p ∈ [1, ∞]. It
completes the proof.

■
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3.2 Regularity of solution
Our goal here will be to show, that any solution is slightly more regular in time, provided that
right hand side is so. We will start in a similar way as in [7].

Lemma 3.3. Let (u, s) be a weak solution of (1)–(8), let moreover f ∈ Lq0(0, T ; V ∗
r ) for some

q0 > r′. Then there exists q > r such that u ∈ Lq
loc((0, T ]; Vr), with estimate depending only on

t0, the above-mentioned norm of f and the data.

Proof. The proof is based on the reverse Hölder inequality, and is a step by step analogue of
Lemma 4.3 from [7]. Note that one can also show global version of the above lemma, provided
that the initial condition belongs to Vr. ■

Lemma 3.4 (Regularity of non-linear Stokes). Let t0 < T/2, N ∈ N and denote tN :=
t0

∑︁N
n=0 2−n. Assume that (u, s) satisfy

∂tu + L(u) = K(s) in V ∗
r (24)

for a. e. s ∈ (tN−1, T ). Suppose that

u ∈ Lr(0, T ; Vr) and ∂tu ∈ Lr′
(0, T ; V ∗

r )

and for some δ > 0 there holds

K ∈ Nδ,r′
(tN−1, T ; V ∗

r ).

Let us define

τ := δr

2(r − 1) and σ := δ

r − 1 . (25)

Then u ∈ Nτ,∞(tN , T ; H) ∩ Nσ,r(tN , T ; Vr).
Moreover, the norm of u in both Nτ,∞(tN , T ; H) and Nσ,r(tN , T ; Vr) is uniformly bounded by

a constant which depends only on δ, T, t0, r, Ω, ||f ||Lr′ (0,T ;V ∗
r ), ||u||L∞(0,T ;H) and ||u||Lr(0,T ;Vr).

Proof. Thanks to the assumption on u we can use Lemma 3.2 to obtain

u ∈ N
1
2 ,2(0, T, H)

and thus
T −h∫︂
t0

||dhu||2H ≤ ch.

Let h ∈ (0, T − tN ). We apply dh to (24) and use φ := dhu ∈ Vr as a test function, we get

1
2

d
dt

||dhu||2H +
⟨︁
dhL(u), dhu

⟩︁
Vr

=
⟨︁
dhK(s), dhu

⟩︁
Vr

.

Because of (6) and the fact that (u, s) ∈ G we derive the estimate⟨︁
dhL(u), dhu

⟩︁
Vr

≥ c1

∫︂
Ω

|D(dhu)|2 + |D(dhu)|r.

The right hand side is estimated as follows⟨︁
dhK(s), dhu

⟩︁
Vr

≤ ||dhK(s)||V ∗
r

||dhu||Vr
≤ ||dhK(s)||V ∗

r
(||D(dhu)||r + ||dhu||H)

≤ ε||D(dhu)||rr + cε||dhK(s)||r
′

V ∗
r

+ C||dhu||2H ||u||r−2
H

≤ ε||D(dhu)||rr + cε||dhK(s)||r
′

V ∗
r

+ C||dhu||2H .

Here we used Korn’s and Young’s inequalities and also the fact that ||u(s)||H is uniformly
bounded. Altogether

d
dt

||dhu||2H + c1

∫︂
Ω

|D(dhu)|2 + |D(dhu)|r ≤ C||dhu||2H + C||dhK(s)||r
′

V ∗
r

,
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which implies that for t ∈ [tN−1, T − h]

||dhu(t)||2H + c1

t∫︂
tN−1

∫︂
Ω

|D(dhu)|r ≤ ||dhu(tN−1)||2H + C

t∫︂
tN−1

||dhu||2H + C

t∫︂
tN−1

||dhK(s)||r
′

V ∗
r

≤ ||dhu(tN−1)||2H + C(h + hδr′
)

and thus

||dhu(t)||2H + c1

t∫︂
tN−1

∫︂
Ω

|D(dhu)|r ≤ ||dhu(tN−1)||2H + Chδr′
.

We integrate with respect to tN−1 over (0, tN ), we get, for t ∈ [tN , T − h],

tN ||dhu(t)||2H + c1tN

t∫︂
tN

∫︂
Ω

|D(dhu)|r ≤
tN∫︂
0

||dhu(tN−1)||2HdtN−1 + CtN hδr′

and by the Lemma 3.2 we obtain

tN ||dhu(t)||2H + c1tN

t∫︂
tN

∫︂
Ω

|D(dhu)|r ≤ ch + CtN hδr′
≤ Chδr′

and finally

sup
t∈[tN ,T −h]

||dhu(t)||2H + c1

T −h∫︂
tN

∫︂
Ω

|D(dhu)|r ≤ C

tN
hδr′

.

It is enough to set τ = δr′/2, which is exactly (25), to obtain that u ∈ Nτ,∞(tN , T ; H).
From the last inequality we now get

T −h∫︂
tN

∫︂
Ω

|D(dhu)|r ≤ C

tN
h2τ .

Because u ∈ Nτ,∞(tN , T ; H), ||u(t)||H is uniformly bounded and r > 2 we also have that

T −h∫︂
tN

||dhu(t)||rH ≤ C

tN
h2τ .

We obtain
T −h∫︂
tN

(||dhu(t)||H + ||D(dhu)||r)r ≤ c

T −h∫︂
tN

(||dhu(t)||rH + ||D(dhu)||rr) ≤ C

tN
h2τ

and thanks to ||dhu||Vr
≤ c(||D(dhu)||r + ||dhu||H) we get that u ∈ Nσ,r(tN , T ; Vr) for σ = 2τ

r .
■

Remark. The previous lemma is a minor modification of Lemma 5.1 from [7]. The main
difference is in the presence of numbers tN , which enables us to obtain a uniform bound of the
norm of u.

3.3 General scheme
Proceeding similarly as in Theorem 3.1 and Lemma 5.6 from [7], we can now prove our first
main result.
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Proof of the Theorem 1.1. Let us take any 2t0 ∈ (0, T ) and choose an arbitrary weak solu-
tion (u, s) of (1)–(8). Due to apriori estimates we have

u ∈ N0,r(0, T ; Vr) ∩ N0,∞(0, T ; H)

and because of Lemma 3.2
u ∈ N

1
2 ,2(0, T ; H).

In the case of r = 11/5 we invoke Lemma 3.3 to find q > 11
5 such that u ∈ Lq(t0, T ; Vr),

moreover, its norm is uniformly bounded. Therefore

u ∈ N0,q(t0, T ; Vr).

Step I: Improving time regularity of the convective term. We will show that for
r = 11/5 we get

K0(u) ∈ Nδ0,r′
(t0, T ; V ∗

r ) with δ0 = 6
55 · 5q − 11

q
.

We take φ ∈ Lr(t0, T ; Vr) from the unit ball and fix h ∈ (0, T − t0). We estimate⃓⃓⃓⃓
⃓⃓

T −h∫︂
t0

⟨︁
dhK0(u), φ

⟩︁
Vr

⃓⃓⃓⃓
⃓⃓ ≤

T −h∫︂
t0

∫︂
Ω

⃓⃓
dh(u ⊗ u) : ∇φ

⃓⃓
≤

T −h∫︂
t0

||dhu||2r′ ||u||2r′ ||∇φ||r

≤
T −h∫︂
t0

||dhu||α2 ||dhu||1−α
Vr

||u||α2 ||u||1−α
Vr

||φ||Vr
,

where we used the Hölder’s inequality and the interpolation (13) with α = 5r−9
5r−6 . Now we use

the Hölder’s inequality again, this time with following exponents

1
p

+ 1 − α

q
+ 1

∞
+ 1 − α

q
+ 1

r
= 1, i.e. 1

p
= 6

11 − 6
5q

,

where the last expression is positive because q > 11/5. We obtain⃓⃓⃓⃓
⃓⃓

T −h∫︂
t0

⟨︁
dhK0(u), φ

⟩︁
Vr

⃓⃓⃓⃓
⃓⃓ ≤

⎛⎝ T −h∫︂
t0

||dhu||αp
2

⎞⎠
1
p

⎛⎝ T −h∫︂
t0

||dhu||qVr

⎞⎠
1−α

q

· sup
t∈(t0,T −h)

||u||α2 ·

·

⎛⎝ T −h∫︂
t0

||u||qVr

⎞⎠
1−α

q
⎛⎝ T −h∫︂

t0

||φ||rVr

⎞⎠
1
r

.

We know that u is uniformly bounded in L∞(0, T ; H) ∩ Lq(t0, T ; Vr). Together with our
assumption on φ and the fact that u ∈ N0,q(t0, T ; Vr) we get⃓⃓⃓⃓

⃓⃓
T −h∫︂
t0

⟨︁
dhK0(u), φ

⟩︁
Vr

⃓⃓⃓⃓
⃓⃓ ≤ C

⎛⎝ T −h∫︂
t0

||dhu||αp
H

⎞⎠
1
p

.

Observe that αp > 2 (it is equivalent to 66 > 19q) and thus we will continue as follows⃓⃓⃓⃓
⃓⃓

T −h∫︂
t0

⟨︁
dhK0(u), φ

⟩︁
Vr

⃓⃓⃓⃓
⃓⃓ ≤ C

⎛⎝ T −h∫︂
t0

||dhu||2H ||dhu||αp−2
H

⎞⎠
1
p

≤ C

⎛⎝ T −h∫︂
t0

||dhu||2H

⎞⎠
1
2 · 2

p

≤ Ch
1
p ,

where we used again the uniform boundedness of u and the fact that u ∈ N
1
2 ,2(0, T ; H). The

duality argument gives as desired result about K0(u).
For r > 11/5 we would proceed in a similar way. Instead of q we use r and then obtain the

same result with δ0 = 5r2−11r+6
r(5r−6) .
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Step II: Improving time regularity of the solution. Let us consider r = 11/5 and set

K(t) := f(t) + K0(u(t)),

due to the previous step and the assumption f ∈ Nδ,r′(0, T ; V ∗
r ) with δ > 6

5
(︁ 25

22 − 1
)︁

= 9
55 >

δ0, if q is sufficiently close to the threshold 11/5, we get K ∈ Nδ0,r′(t0, T ; V ∗
r ). We invoke

Lemma 3.4 to get
u ∈ Nτ0,∞(t1, T ; H) ∩ Nσ,r(t1, T ; Vr)

with σ = δ0
r−1 and τ0 which is a small fixed number from an interval

(︂
0, δ0r

2(r−1)

]︂
.

For r > 11/5 we use either the same δ0 as in the previous step, or we take some smaller
value (because δ < δ0 for r close to 5/2).

In any case we get
u ∈ Nτ0,∞(t1, T ; H) ∩ Nσ,r(t1, T ; Vr)

for small σ and small fixed τ0.
Step III: Iterative improving of the convective term and the solution. We will

proceed in the same fashion as in the first step, just the second Hölder’s inequality will be used
with exponents

1
p

+ 1 − α

rσ
+ 1

∞
+ 1 − α

r
+ 1

r
= 1,

where rσ is such that Nσ,r(t1, T ; Vr) ↪→ Lrσ (t1, T ; Vr), i.e. as seen from (11) it holds with

1
rσ

= 1
r

− σ + ε,

where ε > 0 is small enough. Therefore,
1
p

= 5r − 11
5r − 6 + (1 − α)(σ − ε) > 0.

The estimate reads⃓⃓⃓⃓
⃓⃓

T −h∫︂
t1

⟨︁
dhK0(u), φ

⟩︁
Vr

⃓⃓⃓⃓
⃓⃓ ≤ c

⎛⎝ T −h∫︂
t1

||dhu||αp
H

⎞⎠
1
p

⎛⎝ T −h∫︂
t1

||dhu||rVr

⎞⎠
1−α

r
⎛⎝ T −h∫︂

t1

||u||rσ

Vr

⎞⎠
1−α
rσ

≤ ch(1−α)σ

⎛⎝ T −h∫︂
t1

||dhu||2H ||dhu||αp−2
H

⎞⎠
1
p

≤ ch(1−α)σ||dhu||α− 2
p

L∞(t1,T ;H)

⎛⎝ T −h∫︂
t1

||dhu||2H

⎞⎠
1
2 · 2

p

≤ ch(1−α)σh(α− 2
p )τ0h

1
p ,

where we used that αp > 2. For r = 11/5 this condition reduces to σ < 1/3, but it holds for all
r ∈ [11/5, 5/2). This gives us that K0(u) ∈ Nδ1,r′(t1, T ; V ∗

r ) with δ1 = (1−α)σ +(α− 2
p )τ0 + 1

p .
We again invoke Lemma 3.4 to find

u ∈ Nτ0,∞(t2, T ; H) ∩ Nσ1,r(t2, T ; Vr)

with σ1 = δ1
r−1 = 1−α

r−1 σ + α− 2
p

r−1 τ0 + 1
r−1 · 5r−11

5r−6 + 1−α
r−1 (σ − ε).

As in [7], we obtain the formula for improving σ. For r = 11/5 and given σ small we find
the new σ̃ given by

σ̃ = σ + τ0

3 − (σ − ε)τ0 − ε

2 = (1 − τ0)σ + τ0

3 − ε

(︃
1
2 − τ0

)︃
.

If we define function θ by θ(σ) = σ̃, it is a contraction and θ : [0, 1] → [0, 1]. Banach fixed point
theorem shows that θ has a unique fixed point

σfix = 1
3 − ε

(︃
1

2τ0
− 1

)︃
.
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Since we can assume σ ≤ σ := 5
2r − 1 = 3

22 < σfix, for ε small enough, we really reach little
beyond the value σ after finitely many iterations. And so u ∈ Nσ+ε,r(tN , T ; Vr) for ε > 0 small
and N ∈ N big enough. Due to the definition of tN we see that u ∈ Nσ+ε,r(2t0, T ; Vr) and by
(11) we finally obtain

u ∈ Lq(2t0, T ; Vr) if 1
q

>
1
r

− σ − ε,

in other words we can set q = 1
r − σ, which gives the critical value r = 22/7. For r > 11/5 we

can find a similar contraction mapping and conclude the same result.
Step IV: Unique continuation of solutions. Take any two weak solutions u1, u2 on

[0, T ]. By (22), cf. Theorem 2.2 above, we have

d
dt

||w||2H ≤ c
(︁
1 + ||u2||rVr

)︁
||w||2H

where w = u1 − u2. Recall that r = 2r
2r−3 and thus for r ≥ 5/2 we have u ∈ Lr(0, T ; Vr)

because r ≥ r. For r ∈ (11/5, 5/2) we can proceed as in [6] to obtain u ∈ L∞(t0, T ; Vr) for any
t0 ∈ (0, T ).

Finally, for r ∈ [11/5, 12/5] we employ steps I–III above to conclude that for an arbitrarily
small t0 > 0 we have u ∈ Lr(t0, T ; Vr).

Now let t1 ∈ (0, T ] be such that u1(t1) = u2(t1). Since we can can assume t0 < t1, it follows
by Theorem 2.2 that u1(t) = u2(t) for all t ∈ [t1, T ]. This finishes the proof.

■

Remark. Proceeding as in [7], one can also show that

u ∈ N
1
2 ,∞(t0, T ; H) ∩ N

1
r ,r(t0, T ; Vr) ∩ N

1
2 ,2(t0, T ; V2).

Similarly, we can obtain all the above conclusions globally, i.e. for t0 = 0, provided that
u0 ∈ Vr and 0 is a semi-Lebesgue point of f .

4 Attractor
4.1 General method
Here we briefly outline the general method of trajectories, following closely the exposition in
[12]. Let X, Y, Z be Banach spaces, such that X is both reflexive and separable and we have
embeddings

Y ↪→↪→ X and X ↪→ Z.

For r ∈ [2, ∞) and τ > 0 fixed we denote

Xτ := L2(0, τ ; X),
Yτ := {u ∈ Lr(0, τ ; Y ), ∂tu ∈ L1(0, τ ; Z)}.

(A1) For any u0 ∈ X and arbitrary T > 0 there exists u ∈ Cw([0, T ]; X) ∩ YT a solution
on [0, T ] with u(0) = u0. Moreover, for any solution the estimates of ||u||Y are uniform with
respect to ||u(0)||X .

(A2) There exists a bounded set B0 ⊂ X such that, if u is an arbitrary solution to (19)
with initial condition u0 ∈ X then

(i) there exists t0 = t0(||u(0)||X) such that u(t) ∈ B0 for all t ≥ t0 and

(ii) if u0 ∈ B0 then u(t) ∈ B0 for all t ≥ 0.

Now, let ℓ > 0 be an arbitrary fixed number. By the ℓ-trajectory we mean any solution on
the interval [0, ℓ]. The set of all such ℓ-trajectories is denoted by Xℓ and is equipped with the
topology of Xℓ. Instead of uniqueness of the solution, we will require that

(A3) Each ℓ-trajectory has among all solutions unique continuation. More precisely, if two
solutions coincide on the interval [0, ℓ], they coincide for all subsequent times t ≥ ℓ.

We can thus define the semigroup Lt on Xℓ by

Ltξ(τ) := u(t + τ), τ ∈ [0, ℓ],
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where u is the unique solution on [0, ℓ + τ ] such that u|[0,ℓ] = ξ ∈ Xℓ.
Moreover, we define

B0
ℓ := {ξ ∈ Xℓ; ξ(0) ∈ B0},

it is the set of all ℓ-trajectories starting at any point of B0.
(A4) For all t > 0, Lt : Xℓ → Xℓ is continuous on B0

ℓ .
(A5) For some τ > 0, Lτ (B0

ℓ )
Xℓ ⊂ B0

ℓ .
Now, using (A5), we introduce the set

B1
ℓ := Lτ (B0

ℓ )
Xℓ ⊂ B0

ℓ .

The above assumptions are sufficient to obtain existence of the global attractor in the space of
trajectories. The following one is a criterion of its finite-dimensionality.

(A6) There exists a space Wℓ with Wℓ ↪→↪→ Xℓ and τ > 0 such that Lτ : Xℓ → Wℓ is a
Lipschitz continuous on B1

ℓ .
To get the results from the space of trajectories to the original space of initial conditions,

we introduce a mapping e : Xℓ → X by the formula

e(ξ) = ξ(ℓ).

Semigroup Lt worked on B1
ℓ and the solution operator St is defined on the set B1, which is

defined using of the mapping e as
B1 := e(B1

ℓ ).
Note that St is well-defined in virtue of the assumption (A3).

(A7) The mapping e : Xℓ → X is continuous on B1
ℓ .

To get the finiteness of the fractal dimension of A it is necessary to strengthen the previous
assumption.

(A8) The mapping e : Xℓ → X is α-Hölder continuous on B1
ℓ .

At last, to construct an exponential attractor we will need two additional assumptions.
(A9) For all τ > 0 the operators Lt : Xℓ → Xℓ are uniformly Lipschitz continuous on B1

ℓ

with respect to t ∈ [0, τ ].
(A10) For all τ > 0 there exists c > 0 and γ ∈ (0, 1] such that for all ξ ∈ B1

ℓ and all
t1, t2 ∈ [0, τ ] it holds that ||Lt1ξ − Lt2ξ||Xℓ

≤ c|t1 − t2|γ .
Now, we mention one result, which is quite useful in verifying the assumptions (A4), (A7),

(A8) and (A9).

Lemma 4.1. Let Tℓ ⊂ Xℓ be a set of trajectories and let T ⊂ X be defined by

T := {ξ(t); ξ ∈ Tℓ, t ∈ [ℓ/2, ℓ]} .

Let the solution operators St be well-defined and moreover, uniformly (with respect to t ∈ [0, τ ])
Lipschitz continuous on the set T ⊂ X. Then

(i) the operators Lt : Xℓ → Xℓ are uniformly (with respect to t ∈ [0, τ ]) Lipschitz continuous
on Tℓ and

(ii) the operator e : Xℓ → X is Lipschitz continuous on Tℓ.

Proof. See Lemma 2.1 in [12]. ■

In the following theorem we summarize results about existence of (exponential) attractor
from [12].

Theorem 4.2.

(i) Let (A1)–(A5) hold. Then the dynamical system (Lt, Xℓ) possesses global attractor Aℓ.
Its fractal dimension in Xℓ is finite provided that (A6) holds too.

(ii) Let (A1)–(A5) and (A7) hold. Then the dynamical system (St, B1) possesses global at-
tractor A, which is given by A = e(Aℓ). Its fractal dimension in X is finite provided that
both (A6) and (A8) hold.

(iii) Let assumptions (A1)–(A10) hold. Then the dynamical system (St, B1) possesses an
exponential attractor E.

Proof. See Theorems 2.1–2.6 in [12]. ■
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4.2 Existence and uniqueness of attractor
Most of the assumptions are easily obtained from results about existence and continuous de-
pendence on initial condition. From now on, we will assume that the conditions of our main
Theorem 1.1 hold true.

We set

Y := Vr, X := H and Z := V ∗
r ,

which is a Gelfand triple. Now we will verify step by step all the desired properties.
Property (A1). The first property is just Theorem 2.1.
Property (A2). This follows from the energy equality (21), and the a priori estimates,

which led to the very existence of solution.
From now on, let ℓ > 0 be fixed.
Property (A3). This property was verified in the proof of Theorem 1.1. Let us recall that

for w = u1 − u2, the difference of two ℓ-trajectories, ℓ < T , we obtained

||w(t)||2H ≤ K||w(s)||2H for t0 ≤ s ≤ t ≤ T, (26)

where K = exp(C
T∫︁

t0

||u2||rVr
+||u2||Vr

) is uniformly bounded and t0 > 0 can be arbitrarily small.

Property (A4). Here we use Lemma 4.1. We set Tℓ := B0
ℓ which is the set defined after

establishing of (A3). In the proof of (A3) we took t0 small, so it can be smaller than ℓ
2 , it

means that the solutions operator St of (19) makes sense on

T =
{︃

ξ(t); ξ ∈ Tℓ, t ∈
[︃

ℓ

2 , ℓ

]︃}︃
.

Moreover, thanks to (26) we know that St : H → H is uniformly Lipschitz continuous on
T . Now we can invoke Lemma 4.1 to obtain (A4).

Property (A5). Observe that, due to (A2), the set B0
ℓ is positively invariant with respect

to Lτ , i.e. Lτ B0
ℓ ⊂ B0

ℓ . Therefore, to establish the fifth assumption, it is enough to show that

B0
ℓ

Xℓ ⊂ B0
ℓ .

To verify that we would consider an arbitrary sequence {ξn} ⊂ B0
ℓ such that ξn → ξ in Xℓ.

Then we follow the proof of Theorem 2.1, where the main point is indeed compactness of
bounded sequences of solutions, see [1] for details. By this we find that ξ is indeed a solution
of (19) (together with some s). The fact that ξ(0) ∈ B0 is a simple consequence of closedness
of B0 together with continuity of ξ and the fact that ξn(t) ∈ B0, t ≥ 0, which holds due to by
(A2). This shows (A5).

Now we fix τ > 0.
Properties (A7), (A8) and (A9). Because of (A5) we have that B1

ℓ ⊂ B0
ℓ . We can use

Lemma 4.1 again, but now with Tℓ := B1
ℓ . The rest is the same as before.

Property (A10). Here we want to find c > 0 and β ∈ (0, 1] (possibly depending on τ)
such that for all ξ ∈ B1

ℓ and all t1, t2 ∈ [0, τ ] there holds

ℓ∫︂
0

||u(t + t1) − u(t + t2)||2H dt ≤ c|t1 − t2|2β ,

where u is a unique continuation of ξ on [0, ℓ + τ ].
This is just Lemma 3.2. Without loss of generality we can assume that t1 > t2 and set

δ := t1 − t2. The left hand side becomes

ℓ+t2∫︂
t2

||u(s + δ) − u(s)||2H ds.
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Almost all times s ∈ (t2, ℓ+t2) are semi-Lebesgue points of f and u(s) ∈ Vr. By Lemma 3.1
we get C > 0 such that for any h ∈ (0, ℓ + τ − s) there holds

||u(s + h) − u(s)||2H ≤ Ch

⎛⎝1 + ||u(s)||rVr
+ 1

h

s+h∫︂
s

||f ||r
′

V ∗
r

⎞⎠ .

We see that δ ∈ (0, ℓ + τ − s) for all s ∈ (t2, ℓ + t2) and thus we can use the estimate with
h := δ. Then we integrate over s ∈ (t2, ℓ + t2) and use boundedness of averaging operator on
L1, which finishes the proof of (A10) with β = 1

2 .
We have verified all the assumptions except (A6). Thus, we can use the general result of

Theorem 4.2(i) to obtain the first part of Theorem 1.2. To obtain its second part, i.e. finite
dimension of the attractor and existence of an exponential attractor, we need to verify the key
condition (A6).

4.3 Finite dimension of attractor
We need to check out the sixth assumption. The procedure is similar to the case of Dirichlet
boundary condition, treated in [6]. Note that here is the only place where we actually use the
existence of a selection s = s(u) with certain polynomial growth, i.e. (9) and (10).

We will verify (A6) with τ := ℓ and

Wℓ := {u ∈ L2(0, ℓ; V2), ∂tu ∈ L1(0, l; V ∗
r )}.

By the Aubin-Lions-Simon theorem we get the embedding Wℓ ↪→↪→ L2(0, ℓ; H) = Xℓ. We wish
to show that for any ξ1, ξ2 ∈ B1

ℓ there hold estimates

||Lℓξ1 − Lℓξ2||L2(0,ℓ;V2) ≤ C||ξ1 − ξ2||L2(0,ℓ;H),

||∂tLℓξ1 − ∂tLℓξ2||L1(0,ℓ;V ∗
r ) ≤ C||ξ1 − ξ2||L2(0,ℓ;H).

By (A3) we find u1 and u2 unique extensions to [0, 2ℓ] of ξ1 and ξ2 respectively, i.e. u1 = ξ1
and u2 = ξ2 on [0, ℓ]. Set w := u1 − u2. We need to verify that

||u1(ℓ + ·) − u2(ℓ + ·)||L2(0,ℓ;V2) =
2ℓ∫︂

ℓ

||w||2V2
≤ C

ℓ∫︂
0

||w||2H , (27)

||∂tu1(ℓ + ·) − ∂tu2(ℓ + ·)||L1(0,ℓ;V ∗
r ) =

2ℓ∫︂
ℓ

||∂tw||V ∗
r

≤ C

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

. (28)

As in the proof of (A3) we will start with the inequality for a difference of two solutions (see
(22)), but we will also incorporate better estimate of the boundary term which is due to (10),
provided that q > r/2 + 1, which is tantamount to q − 2 > r−2

2 . We have

d
dt

||w||2H + c1

2 (||Dw||22 + ||Dw||rr) + c1I2 + c5J2 ≤ c
(︁
1 + ||u2||rVr

)︁
||w||2H , (29)

where we write

I2 =
∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2)|Dw|2, (30)

J2 =
∫︂

∂Ω

(|u1|q−2 + |u2|q−2)|w|2. (31)

As in the proof of (A3) we fix small t0 for which we obtained u2 ∈ Lr(t0, 2ℓ; Vr). Let us take
s ∈ (t0, ℓ) a integrate (29) over t ∈ (s, 2ℓ) to get

||w(2ℓ)||2H + c1

2

2ℓ∫︂
s

(||Dw||22 + ||Dw||rr) + c1

2ℓ∫︂
s

I2 ≤ ||w(s)||2H + C

2ℓ∫︂
s

(||u2||rVr
+ ||u2||Vr )||w||2H ,
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because of (26) we can estimate

c1

2

2ℓ∫︂
ℓ

(||Dw||22 + ||Dw||rr) + c1

2ℓ∫︂
ℓ

I2 ≤ ||w(s)||2H

⎛⎝1 + C

2ℓ∫︂
t0

||u2||rVr
+ ||u2||Vr

⎞⎠ .

The bracket on the right hand side can be (see Theorem 1.1) uniformly estimated by a constant
which depends only on r, t0, ℓ, Ω, ||f ||Lq0 (0,T ;V ∗

r ) and uniformly bounded norms of solution of
(1)–(8). We get the inequality

2ℓ∫︂
ℓ

(||Dw||22 + ||Dw||rr) +
2ℓ∫︂

ℓ

I2 ≤ C||w(s)||2H .

We integrate it over s ∈ (t0, ℓ) to obtain

(ℓ − t0)
2ℓ∫︂

ℓ

(||Dw||22 + ||Dw||rr) + (ℓ − t0)
2ℓ∫︂

ℓ

I2 ≤ C

ℓ∫︂
t0

||w(s)||2H

2ℓ∫︂
ℓ

(||Dw||22 + ||Dw||rr) +
2ℓ∫︂

ℓ

I2 ≤ 2C

ℓ

ℓ∫︂
0

||w||2H ,

where we used that t0 < ℓ
2 from the proof of (A4). The inequality

2ℓ∫︂
ℓ

||Dw||22 ≤ C

ℓ

ℓ∫︂
0

||w||2H ,

together with (26) implies (27). Let us emphasize that we obtained also inequalities

2ℓ∫︂
ℓ

I2 ≤ 2C

ℓ

ℓ∫︂
0

||w||2H , (32)

2ℓ∫︂
ℓ

J2 ≤ 2C

ℓ

ℓ∫︂
0

||w||2H , (33)

which will be useful later on.
To show (28) we start with the duality argument and use (19) to obtain

||∂tw||L1(ℓ,2ℓ;V ∗
r ) = sup

φ

2ℓ∫︂
ℓ

⟨∂tw, φ⟩Vr

2ℓ∫︂
ℓ

⟨∂tw, φ⟩Vr
=

2ℓ∫︂
ℓ

⟨K0(u1) − K0(u2), φ⟩Vr
−

2ℓ∫︂
ℓ

∫︂
Ω

(S(Du1) − S(Du2)) : Dφ −
2ℓ∫︂

ℓ

∫︂
∂Ω

(s1 − s2) · φ

=: I1 + I2 + I3 .

where supremum is taken over all φ ∈ L∞(ℓ, 2ℓ; Vr) from the unit ball.
The first integral I1 is estimated as follows:

I1 ≤
2ℓ∫︂

ℓ

∫︂
Ω

|u1 ⊗ u1 − u2 ⊗ u2||∇φ| ≤
2ℓ∫︂

ℓ

∫︂
Ω

|w|(|u1| + |u2|)|∇φ|

≤
2ℓ∫︂

ℓ

||w||2r′(||u1||2r′ + ||u2||2r′)||∇φ||r ≤
2ℓ∫︂

ℓ

||w||2r′(||u1||2r′ + ||u2||2r′).
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Suppose that r ∈ [11/5, 3). We interpolate the first term by (15) and others by (13). Because
of uniform estimates of solutions in L∞(0, T ; H) and Lr(0, T ; Vr) we obtain

I1 ≤ C

2ℓ∫︂
ℓ

||w||
2r−3

2r

H ||w||
3

2r

V2
(||u1||

3
5r−6
Vr

+ ||u2||
3

5r−6
Vr

) · 1

≤ C(ℓ)

⎛⎝ 2ℓ∫︂
ℓ

||w||2H

⎞⎠
2r−3

4r

·

⎛⎝ 2ℓ∫︂
ℓ

||w||2V2

⎞⎠
3

4r

·

⎡⎢⎣
⎛⎝ 2ℓ∫︂

ℓ

||u1||rVr

⎞⎠
3

r(5r−6)

+

⎛⎝ 2ℓ∫︂
ℓ

||u2||rVr

⎞⎠
3

r(5r−6)
⎤⎥⎦

≤ C(ℓ)

⎛⎝ 2ℓ∫︂
ℓ

||w||2V2

⎞⎠
2r−3

4r

·

⎛⎝ 2ℓ∫︂
ℓ

||w||2V2

⎞⎠
3

4r

≤ C(ℓ)

⎛⎝ 2ℓ∫︂
ℓ

||w||2V2

⎞⎠
1
2

≤ C(ℓ)√
ℓ

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

,

where we used the fact that
2r − 3

4r
+ 3

4r
+ 3

r(5r − 6) ≤ 1,

the trivial embedding V2 ↪→ H and the inequality (27).
For r ≥ 3 we can either proceed as in [6] or we simply recall that any solution is in

L∞(t0, T ; Vr), and thus the rest follows immediately. It means that we got desired estimate of
the convective term.

Now we estimate I2. We start with (7) and the Hölder’s inequality with exponents

1
2 + r − 2

2r
+ 1

r
= 1

to obtain

I2 ≤
2ℓ∫︂

ℓ

∫︂
Ω

⃓⃓⃓
(S(Du1) − S(Du2)) : Dφ

⃓⃓⃓
≤ c2

2ℓ∫︂
ℓ

∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2) 1
2 + 1

2 |Dw||Dφ|

≤ C

2ℓ∫︂
ℓ

[︄⎛⎝∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2)2· 1
2 |Dw|2

⎞⎠ 1
2

×

⎛⎝∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2)
2r

r−2 · 1
2

⎞⎠
r−2
2r

||Dφ||r

]︄

≤ C

2ℓ∫︂
ℓ

⎛⎝∫︂
Ω

(1 + |Du1|r−2 + |Du2|r−2)|Dw|2
⎞⎠ 1

2
⎛⎝∫︂

Ω

(1 + |Du1|r−2 + |Du2|r−2)
r

r−2

⎞⎠
r−2
2r

.

Now it is time to invoke quantity called I2 from (30). Using Jensen’s inequality we have

I2 ≤ C

2ℓ∫︂
ℓ

I ·

⎛⎝∫︂
Ω

(1 + |Du1|r + |Du2|r)

⎞⎠
r−2
2r

≤ C

2ℓ∫︂
ℓ

I · (1 + ||Du1||rr + ||Du2||rr)
1
2

≤ C

⎛⎝ 2ℓ∫︂
ℓ

I2

⎞⎠
1
2

·

⎛⎝ 2ℓ∫︂
ℓ

(1 + ||Du1||rr + ||Du2||rr)

⎞⎠
1
2

≤ C√
ℓ

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

,
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where the last estimate used (32) and uniform boundedness of solutions in Lr(0, T ; Vr).
The boundary term, i.e. I3, is can be estimated from the above provided that (G5) holds.

We get

I3 ≤
2ℓ∫︂

ℓ

∫︂
∂Ω

⃓⃓⃓
(s1 − s2) · φ

⃓⃓⃓
≤

2ℓ∫︂
ℓ

∫︂
∂Ω

|s1 − s2||φ|

≤ c4

2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁

|u1 − u2||φ|.

If q − 2 ≤ r−2
2 we use the Hölder’s inequality with exponents

r − 2
2r

+ 1
2 + 1

r
= 1

to obtain

I3 ≤ C

2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ 2r

r−2

⎞⎠
r−2
2r

||w||L2(∂Ω)||φ||Lr(∂Ω)

≤ C

⎛⎝ 2ℓ∫︂
ℓ

||w||2L2(∂Ω)

⎞⎠
1
2

⎡⎢⎣ 2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ 2r

r−2

⎞⎠
r−2

r

⎤⎥⎦
1
2

.

But the second integral is clearly bounded, as we can see using of Jensen’s inequality, trivial
estimate (1 + |x|) r−2

r ≤ 1 + |x| and the fact that 2r q−2
r−2 ≤ r and so W 1,r(Ω) ↪→ L2r q−2

r−2 (∂Ω):

2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ 2r

r−2

⎞⎠
r−2

r

≤ C

2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

1 + |u1|2r q−2
r−2 + |u2|2r q−2

r−2

⎞⎠
r−2

r

≤ C

2ℓ∫︂
ℓ

∫︂
∂Ω

(︂
1 + |u1|2r q−2

r−2 + |u2|2r q−2
r−2

)︂

≤ C

2ℓ∫︂
ℓ

(︃
1 + ||u1||2r q−2

r−2

L
2r

q−2
r−2 (∂Ω)

+ ||u2||2r q−2
r−2

L
2r

q−2
r−2 (∂Ω)

)︃

≤ C

2ℓ∫︂
ℓ

(︁
1 + ||u1||r1,r + ||u2||r1,r

)︁
.

If r−2
2 < q − 2 ≤ r − 2 we use the Hölder’s inequality in the same way as in the estimating

of I2, i.e.

I3 ≤ C

2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ 1

2 + 1
2 |w||φ|

≤ C

2ℓ∫︂
ℓ

[︄⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁

|w|2
⎞⎠ 1

2
⎛⎝∫︂

∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ r

r−2

⎞⎠
r−2
2r ]︄

≤ C

⎛⎝ 2ℓ∫︂
ℓ

||w||2H + J2

⎞⎠
1
2

⎛⎜⎝ 2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ r

r−2

⎞⎠
r−2

r

⎞⎟⎠
1
2

,

23



where we invoked quantity J2 from (31). At this point we need assumption (G6), because of
(27) and (33) we obtain ⎛⎝ 2ℓ∫︂

ℓ

||w||2H + J2

⎞⎠
1
2

≤ C√
ℓ

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

.

And similarly as before we use Jensen’s inequality and the embedding W 1,r(Ω) ↪→ Lr q−2
r−2 (∂Ω),

which is valid provided that q ≤ r, to estimate

2ℓ∫︂
ℓ

⎛⎝∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ r

r−2

⎞⎠
r−2

r

≤ C

2ℓ∫︂
ℓ

(︃
1 + ||u1||r

q−2
r−2

L
r

q−2
r−2 (∂Ω)

+ ||u2||r
q−2
r−2

L
r

q−2
r−2 (∂Ω)

)︃ r−2
r

≤ C

2ℓ∫︂
ℓ

(︁
1 + ||u1||r1,r + ||u2||r1,r

)︁
.

Together we obtain

I3 ≤ C

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

.

What remains is to get the same estimate also in the case q > r. We realize that we can
use much “worse” Wℓ than before and still obtain the desired result. Let us redefine

Wℓ := {u ∈ L2(0, ℓ; V2), ∂tu ∈ L1(0, l; V∗)}.

Now, the proof of (27) is the same as before, but the proof of (28) is much simpler. Reason is
that our test function φ in the duality argument is essentially bounded in the time–space.

Therefore, we estimate I3 using of (G5) and Hölder’s inequality as follows

I3 ≤
2ℓ∫︂

ℓ

∫︂
∂Ω

|s1 − s2||φ| ≤ C

2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁ 1

2 + 1
2 |w|

≤ C

⎛⎝ 2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁

|w|2
⎞⎠

1
2

⎛⎝ 2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁⎞⎠

1
2

.

The first integral is again estimated thanks to (27) and (33) like⎛⎝ 2ℓ∫︂
ℓ

∫︂
∂Ω

(︁
1 + |u1|q−2 + |u2|q−2)︁

|w|2
⎞⎠

1
2

≤ C√
ℓ

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

and the second integral is uniformly bounded. This is due to the fact that in the energy equality
(21) we can estimate the boundary integral using of (G6) instead of (G4) as usual. It gives us
that any weak solution satisfies for all t ∈ (0, T ) that

t∫︂
0

∫︂
∂Ω

|u|q ≤ C.

In summary, we were able to obtain the estimate

I3 ≤ C

⎛⎝ ℓ∫︂
0

||w||2H

⎞⎠
1
2

for any q ≥ 2. Thanks to those three estimates of I1, I2 and I3 we can conlude that (28) holds.
The argument is complete.
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Proof of the Theorem 1.2. We verified all the assumptions needed in the abstract method
described in [12], which is here contained in Theorem 4.2. By parts (i) and (ii) we get existence
and finite-dimensionality of the global attractor. Existence of an exponential attractor follows
from part (iii). ■
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[11] E. Maringová. Mathematical analysis of models arising in continuum mechanics with im-
plicitly given rheology and boundary conditions. PhD thesis, Charles University, Faculty of
Mathematics and Physics, Prague, 2019.
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