Kolmogorov theorem Autocovariance and autocorrelation function Strict and weak

Strict and wea stationarity Properties of autocovariance

Stochastic Processes 2

Zuzana Prášková

Department of Probability and Mathematical Statistics Charles University in Prague email: praskova@karlin.mff.cuni.cz

September 26, 2020

theorem
Autocovariance
and
autocorrelation
function
Strict and wea

function Strict and wea stationarity Properties of autocovarianc function

Basic Lecture Notes:

- Z. Prášková: Základy náhodných procesů II, Karolinum 2016, In Czech
- Z. Prášková: Stochastic Processes 2, on-line version
- J. Dvořák, M. Prokešová: Stochastic Processes 2, Collection of solved exercises, on-line

Supplementary texts:

- Brockwell, P. J., Davis, R. A.: Time Series: Theory and Methods. Springer-Verlag, New York 1991
- Anděl, J.: Statistická analýza časových řad. SNTL, Praha 1976 (In Czech)

Zuzana Prášková

Literature

Kolmogorov theorem Autocovariance and autocorrelation function Strict and weak

Strict and we stationarity Properties of autocovariance function

Definitions and basic characteristics

Daniell-Kolmogorov theorem Autocovariance and autocorrelation function

Strict and weak stationarity Properties of autocovariance function

Definition:

Let $(\Omega, \mathcal{A}, \mathsf{P})$ be a probability space, (S, \mathcal{E}) a measurable space, and $T \subset \mathbb{R}$. A family of (real-valued) random variables $\{X_t, \ t \in T\}$ defined on $(\Omega, \mathcal{A}, \mathsf{P})$ with values in S is called a stochastic (random) process.

 $T = \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$ or $T \subset \mathbb{Z} - \{X_t, t \in T\}$ is discrete time stochastic process, time series

 $T = [a, b], -\infty \le a < b \le \infty$ - $\{X_t, t \in T\}$ is a continuous time stochastic process.

For any $\omega \in \Omega$ fixed, $X_t(\omega)$ is a function on T with values in S which is called a *trajectory* of the process.

Definition:

A pair (S, \mathcal{E}) , where S is a set of values of random variables X_t and \mathcal{E} is a σ -algebra of subsets of S, is called the state space of the process $\{X_t, t \in T\}$.

Autocovariance and autocorrelation function Strict and weak stationarity Properties of autocovariance

Finite-dimensional distributions:

 $\forall n \in \mathbb{N}$ and any finite subset $\{t_1, \ldots, t_n\} \subset T$ there is a system of random variables X_{t_1}, \ldots, X_{t_n} , with the joint distribution function

$$P[X_{t_1} \le x_1, \dots, X_{t_n} \le x_n] = F_{t_1, \dots, t_n}(x_1, \dots, x_n)$$

for all real x_1, \ldots, x_n .

A system of distribution functions is said to be consistent, if

- $F_{t_{i_1},...,t_{i_n}}(x_{i_1},...,x_{i_n}) = F_{t_1,...,t_n}(x_1,...,x_n)$ for any permutation $(i_1,...,i_n)$ of (1,...,n) (symmetry)
- $\lim_{x_n \to \infty} F_{t_1,...,t_n}(x_1,...,x_n) = F_{t_1,...,t_{n-1}}(x_1,...,x_{n-1})$ (consistency)

Kolmogorov theorem Autocovariance and autocorrelation function Strict and weak stationarity A system of **characteristic functions** The characteristic function of a random vector $\mathbf{X} = (X_1, \dots, X_n)$ is

$$\varphi_{\mathbf{X}}(\mathbf{u}) := \mathrm{E} \mathrm{e}^{\mathrm{i} \mathbf{u}^{\top} \mathbf{X}} = \mathrm{E} \mathrm{e}^{\mathrm{i} \sum_{j=1}^{n} u_{j} X_{j}}, \quad \mathbf{u} = (u_{1}, \dots, u_{n})^{\top} \in \mathbb{R}_{n}$$

$$F_{t_1,\ldots,t_n}(x_1,\ldots,x_n)\leftrightarrow \varphi_{X_{t_1},\ldots,X_{t_n}}(u_1,\ldots,u_n):=\varphi(u_1,\ldots,u_n)$$

Consistent system of characteristic functions:

symmetry:

$$\varphi(u_{i_1},\ldots,u_{i_n})=\varphi(u_1,\ldots,u_n)$$

for any permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$,

• consistency:

$$\lim_{u_n\to 0} \varphi_{X_{t_1},...,X_{t_n}}(u_1,...,u_n) = \varphi_{X_{t_1},...,X_{t_{n-1}}}(u_1,...,u_{n-1}).$$

Daniell-Kolmogorov theorem

For any stochastic process there exists a consistent system of distribution functions and,

Theorem 1:

Let $\{F_{t_1,\ldots,t_n}(x_1,\ldots,x_n)\}$ be a consistent system of distribution functions. Then there exists a stochastic process $\{X_t,\ t\in T\}$ such that for any $n\in\mathbb{N}$, any $t_1,\ldots,t_n\in T$ and any real x_1,\ldots,x_n it holds

$$P[X_{t_1} \leq x_1, \dots, X_{t_n} \leq x_n] = F_{t_1, \dots, t_n}(x_1, \dots, x_n).$$

Proof: Štěpán (1987), Theorem I.10.3.

Definition:

A complex-valued random variable *X* is defined by

$$X = Y + iZ$$
, where Y a Z are real random variables, $i = \sqrt{-1}$.

The mean value of a complex-valued random variable X = Y + iZ is defined by

$$EX = EY + iEZ$$

provided the mean values EY and EZ exist.

The variance of a complex-valued random variable X = Y + iZ is defined by

$$\operatorname{var} X := \operatorname{E} \left[(X - \operatorname{E} X)(\overline{X} - \overline{\operatorname{E} X}) \right] = \operatorname{E} |X - \operatorname{E} X|^2 \ge 0$$

provided the second moments of random variables Y and Z exist.

Definition:

A complex-valued stochastic process is a family of complex-valued random variables on (Ω, \mathcal{A}, P) .

function

Definition:

Let $\{X_t, t \in T\}$ be a stochastic process such that $\mathrm{E}X_t$ exists for all $t \in T$. Then the function $\mu_t = \mathrm{E}X_t$ defined on T is called the mean value of the process $\{X_t, t \in T\}$. We say that the process is centred if its mean value is zero for all $t \in T$.

Definition:

Let $\{X_t, t \in T\}$ be a process with finite second moments, i.e., $\mathrm{E}|X_t|^2 < \infty$, $\forall t \in T$. Then a (complex-valued) function defined on $T \times T$ by

$$R(s,t) = \mathrm{E}\left[(X_s - \mu_s)(\overline{X}_t - \overline{\mu}_t) \right]$$

is called the autocovariance function of the process $\{X_t, t \in T\}$. The value R(t, t) is the variance of the process at time t.

function

Strict and weak stationarity
Properties of autocovariance

Definition:

Autocorrelation function of the process $\{X_t, t \in T\}$ with positive variances is defined by

$$r(s,t) = \frac{R(s,t)}{\sqrt{R(s,s)}\sqrt{R(t,t)}}, \quad s,t \in T.$$

Definition:

Stochastic process $\{X_t, t \in T\}$ is called Gaussian, if for any $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T$, the vector $(X_{t_1}, \ldots, X_{t_n})^{\top}$ is normally distributed $\mathcal{N}_n(\mathbf{m_t}, \mathbf{V_t})$, where $\mathbf{m_t} = (\mathbf{E}X_{t_1}, \ldots, \mathbf{E}X_{t_n})^{\top}$ and

$$\boldsymbol{V_t} = \begin{pmatrix} \operatorname{var} X_{t_1} & \operatorname{cov}(X_{t_1}, X_{t_2}) & \dots & \operatorname{cov}(X_{t_1}, X_{t_n}) \\ \operatorname{cov}(X_{t_2}, X_{t_1}) & \operatorname{var} X_{t_2} & \dots & \operatorname{cov}(X_{t_2}, X_{t_n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(X_{t_n}, X_{t_1}) & \operatorname{cov}(X_{t_n}, X_{t_2}) & \dots & \operatorname{var} X_{t_n} \end{pmatrix}.$$

Strict and weak stationarity Properties of autocovariance function

Definition:

Stochastic process $\{X_t, t \in T\}$ is said to be strictly stationary, if for any $n \in \mathbb{N}$, for any x_1, \ldots, x_n real and for any t_1, \ldots, t_n a h such that $t_k \in T$, $t_k + h \in T$, $1 \le k \le n$,

$$F_{t_1,...,t_n}(x_1,...,x_n) = F_{t_1+h,...,t_n+h}(x_1,...,x_n).$$

Definition:

Stochastic process $\{X_t, t \in T\}$ with finite second moments is said to be weakly stationary or second order stationary, if its mean value is constant, $\mu_t = \mu$, $\forall t \in T$ and if its autocovariance function R(s,t) is a function of s-t, only. If only the latter condition is satisfied, the process is called covariance stationary.

Autocovariance function of weakly stationary process:

$$R(t) := R(t,0), t \in T,$$

(function of one variable).

Autocorrelation function in such case:

$$r(t)=\frac{R(t)}{R(0)}.$$

Theorem 2:

Strictly stationary stochastic process $\{X_t, t \in T\}$ with finite second moments is also weakly stationary.

Proof:

 $\{X_t, t \in T\}$ strictly stationary $\Rightarrow X_t$ are equally distributed for all $t \in T$ and thus with the mean value

$$\mathrm{E} X_t = \mathrm{E} X_{t+h}, \ \forall t \in T, \ \forall h: \ t+h \in T$$
 especially, for $h=-t: \mathrm{E} X_t = \mathrm{E} X_0 = \mathrm{const}$

Proof of Theorem 2, continued

Similarly, (X_t, X_s) are equally distributed and

$$\mathrm{E}\left[X_{t}\,X_{s}\right] = \mathrm{E}\left[X_{t+h}\,X_{s+h}\right] \; \forall s,t \in T, \, \forall h: \, s+h \in T, \, t+h \in T$$

especially, for
$$h = -t$$
: $E[X_tX_s] = E[X_0X_{s-t}]$ is a function of $s - t$.

Strict and weak stationarity

Properties of autocovariance function

Example:

 $\{X_t,\,t\in\mathcal{T}\}$ - a sequence of iid random variables with a distribution function F

$$F_{t_1,...,t_n}(x_1,...,x_n) = P[X_{t_1} \le x_1,...,X_{t_n} \le x_n] =$$

$$= \prod_{i=1}^n P[X_{t_i} \le x_i] = \prod_{i=1}^n F(x_i),$$

$$F_{t_1+h,...,t_n+h}(x_1,...,x_n) = P[X_{t_1+h} \le x_1,...,X_{t_n+h} \le x_n] =$$

$$= \prod_{i=1}^n P[X_{t_i+h} \le x_i] = \prod_{i=1}^n F(x_i),$$

 $\Rightarrow \{X_t, t \in T\}$ is strictly stationary.

Example:

 $\{X_t,\ t\in\mathbb{Z}\}$ - a sequence defined by

$$X_t = (-1)^t X,$$

where X is a random variable:

$$X = \begin{cases} -\frac{1}{4} & \text{with probability } \frac{3}{4}, \\ \frac{3}{4} & \text{with probability } \frac{1}{4}. \end{cases}$$

Then $\{X_t, t \in \mathbb{Z}\}$ is weakly stationary, since

$$\mathrm{E} X_t = 0,$$

 $\mathrm{var} \, X_t = \sigma^2 = \frac{3}{16},$
 $R(s,t) = \sigma^2 (-1)^{s+t} = \sigma^2 (-1)^{s-t},$

but it is not strictly stationary (variables X a -X are not equally distributed).

Daniell-Kolmogorov theorem Autocovariance and

function
Strict and weak

Stationarity
Properties of autocovariance

Theorem 3:

A weakly stationary Gaussian process $\{X_t, t \in T\}$ is also strictly stationary.

Proof:

Weak stationarity of the process $\{X_t, t \in T\}$ implies $\mathrm{E}X_t = \mu, \ \mathrm{cov}(X_t, X_s) = R(t-s) = \mathrm{cov}(X_{t+h}, X_{s+h}), t, s \in T,$ thus

$$\mathrm{E}(X_{t_1},\ldots,X_{t_n}) = \mathrm{E}(X_{t_1+h},\ldots,X_{t_n+h}) = (\mu,\ldots,\mu) := \mu$$
 $\mathrm{var}(X_{t_1},\ldots,X_{t_n}) = \mathrm{var}(X_{t_1+h},\ldots,X_{t_n+h}) := \Sigma$

Kolmogorov theorem Autocovariance and autocorrelation

Strict and weak stationarity

Properties of autocovariant function

$$\Sigma = \left(egin{array}{cccc} R(0) & R(t_2 - t_1) & \dots & R(t_n - t_1) \ R(t_2 - t_1) & R(0) & \dots & R(t_n - t_2) \ dots & dots & \ddots & dots \ & \dots & R(0) \end{array}
ight).$$

Since the normal distribution is uniquely defined by the mean value vector and the variance matrix,

$$(X_{t_1},\ldots,X_{t_n})\sim \mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})$$
, and $(X_{t_1+h},\ldots,X_{t_n+h})\sim \mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})\Rightarrow \{X_t,\ t\in\mathcal{T}\}$ is strictly stationary.

Properties of autocovariance function

Theorem 4:

Let $\{X_t, t \in T\}$ be a process with finite second moments. Then its autocovariance function satisfies

$$R(t,t) \ge 0,$$

 $|R(s,t)| \le \sqrt{R(s,s)} \sqrt{R(t,t)}.$

Proof:

The first assertion follows from the definition of the variance. The second one follows from the Schwarz inequality, since

$$|R(s,t)| = |E(X_s - EX_s)(\overline{X_t} - \overline{EX_t})| \le E|(X_s - EX_s)(\overline{X_t} - \overline{EX_t})|$$

$$\le (E|X_s - EX_s|^2)^{\frac{1}{2}}(E|X_t - EX_t|^2)^{\frac{1}{2}} = \sqrt{R(s,s)}\sqrt{R(t,t)}$$

Thus, for weakly stationary process $R(0) \ge 0$ a $|R(t)| \le R(0)$.

Definition:

Let f(s,t) be a complex-valued function defined on $T \times T$, $T \subset \mathbb{R}$. We say that f is positive semidefinite, sometimes: non-negative definite, if $\forall n \in \mathbb{N}$, any complex numbers c_1, \ldots, c_n and any $t_1, \ldots, t_n \in T$ it holds

$$\sum_{j=1}^n \sum_{k=1}^n c_j \overline{c_k} f(t_j, t_k) \geq 0.$$

We say that a complex-valued function g on T is positive semidefinite, if $\forall n \in \mathbb{N}$, any complex numbers c_1, \ldots, c_n and any $t_1, \ldots, t_n \in T$, such that $t_i - t_k \in T$, it holds

$$\sum_{i=1}^n \sum_{k=1}^n c_j \overline{c_k} g(t_j - t_k) \ge 0.$$

Definition:

We say that a complex-valued function f on $T \times T$ is Hermitian, if $f(s,t) = \overline{f(t,s)} \ \forall s,t \in T$. A complex-valued function g of one variable is called Hermitian, if $g(-t) = \overline{g(t)} \ \forall t \in T$.

Theorem 5:

Any positive semidefinite function is also Hermitian.

Proof:

Use the definition of positive semidefiniteness and for n=1 choose $c_1=1$; for n=2 choose $c_1=1, c_2=1$ and $c_1=1, c_2=i(=\sqrt{-1})$.

Remark:

A positive semidefinite real-valued function f on $T \times T$, is symmetric, i.e., f(s,t) = f(t,s) for all $s,t \in T$. A positive semidefinite real-valued function g on T is symmetric, i.e, g(t) = g(-t) for all $t \in T$.

Daniell-Kolmogorov theorem Autocovariance

and autocorrelation function Strict and weak

Properties of autocovariance function

Theorem 6:

Let $\{X_t, t \in T\}$ be a process with finite second moments. Then its autocovariance function is positive semidefinite on $T \times T$.

Proof:

Suppose wlog that the process is centred. Then for any $n \in \mathbb{N}$, complex constants c_1, \ldots, c_n and $t_1, \ldots, t_n \in T$

$$0 \le E \left| \sum_{j=1}^{n} c_j X_{t_j} \right|^2 = E \left[\sum_{j=1}^{n} c_j X_{t_j} \overline{\sum_{k=1}^{n} c_k X_{t_k}} \right]$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{n} c_j \overline{c_k} E(X_{t_j} \overline{X_{t_k}}) = \sum_{j=1}^{n} \sum_{k=1}^{n} c_j \overline{c_k} R(t_j, t_k).$$

Properties of autocovariance function

Theorem 7:

To any positive semidefinite function R on $T \times T$ there exists a stochastic process $\{X_t, t \in T\}$ with finite second moments such that its autocovariance function is R.

Proof:

The proof will be given for real-valued function R, only. For the proof in a complex case see, e.g., Loève (1955), Chap. X, Par. 34.

Since R is positive semidefinite, then for any $n \in \mathbb{N}$ and any real $t_1, \ldots, t_n \in T$ the matrix

$$\mathbf{V_t} = \left(egin{array}{cccc} R(t_1,t_1) & R(t_1,t_2) & \dots & R(t_1,t_n) \ R(t_2,t_1) & R(t_2,t_2) & \dots & R(t_2,t_n) \ \dots & \dots & \dots & \dots \ R(t_n,t_1) & R(t_n,t_2) & \dots & R(t_n,t_n) \end{array}
ight)$$

is positive semidefinite.

Proof of Theorem 7, continued

Function

$$arphi(\mathbf{u}) = \exp\left\{-rac{1}{2}\mathbf{u}^{ op}\mathbf{V_t}\mathbf{u}
ight\}, \quad \mathbf{u} \in \mathbb{R}^n$$

is the characteristic function of the normal distribution $\mathcal{N}_n(\mathbf{0},\mathbf{V_t})$. In this way, $\forall n \in \mathbb{N}$ and any real $t_1,\ldots,t_n \in T$ we get a consistent system of characteristic functions. The corresponding system of the distribution functions is also consistent. Thus according to Daniell-Kolmogorov theorem (Theorem 1) there exists a Gaussian stochastic process, covariances of which are given the values of the function R(s,t); hence, function R is the autocovariance function of this process.

Properties of autocovariance function

Example:

Decide whether function $\cos t$, $t \in T = (-\infty, \infty)$ is an autocovariance function of a stochastic process.

Solution:

It suffices to show, that $\cos t$ is a positive semidefinite function. Consider $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$ a $t_1, \ldots, t_n \in \mathbb{R}$. Then we have

$$\sum_{j=1}^{n} \sum_{k=1}^{n} c_j \overline{c}_k \cos(t_j - t_k) = \sum_{j=1}^{n} \sum_{k=1}^{n} c_j \overline{c}_k (\cos t_j \cos t_k + \sin t_j \sin t_k)$$

$$= \left|\sum_{j=1}^n c_j \cos t_j\right|^2 + \left|\sum_{k=1}^n c_k \sin t_k\right|^2 \ge 0.$$

Function $\cos t$ is positive semidefinite, and according to Theorem 6 there exists a (Gaussian) stochastic process $\{X_t, t \in T\}$, autocovariance function of which is $R(s,t) = \cos(s-t)$.

Theorem 8:

The sum of two positive semidefinite functions is a positive semidefinite function.

Proof:

It follows from the definition of the positive semidefinite function. If f and g are positive semidefinite and h=f+g, then for any $n\in\mathbb{N}$, complex c_1,\ldots,c_n and $t_1,\ldots,t_n\in T$

$$egin{aligned} &\sum_{j=1}^n \sum_{k=1}^n c_j \overline{c}_k h(t_j,t_k) = \sum_{j=1}^n \sum_{k=1}^n c_j \overline{c}_k [f(t_j,t_k) + g(t_j,t_k)] \ &= \sum_{j=1}^n \sum_{k=1}^n c_j \overline{c}_k f(t_j,t_k) + \sum_{j=1}^n \sum_{k=1}^n c_j \overline{c}_k g(t_j,t_k) \geq 0. \end{aligned}$$

Zuzana Prášková

Literatur

Daniell-Kolmogorov theorem Autocovariance and autocorrelation function Strict and weak

Properties of autocovariance function

Corollary:

Sum of two autocovariance functions is an autocovariance function of a stochastic process with finite second moments.

Proof:

It follows from Theorems 6 - 8.

Theorem 9:

The real part of an autocovariance function is an autocovariance function. The imaginary part is an autocovariance function (ACF)if and only if it is zero.

Proof:

Wlog, we prove the assertion for centred processes only. If $X_t = Y_t + \mathrm{i} Z_t$ is complex with zero mean, then $\mathrm{E} Y_t = \mathrm{E} Z_t = 0$ and $R(s,t) = \mathrm{E} X_s \overline{X}_t = \mathrm{E} \left[(Y_s + \mathrm{i} Z_s)(Y_t - \mathrm{i} Z_t) \right] = \mathrm{E} Y_s Y_t + \mathrm{E} Z_s Z_t + \mathrm{i} (\mathrm{E} Z_s Y_t - \mathrm{E} Y_s Z_t)$. The real part is an autocovariance function according to the previous Corollary. If imaginary part is zero, it is an ACF. If the imaginary part is ACF, then, since for s = t (the variance in s) it is zero, the imaginary part must be zero.