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Abstract: We consider selfsimilar solutions to the power-law model for the incompressible fluids. The model reduces
for p = 2 to the Navier–Stokes equations. Forp ∈ (1, 3

2
), we construct a class of selfsimilar solutions that are singular

on a line passing through the origin. Further, we discuss singular solutions to the power-law fluid model without the
convective term which are singular at one point.

Key Words: power-law fluids, Navier–Stokes equations, selfsimilar solutions, Leray system, weak solution, singular
solution

1 Introduction

We consider the following system of PDE’s

∂u

∂t
+ u · ∇u + ∇π

−νdiv (|Du|p−2Du) = 0

div u = 0















in R × R
3, (1)

which describes the flow of a certain class of non-
newtonian incompressible fluids. The model is usu-
ally called the power-law fluid. Here,u represents the
velocity field,π is the pressure,Du with (Du)ij =
1
2( ∂ui

∂xj
+

∂uj

∂xi
) is the symmetric part of the velocity gra-

dient,ν > 0 andp > 1 are constants. Note that for
p = 2 we get the well-known Navier–Stokes equa-
tions and the constantν is then the reciprocal to the
Reynolds number. Our system (1) is a special case
of non-newtonian fluids with the stress tensor given
by S = −πI + ν|Du|p−2Du. The reader can find
further information about the derivation of the model
in the framework of continuum mechanics as well
as about the properties of fluids corresponding to the
power-law models in [6].

If the fluid does not fill in the whole space, system
(1) must be accompanied by the boundary conditions.
Since we only deal with the Cauchy problem we will
not touch this interesting and important problem here.

In general, the lessp is, the less a priori estimates
are available and thus the main challenge from the
point of view of mathematical analysis is to prove the
existence of a solution forp as low as possible. Let us
note that there is a lot of physically interesting models
whenp ∈ (1, 3

2 ].
First mathematical results concerning the existence

and the uniqueness of solutions to similar models go
back to late sixties and are due to O.A. LADYZHEN-
SKAYA [2] and J.L. LIONS [4]. In the nineties, a
series of results appeared which decreased the value
for which the solution exists, see [5]. Nowadays, the
global in time existence for a weak solution without
any restriction on the size of the data is known for
p > 8

5 , see [1]. Even though this result is proved
for space periodic or no stick boundary conditions,
it is not difficult to transform them for the Cauchy
problem. The solution is known to be regular for
p ≥ 11

5 , see [5]. The Cauchy problem was studied
in [9], however, model (1) only for95 < p ≤ 2. For
p > 2, the stress tensor was considered in the form
S = −πI + ν0Du + ν1|Du|p−2Du. In [7], us-
ing Nikolskii spaces, the authors considered also the
casep > 2 with ν0 = 0. Again, even though the
study is performed for space periodic boundary con-
ditions, it is an easy matter to transform the result for
the Cauchy problem.

Our aim is slightly different. We will study model
(1) for rather smallp and we will construct singular



solutions in the selfsimilar form that we discuss next.

2 Selfsimilar solutions

In his famous paper [3], J. LERAY proposed the fol-
lowing construction of a weak solution to the Navier–
Stokes equations, i.e. to system (1) withp = 2, which
is not smooth. He considered the solution in the form
(T > 0 a positive constant)

u =
1√
T − t

U
( x√

T − t

)

π =
1

T − t
P

( x√
T − t

)

.

(2)

Under the assumption that there exists a weak solu-
tion to the Leray system

y

2
· ∇U +

U

2
+ U · ∇U − ν∆U + ∇P = 0

div U = 0
(3)

such that U belongs to the Sobolev space
(W 1,2(R3))3, then u of the form (2)1 is a weak
solution to the Navier–Stokes equations such that
limt→T− ‖u‖2 = 0 while limt→T− ‖∇u‖2 = ∞, i.e.
u is a weak solution to the Navier–Stokes equations
with the blow-up in finite time. However, J. NEČAS,
M. RŮŽI ČKA and V. ŠVERÁK showed in [8] that
any solution to (3) such thatU ∈ (L3(R3))3 is
identically zero. Later on, T.P. TSAI [11] extended
this result toU ∈ (Lr(R3))3 for any3 ≤ r <∞.

We would like to apply similar ideas to our model
(1). Inspired by the selfsimilar scaling (cf. [6], Sec-
tion B 1.4) we look for a solution to (1) in the form

u = (T − t)−
p−1
2 U

(

(T − t)−
3−p

2 x
)

π = (T − t)−(p−1)P
(

(T − t)−
3−p

2 x
)

.
(4)

Then the casep > 11
5 is subcritical (and thus rel-

atively easily solvable),p = 11
5 is critical and thus

solvable with possibly more effort andp < 11
5 is su-

percritical and thus any existence and regularity re-
sult requires considerably more effort than the former
cases, see [6].

Inserting (4) into (1), one easily computes that
(U , P ) satisfies

3 − p

2
y · ∇U +

p− 1

2
U + U · ∇U

− νdiv
(

|DU |p−2DU) + ∇P = 0

div U = 0,

(5)

which reduces forp = 2 to the Leray system (3).

Definition 1 We say thatu ∈ (L2
loc(R

3))3 with
|DU |p−1 ∈ L1

loc(R
3) is a weak solution to (5) if

(i) div U = 0 in D′(R3)
(ii)
∫

R3

(

(2p− 5)U · ϕ − 3 − p

2
(U ⊗ y) : ∇ϕ

−(U ⊗ U) : ∇ϕ + ν|DU |p−2DU : Dϕ
)

dy

= 0

for all ϕ ∈ V = {u ∈ ((D(R3))3; divu = 0}.

Assume that, forp < 3, the velocity field

U belongs to (L2(R3))3
⋂

(L
2p

p−1 (R3))3, ∇U ∈
(Lp(R3))9 or, for p ≥ 3, U ∈ (L2(R3))3, ∇U ∈
(Lp(R3))9. Taking as test functionϕ = U εηR,
whereU ε is a divergence-free approximation ofU
in the spaces mentioned above andηR(y) = η( y

R
)

is the standard cut-off function,η(y) = 1 in B1(0),
η = 0 outsideB2(0), η smooth, we get, after passing
with ε→ 0 andR→ ∞ that

5p− 11

4

∫

R3

|U |2dy = −ν
∫

R3

|DU |pdy.

Thus, such a solution may exist only forp < 11
5 .

Note that forp ≥ 9
5 we have2 ≤ 2p

p−1 ≤ 3p
3−p

and
thus there is no additional regularity assumption.

If U ∈ (W 1,2(R3))3, we may setU(y) as ini-
tial value for system (1) and forp > 5

3 , there ex-
ists a local-in-time solution to (1) such that∇u ∈
(Lp((0, t∗);L3p(R3))9, see [6]. Thus∇U ∈
(L3p(R3))9 and in particular,U is bounded. We have
the following ”regularity” result:

Proposition 2 Let p > 5
3 and U ∈ (W 1,2(R3))3

be a weak solution to (5). Then∇U belongs to
(L3p(R3))9 and thusU to (L∞(R3))3.

Moreover, provided there is a nontrivial solution
(U , P ) to (5) such thatU ∈ (L2(R3))3 with ∇U ∈
(Lp(R3))3, then foru defined by (4)1

‖u(t)‖(L2(R3))3 = (T − t)
11−5p

2 ‖U‖(L2(R3))3

while

‖∇u‖(Lp(R3))9 = (T − t)
9−5p

2 ‖∇U‖(Lp(R3))9

and thus it is a nonsmooth weak solution to system (1)
if p ∈ (9

5 ,
11
5 ). Since forp = 2 such a solution cannot

exist, one may expect that at least forp ∈ (2, 11
5 ), the

same could hold true. However, forp = 2, the proof



is based on the fact that the quantity|U|2

2 +P + y ·U
satisfies the maximum principle. The same fact for
p 6= 2 is far from being evident and we thus leave
the existence/nonexistence of weak solutions to (5)
with the above given regularity as an interesting open
problem.

3 Singular solutions

We come to the main result of this short note. We
would like to construct singular solutions to (5) in a
special form. As a matter of fact, singular solutions
to (5) are actually singular solutions to (1) and thus
they might be of a special interest.

Definition 3 Let A ⊂ R
3 be of zero three-

dimensional Lebesgue measure. We say thatU ∈
(C2(R3 \ A))3, P ∈ C1(R3 \ A) is a singular so-
lution to (5) provided (5) holds for(U , P ) pointwise
in R

3 \A.

Let us denote by

ψ(y) = (y3 − y2)
2 + (y1 − y3)

2 + (y2 − y1)
2.

We will look for singular solutions to (5) in the form

U(y) =
(y3 − y2

ψα
,
y1 − y3

ψα
,
y2 − y1

ψα

)

P (y) = Q(ψ(y))
(6)

for someα > 0 and a suitable smooth functionQ.
Note thatU is smooth outside the liney1 = y2 =
y3, P is smooth outside the same line providedQ is
smooth. Moreover, outside this line

div U = 0.

Assume for a moment that(U , P ) of the form
above is a singular solution to (5). Let us consider for
a moment justU ; we would like to find conditions on
α which would imply thatU is a weak solution to (5)
in the sense of Definition 1. First of all,

α(p− 1) < 1 i.e. α <
1

p− 1

2α− 1 < 1 i.e. α <
3

4
,

in order to make sense for all integrals appearing
in the weak formulation. Since(U , P ) satisfies the
equation pointwise outside one line, in order to get
the integral identity, we must be able to perform the

corresponding integration by parts. Thus we get ad-
ditionally

α(p− 1) <
1

2
i.e. α <

1

2(p− 1)

2α− 1 <
1

2
i.e. α <

1

2
.

Unfortunately, as will be seen below, our singular so-
lutions will not be weak solutions in the sense of Def-
inition 1.

Easily we get that

y · ∇U = (1 − 2α)U

and thus

3 − p

2
y · U − 1 − p

2
U

=
(1 − 2α)(3 − p) − (1 − p)

2
U .

Next, for the convective term,

U · ∇U =
1

ψ2α

(

− 2y1 + y2 + y3,

−2y2 + y1 + y3,−2y3 + y1 + y2

)

=
1

2(2α− 1)
∇

( 1

ψ2α−1

)

.

Thus this term can be compensated by the pressure; it
would be a weak solution provided4α − 1 < 1, i.e.
α < 1

2 .
Finally, after some tedious calculations, we get

|DU |2 =
6α2

ψ2α

and

−div (|DU |p−2DU) =
6

p

2αp−1(1 − (p− 1)α)

ψ(p−2)α+1
U .

Altogether, we have

(1 − 2α)(3 − p) − (1 − p)

2
U

+
1

2(2α− 1)
∇

( 1

ψ2α−1

)

+ ν
6

p

2αp−1(1 − (p− 1)α)

ψ(p−2)α+1
U + ∇P = 0.

Now, two cases lead to the fact that functions of the
type (6) solve (5).
Case 1:

(3 − p)(1 − 2α) = 1 − p

(p− 1)α = 1



and thusp = 2 andα = 1. Therefore, for anyA ∈ R,

U =
A

ψ
(y3 − y2, y1 − y3, y2 − y1)

P = −A
2

2

1

ψ

is a singular solution to the Leray system (3), which
is not a weak solution. It provides, via (2), a singular
solution to the Navier–Stokes equations. Note that
the pressure is unbounded from below. The reader
may compare this with the fact that weak solutions to
the Navier–Stokes equations are smooth provided the
pressure is bounded from below, see [10].

Case 2:
(p− 2)α+ 1 = 0

i.e. α = 1
2−p

. Now, the singular solution will be of
the form

U(y) =
β

ψα
(y3 − y2, y1 − y3, y2 − y1)

P (y) = − β2

2(2α− 1)

1

ψ2α−1

with α = 1
2−p

andβ ∈ R properly chosen in such a
way that

β
(3 − p)(1 − 2α) − (1 − p)

2

=
(

(p− 1)α− 1
)

6
p

2αp−1|β|p−2β.

Inserting the value ofα we find that

|β| =
(2 − p)

p−1
p−2

6
p

2(p−2)

(

ν(3 − 2p)
)

1
p−2

(7)

provided3 − 2p > 0, i.e. p < 3
2 . Thus

U(y) = ± (2 − p)
p−1
p−2

6
p

2(p−2)

(

ν(3 − 2p)
)

1
p−2

1

ψ
1

2−p

(y3 − y2, y1 − y3, y2 − y1)

P (y) = − (2 − p)
2(p−1)

p−2

6
p

p−2

(

ν(3 − 2p)
)

2
p−2

2 − p

2p

1

ψ
p

2−p

is for 1 < p < 3
2 a singular solution (but not a weak

solution) to system (5).
We have proved

Theorem 4 Let (U , P ) be of the form (6). Then the
pair is a singular solution to system (5) if:
a) p = 2, α = 1,A ∈ R arbitrary

U =
A

ψ
(y3 − y2, y1 − y3, y2 − y1)

P = −A
2

2

1

ψ

b) p ∈ (1, 3
2), α = 1

2−p

U(y) =
β

ψ
1

2−p

(y3 − y2, y1 − y3, y2 − y1)

P (y) = −β
2(2 − p)

2p

1

ψ
p

2−p

,

where

|β| =
(2 − p)

p−1
p−2

6
p

2(p−2)

(

ν(3 − 2p)
)

1
p−2

.

Let us complete the result with several remarks.
We may also study singular solutions to the steady
power-law model. Formally it means that we do not
take the time derivative and thus we have system (5)
without the first two terms, i.e.

U · ∇U − νdiv
(

|DU |p−2DU) + ∇P = 0

div U = 0.

Thus we get that for anyA ∈ R

U(y) =
A

ψ
1

p−1

(y3 − y2, y1 − y3, y2 − y1)

P (y) = −A
2(p− 1)

2(3 − p)

1

ψ
3−p

p−1

is a singular solution (but not a weak one) to the
steady power-law model with anyp > 1.

Another possibility (and in some sense more natu-
ral) is to look for a solution in the form

V (y) =
(y3 − y2

|y|α ,
y1 − y3

|y|α ,
y2 − y1

|y|α
)

P (y) = Q(|y|).
(8)

Again, divV = 0 outside the origin. Proceeding
as above we get

(1 − α)(3 − p) − (1 − p)

2
U − 1

2

∇ψ
|y|2α

+ ν
αp−1(α+ 3 − pα)ψ

p−2
2

|y|(p−2)α+2
U + ∇P = 0.



Unlike the previous situation, the convective term
cannot be absorbed into the pressure and thus we
may get selfsimilar singular solutions only without
the convective term. Thus, solving

(3 − p)(1 − α) = 1 − p

α+ 3 = pα

givesα = 5
2 , p = 11

5 and

V (y) =
A

|y| 52
(y3 − y2, y1 − y3, y2 − y1)

P (y) = const

is a singular (not a weak) solution to system (5) with-
out the convective term and it provides a singular so-
lution to (1) without the convective term, both for
p = 11

5 .
Finally, considering steady power-law model with-

out the convective term, we observe that

V (y) =
A

|y|
3

p−1

(y3 − y2, y1 − y3, y2 − y1)

P (y) = const

is a singular (and not a weak) solution to

−div (|DV |p−2DV ) + ∇P = 0

divV = 0

for anyp > 1.

4 Conclusions

We considered singular solutions to the power-law
fluid model (1) in the selfsimilar form. We con-
structed singular (but not weak) solutions to (5) (and
via (4) also to (1)) in the form

U(y) =
A

ψα(y)
(y3 − y2, y1 − y3, y2 − y1)

P (y) = − A2

2(2α− 1)
∇

( 1

ψ2α−1(y)

)
(9)

for p = 2 (andα = 1, A ∈ R arbitrary) and for
1 < p < 3

2 (α = 1
2−p

,A = β given by (7)).
Further,(U , P ) of the form (9) solve steady power-

law model for anyp > 1 providedα = 1
p−1 .

Finally, considering power-law model without the
convective term, solution to the non-steady problem
in the selfsimilar form can be constructed as follows

U(y) =
A

|y|α (y3 − y2, y1 − y3, y2 − y1)

P (y) = const
(10)

providedα = 5
2 , p = 11

5 . Considering the steady
case, the pair(V , P ) of the form (10) is a singular
solution providedα = 3

p−1 .
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Nečas, O. John, K. Najzar, J. Stará, Chapman &
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