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Abstract: We consider selfsimilar solutions to the power-law modeltfe incompressible fluids. The model reduces
for p = 2 to the Navier—Stokes equations. Foe (1, %), we construct a class of selfsimilar solutions that arewdarg
on a line passing through the origin. Further, we discusgutam solutions to the power-law fluid model without the
convective term which are singular at one point.
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1 Introduction In general, the lessg is, the less a priori estimates
are available and thus the main challenge from the
We consider the following system of PDE’s point of view of mathematical analysis is to prove the
existence of a solution fagras low as possible. Let us
ou note that there is a lot of physically interesting models

—vdiv (|DuP"2Du) =0 p;inR xR, (1) First mathematical results concerning the existence
and the uniqueness of solutions to similar models go
back to late sixties and are due to O.AabYZHEN-
. . . SKAYA [2] and J.L. LONS [4]. In the nineties, a
which describes the flow of a certain class of N0Qgyies of results appeared which decreased the value
newtonian incompressible flwds. The model is USksy \which the solution exists, see [5]. Nowadays, the
ally called the power-law fluid. Herey represents the g4 in time existence for a weak solution without
VEIOC'tyg'eld’W is the pressureDu with (Du)ij = any restriction on the size of the data is known for
%(ggfra%) is the symmetric part of the velocity grap > £, see [1]. Even though this result is proved
dient,» > 0 andp > 1 are constants. Note that fofor space periodic or no stick boundary conditions,
p = 2 we get the well-known Navier-Stokes equat is not difficult to transform them for the Cauchy
tions and the constantis then the reciprocal to theProblem. The solution is known to be regular for
Reynolds number. Our system (1) is a special case> . see [5]. The Cauchy problem was studied
of non-newtonian fluids with the stress tensor givén [9], however, model (1) only fog < p < 2. For
by S = —7I + v|DulP~2Du. The reader can findp > 2, the stress tensor was considered in the form
further information about the derivation of the mode$ = —=I + vyDu + vi|Du[P~?>Dw. In [7], us-
in the framework of continuum mechanics as waelhg Nikolskii spaces, the authors considered also the
as about the properties of fluids corresponding to tbasep > 2 with vy = 0. Again, even though the
power-law models in [6]. study is performed for space periodic boundary con-
If the fluid does not fill in the whole space, systemitions, it is an easy matter to transform the result for
(1) must be accompanied by the boundary conditiotise Cauchy problem.
Since we only deal with the Cauchy problem we will Our aim is slightly different. We will study model
not touch this interesting and important problem her@.) for rather smalp and we will construct singular

divu =0




solutions in the selfsimilar form that we discuss nexDefinition 1 We say thatu € (L7 (R?))® with
|DU|P~! € L}, _(R?) is a weak solution to (5) if

2 Selfsimilar solutions E:i))diVU =0inD'(R?)

In his famous paper [3], J.HRAY proposed the fol- 3—p

lowing construction of a weak solution to the Navier—/ <(2P U - ——(Uy): Ve
Stokes equations, i.e. to system (1) wite: 2, which 7R 5

is not smooth. He considered the solution in the form  —(U @ U) : Vo +v|DUP""DU : D‘P) dy

(T > 0 a positive constant) =0
w= 1 U< - ) forall p € V = {u € ((D(R?))3;divu = 0}.
\/{ —t \éT —t @ ’
=T 75P< U t)' Assume that, forp < 3, the velocity field

U belongs to(L2(R3))3 \(Li1(R%))3, VU e
Under the assumption that there exists a weak solu?(R3))Y or, forp > 3, U € (L*(R%))3, VU ¢
tion to the Leray system (LP(R3))Y. Taking as test functionp = U<np,
y U whereU?* is a divergence-free approximation Uf
=.VU+ —+U-VU -vAU+VP =0 in the spaces mentioned above am(y = n(
2 2 is the standard cut-off functiom(y) = 1 in By (])33
divU =0 n = 0 outsideB,(0), n smooth, we get, after passing

(3) with e — 0 andR — oo that
such that U belongs to the Sobolev space

(WH2(R3))3, thenu of the form (2) is a weak 5p — 11 2, »

solution to the Navier—Stokes equations such that 1 s U dy = —v . |DU"dy.

limy 7~ [|ulls = 0 while lim,_7— [[Vullz = oo, i.e. °

u is a weak solution to the Navier—Stokes equationsThys such a solutlon may exist only for< L.

with the blow-up in finite time. However, J. BEAS, gp 3p
Note that forp > 2 = we have2 < <3 and

M. ROZIEKA and V. SVERAK showed in [8] tha tth h ddt | | t t

any solution to (3) such thal € (L3(R%))3 is us there is no additional regu anyassump ion.

1,2(3Y)3 i
identically zero. Later on, T.P.dAI [11] extended . it U e (W3(R"))", we may setIé(y) as ini

this result o7 € (L"(R3))? for any3 < r < oo. taI value for system (1) and fgs > 3, there ex-
We would like to apply similar ideas to our modé tS a local-in-time solution to (1) such thatu <

“); L (R?%))?, see [6]. ThusVU ¢
(1). Inspired by the selfsimilar scaling (cf. [6], Sed L2 ((0,1%) ’
tion B 1.4) we look for a solution to (1) in the form L p Rg ) and in particularlJ is bounded. We have
B N the foIIowmg ‘regularity” result:
(T - t)’pTU<(T - t)*T:c)

sy (4) Proposition2 Letp > 2 andU € (WH2(R3))3
T = (T—t)f(pfl)P«T—t)*Ta?) be a weak solution to (5). TheWU belongs to
(L3P(R3))Y and thusU to (L*°(R?3))3.
Then the casp > L is subcrltlcal (and thus rel-
atively easily solvable)p = = is critical and thus Moreover, provided there is a nontrivial solution
solvable with possibly more effort and< L is su- (U, P) 10 (5) such thaly € (L*(R%))? with VU €
percritical and thus any existence and regularity rel? (R®))?, then foru defined by (4)
sult requires considerably more effort than the former

u

cases, see [6]. ()l z2q@sys = (T—1) 2"
Inserting (4) into (1), one easily computes that
(U, P) satisfies while
3 9
pr VU + TU +U VU IVl po@aye = (T —t) 2
— vdiv (\DU!I’”DU) +VP=0 (5) and thusitis a nonsmooth weak solution to system (1)

if p € (2,L). Since forp = 2 such a solution cannot

divU =
v 0, exist, one may expect that at least foe (2, 1), the
which reduces fop = 2 to the Leray system (3). same could hold true. However, fpr= 2, the proof



is based on the fact that the quanﬂﬁéﬁ +P+y-U cp_rresponding integration by parts. Thus we get ad-
satisfies the maximum principle. The same fact fditionally
p # 2 is far from being evident and we thus leave

the existence/nonexistence of weak solutions to (5) alp—1) < 1 e a< 1
with the above given regularity as an interesting open % %(p -1)
problem. 20—1< = ie. a<-=.
2 2
. . Unfortunately, as will be seen below, our singular so-
3 Singular solutions lutions will not be weak solutions in the sense of Def-
inition 1.
We come to the main result of this short note. We Easily we get that
would like to construct singular solutions to (5) in a
special form. As a matter of fact, singular solutions y-VU = (1 -2a)U
to (5) are actually singular solutions to (1) and thus
they might be of a special interest. and thus
3—p U 1-— pU
Definiton 3 Let A C R>? be of zero three- 5 VYT
dimensional Lebesgue measure. We say fat (1-2a)(3—-p)—(1—-p)
(C2(R3\ A))3, P € CL(R?\ A) is a singular so- = 5 U.
lution to (5) provided (5) holds fofU, P) pointwise .
inR3\ A. Next, for the convective term,
1
Let us denote by U-VU = @(—2y1+yz+y3,
2 2 )
V(y) = (ys —92)* + (y1 —93)* + (2 — )™ Yo UL U R T
. . . . = v( )
We will look for singular solutions to (5) in the form 22 — 1)~ \gp2a-l
(Vs — Y Vi Y3 Yo — W Thus this term can be compensated by the pressure; it
Uy) = ( e ga g ) (6) Would be a weak solution provideth — 1 <1, i.e.
P(y) = @< 2 . :
) = QW) Finally, after some tedious calculations, we get
for somea > 0 and a suitable smooth functiap. 602
Note thatU is smooth outside the ling; = y2 = |DU? = e
y3, P is smooth outside the same line provid@ds ¥
smooth. Moreover, outside this line and
divU = 0. 6207~ 1(1—(p—1)a)

—div(|]DU|P2DU) = U.

p(P—2)atl
Assume for a moment thatl/, P) of the form
above is a singular solution to (5). Let us consider for Altogether, we have
a moment justU; we would like to find conditions on
o which would imply thatlJ is a weak solution to (5) (1-20)3—p)—(1—p) U
in the sense of Definition 1. First of all, ) 2 .
+ v ( )
. 1 _ 20—1
ap—1)<1ie a< 1 25321270;;,_}21 _qé} ~ 1)
5 + v U+ VP =0,
2a—1<1i.e.a<1, ¥

Now, two cases lead to the fact that functions of the
in order to make sense for all integrals appearifigoe (6) solve (5).
in the weak formulation. SincéU, P) satisfies the Case 1:
equation pointwise outside one line, in order to get B—p)(1—2a)=1-p
the integral identity, we must be able to perform the p—Na=1



and thup = 2 anda = 1. Therefore, foranyl € R, Theorem 4 Let (U, P) be of the form (6). Then the
pair is a singular solution to system (5) if:

A a)p=2a=1, A c R arbitrar
U="(ys—y2,91 — Y3, Y2 — Y1) Jp=2a=14¢ y

2 A
P = ATl U = J(y3_y2ay1_y3792_y1)
tY A
is a singular solution to the Leray system (3), which 29

is not a weak solution. It provides, via (2), a singular 3
solution to the Navier—Stokes equations. Note tHp € (1, 5), & = 57
the pressure is unbounded from below. The reader

may compare this with the fact that weak solutionsto 7, — B _ _ _
the Navier—Stokes equations are smooth provided the ) wﬁ (ys = 9251 = 93,92 = 1)
pressure is bounded from below, see [10]. f22-p) 1
Case 2: P(y) = BT I
(p—2)a+1=0
where
e, a = ﬁ. Now, the singular solution will be of )
the form 5l = (2 —p)r2
B 677 (w3 —2p))
Uly) = yals —v20 — 5,12 = 41) Vs p
Ply) = — B 1 Let us complete the result with several remarks.
22 — 1) ¢p2a—l We may also study singular solutions to the steady

power-law model. Formally it means that we do not
with o = Q—ip andj € R properly chosen in such aake the time derivative and thus we have system (5)

way that without the first two terms, i.e.
B-p)(1-20)~(1-p) U - VU - vdiv (|DU|7’_2DU) +VP =0
2 divU = 0.
_ 2 p—1|a|p—2
= <(p — o - 1)62‘)‘p IBIP==5. Thus we get that for anyl € R

Inserting the value oft we find that

A
Uy) = 1 (Y3 — Y2, 91 — Y3, Y2 — Y1)

p—1 p—1

— p—2 2 _
6202 (y(3 - 2p)> " Pl ypp=
is a singular solution (but not a weak one) to the
provided3 — 2p > 0,i.e.p < % Thus steady power-law model with any> 1.
Another possibility (and in some sense more natu-
(2 —p)r 1 ral) is to look for a solution in the form
U(y) == N 1 1 o o B
67D (V(3 _ 2p)> P=2 q)2p Vi(y) = <y3 y27 n ys, Y2 yl)
lyl* " fyle T fyle (8)
(y3 = y2,51 — Y3, 42 — Y1) P(y) = Q(|y)).
2(p—1)
(2—p) r2 2-p 1 Again, divVV = 0 outside the origin. Proceeding

Ply) = _Gﬁ <V(3 ) 2p)) 2 as above we get
(l1-a)B3=-p)-Q1=-p),, 1VyY
is for 1 < p < 2 a singular solution (but not a weak 2 s 2 |y«
U+VP=0.

solution) to system (5). P a+3—pa)y 2
We have proved +v [y P—2a+2




Unlike the previous situation, the convective terprovideda = % p = 15—1 Considering the steady
cannot be absorbed into the pressure and thus ease, the paifV, P) o f the form (10) is a singular
may get selfsimilar singular solutions only withouolution providedy = —3-

1.
the convective term. Thus, solving AcknowledgmentsThe work is a part of the research
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