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Steady compressible Navier–Stokes–Fourier system I
Ω ⊂ R3, bounded, smooth (C 2)
I Balance of mass

div(%u) = 0 (1)

%: Ω 7→ R . . . density of the fluid
u: Ω 7→ R3 . . . velocity field

I Balance of momentum

div(%u⊗ u)− div S +∇p = %f (2)

S . . . viscous part of the stress tensor (symmetric tensor)
f: Ω 7→ R3 . . . specific volume force (given)
p. . . pressure (scalar quantity)

I Balance of total energy

div
(
%Eu

)
+ div(q + pu) = %f · u + div

(
Su
)

(3)

E = 1
2 |u|

2 + e. . . specific total energy
e . . . specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)
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Steady compressible Navier–Stokes–Fourier system II

I Boundary conditions at ∂Ω: velocity

u · n = 0
(I− n⊗ n)(Sn + λu) = 0, (4)

λ ≥ 0

or

u = 0 (5)

I Boundary conditions at ∂Ω: temperature

q · n− L(ϑ−Θ0) = 0, (6)

L > 0, Θ0 > 0

I Total mass ∫
Ω

% dx = M > 0 (7)
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Thermodynamics I

We will work with basic quantities: density % and temperature ϑ

We assume: e = e(%, ϑ), p = p(%, ϑ)

Gibbs’ relation

1
ϑ

(
De(%, ϑ) + p(%, ϑ)D

(1
%

))
= Ds(%, ϑ) (8)

with s(%, ϑ) the specific entropy.

The specific entropy fulfills formally the entropy balance

div(%su) + div
( q
ϑ

)
= σ =

S : ∇u
ϑ

− q · ∇ϑ
ϑ2 (9)

Second law of thermodynamics

σ =
S : ∇u
ϑ

− q · ∇ϑ
ϑ2 ≥ 0 (10)
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Thermodynamics II

Another possibility is to work with internal energy balance (heat equation)

Balance of internal energy

div
(
%eu
)

+ div q + p div u = S : ∇u

The troublemaker is the nonlinear term on the rhs. Anyway, this equation plays
an important role in the construction of weak solutions.



Constitutive relations I

I Newtonian fluid

S = S(ϑ,∇u) = µ(ϑ)
[
∇u + (∇u)T − 2

3 div uI
]

+ ξ(ϑ) div uI (11)

µ(·): R+ → R+,
ξ(·): R+ → R+

0 : viscosity coefficients
I Fourier’s law

q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (12)

κ(·): R+ → R+. . . heat conductivity

I Pressure law
p = p(%, ϑ) = %γ + %ϑ
or = (γ − 1)%e(%, ϑ)

(13)

(we will not consider the latter, due to additional technicalities)

I Internal energy

e(%, ϑ) = cvϑ+
%γ−1

γ − 1
(14)
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Constitutive relations II

I Heat conductivity
κ(ϑ) ∼ (1 + ϑ)m (15)

m ∈ R+

I Viscosity coefficients

C1(1 + ϑ)α ≤ µ(ϑ) ≤ C2(1 + ϑ)α

0 ≤ ξ(ϑ) ≤ C2(1 + ϑ)α
(16)

µ(·) globally Lipschitz continuous, ξ(·) continuous,
0 ≤ α ≤ 1
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Weak solution I
We consider the Navier boundary conditions for the velocity and the Newton
boundary conditions for the temperature.

I Weak formulation of the continuity equation∫
Ω

%u · ∇ψ dx = 0 ∀ψ ∈ C 1(Ω) (17)

I Renormalized continuity equation
% extended by zero outside Ω, u extended outside Ω so that it remains in
the W 1,p space∫

Ω

b(%)u · ∇ψ dx +

∫
Ω

(
%b′(%)− b(%)

)
div uψ dx = 0 ∀ψ ∈ C 1

0 (R3) (18)

for all b ∈ C 1([0,∞)) with b′(z) = 0 for z ≥ K > 0.

I Weak formulation of the momentum equation∫
Ω

(
− %(u⊗ u) : ∇ϕϕϕ− p(%, ϑ) divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

+λ

∫
∂Ω

u ·ϕϕϕ dσ =

∫
Ω

%f ·ϕϕϕ dx ∀ϕϕϕ ∈ C 1
n (Ω;R3)

(19)
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Weak solution II

Weak formulation of the total energy balance∫
Ω

−
(1
2
%|u|2 + %e(%, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
%f · uψ + p(%, ϑ)u · ∇ψ

)
dx

−
∫

Ω

((
S(ϑ,∇u)u

)
· ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

(L(ϑ−Θ0) + λ|u|2)ψ dσ

∀ψ ∈ C 1(Ω)

(20)

Definition
The triple (%, u, ϑ) is called a renormalized weak solution to our system (1)–(7)
if % ≥ 0, ϑ > 0 a.e. in Ω, u · n = 0 on ∂Ω,

∫
Ω
% dx = M, (17), (18), (19) and

(20) hold true.
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Variational entropy solution I
I Weak formulation of the entropy inequality∫

Ω

(S(ϑ,∇u) : ∇u
ϑ

+ κ(ϑ)
|∇ϑ|2

ϑ2

)
ψ dx +

∫
∂Ω

L

ϑ
Θ0ψ dσ

≤
∫
∂Ω

Lψ dσ +

∫
Ω

(
κ(ϑ)

∇ϑ · ∇ψ
ϑ

− %s(%, ϑ)u · ∇ψ
)

dx

∀ nonnegative ψ ∈ C 1(Ω)

(21)

I Global total energy balance∫
∂Ω

(L(ϑ−Θ0) + λ|u|2) dσ =

∫
Ω

%f · u dx (22)

Definition
The triple (%, u, ϑ) is called a renormalized variational entropy solution to our
system (1)–(7), if % ≥ 0, ϑ > 0 a.e. in Ω, u · n = 0 on ∂Ω,

∫
Ω
% dx = M (17),

(18) and (19) are satisfied in the same sense as in Definition 1, and we have
the entropy inequality (21) together with the global total energy balance (22).

Both definitions are reasonable in the sense that any smooth weak or entropy
variational solution is actually a classical solution to (1)–(7) (weak-strong
compatibility).
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Approximate system I
We consider for simplicity Ω not axially symmetric and λ = 0. We have in this
case Korn’s inequalities of the form

‖u‖1,p ≤ C
(∫

Ω

1
ϑ
S(ϑ,∇u) : ∇u dx

) 1
2 ‖ϑ‖

1−α
2

3m ,

where p = 6m
3m+1−α < 2 if 0 ≤ α < 1, p = 2 if α = 1. We first consider the

easier case α = 1.

We can prove existence of a solution to the following system for arbitrary δ > 0
provided β, B � 1.
Continuity equation: ∫

Ω

%δuδ · ∇ψ dx = 0 (23)

for all ψ ∈W 1, 30β
25β−18 (Ω;R), as well as in the renormalized sense

Momentum equation:∫
Ω

(
− %δ(uδ ⊗ uδ) : ∇ϕϕϕ+ S(ϑδ,∇uδ) : ∇ϕϕϕ

−
(
p(%δ, ϑδ) + δ%βδ + δ%2

δ

)
divϕϕϕ

)
dx =

∫
Ω

%δf ·ϕϕϕ dx
(24)

for all ϕϕϕ ∈W
1, 52
n (Ω;R3)
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Approximate system II

Total energy balance:∫
Ω

((
−

1
2
%δ|uδ|2 − %δe(%δ, ϑδ)

)
uδ · ∇ψ +

(
κ(ϑδ) + δϑBδ + δϑ−1

δ

)
∇ϑδ · ∇ψ

)
dx

+

∫
∂Ω

(
L + δϑB−1

δ

)
(ϑδ −Θ0)ψ dσ =

∫
Ω
%δf · uδψ dx +

∫
Ω

((
− S(ϑδ,∇uδ)uδ

+
(
p(%δ, ϑδ) + δ%βδ + δ%2

δ

)
uδ
)
· ∇ψ + δϑ−1

δ ψ
)

dx + δ

∫
Ω

( 1
β − 1
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Approximate system II
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Estimates independent of δ I

Use in the entropy inequality and in the total energy balance test functions
ψ ≡ 1:∫

Ω
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(27)
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∫
Ω

ϑ−1
δ dx

(28)
Using suitable estimates of the Bogovskii-type we can get rid of the
δ-dependent terms and we conclude:

‖uδ‖1,2 + ‖∇ϑ
m
2
δ ‖2 + ‖∇ lnϑδ‖2 + ‖ϑ−1

δ ‖1,∂Ω

+δ
(
‖∇ϑ

B
2
δ ‖

2
2 + ‖∇ϑ−

1
2

δ ‖
2
2 + ‖ϑδ‖B3B + ‖ϑ−2

δ ‖1
)
≤ C

(29)

‖ϑδ‖3m + δ‖ϑδ‖BB,∂Ω ≤ C
(
1 + ‖uδ%δ‖1

)
(30)
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Estimates independent of δ II
To estimate the density, we may use the Bogovskii-type estimates, but this
leads to the bound γ > 3

2 . Therefore we apply another approach based on
"potential"estimates of the pressure.
I Define for 1 ≤ a ≤ γ, 0 < b < 1

A =

∫
Ω

(%aδ|uδ|2 + %bδ|uδ|2b+2) dx (31)

I Using the previous estimates we get, under some conditions on a and b

‖uδ‖1,2 ≤ C

‖ϑδ‖3m ≤ C
(
1 +A

a−b
2(ab+a−2b)

)∫
Ω

(
%sγδ + %

(s−1)γ
δ p(%δ, ϑδ) + (%δ|uδ|2)s + δ%

β+(s−1)γ
δ

)
dx

≤ C(1 +A
sa−b

ab+a−b ),

(32)

I We use as test function in the momentum equation

ϕi (x) ∼ (x − y)i
|x − y |A .
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Estimates independent of δ III

Lemma
Let y ∈ Ω, R0 <

1
3dist (y , ∂Ω). Then∫

BR0 (y)

(p(%δ, ϑδ)

|x − y |A +
%δ|uδ|2

|x − y |A
)

dx

≤ C
(
1 + ‖p(%δ, ϑδ)‖1 + ‖uδ‖1,2(1 + ‖ϑδ‖3m) + ‖%δ|uδ|2‖1

)
,

(33)

provided A < min
{

3m−2
2m , 1

}
.

Similar test functions can be used for y near and at the boundary. We obtain a
similar result. More complex for the Dirichlet boundary conditions, leads to
more restrictions.
I Let us consider

−∆h = %aδ + %bδ|uδ|2b −
1
|Ω|

∫
Ω

(%aδ + %bδ|uδ|2b)dx ,

∂h

∂n
|∂Ω = 0.

(34)

The unique strong solution can be written

h(y) =

∫
Ω

G(x , y)(%aδ + %bδ|uδ|2b) dx + l .o.t. (35)
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Estimates independent of δ IV
As G(x , y) ≤ C |x − y |−1, we get

‖h‖∞ ≤ C(1 +Aη), (36)

where η = η(a, b, γ,m)

I Next

A ∼
∫

Ω

−∆h|uδ|2 dx =

∫
Ω

∇h · ∇|uδ|2 dx ≤ 2‖∇uδ‖2B
1
2 , (37)

B =

∫
Ω

|∇h ⊗ uδ|2 dx . (38)

Employing once more integration by parts

B = −
∫

Ω

h∆h|uδ|2 dx −
∫

Ω

h∇h · ∇uδ · uδ dx

≤ ‖h‖∞(A+ ‖∇uδ‖2B
1
2 ),

i.e.,
B ≤ ‖h‖∞A+

1
2
‖∇uδ||22‖h‖2∞. (39)

Therefore
A ≤ C‖∇uδ‖22‖h‖∞. (40)
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Estimates independent of δ V

I Then,
A ≤ C(1 +Aη̃)

and we require η̃ < 1. This leads to a set of conditions.
I Analyzing these conditions, we finally have

Lemma
Let (%δ, uδ, ϑδ) solve our approximate problem. Let γ > 1 and m > 2

4γ−3 .
Then there exists s > 1 such that

supδ>0 ‖%δ‖γs < +∞
supδ>0 ‖%δuδ‖s < +∞
supδ>0 ‖%δ|uδ|2‖s < +∞
supδ>0 ‖uδ‖1,2 < +∞
supδ>0 ‖ϑδ‖3m < +∞
supδ>0 ‖ϑ

m/2
δ ‖1,2 < +∞

supδ>0 δ‖%
β+(s−1)γ
δ ‖1 < +∞.

(41)

Moreover, we can take s > 6
5 provided γ > 5

4 , and m > max{1, 2γ+10
17γ−15}.
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Limit passage δ → 0+ I
Continuity equation ∫

Ω

ρu · ∇ψ dx = 0 (42)

for all ψ ∈ C 1(Ω;R)
Momentum equation∫

Ω

(
− %(u⊗ u) : ∇ϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ− p(%, ϑ) divϕϕϕ

)
dx =

∫
Ω

%f ·ϕϕϕ dx

(43)
for all ϕϕϕ ∈ C 1

n (Ω;R3)
Entropy inequality∫

Ω

(
ϑ−1S(ϑ,∇u) : ∇u + κ(ϑ)

|∇ϑ|2

ϑ2

)
ψ dx

≤
∫

Ω

(
κ(ϑ)

∇ϑ : ∇ψ
ϑ

− %s(%, ϑ)u · ∇ψ
)

dx +

∫
∂Ω

L

ϑ
(ϑ−Θ0)ψ dσ,

(44)

for all ψ ∈ C 1(Ω;R), nonnegative
Global total energy balance∫

∂Ω

L(ϑ−Θ0) dσ =

∫
Ω

%f · u dx (45)

(total energy balance with test function ψ ≡ 1)
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Global total energy balance∫
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∫
Ω

%f · u dx (45)
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Limit passage δ → 0+ II
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for all ψ ∈ C 1(Ω;R). We can pass only in certain situations, when we have
better a priori estimates! We need s > 6

5 and m > 1.

We need to show the strong convergence of the density!

Main ingredients:
I Effective viscous flux identity
I Oscillation defect measure estimate
I Renormalized continuity equation
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Limit passage δ → 0+ III

Item 1: Effective viscous flux

Using as test function ζ(x)∇∆−1(1ΩTk(%δ)) with Tk(z) = kT ( z
k

), k ∈ N for

T (z) =


z for 0 ≤ z ≤ 1,
concave on (0,∞),

2 for z ≥ 3,

in the approximative balance of momentum, and ζ(x)∇∆−1(1ΩTk(%)) in its
limit version we can deduce

p(%, ϑ)Tk(%)−
(4
3
µ(ϑ) + ξ(ϑ)

)
Tk(%) div u

= p(%, ϑ) Tk(%)−
(4
3
µ(ϑ) + ξ(ϑ)

)
Tk(%) div u

(47)

a.e. in Ω.



Limit passage δ → 0+ IV

Item 2: Oscillation defect measure
We do not have L2-bound on the density and thus we do not know whether the
renormalized continuity equation for the limit holds. To show it, we introduce:

Oscillation defect measure

oscq[%δ → %](Q) = sup
k>1

(
lim sup
δ→0+

∫
Q

|Tk(%δ)− Tk(%)|q dx
)

(48)

We have
%δ ⇀ % in L1(Ω;R),
uδ ⇀ u in Lp(Ω;R3),

∇uδ ⇀ ∇u in Lp(Ω;R3×3)

and
oscq[%δ → %](Ω) <∞ (49)

for q > p′, then the limit density and velocity satisfy the renormalized
continuity equation.
Assuming m > max{ 2

3(γ−1)
, 2

3}, it can be verified that (49) holds true with
some 2 < q < γ + 1.
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Limit passage δ → 0+ V
We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx ≤ C

∫
Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx ,

(50)

lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C

∫
Ω

1
1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx .

(51)

Item 3: Application of the renormalization
As (%δ, uδ) and (%, u) verify the renormalized continuity equation, we have:∫

Ω

Tk(%) div u dx = 0

and ∫
Ω

Tk(%δ) div uδ dx = 0, i.e.
∫

Ω

Tk(%) div u dx = 0

To this aim, use

div(b(%)u) +
(
%b′(%)− b(%)

)
div u = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2 dz .



Limit passage δ → 0+ V
We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx ≤ C

∫
Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx ,

(50)

lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C

∫
Ω

1
1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx .

(51)

Item 3: Application of the renormalization
As (%δ, uδ) and (%, u) verify the renormalized continuity equation, we have:∫

Ω

Tk(%) div u dx = 0

and ∫
Ω

Tk(%δ) div uδ dx = 0, i.e.
∫

Ω

Tk(%) div u dx = 0

To this aim, use

div(b(%)u) +
(
%b′(%)− b(%)

)
div u = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2 dz .



Limit passage δ → 0+ V
We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx ≤ C

∫
Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx ,

(50)

lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C

∫
Ω

1
1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx .

(51)

Item 3: Application of the renormalization
As (%δ, uδ) and (%, u) verify the renormalized continuity equation, we have:∫

Ω

Tk(%) div u dx = 0

and ∫
Ω

Tk(%δ) div uδ dx = 0, i.e.
∫

Ω

Tk(%) div u dx = 0

To this aim, use

div(b(%)u) +
(
%b′(%)− b(%)

)
div u = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2 dz .



Limit passage δ → 0+ V
We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx ≤ C

∫
Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx ,

(50)

lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C

∫
Ω

1
1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx .

(51)

Item 3: Application of the renormalization
As (%δ, uδ) and (%, u) verify the renormalized continuity equation, we have:∫

Ω

Tk(%) div u dx = 0

and ∫
Ω

Tk(%δ) div uδ dx = 0, i.e.
∫

Ω

Tk(%) div u dx = 0

To this aim, use

div(b(%)u) +
(
%b′(%)− b(%)

)
div u = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2 dz .



Limit passage δ → 0+ V
We also get

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx ≤ C

∫
Ω

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx ,

(50)

lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx

≤ C

∫
Ω

1
1 + ϑ

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx .

(51)

Item 3: Application of the renormalization
As (%δ, uδ) and (%, u) verify the renormalized continuity equation, we have:∫

Ω

Tk(%) div u dx = 0

and ∫
Ω

Tk(%δ) div uδ dx = 0, i.e.
∫

Ω

Tk(%) div u dx = 0

To this aim, use

div(b(%)u) +
(
%b′(%)− b(%)

)
div u = 0 in D′(R3)

with
b(%) = %

∫ %

1

Tk(z)

z2 dz .



Limit passage δ → 0+ VI
Using the effective viscous flux identity we get that∫

Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx =

∫
Ω

(
Tk(%)− Tk(%)

)
div u dx .

(52)

As limk→∞ ‖Tk(%)− %‖1 = limk→∞ ‖Tk(%)− %‖1 = 0, the definition of the
oscillation defect measure together with (49)

lim
k→∞

∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx = 0.

Hence
lim

k→∞
lim sup
δ→0+

∫
Ω

1
1 + ϑ

|Tk(%δ)− Tk(%)|γ+1 dx = 0.

lim
k→∞

lim sup
δ→0+

∫
Ω

|Tk(%δ)− Tk(%)|q dx = 0

with some q > 2, the same as for the oscillation defect measure. Now, as

‖%δ − %‖1 ≤ ‖%δ − Tk(%δ)‖1 + ‖Tk(%δ)− Tk(%)‖1 + ‖Tk(%)− %‖1,

%δ → % in L1(Ω;R)

which implies
%δ → % in Lp(Ω;R) ∀1 ≤ p < sγ.
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Results I (Navier b.c.)

We proved:

Theorem
Let Ω ∈ C 2 be a bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥ K0 > 0 a.e. at
∂Ω, Θ0 ∈ L1(∂Ω). Let γ > 1, m > max

{ 2
3 ,

2
3(γ−1)

}
.

Let Ω be not axially symmetric. Then there exists a variational entropy solution
to our problem. Moreover, (%, u) is a renormalized solution to the continuity
equation.
Additionally, if m > 1 and γ > 5

4 , then the solution is a weak solution, i.e. also
the weak formulation of the total energy balance is fulfilled.
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Results II (Dirichlet b.c.)

Theorem
Let Ω ∈ C 2 be a bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥ K0 > 0 a.e. at
∂Ω, Θ0 ∈ L1(∂Ω). Let γ > 1, m > max

{ 2
3 ,

2
3(γ−1)

}
.

Then there exists a variational entropy solution to our problem. Moreover,
(%, u) is a renormalized solution to the continuity equation.
Additionally, if m > max

{ 2
3 ,

2γ
3(3γ−4)

}
and γ > 4

3 , then the solution is a weak
solution, i.e. also the weak formulation of the total energy balance is fulfilled.
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The case α = 0
The situation when the viscosity is independent of the temperature was studied
in

Piotr B. Mucha, M.P.: On the steady compressible Navier–Stokes–Fourier
system, Comm. Math. Phys. 288 (2009), 349–377.

Piotr B. Mucha, M.P.: Weak solutions to equations of steady compressible
heat conducting fluids, Math. Models Methods Appl. Sci. 20 (2010),
785–813.

I The a priori estimates for the velocity were obtained from momentum
equation, not from the entropy inequality, therefore it was possible have
the velocity gradient in L2(Ω)

I The entropy inequality was used to control the temperature,
Bogovskii-type estimates for the density

I In the first paper, combining the estimates with a special approximation,
we obtained for Navier boundary conditions for the velocity existence of
more regular solutions for γ > 3 and m > 3γ−1

3γ−7 :
I % ∈ L∞(Ω)
I u ∈W 1,q(Ω;R3

), 1 ≤ q <∞
I ϑ ∈W 1,q(Ω), 1 ≤ q <∞

I In the second paper, existence of weak solutions was established for γ > 7
3 ,

m > 3γ−1
3γ−7 and either Navier or Dirichlet boundary conditions for the

velocity.
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we obtained for Navier boundary conditions for the velocity existence of
more regular solutions for γ > 3 and m > 3γ−1

3γ−7 :
I % ∈ L∞(Ω)
I u ∈W 1,q(Ω;R3

), 1 ≤ q <∞
I ϑ ∈W 1,q(Ω), 1 ≤ q <∞

I In the second paper, existence of weak solutions was established for γ > 7
3 ,

m > 3γ−1
3γ−7 and either Navier or Dirichlet boundary conditions for the

velocity.



Changes for 0 < α < 1

Recall that

‖u‖1,p ≤ C
(∫

Ω

1
ϑ
S(ϑ,∇u) : ∇u dx

) 1
2 ‖ϑ‖

1−α
2

3m ,

i.e., for α < 1 we control only W 1,p-norm of the velocity, p < 2.

For γ > 3
2 it is possible to estimate the density by the Bogovskii-type estimates

and in dependence on γ and m it is possible to obtain either the weak or the
variational entropy solutions as was shown in

Ondřej Kreml, Šárka Nečasová, M.P.: On the steady equations for
compressible radiative gas, Z. Angew. Math. Phys. 64 (2013), 539–571.

Therein, the steady flow of compressible, heat-conducting, radiative gas was
studied.

For small γ and/or m it is possible to repeat the estimates of the pressure and
momentum from the previous part. However, it is not possible to get from
them the estimates of the velocity and density as above. Moreover, the
integration-by-parts argument does not work! We can replace it with certain
properties of Bessel kernels and Bessel potential spaces. The proof itself is
similar, but more technical and the results are more messy, we have three
parameters: α, γ and m. This is a recent project with O. Kreml.
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Chemically reacting mixtures I

div(%u) = 0,
div(%u⊗ u)− div S +∇π = %f,

div(%Eu) + div(πu) + divQ− div(Su) = %f · u,
div(%Yku) + div Fk = mkωk , k ∈ {1, . . . , n}

(53)

with the boundary conditions
u = 0, (54)

Fk · n = 0, (55)

−Q · n + L(ϑ−Θ0) = 0, (56)

and the given total mass ∫
Ω

% dx = M > 0. (57)

Indeed,
∑n

k=1 Fk = 0,
∑n

k=1 mkωk = 0 and we must construct solutions such
that

∑N
k=1 Yk = 1.
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Chemically reacting mixtures II

Based on similar ideas presented for the N-S-F system the existence of weak
and variational entropy solutions can be established in the case of the same
molar masses (closely connected with information from the entropy inequality
which plays a central role here).

V. Giovangigli, M.P., E. Zatorska: On the steady flow of reactive gaseous
mixture, Analysis (Berlin) 35 (2015), no. 4, 319–341.

T. Piasecki, M.P.: Weak and variational entropy solutions to the system
describing steady flow of a compressible reactive mixture, Nonlinear Anal.
159 (2017), 365–392.

T. Piasecki, M.P.: On steady solutions to a model of chemically reacting
heat conducting compressible mixture with slip boundary conditions.
Mathematical analysis in fluid mechanics–selected recent results, 223–242,
Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018.

The case of different molar masses for a slightly different thermodynamic
concept is ongoing project with M. Bulíček, A. Jüngel and N. Zamponi.
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Time periodic solutions I

Time periodic solutions to the compressible Navier–Stokes–Fourier system were
constructed in

E. Feireisl, Eduard, Piotr B. Mucha, Antonín Novotný, MP: Time-periodic
solutions to the full Navier–Stokes–Fourier system, Arch. Ration. Mech.
Anal. 204 (2012), 745–786.

I The proof combines the evolutionary with estimates similar to the steady
problem

I Due to the lack of time-compactness of the temperature the variational
entropy formulation must be considered

I The difficult part is also the construction of the approximate solutions

The result was extended in

Š. Axmann, M.P.: Time-periodic solutions to the full
Navier–Stokes–Fourier system with radiation on the boundary, J. Math.
Anal. Appl. 428 (2015), 414–444.
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Homogenization for the steady NSF problem I

Let ε > 0 be a small number, measures the mutual distance between the holes

Ωε = Ω \
N(ε)⋃
n=1

T n,ε, (58)

where Ω ⊂ R3 is a bounded C 2-domain and {Tn,ε}N(ε)
n=1 are C 2-domains of the

diameter comparable to εα for some α ≥ 1 such that there exist δ0, δ1 and δ2
positive for which

Tn,ε = xε,n+εαT 0
n,1 ⊂ Bδ0εα(xn,ε) ⊂ B2δ0εα(xn,ε) ⊂ Bδ1ε(xn,ε) ⊂ Bδ2ε(xn,ε) ⊂ Ω.

(59)
The balls Bδ2ε(xn,ε) centred at xε,n with diameter δ2ε are pairwise disjoint and
we assume that the domains {T 0

n,1}
N(ε)
n=1 are uniformly C 2-domains.



Homogenization for the steady NSF problem II

Theorem
Let f ∈ L∞(Ω;R3), Mε > 0 with supεMε = M1 <∞, infεMε = M0 > 0,
L > 0 and let ϑ0 ≥ T0 > 0 in Ω be defined so that it has finite Lq-norm over
arbitrary smooth two-dimensional surface with finite surface area contained in
Ω for some q > 1. Let (%ε, uε, ϑε) denote the corresponding renormalized weak
entropy solution to our problem for fixed ε > 0, extended suitably to the whole
Ω, for which in particular the extensions preserve their values in Ωε. Let α > 3,
m > 2 and γ > 2 fulfil α > max{ 2γ−3

γ−2 ,
3m−2
m−2 }. Then, for ε ∈ (0, 1] the

solutions are uniformly bounded

‖%ε‖Lγ+Θ(Ω) + ‖uε‖W 1,2
0 (Ω)

+ ‖ϑε‖W 1,2∩L3m(Ω) ≤ C , (60)

where Θ := min
{
2γ − 3, γ 3m−2

3m+2

}
and C is independent of ε. Moreover, the

corresponding weak limit of the sequence for ε→ 0+ is a renormalized weak
solution to our problem in Ω, i.e., it fulfils the continuity equation in the weak
and renormalized sense, the mass balance and the total energy balance in the
weak sense in Ω, and % ≥ 0 and ϑ > 0 a.e. in Ω.

The details are contained in

Y. Lu, M.P.: Homogenization of stationary Navier–Stokes–Fourier system
in domains with tiny holes, accepted to J. Differ. Equations (2021).
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