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Preface

Linear regression is a basic statistical modelling technique. Its principles, related mathematical the-
ory and its applications are covered by a variety of textbooks or monographs. This text follows quite
closely the course “NMSA407 Linear Regression” at Faculty of Mathematics and Physics (MatFyz)
of Charles University which makes a part of the curriculum of the Master’s programs “Probability,
Mathematical Statistics and Econometrics” and “Financial and Insurance Mathematics”. In current
form, this course is being taught since fall 2013 when also development of this text started. During
several decades before, a similar course, entitled just Regression was taught at MatFyz by Karel
Zvára. Linear regression occupied indeed majority of the Regression course and complementary
textbook Regrese (Zvára, 2008) also served as a primary source and inspiration for several chapters
of this text, especially those devoted to a classical least squares theory in a (normal) linear model.

As complementary literature to this course, the following textbooks and monographs can be rec-
ommended, in English: Khuri (2010); Seber and Lee (2003); Draper and Smith (1998); Shao (2003);
Weisberg (2005), in Czech: Zvára (2008); Anděl (2007); Cipra (2008); Zvára (1989). For practical
analyzes, the R software (R Core Team, 2020) is perhaps the best choice. R is also used during the
exercise classes to the Linear Regression course.

ix



Notation and general
conventions

General conventions

• Vectors are understood as column vectors (matrices with one column).

• Statements concerning equalities between two random quantities are understood as equalities
almost surely even if “almost surely” is not explicitely stated.

• Measurability is understood with respect to the Borel σ-algebra on the Euclidean space.

General notation

• Y ∼
(
µ, σ2

)
means that the random variable Y follows a distribution satisfying

E
(
Y
)

= µ, var
(
Y
)

= σ2.

• Y ∼
(
µ, Σ

)
means that the random vector Y follows a distribution satisfying

E
(
Y
)

= µ, var
(
Y
)

= Σ.

Notation related to the linear model

• Generic response random variable, covariate random vector (length p), regressor random
vector (length k, elements indexed from 0):

Y, Z =
(
Z1, . . . , Zp

)>
, X =

(
X0, . . . , Xk−1

)>
.

• Response vector (length n): Y =
(
Y1, . . . , Yn

)>
.

• Covariates (p covariates):

– Zi =
(
Zi,1, . . . , Zi,p

)>
(i = 1, . . . , n):

vector of covariates for observation i;

– Zj =
(
Z1,j , . . . , Zn,j

)>
(j = 1, . . . , p):

values of the jth covariate for n observations.

x
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• Covariate matrix (dimension n× p):

Z =


Z1,1 . . . Z1,p

...
...

...

Zn,1 . . . Zn,p

 =


Z>1
...

Z>n

 =
(
Z1, . . . , Zp

)
.

• Regressors (k regressors indexed from 0):

– Xi =
(
Xi,0, . . . , Xi,k−1

)>
(i = 1, . . . , n):

vector of regressors for observation i;

– Xj =
(
X1,j , . . . , Xn,j

)>
(j = 0, . . . , k − 1):

values of the jth regressor for n observations.

• Model matrix (dimension n× k):

X =


X1,0 . . . X1,k−1
...

...
...

Xn,0 . . . Xn,k−1

 =


X>1
...

X>n

 =
(
X0, . . . , Xk−1).

• Rank of the model: r = rank(X) (≤ k < n) (almost surely).

• Error terms: ε =
(
ε1, . . . , εn

)>
=
(
Y1 −X>1 β, . . . , Yn −X>nβ

)>
= Y − Xβ.

• Regression space: M
(
X
)
(linear span of columns of X)

• vector dimension r (almost surely);

• orthonormal basis Qn×r =
(
q1, . . . , qr

)
.

• Residual space: M
(
X
)⊥

• vector dimension n− r (almost surely);

• orthonormal basis Nn×r =
(
n1, . . . , nn−r

)
.

• Hat matrix: H = QQ> = X
(
X>X

)−X>.
• Residual projection matrix: M = NN> = In −H.

• Fitted values: Ŷ =
(
Ŷ1, . . . , Ŷn

)>
= HY .

• Residuals: U =
(
U1, . . . , Un

)>
= MY = Y − Ŷ .

• Residual sum of squares: SSe =
∥∥U∥∥2 =

∥∥Y − Ŷ ∥∥2.
• Residual degrees of freedom: νe = n− r.

• Residual mean square: MSe = SSe/(n− r).

• Sum of squares: SS : Rk −→ R, SS(β) =
∥∥Y − Xβ

∥∥2, β ∈ Rk .



Chapter 1
Linear Model

1.1 Regression analysis

Linear regression1 is a basic method of so called regression analysis2 which covers a variety of
methods to model on how distribution of one variable depends on one or more other variables.
A principal tool of linear regression is then so called linear model3 which will be the main topic of
this lecture.

Illustrations
Houses1987 (n = 546)
price ∼ ground
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1.1. REGRESSION ANALYSIS 2

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ weight
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1.1. REGRESSION ANALYSIS 4

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ weight, drive
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1.1. REGRESSION ANALYSIS 5

1.1.1 Data

Basic methods of regression analysis assume that data can be represented by n independent and

identically distributed (i.i.d.) random vectors
(
Yi, Z

>
i

)>
, i = 1, . . . , n, being distributed as a generic

random vector
(
Y, Z>

)>
. That is,(

Yi

Zi

)
i.i.d.∼

(
Y

Z

)
, i = 1, . . . , n,

where Z =
(
Z1, . . . , Zp

)>
. This will also be a basic assumption used for majority of the lecture.

Terminology (Response, covariates).

• Y is called response4 or dependent variable5.

• The components of Z are called covariates6, explanatory variables7, predictors8, or independent
variables9.

• The sample space10 of the covariates will be denoted as Z . That is, Z ⊆ Rp, and among the
other things, P(Z ∈ Z) = 1.

Notation and terminology (Response vector, covariate matrix).
Further, let

Y =


Y1
...

Yn

 , Z =


Z1,1 . . . Z1,p

...
...

...

Zn,1 . . . Zn,p

 =


Z>1
...

Z>n

 =
(
Z1, . . . , Zp

)
.

• Vector Y is called the response vector 11.

• The n× p matrix Z is called the covariate matrix12.

• The vector Zi =
(
Zi,1, . . . , Zi,p

)>
(i = 1, . . . , n) represents the covariate values for the ith

observation.

• The vector Zj =
(
Z1,j , . . . , Zn,j

)>
(j = 1, . . . , p) represent the values of the jth covariate

for the n observations in a sample.

Notation. Letter Y (or y) will always denote a response related quantity. Letters Z (or z) and
later also X (or x) will always denote a quantity related to the covariates.

This lecture:
• Response Y is continuous.

• Interest in modelling dependence of only the expected value (the mean) of Y on the covariates.

• Covariates can be of any type (numeric, categorical).

4 odezva 5 závisle proměnná 6 Nepřekládá se. Výraz „kovariáty“ nepoužívat! 7 vysvětlující proměnné 8 prediktory
9 nezávisle proměnné 10 výběrový prostor 11 vektor odezvy 12 matice vysvětlujících proměnných
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1.1.2 Probabilistic model for the data

Any statistical analysis is based on specifying a stochastic mechanism which is assumed to generate

the data. In our situation, with i.i.d. data
(
Yi, Z

>
i

)>
, i = 1, . . . , n, the data generating mechanism

corresponds to a joint distribution of a generic random vector
(
Y, Z>

)>
which can be given by

a joint density
fY,Z(y, z), y ∈ R, z ∈ Z

(with respect to some σ-finite product measure λY × λZ ). For the purpose of this lecture, λY will
always be a Lebesgue measure on

(
R, B

)
.

It is known from basic lectures on probability that any joint density can be decomposed into
a product of a conditional and a marginal density as

fY,Z(y, z) = fY |Z
(
y
∣∣ z) fZ(z), y ∈ R, z ∈ Z.

With the regression analysis, and with the linear regression in particular, the interest lies in re-
vealing certain features of the conditional distribution Y

∣∣Z (given by the density fY |Z ) while
considering the marginal distribution of the covariates Z (given by the density fZ ) as nuisance.
It will be shown during the lecture that a valid statistical inference is possible for suitable char-
acteristics of the conditional distribution of the response given the covariates while leaving the
covariates distribution fZ practically unspecified. Moreover, to infer on certain characteristics of
the conditional distribution Y

∣∣Z , e.g., on the conditional mean E
(
Y
∣∣Z), even the density fY |Z

might be left practically unspecified for many tasks.

1.1.3 Regressors

In the reminder of the lecture, we will mainly attempt to model the conditional mean E
(
Y
∣∣Z).

When doing so, transformations of the original covariates are usually considered. The response
(conditional) expectation is then assumed to be a function of the transformed covariates.

In the following, let t : Z −→ X ⊆ Rk be a measurable function, t =
(
t0, . . . , tk−1

)>
(for

reasons which become clear in a while, we start indexing of the elements of this transformation by
zero). Further, let

X =
(
X0, . . . , Xk−1

)>
=
(
t0(Z), . . . , tk−1(Z)

)>
= t(Z),

Xi =
(
Xi,0, . . . , Xi,k−1

)>
=
(
t0(Zi), . . . , tk−1(Zi)

)>
= t(Zi), i = 1, . . . , n.

Subsequently, we will assume that

E
(
Y
∣∣Z) = m

(
t(Z)

)
= m(X)

for some measurable function m : X −→ R.

Terminology (Regressors, regression function).

• The vectors X , Xi, i = 1, . . . , n, are called the regressor vectors13 for a particular unit in
a sample.

• Function m which relates the response expectation to the regressors is called the regression
function14.

• The vector Xj :=
(
X1,j , . . . , Xn,j

)>
(j = 0, . . . , k − 1) is called the jth regressor vector.15

13 vektory regresorů 14 regresní funkce 15 vektor jtého regresoru
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All theoretical considerations in this lecture will assume that the transformation t which relates the
regressor vector X to the covariate vector Z is given and known. If the original data

(
Yi, Z

>
i

)>
,

i = 1, . . . , n are i.i.d. having the distribution of the generic response-covariate vector
(
Y, Z>

)>
,

the (transformed) data
(
Yi, X

>
i

)>
, i = 1, . . . , n are again i.i.d., now having the distribution of the

generic response-regressor vector
(
Y, X>

)>
which is obtained from the distribution of

(
Y, Z>

)>
by the transformation theorem. The joint density of

(
Y, X>

)>
can again be decomposed into

a product of the conditional and the marginal density as

fY,X(y, x) = fY |X
(
y
∣∣x) fX(x), y ∈ R, x ∈ X . (1.1)

Furthermore, it will overall be assumed that for almost all z ∈ Z

E
(
Y
∣∣Z = z

)
= E

(
Y
∣∣X = t(z)

)
. (1.2)

Consequently, to model the conditional expectation E
(
Y
∣∣Z), it is su�cient to model the con-

ditional expectation E
(
Y
∣∣X) using the data

(
Yi, X

>
i

)>
, i = 1, . . . , n and then to use (1.2) to

get E
(
Y
∣∣Z). In the reminder of the lecture, if it is not necessary to mention the transforma-

tion t which relates the original covariates to the regressors, we will say that the data are directly
composed of the response and the regressors.
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1.2 Linear model: Basics

1.2.1 Linear model with i.i.d. data

Definition 1.1 Linear model with i.i.d. data.
The data

(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n, satisfy a linear model if

E
(
Y
∣∣X) = X>β, var

(
Y
∣∣X) = σ2,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.

Terminology (Regression coefficients, residual variance and standard deviation).

• β =
(
β0, . . . , βk−1

)>
is called the vector of regression coe�cients16 or regression parameters.17

• σ2 is called the residual variance.18

• σ =
√
σ2 is called the residual standard deviation.19

The linear model as specified by Definition 1.1 deals with specifying only the first two moments of
the conditional distribution Y

∣∣X . For the rest, both the density fY |X and the density fX from
(1.1) can be arbitrary. The regression function of the linear model is

m(x) = x>β = β0 x0 + · · ·+ βk−1 xk−1, x =
(
x0, . . . , xk−1

)> ∈ X .
The term “linear” points to the fact that the regression function is linear with respect to the
regression coe�cients vector β. Note that the regressors X might be (and often are) linked to the
original covariates Z (the transformation t) in an arbitrary, i.e., also in a non-linear way.

Notation and terminology (Linear model with intercept).
Often, the regressor X0 is constantly equal to one (t0(z) = 1 for any z ∈ Z ). That is, the regressor
vector X is X =

(
1, X1, . . . , Xk−1

)>
and the regression function becomes

m(x) = x>β = β0 + β1 x1 + · · ·+ βk−1 xk−1, x =
(
1, x1, . . . , xk−1

)> ∈ X .
The related linear model is then called the linear model with intercept20. The regression coe�cient
β0 is called the intercept term21 of the model.

1.2.2 Interpretation of regression coefficients

The regression parameters express influence of the regressors on the response expectation. Let for
a chosen j ∈

{
0, 1, . . . , k − 1

}
x =

(
x0, . . . , xj . . . , xk−1

)> ∈ X , and xj(+1) :=
(
x0, . . . , xj + 1 . . . , xk−1

)> ∈ X .
16 regresní koeficienty 17 regresní parametry 18 reziduální rozptyl 19 reziduální směrodatná odchylka 20 lineární
model s absolutním členem 21 absolutní člen
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We then have

E
(
Y
∣∣X = xj(+1)

)
− E

(
Y
∣∣X = x

)
= E

(
Y
∣∣X0 = x0, . . . , Xj = xj + 1, . . . , Xk−1 = xk−1

)
− E

(
Y
∣∣X0 = x0, . . . , Xj = xj , . . . , Xk−1 = xk−1

)
= β0 x0 + · · ·+ βj (xj + 1) + · · ·+ βk−1 xk−1

−
(
β0 x0 + · · ·+ βj xj + · · ·+ βk−1 xk−1

)
= βj .

That is, the regression coe�cient βj expresses a change of the response expectation corresponding
to a unity change of the jth regressor while keeping the remaining regressors unchanged. Further,
let for a fixed δ ∈ R

xj(+δ) :=
(
x0, . . . , xj + δ . . . , xk−1

)> ∈ X ,
we then have

E
(
Y
∣∣X = xj(+δ)

)
− E

(
Y
∣∣X = x

)
= E

(
Y
∣∣X0 = x0, . . . , Xj = xj + δ, . . . ,Xk−1 = xk−1

)
− E

(
Y
∣∣X0 = x0, . . . , Xj = xj , . . . , Xk−1 = xk−1

)
= βj δ.

That is, if for a particular dataset a linear model is assumed, we assume, among the other things
the following:

(i) The change of the response expectation corresponding to a constant change δ of the jth
regressor does not depend on the value xj of that regressor which is changed by δ.

(ii) The change of the response expectation corresponding to a constant change δ of the jth
regressor does not depend on the values of the remaining regressors.

Terminology (Effect of the regressor).
The regression coe�cient βj is also called the e�ect of the jth regressor.

Linear model with intercept

In a model with intercept where X0 is almost surely equal to one, it does not make sense to
consider a change of this regressor by any fixed value. The intercept β0 has then the following
interpretation. If (

x0, x1, . . . , xk−1
)>

=
(
1, 0, . . . , 0

)> ∈ X ,
that is, if the non-intercept regressors may all attain zero values, we have

β0 = E
(
Y
∣∣X1 = 0, . . . , Xk−1 = 0

)
.
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1.2.3 Linear model with general data

Notation and terminology (Model matrix).
Let

X =


X1,0 . . . X1,k−1
...

...
...

Xn,0 . . . Xn,k−1

 =


X>1
...

X>n

 =
(
X0, . . . , Xk−1).

The n× k matrix X is called the model matrix22 or the regression matrix23.

In the linear model with intercept, the model matrix becomes

X =


1 X1,1 . . . X1,k−1
...

...
...

1 Xn,1 . . . Xn,k−1

 =
(
1n, X

1, . . . , Xk−1).
Its first column, the vector 1n, is called the intercept column of the model matrix.

The response random vector Y =
(
Y1, . . . , Yn

)>
, as well as the model matrix X are random

quantities (in case of the model with intercept, the elements of the first column of the model
matrix can be viewed as random variables with a Dirac distribution concentrated at the value of
one). The joint distribution of the “long” random vector

(
Y1, . . . , Yn, X

>
1 , . . . , X

>
n

)> ≡ (Y , X)
has in general a density fY ,X (with respect to some σ-finite product measure λY ×λX) which can
again be decomposed into a product of a conditional and marginal density as

fY ,X(y, x) = fY |X
(
y
∣∣x) fX(x). (1.3)

In case of i.i.d. data, this can be further written as

fY ,X(y, x) =

{ n∏
i=1

fY |X
(
yi
∣∣xi)}︸ ︷︷ ︸

fY |X
(
y
∣∣x)

{ n∏
i=1

fX(xi)

}
︸ ︷︷ ︸

fX(x)

. (1.4)

The linear model, if assumed for the i.i.d. data, implies statements concerning the (vector) expec-
tation and the covariance matrix of the conditional distribution of the response random vector Y
given the model matrix X, i.e., concerning the properties of the first part of the product (1.3).

Lemma 1.1 Conditional mean and covariance matrix of the response vector.

Let the data
(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n satisfy a linear model. Then

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 In. (1.5)

22 matice modelu 23 regresní matice
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Proof. Trivial consequence of the definition of the linear model with the i.i.d. data.
k

Property (1.5) is implied from assuming
(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n, where E

(
Y
∣∣X) =

X>β, var
(
Y
∣∣X) = σ2. To derive many results shown later in this lecture, it is su�cient to as-

sume that the full data (≡
(
Y , X

)
) satisfy just the weaker condition (1.5) without requesting that

the random vectors
(
Yi, X

>
i

)>
, i = 1, . . . , n, which represent the individual observations, are

independent or identically distributed. To allow to distinguish when it is necessary to assume the
i.i.d. situation and when it is su�cient to assume just the weaker condition (1.5), we shall introduce
the following definition.

Definition 1.2 Linear model with general data.
The data

(
Y , X

)
, satisfy a linear model if

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 In,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.

Notation.

(i) The linear model with i.i.d. data, that is, the assumption
(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
,

i = 1, . . . , n, E
(
Y
∣∣X) = X>β, var

(
Y
∣∣X) = σ2 will be briefly stated as(

Yi, X
>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n, Y

∣∣X ∼ (X>β, σ2).
(ii) The linear model with general data, that is, the assumption E

(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) =

σ2 In will be indicated by
Y
∣∣X ∼ (Xβ, σ2In).

Note. If Y
∣∣X ∼ (Xβ, σ2In) is assumed, we require that in (1.3)

• neither fY |X is of a product type;

• nor fX is of a product type

as indicated in (1.4).

1.2.4 Rank of the model

The k-dimensional regressor vectors X1, . . . ,Xn (the n×k model matrix X) are in general jointly
generated by some (n · k)-dimensional joint distribution with a density fX(x1, . . . ,xn) = fX(x)
(with respect to some σ-finite measure λX). In the whole lecture, we will assume n > k. Next to
it, we will additionally assume in the whole lecture that for a fixed r ≤ k,

P
(
rank(X) = r

)
= 1. (1.6)
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That is, we will assume that the (column) rank of the model matrix is fixed rather than being
random. It should gradually become clear throughout the lecture that this assumption is not really
restrictive for most of the practical applications of a linear model.

Convention. In the reminder of the lecture, we will only write rank
(
X
)

= r which will mean
that P

(
rank(X) = r

)
= 1 if randomness of the covariates should be taken into account.

Definition 1.3 Full-rank linear model.
A full-rank linear model24 is such a linear model where r = k.

Note. In a full-rank linear model, columns of the model matrix X are linearly independent vectors
in Rn (almost surely).

1.2.5 Error terms

Notation and terminology (Error terms).
The random variables

εi := Yi −X>i β, i = 1, . . . , n,

will be called the error terms (random errors, disturbances)25 of the model. The random vector

ε =
(
ε1, . . . , εn

)>
= Y − Xβ

will be called the error term vector.

Lemma 1.2 Moments of the error terms.
Let Y

∣∣X ∼ (Xβ, σ2 In
)
. Then

E
(
ε
∣∣X) = 0n, E

(
ε
)

= 0n,

var
(
ε
∣∣X) = σ2 In, var

(
ε
)

= σ2 In.

Proof. E
(
ε
∣∣X) = E

(
Y − Xβ

∣∣X) = E
(
Y
∣∣X)− Xβ = Xβ − Xβ = 0n.

var
(
ε
∣∣X) = var

(
Y − Xβ

∣∣X) = var
(
Y
∣∣X) = σ2 In.

E
(
ε
)

= E
{
E
(
ε
∣∣X)} = E

(
0n
)

= 0n.

var
(
ε
)

= E
{
var
(
ε
∣∣X)}+ var

{
E
(
ε
∣∣X)} = E

(
σ2 In

)
+ var

(
0n
)

= σ2 In.

k

24 lineární model o plné hodnosti 25 chybové členy, náhodné chyby
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Note. If
(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n, then indeed

εi
i.i.d.∼ ε, i = 1, . . . , n, ε ∼

(
0, σ2

)
.

1.2.6 Distributional assumptions

To derive some of the results, it is necessary not only to assume a certain form of the conditional
expectations of the response given the regressors but to specify more closely the whole conditional

distribution of the response given the regressors. For example, with i.i.d. data
(
Yi, X

>
i

)> i.i.d.∼(
Y, X>

)>
, i = 1, . . . , n, many results can be derived (see Chapter 6) if it is assumed

Y
∣∣X ∼ N (X>β, σ2).

1.2.7 Fixed or random covariates

In certain application areas (e.g., designed experiments), the covariates (and regressors) can all (or
some of them) be fixed rather than random variables. This means that the covariate values are
determined/set by the analyst rather than being observed on (randomly selected) subjects. For
majority of the theory presented throughout this course, it does not really matter whether the
covariates are considered as random or as fixed quantities. The proofs (majority that appear in this
lecture) very often work with conditional statements given the covariate/regressor values and hence
proceed in exactly the same way in both situations. Nevertheless, especially when dealing with
asymptotic properties of the estimators used in the context of a linear model (see Chapter 16), care
must be taken on whether the covariates are considered as random or as fixed.

1.2.8 Limitations of a linear model

“Essentially, all models are wrong, but some are useful. The practical question is how
wrong do they have to be to not be useful.”

George E. P. Box (1919 – 2013)

Linear model is indeed only one possibility (out of infinitely many) on how to model dependence of
the response on the covariates. The linear model as defined by Definition 1.1 is (possibly seriously)
wrong if, for example,

• The expected value E
(
Y
∣∣X = x

)
, x ∈ X , cannot be expressed as a linear function of x.

⇒ Incorrect regression function.

• The conditional variance var
(
Y
∣∣X = x

)
, x ∈ X , is not constant. It may depend on x as

well, it may depend on other factors.
⇒ Heteroscedasticity.

• Response random variables are not conditionally uncorrelated/independent (the error terms
are not uncorrelated/independent). This is often the case if response is measured repeatedly
(e.g., over time) on n subjects included in the study.
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Illustrations
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Illustrations
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Illustrations
Hosi0 (n = 4838)
bweight ∼ blength
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Additionally, the linear model deals with modelling of only the first two (conditional) moments of
the response. In many application areas, other characteristics of the conditional distribution Y

∣∣X
are of (primary) interest.



Chapter 2
Least Squares Estimation

This chapter is not complete in the notes.

In this chapter, we shall consider a set of n random vectors
(
Yi, X

>
i

)>
,Xi =

(
Xi,0, . . . , Xi,k−1

)>
,

i = 1, . . . , n, which are not necessarily i.i.d. but satisfy a linear model. That is,

Y
∣∣X ∼ (Xβ, σ2In), rank

(
Xn×k

)
= r ≤ k < n, (2.1)

where Y =
(
Y1, . . . , Yn

)>
, X is a matrix with vectors X>1 , . . . ,X

>
n in its rows and β =

(
β0, . . . ,

βk−1
)
∈ Rk and σ2 > 0 are unknown parameters. In this chapter, we introduce a method of least

squares1 to estimate the unknown parameters of the linear model (2.1). All results in this chapter will
be derived from the assumption (2.1), i.e., without assuming i.i.d. data or even normally distributed
response. Certain results will be derived while additionally assuming the full-rank model (r = k).

1 metoda nejmenších čtverců

17
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2.1 Sum of squares, least squares estimator and normal
equations

Definition 2.1 Sum of squares.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In). The function SS : Rk −→ R given as follows

SS(β) =
n∑
i=1

(Yi −X>i β)2 =
∥∥Y − Xβ

∥∥2 =
(
Y − Xβ

)>(
Y − Xβ

)
, β ∈ Rk

will be called the sum of squares2 of the model.

Lemma 2.1 Least squares estimator.
Assume a full-rank linear model Y

∣∣X ∼ (
Xβ, σ2In

)
, rank(Xn×k) = k. There exist a unique

minimizer to SS(β) given as

β̂ =
(
X>X

)−1X>Y . (2.2)

Definition 2.2 Least squares estimator, normal equations.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = k. The quantity β̂ =
(
X>X

)−1X>Y
will be called the least squares estimator (LSE)3 of the vector of regression coe�cients β. The linear
system X>Xβ = X>Y will be called the system of normal equations.4

Lemma 2.2 Moments of the least squares estimator.
Let Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = k. Then

E
(
β̂
∣∣X) = β, E

(
β̂
)

= β,

var
(
β̂
∣∣X) = σ2

(
X>X

)−1
.

2 součet čtverců 3 odhad metodou nejmenších čtverců (MNČ) 4 normální rovnice
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2.2 Fitted values, residuals, projections

Definition 2.3 Regression and residual space of a linear model.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k. The regression space5 of the
model is a vector spaceM

(
X
)
. The residual space6 of the model is the orthogonal complement of the

regression space, i.e., a vector spaceM
(
X
)⊥
.

Definition 2.4 Fitted values, residuals.
Consider a full-rank linear model Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = k. The vector

Ŷ := Xβ̂ = X
(
X>X

)−1X>Y
will be called the vector of fitted values7 of the model. The vector

U := Y − Ŷ

will be called the vector of residuals8 of the model.

Notation. H := X
(
X>X

)−1X>, M := In −H.

Lemma 2.3 Algebraic properties of fitted values, residuals and related projection
matrices.

(i) Ŷ = HY and U = MY are projections of Y intoM
(
X
)
andM

(
X
)⊥
, respectively;

(ii) Ŷ ⊥ U ;

(iii) H and M are projection matrices intoM
(
X
)
andM

(
X
)⊥
, respectively;

(iv) H> = H, M> = M;

(v) HH = H, MM = M;

(vi) HX = X, MX = 0n×k .

Terminology (Hat matrix, residual projection matrix).
For a linear model of (not necessarily full-rank) Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k.

5 regresní prostor 6 reziduální prostor 7 vyrovnané hodnoty 8 rezidua



2.2. FITTED VALUES, RESIDUALS, PROJECTIONS 20

• H = Q Q> = X
(
X>X

)−X>: hat matrix9,
where Qn×r =

(
q1, . . . , qr

)
is an orthonormal vector basis of the regression spaceM

(
X
)
;

• M = N N> = In − X
(
X>X

)−X>: residual projection matrix10,
where Nn×r =

(
n1, . . . , nn−r

)
is an orthonormal vector basis of the residual spaceM

(
X
)⊥

.

9 regresní projekční matice, lze však užívat též výrazu „hat matice“ 10 reziduální projekční matice
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2.3 Gauss-Markov theorem

Theorem 2.4 Gauss–Markov.
Assume a linear model Y

∣∣X ∼ (
Xβ, σ2In

)
, rank(Xn×k) = r ≤ k. Then the vector of fitted

values Ŷ is, conditionally given X, the best linear unbiased estimator (BLUE)11 of a vector parameter
µ = E

(
Y
∣∣X). Further,

var
(
Ŷ
∣∣X) = σ2H = σ2X

(
X>X

)−X>.
Proof.

Linearity means that Ŷ is a linear function of the response vector Y which is clear from the
expression Ŷ = HY .

Unbiasedness. Let us calculate E
(
Ŷ
∣∣X).

E
(
Ŷ
∣∣X) = E

(
HY

∣∣X) = HE
(
Y
∣∣X) = HXβ = Xβ = µ.

The pre-last equality holds due to the fact that HX is a projection of each column of X into
M
(
X
)
which is generated by those columns. That is HX = X.

Optimality. Let Ỹ = a+ BY be some other linear unbiased estimator of µ = Xβ.
• That is,

∀β ∈ Rk E
(
Ỹ
∣∣X) = Xβ,

∀β ∈ Rk a + BE
(
Y
∣∣X) = Xβ,

∀β ∈ Rk a + BXβ = Xβ.
It follows from here, by using above equality with β = 0k , that a = 0n.

• That is, from unbiasedness, we have that ∀β ∈ Rk BXβ = Xβ. Take now β =(
0, . . . , 1, . . . , 0

)>
while changing a position of one. From here, it follows that BX = X.

• We now have:

Ỹ = a + BY unbiased estimator of µ =⇒ a = 0k & BX = X.

Trivially (but we will not need it here), also the opposite implication holds (if Ỹ = BY
with BX = X then Ỹ is the unbiased estimator of µ = Xβ). In other words,

Ỹ = a + BY is unbiased estimator of µ ⇐⇒ a = 0n & BX = X.

• Let us now explore what can be concluded from the equality BX = X.

BX = X,
∣∣ · (X>X)−X>

BX
(
X>X

)−X> = X
(
X>X

)−X>,
BH = H, (2.3)

H>B> = H>,

HB> = H. (2.4)
11 nejlepší lineární nestranný odhad
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• Let us calculate var
(
Ŷ
∣∣X):

var
(
Ŷ
∣∣X) = var

(
HY

∣∣X) = H var
(
Y
∣∣X)H> = H (σ2In)H>

= σ2HH> = σ2H = σ2X
(
X>X

)−X>.
• Analogously, we calculate var

(
Ỹ
∣∣X) for Ỹ = BY , where BX = X:

var
(
Ỹ
∣∣X) = var

(
BY

∣∣X) = B var
(
Y
∣∣X)B> = B (σ2In)B>

= σ2 BB> = σ2 (H + B−H) (H + B−H)>

= σ2
{
HH>︸ ︷︷ ︸
H

+ H(B−H)>︸ ︷︷ ︸
0n

+ (B−H)H>︸ ︷︷ ︸
0n

+ (B−H) (B−H)>
}

= σ2H + σ2 (B−H) (B−H)>,

where H(B−H)> = (B−H)H> = 0n follow from (2.3) and (2.4) and from the fact that
H is symmetric and idempotent.

• Hence finally,
var
(
Ỹ
∣∣X) − var

(
Ŷ
∣∣X) = σ2 (B−H) (B−H)>,

which is a positive semidefinite matrix. That is, the estimator Ŷ is not worse than the
estimator Ỹ .

k

Note. It follows from the Gauss–Markov theorem that

Ŷ
∣∣X ∼ (Xβ, σ2H).

Historical remarks
• The method of least squares was used in astronomy and geodesy already at the beginning of the
19th century.

• 1805: First documented publication of least squares.

Adrien-Marie Legendre. Appendix “Sur le méthode des moindres quarrés” (“On the method of least squares”)

in the book Nouvelles Méthodes Pour la Détermination des Orbites des Comètes (New Methods for the Deter-

mination of the Orbits of the Comets).

• 1809: Another (supposedly independent) publication of least squares.

Carl Friedrich Gauss. In Volume 2 of the book Theoria Motus Corporum Coelestium in Sectionibus Conicis

Solem Ambientium (The Theory of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections).

• C. F. Gauss claimed he had been using the method of least squares since 1795 (which is
probably true).

• The Gauss–Markov theorem was first proved by C. F. Gauss in 1821 – 1823.

• In 1912, A. A. Markov provided another version of the proof.



2.3. GAUSS-MARKOV THEOREM 23

• In 1934, J. Neyman described the Markov’s proof as being “elegant” and stated that Markov’s
contribution (written in Russian) had been overlooked in the West.

⇒ The name Gauss–Markov theorem.

Theorem 2.5 Gauss–Markov for linear combinations.
Assume a full-rank linear model Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = k. Then

(i) For a vector l =
(
l0, . . . , lk−1

)> ∈ Rk , l 6= 0, the statistic θ̂ = l>β̂ is the best linear unbiased

estimator (BLUE) of the parameter θ = l>β with

var
(
θ̂
∣∣X) = σ2 l>

(
X>X

)−1
l > 0.

(ii) For a given matrix

L =


l>1
...

l>m

 , lj ∈ Rk, lj 6= 0, j = 1, . . . ,m, m ≤ k

with linearly independent rows (rank
(
Lm×k

)
= m), the statistic θ̂ = Lβ̂ is the best linear

unbiased estimator (BLUE) of the vector parameter θ = Lβ with

var
(
θ̂
∣∣X) = σ2 L

(
X>X

)−1L>,
which is a positive definite matrix.
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2.4 Residuals, properties

Definition 2.5 Residual sum of squares.
Consider a linear model Y

∣∣X ∼ (
Xβ, σ2In

)
, rank(Xn×k) = r ≤ k. The quantity SSe =∥∥U∥∥2 =

∑n
i=1 U

2
i =

∑n
i=1

(
Yi− Ŷi

)2
=
∥∥Y − Ŷ ∥∥2 will be called the residual sum of squares12

of the model.

Lemma 2.6 Altenative expressions of residuals and residual sum of squares.
Let Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k. The following then holds.

(i) U = Mε, where ε = Y − Xβ;

(ii) SSe = Y >MY = ε>Mε.

Lemma 2.7 Moments of residuals and residual sum of squares.
Let Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k. Then

(i) E
(
U
∣∣X) = 0n, var

(
U
∣∣X) = σ2M;

(ii) E
(
SSe

∣∣X) = E(SSe) = (n− r)σ2.

Definition 2.6 Residual mean square and residual degrees of freedom.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k.

(i) The residual mean square13 of the model is the quantity SSe/(n − r) and will be denoted as
MSe. That is,

MSe =
SSe
n− r

.

(ii) The residual degrees of freedom14 of the model is the vector dimension of the residual space

M
(
X
)⊥

and will be denotes as νe. That is,

νe = n− r.

12 reziduální součet čtverců 13 reziduální střední čtverec 14 reziduální stupně volnosti
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2.5 Parameterizations of a linear model

For given response Y =
(
Y1, . . . , Yn

)>
and given set of covariates Z1, . . . , Zn, many di�erent

sets of regressors X1, . . . , Xn and related model matrices X can be proposed. In this section,
we define a notion of equivalent linear models which basically says when two (or more) di�erent
sets of regressors, i.e., two (or more) di�erent model matrices (derived from one set of covariates)
provide models that do not di�er with respect to fundamental model properties.

Definition 2.7 Equivalent linear models.
Assume two linear models: M1: Y

∣∣X1 ∼
(
X1β, σ

2In
)
, where X1 is an n × k matrix with

rank
(
X1

)
= r and M2: Y

∣∣X2 ∼
(
X2γ, σ

2In
)
, where X2 is an n × l matrix with rank

(
X2

)
= r.

We say that models M1 and M2 are equivalent if their regression spaces are the same. That is, if

M
(
X1

)
=M

(
X2

)
.

Notes.
• The two equivalent models:

• have the same hat matrix H = X1

(
X>1 X1

)−X>1 = X2

(
X>2 X2

)−X>2 and a vector of fitted

values Ŷ = HY ;

• have the same residual projection matrix M = In −H and a vector of residuals U = MY ;

• have the same value of the residual sum of squares SSe = U>U , residual degrees of freedom
νe = n− r and the residual mean square MSe = SSe/(n− r).

• The two equivalent models provide two di�erent parameterizations of one situation. Neverthe-
less, practical interpretation of the regression coe�cients β ∈ Rk and γ ∈ Rl in the two models
might be di�erent. In practice, both parameterizations might be useful and this is also the reason
why it often makes sense to deal with both parameterizations.
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2.6 Matrix algebra and a method of least squares

In principle, any linear model Y
∣∣X ∼ (Xβ, σ2In), rank(Xn×k) = r ≤ k, even if being of less

than full rank can be reparameterized such that the model matrix X has linearly independent
columns. For instance, the orthonormal vector basis Q of the regression space provides such
a model matrix. That is, for practical calculations, we can assume, without loss of generality that
rank

(
Xn×k

)
= k. Remind now expressions of some quantities that must be calculated when

dealing with the least squares estimation of parameters of the full-rank linear model:

H = X
(
X>X

)−1X>, M = In −H = In − X
(
X>X

)−1X>,
Ŷ = HY = X

(
X>X

)−1X>Y , var
(
Ŷ
∣∣X) = σ2H = σ2X

(
X>X

)−1X>,
U = MY = Y − Ŷ , var

(
U
∣∣X) = σ2M = σ2

{
In − X

(
X>X

)−1X>},
β̂ =

(
X>X

)−1X>Y , var
(
β̂
∣∣X) = σ2

(
X>X

)−1
.

The only non-trivial calculation involved in above expressions is calculation of the inverse
(
X>X

)−1
.

Nevertheless, all above expressions (and many others needed in a context of the least squares
estimation) can be calculated without explicit evaluation of the matrix X>X. Some of above ex-
pressions can even be evaluated without knowing explicitely the form of the

(
X>X

)−1
matrix. To

this end, methods of matrix algebra can be used (and are used by all reasonable software routines
dealing with the least squares estimation). Two methods, known from the course Fundamentals of
Numerical Mathematics (NMNM201), that have direct usage in the context of least squares are:

• QR decomposition;

• Singular value decomposition (SVD)

applied to the model matrix X. Both of them can be used, among the other things, to find the
orthonormal vector basis of the regression space M

(
X
)
and to calculate expressions mentioned

above.

2.6.1 QR decomposition

QR decomposition of the model matrix is used, for example, by the R software (R Core Team, 2020)
to estimate a linear model by the method of least squares. If Xn×k is a real matrix with rank

(
X
)

=
k < n then we know from the course Fundamentals of Numerical Mathematics (NMNM201) that it
can be decomposed as

X = QR,

where
Qn×k =

(
q1, . . . , qk

)
, qj ∈ Rk, j = 1, . . . , k,

q1, . . . , qk is an orthonormal basis ofM
(
X
)
and Rk×k is upper triangular matrix. That is,

Q>Q = Ik, QQ> = H.

We then have
X>X = R>Q>Q︸ ︷︷ ︸

Ik

R = R>R. (2.5)
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That is, R>R is a Cholesky (square root) decomposition of the symmetric matrix X>X. Note that
this is a special case of an LU decomposition for symmetric matrices. Decomposition (2.5) can now
be used to get easily (i) matrix

(
X>X

)−1
, (ii) a value of its determinant or a value of determinant

of X>X, (iii) solution to normal equations.

(i) Matrix
(
X>X

)−1
.(
X>X

)−1
=
(
R>R

)−1
= R−1

(
R>
)−1

= R−1
(
R−1

)>
.

That is, to invert the matrix X>X, we only have to invert the upper triangular matrix R.

(ii) Determinant of X>X and
(
X>X

)−1
.

Let r1, . . . , rk denote diagonal elements of the matrix R. We then have

det
(
X>X

)
= det

(
R>R

)
=
{

det(R)
}2

=
( k∏
j=1

rj

)2
,

det
{(

X>X
)−1}

=
{

det
(
X>X

)}−1
.

(iii) Solution to normal equations β̂ =
(
X>X

)−1X>Y .

We can obtain β̂ by solving:

X>X b = X>Y

R>Rb = R>Q>Y

Rb = Q>Y . (2.6)

That is, to get β̂, it is only necessary to solve a linear system with the upper triangular
system matrix which can easily be done by backward substitution.

Further, the right-hand-side c =
(
c1, . . . , ck

)>
:= Q>Y of the linear system (2.6) additionally

serves to calculate the vector of fitted values. We have

Ŷ = HY = QQ>Y = Q c =
k∑
j=1

cjqj .

That is, the vector c provides coe�cients of the linear combination of the orthonormal vector basis
of the regression spaceM

(
X
)
that provide the fitted values Ŷ .

2.6.2 SVD decomposition

Use of the SVD decomposition for the least squares will not be explained in detail in this course.
It is covered by the Fundamentals of Numerical Mathematics (NMNM201) course.



Chapter 3
Basic Regression Diagnostics

We will now start from considering the original response-covariate data. That is, we assume that

data are represented by n random vectors
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp,
i = 1, . . . , n. We keep considering that the principal aim of the statistical analysis is to find
a suitable model to express the (conditional) response expectation E

(
Yi
∣∣Zi

)
, i = 1, . . . , n, in

summary the response vector conditional expectation E
(
Y
∣∣Z), where Z is a matrix with vectors

Z1, . . ., Zn in its rows. Suppose that t : Z −→ X ⊆ Rk is a transformation of the covariates
leading to the model matrix of regressors

X =


X>1
...

X>n

 =


t>(Z1)

...

t>(Zn)

 =: t(Z), rank
(
Xn×k

)
= r ≤ k.

28
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3.1 (Normal) linear model assumptions

Basis for statistical inference shown by now was derived while assuming a linear model for the data,
i.e., while assuming that E

(
Y
∣∣Z) = t>(Z)β = Xβ for some β ∈ Rk and var

(
Y
∣∣Z) = σ2 In.

For the data
(
Yi, X

>
i

)>
, i = 1, . . . , n, where we directly work with the response-regressors pairs,

this means the following assumptions (i = 1, . . . , n):

(A1) E
(
Yi
∣∣Xi = x

)
= x>β for some β ∈ Rk and (almost all) x ∈ X .

≡ Correct regression function m(z) = t>(z)β, z ∈ Z , correct choice of transformation t of the
original covariates leading to linearity of the (conditional) response expectation.

(A2) var
(
Yi
∣∣Xi = x

)
= σ2 for some σ2 irrespective of (almost all) values of x ∈ X .

≡ The conditional response variance is constant (does not depend on the covariates or other factors)
≡homoscedasticity1 of the response.

(A3) cov
(
Yi, Yl

∣∣X = x
)

= 0, i 6= l, for (almost all) x ∈ X n.
≡ The responses are conditionally uncorrelated.

Some of our results (especially those shown in Chapter 6) will be derived while additionally assum-
ing normality of the response, i.e., while assuming

(A4) Yi |Xi = x ∼ N
(
x>β, σ2

)
, for (almost all) x ∈ X .

≡ Normality of the response.

If we take the error terms of the linear model, i.e., the vector
(
ε1, . . . , εn

)>
= ε = Y − Xβ =(

Y1 −X>1 β, . . . , Yn −X>nβ
)>

, the above assumptions can also be stated as saying that there
exists β ∈ Rk for which the error terms satisfy the following.

(A1) E
(
εi
∣∣Xi = x

)
= 0 for (almost all) x ∈ X , and consequently also E

(
εi
)

= 0, i = 1, . . . , n.

≡ This again means that a structural part of the model stating that E
(
Y
∣∣X) = Xβ for some

β ∈ Rk is correctly specified, or in other words, that the regression function of the model is
correctly specified.

(A2) var
(
εi
∣∣Xi = x

)
= σ2 for some σ2 which is constant irrespective of (almost all) values of

x ∈ X . Consequently also var
(
εi
)

= σ2, i = 1, . . . , n.

≡ The error variance is constant ≡ homoscedasticity of the errors.

(A3) cov
(
εi, εl

∣∣X = x
)

= 0, i 6= l, for (almost all) x ∈ X n. Consequently also cov
(
εi, εl

)
= 0,

i 6= l.

≡ The errors are uncorrelated.

Possible assumption of normality is transferred into the errors as

(A4) εi
∣∣Xi = x ∼ N

(
0, σ2

)
for (almost all) x ∈ X and consequently also εi ∼ N

(
0, σ2

)
,

i = 1, . . . , n.

≡ The errors are normally distributed and owing to previous assumptions, ε1, . . . , εn
i.i.d.∼ N (0, σ2).

Remember now that many important results, especially those already derived in Chapter 2, are valid
even without assuming normality of the response/errors. Moreover, we shall show in Chapter 16 that

1 homoskedasticita
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also majority of inferential tools based on results of Chapters 6 and 8 are, under certain conditions,
asymptotically valid even if normality does not hold.

In general, if inferential tools based on a statistical model with certain properties (assumptions)
are to be used, we should verify, at least into some extent, validity of those assumptions with
a particular dataset. In a context of regression models, the tools to verify the model assumptions
are usually referred to as regression diagnostic2 tools. In this chapter, we provide only the most
basic graphical methods. Additional, more advanced tools of the regression diagnostics will be
provided in Chapters 9 and 11.

As already mentioned above, the assumptions (A1)–(A4) are not equally important. Some of them
are not needed to justify usage of a particular inferential tool (estimator, statistical test, . . . ), see
assumptions and proofs of corresponding Theorems. This should be taken into account when
using the regression diagnostics. It is indeed not necessary to verify those assumptions that are not
needed for a specific task. It should finally be mentioned that with respect to the importance of the
assumptions (A1)–(A4), far the most important is assumption (A1) concerning a correct specification
of the regression function. Remember that practically all Theorems in this lecture that are related
to the inference on the parameters of a linear model use in their proofs, in some sense, the
assumption E

(
Y
∣∣X) ∈M(X). Hence if this is not satisfied, majority of the traditional statistical

inference is not correct. In other words, special attention in any data analysis should be devoted to
verifying the assumption (A1) related to a correct specification of the regression function.

As we shall show, the assumptions of the linear model are basically checked through exploration
of the properties of the residuals U of the model, where

U = MY , M = In − X
(
X>X

)−X> =
(
mi,l

)
i,l=1,...,n

.

When doing so, it is exploited that each of assumptions (A1)–(A4) implies a certain property of
the residuals stated earlier in Lemma 2.7 (Moments of residuals and residual sum of squares)
and Theorem 6.2 (Properties of the LSE under the normality). It follows from those theorems (or
their proofs) the following:

1. (A1) =⇒ E
(
U
∣∣X) = 0n.

2. (A1) & (A2) & (A3) =⇒ var
(
U
∣∣X) = σ2M.

3. (A1) & (A2) & (A3) & (A4) =⇒ U |X ∼ Nn
(
0n, σ

2M
)
.

Usually, the right-hand side of the implication is verified and if it is found not to be satisfied, we
know that also the left-hand side of the implication (a particular assumption or a set of assumptions)
is not fulfilled. Clearly, if we conclude that the right-hand side of the implication is fulfilled, we
still do not know whether the left-hand side (a model assumption) is valid. Nevertheless, it is
common to most of the statistical diagnostic tools that they are only able to reveal unsatisfied
model assumptions but are never able to confirm their validity.

An uncomfortable property of the residuals of the linear model is the fact that even if the errors
(ε) are homoscedastic (var

(
εi
)

= σ2 for all i = 1, . . . , n), the residuals U are, in general, het-
eroscedastic (having unequal variances). Indeed, even if the assumption (A2) if fulfilled, we have
var
(
U
∣∣X) = σ2M, var

(
Ui
∣∣X) = σ2mi,i (i = 1, . . . , n), where note that the residual projection

matrix M, in general, does not have a constant diagonal m1,1, . . . ,mn,n. Moreover, the matrix M
is even not a diagonal matrix. That is, even if the errors ε1, . . . , εn are uncorrelated, the residu-
als U1, . . . , Un are, in general, (coditionally given the regressors) correlated. This must be taken
into account when the residuals U are used to check validity of assumption (A2). The problem
of heteroscedasticity of the residuals U is then partly solved be defining so called standardized
residuals.
2 regresní diagnostika
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3.2 Standardized residuals

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In), with the vector or residuals U =

(
U1, . . . , Un

)
, the

residual mean squareMSe, and the residual projection matrixM having a diagonal
(
m1,1, . . . ,mn.n

)>
.

The following definition is motivated by the facts following the properties of residuals shown in
Lemma 2.7:

E
(
U
∣∣X) = 0n, var

(
U
∣∣X) = σ2M,

E
(
Ui
∣∣X) = 0, var

(
Ui
∣∣X) = σ2mi,i, i = 1, . . . , n.

Definition 3.1 Standardized residuals.
The standardized residuals3 or the vector of standardized residuals of the model is the vector U std =(
U std1 , . . . , U stdn

)
, where

U stdi =


Ui√

MSemi,i

, mi,i > 0,

undefined, mi,i = 0,

i = 1, . . . , n.

Lemma 3.1 Moments of standardized residuals under normality.
Let Y

∣∣X ∼ Nn(Xβ, σ2In) and let for chosen i ∈ {1, . . . , n}, mi,i > 0. Then

E
(
U stdi

∣∣X) = 0, var
(
U stdi

∣∣X) = 1.

Proof. The proof is not requested for exam.

For each i = 1, . . . , n for which mi,i > 0:

U stdi =
Ui√

MSemi,i

=
Ui√
SSe

√
n− r
mi,i

=
Ui
‖U‖

√
n− r
mi,i

.

Further, U = MY = NN>Y , where Nn×(n−r) is a matrix with orthonormal basis of the residual

spaceM
(
X
)⊥

in its columns.

We assume Y
∣∣X ∼ Nn(Xβ, σ2In) which implies

N>Y
∣∣X ∼ Nn−r(N>X︸ ︷︷ ︸

0n−r

β, σ2 N>N︸ ︷︷ ︸
In−r

)
.

That is, N>Y
∣∣X ∼ Nn−r(0, σ2In−r).

We now use Lemma B.2 with Z = N>Y and function T defined as

T (Z) :=
j>i NZ
‖NZ‖

=
j>i NN>Y
‖NN>Y ‖

=
Ui
‖U‖

,

3 standardizovaná rezidua
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where ji =
(
0, . . . , 1, . . . , 0

)>
is a unity vector.

It is easily seen that for any c > 0

T (cZ) =
j>i NZ c

‖cNZ‖
=
j>i NZ
‖NZ‖

= T (Z).

Hence, by Lemma B.2, random variables

T (Z) =
Ui
‖U‖

and ‖Z‖ = ‖N>Y ‖ =
√
Y >NN> Y =

√
Y >MY =

√
Y >M>MY =

√
U>U = ‖U‖

are independent, in our case conditionally given X.
We use this independence in calculation of the following (conditional) expectations. At the same
time, we shall use known moments of a (raw) residual Ui. First,

0
Lemma 2.7

= E
(
Ui
∣∣X) = E

(
Ui
‖U‖

‖U‖
∣∣∣∣X) indep.

= E
(

Ui
‖U‖

∣∣∣∣X)E
(
‖U‖

∣∣X). (3.1)

Under normality assumption, 1
σ2

∥∥U∥∥2 ∣∣∣X ∼ χ2
n−r which is a continuous distribution whose

support is (0, ∞). Hence, P
(∥∥U∥∥2 = 0

∣∣∣X) = 0 and consequently, also P
(
‖U‖ = 0

∣∣X) = 0.

This implies that E
(
‖U‖

∣∣X) > 0. From the relationship (3.1) we now conclude that

E
(

Ui
‖U‖

∣∣∣∣X) = 0.

Finally, we can calculate

E
(
U stdi

∣∣X) = E
(

Ui
‖U‖

√
n− r
mi,i

∣∣∣∣X) =

√
n− r
mi,i

E
(

Ui
‖U‖

∣∣∣∣X) = 0.

Second,

σ2mi,i
Lemma 2.7

= var
(
Ui
∣∣X) = E

(
U2
i

∣∣X) = E

(
U2
i∥∥U∥∥2 ∥∥U∥∥2

∣∣∣∣∣X
)

indep.
= E

(
U2
i∥∥U∥∥2
∣∣∣∣∣X
)
E
(∥∥U∥∥2 ∣∣∣X). (3.2)

As mentioned above, under normality assumptions, 1
σ2

∥∥U∥∥2 ∣∣∣X ∼ χ2
n−r . Hence, E

(∥∥U∥∥2 ∣∣∣X) =

σ2 (n− r). Relationship (3.2) now implies

σ2mi,i = σ2 (n− r)E

(
U2
i∥∥U∥∥2
∣∣∣∣∣X
)
.

That is,

E

(
U2
i∥∥U∥∥2
∣∣∣∣∣X
)

=
mi,i

n− r
.
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Finally,

var
(
U stdi

∣∣X) = E
(

(U stdi )2
∣∣∣X) = E

(
U2
i∥∥U∥∥2 n− rmi,i

∣∣∣∣∣X
)

=
n− r
mi,i

E

(
U2
i∥∥U∥∥2
∣∣∣∣∣X
)

= 1.

k

Notes.
• Unfortunately, even in a normal linear model, the standardized residuals U std1 , . . . , U stdn are, in
general,

• neither normally distributed;

• nor uncorrelated.

• In some literature (and some software packages), the standardized residuals are called studentized
residuals4.

• In other literature including those course notes (and many software packages including R), the
term studentized residuals is reserved for a di�erent quantity which we shall define in Chapter 11.

4 studentizovaná rezidua
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3.3 Graphical tools of regression diagnostics

Remember, the columns of the model matrix X (the regressors), are denoted as X0, . . . ,Xk−1,
i.e.,

X =
(
X0, . . . , Xk−1).

Remember that usually X0 =
(
1, . . . , 1

)>
is an intercept column. Further, in many situations,

see Section 8.2 dealing with a submodel obtained by omitting some regressors, the current model
matrix X is the model matrix of just a candidate submodel (playing the role of the model matrix X0

in Section 8.2) and perhaps additional regressors are available to model the response expectation
E
(
Y
∣∣Z). Let us denote them as V 1, . . . ,V m. That is, the matrix

V :=
(
V 1, . . . , V m

)
.

may play a role of omitted covariates (matrix X1 in the notation of Section 8.2).

The reminder of this section provides purely an overview of basic residual plots that are used as
basic diagnostic tools in the context of a linear regression. More explanation on use of those plots
will be/was provided during the lecture and the exercise classes.

3.3.1 (A1) Correctness of the regression function

To detect:

Overall inappropriateness of the regression function

⇒ scatterplot
(
Ŷ , U

)
of residuals versus fitted values.

Illustrations
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Nonlinearity of the regression function with respect to a particular regressor Xj

⇒ scatterplot
(
Xj , U

)
of residuals versus that regressor.

Possibly omitted regressor V

⇒ scatterplot
(
V , U

)
of residuals versus that regressor.

For all proposed plots, a slightly better insight is obtained if standardized residuals U std are used
instead of the raw residuals U .

3.3.2 (A2) Homoscedasticity of the errors

To detect

Residual variance that depends on the response expectation

⇒ scatterplot
(
Ŷ , U

)
of residuals versus fitted values.

Illustrations
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Residual variance that depends on a particular regressor Xj

⇒ scatterplot
(
Xj , U

)
of residuals versus that regressor.

Residual variance that depends on a regressor V not included in the model

⇒ scatterplot
(
V , U

)
of residuals versus that regressor.
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For all proposed plots, a better insight is obtained if standardized residuals U std are used instead
of the raw residuals U . This due to the fact that even if homoscedasticity of the errors is fulfilled,
the raw residuals U are not necessarily homoscedastic (var

(
U
∣∣Z) = σ2M), but the standardized

residuals are homoscedastic having all a unity variance if additionally normality of the response
holds.

So called scale-location plots are obtained, if on the above proposed plots, the vector of raw residuals
U is replaced by a vector (√∣∣U std1

∣∣, . . . , √∣∣U stdn ∣∣).
Illustrations
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3.3.3 (A3) Uncorrelated errors

Assumption of uncorrelated errors is often justified by the used data gathering mechanism (e.g.,
observations/measurements performed on clearly independently behaving units/individuals). In
that case, it does not make much sense to verify this assumption. Two typical situation when
uncorrelated errors cannot be taken for granted are

(i) repeated observations performed on N independently behaving units/subjects;

(ii) observations performed sequentially in time where the ith response value Yi is obtained
in time ti and the observational occasions t1 < · · · < tn form an increasing (and often
equidistant) sequence.

In the following, we will not discuss any further the case (i) of repeated observations. In that
case, a simple linear model is in most cases fully inappropriate for a statistical inference and
more advanced models and methods must be used, see the course Advanced Regression Models
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(NMST432). In case (ii), the errors ε1, . . . , εn can often be considered as a time series5. The
assumptions (A1)–(A3) of the linear model then states that this time series (the errors of the model)
forms a white noise6. Possible serial correlation (autocorrelation) between the error terms is then
usually considered as possible violation of the assumption (A3) of uncorrelated errors.

As stated above, even if the errors are uncorrelated and assumption (A3) is fulfilled, the residuals
U are in general correlated. Nevertheless, the correlation is usually rather low and the residuals
are typically used to check assumption (A3) and possibly to detect a form of the serial correlation
present in data at hand. See Stochastic Processes 2 (NMSA409) course for basic diagnostic methods
that include:

• Autocorrelation and partial autocorrelation plot based on residuals U .

• Plot of delayed residuals, that is a scatterplot based on points (U1, U2), (U2, U3), . . ., (Un−1, Un).

3.3.4 (A4) Normality

To detect possible non-normality of the errors, standard tools used to check normality of a random
sample known from the course Mathematical Statistics 1 (NMSA331) are used, now with the vector of
residuals U or standardized residuals U std in place of the random sample which normality is to be
checked. A basic graphical tool to check the normality of a sample is then the normal probability
plot (the QQ plot).

Illustrations
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5 časová řada 6 bílý šum
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Usage of both the raw residuals U and the standardized residuals U std to check the normality
assumption (A4) bears certain inconveniences. If all assumptions of the normal linear model are
fulfilled, then

The raw residuals U satisfy U |Z ∼ Nn
(
0n, σ

2M
)
. That is, they maintain the normality, nev-

ertheless, they are, in general, not homoscedastic (var
(
Ui
∣∣Z) = σ2mi,i, i = 1, . . . , n).

Hence seeming non-normality of a “sample” U1, . . . , Un might be caused by the fact that
the residuals are imposed to di�erent variability.

The standardized residuals U std satisfy E
(
U stdi

∣∣Z) = 0, var
(
U stdi

∣∣Z) = 1 for all i = 1, . . . , n.
That is, the standardized residuals are homoscedastic (with a known variance of one), nev-
ertheless, they are not necessarily normally distributed. On the other hand, deviation of the
distributional shape of the standardized residuals from the distributional shape of the errors
ε is usually rather minor and hence the standardized residuals are usually useful in detecting
non-normality of the errors.
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3.3.5 The three basic diagnostic plots

Illustrations
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Illustrations

Correct model

True: Y = log(0.1 + x) + ε, ε ∼ N (0, 0.22).

Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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Illustrations

Incorrect regression function

True: Y = sin(2π x) + ε, ε ∼ N (0, 0.32).

Model: Y = β0 + β1 x+ ε, ε ∼ N (0, σ2).
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Illustrations

Incorrect regression function

True: Y = log(0.1 + x) + ε, ε ∼ N (0, 0.22).

Model: Y = β0 + β1 x+ ε, ε ∼ N (0, σ2).
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Illustrations

Heteroscedasticity

True: Y = log(0.1 + x) + ε, ε ∼ N (0, (0.2x)2).

Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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Illustrations

Heteroscedasticity

True: Y = sin(2π x) + ε, ε ∼ N (0,
{

0.6 sin(2π x)
}2

).

Model: Y = β0 + β1 sin(2π x) + ε, ε ∼ N (0, σ2).
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Illustrations

Nonnormal errors

True: Y = log(0.1 + x) + ε, ε ∼ Gumbel.

Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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Chapter 4
Parameterizations of Covariates

4.1 Linearization of the dependence of the response on
the covariates

As it is usual in this lecture, we represent data by n random vectors
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . ,

Zi,p
)> ∈ Z ⊆ Rp, i = 1, . . . , n. The principal problem we consider is to find a suitable model

to express the (conditional) response expectation E
(
Y
∣∣Z), where Y =

(
Y1, . . . , Yn

)>
and Z is

a matrix with vectors Z1, . . ., Zn in its rows. To this end, we consider a linear model, where
E
(
Y
∣∣Z) can be expressed as E

(
Y
∣∣Z) = Xβ for some β ∈ Rk , where

X =


X>1
...

X>n

 ,

X1 =
(
X1,0, . . . , X1,k−1

)>
= t(Z1),
...

Xn =
(
Xn,0, . . . , Xn,k−1

)>
= t(Zn),

and t : Z −→ X ⊆ Rk , t(z) =
(
t0(z), . . . , tk−1(z)

)>
=
(
x0, . . . , xk−1

)>
= x, is a suit-

able transformation of the original covariates that linearize the relationship between the response
expectation and those covariates. The corresponding regression function is then

m(z) = t>(z)β = β0 t0(z) + · · · + βk−1 tk−1(z), z ∈ Z. (4.1)

One of main problems of any practical regression analysis is to find a reasonable form of the
transformation function t to obtain a model that is perhaps wrong but at least useful to capture
su�ciently the form of E

(
Y
∣∣Z) and in general to express E

(
Y
∣∣Z = z

)
, z ∈ Z , for a generic

response Y being generated, given the covariate value Z = z, by the same probabilistic mechanism
as the original data.

46
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4.2 Parameterization of a single covariate

In this and two following sections, we first limit ourselves to the situation of a single covariate, i.e.,
p = 1, Z ⊆ R, and show some classical choices of the transformations that are used in practical
analyses when attempting to find a useful linear model.

4.2.1 Parameterization

Our aim is to propose transformations t : Z −→ Rk , t(z) =
(
t0(z), . . . , tk−1(z)

)>
such

that a regression function (4.1) can possibly provide a useful model for the response expectation
E
(
Y
∣∣Z = z

)
. Furthermore, in most cases, we limit ourselves to transformations that lead to

a linear model with intercept. In such cases, the regression function will be

m(z) = β0 + β1 s1(z) + · · · + βk−1 sk−1(z), z ∈ Z, (4.2)

where the non-intercept part of the transformation t will be denoted as s. That is, for z ∈ Z ,

sj(z) = tj(z), j = 1, . . . , k − 1,

s : Z −→ Rk−1, s(z) =
(
s1(z), . . . , sk−1(z)

)>
=
(
t1(z), . . . , tk−1(z)

)>
.

Definition 4.1 Parameterization of a covariate.
Let Z1, . . . , Zn be values of a given univariate covariate Z ∈ Z ⊆ R. By a parameterization of this
covariate we mean

(i) the function s : Z −→ Rk−1, s(z) =
(
s1(z), . . . , sk−1(z)

)>
, z ∈ Z , where all s1, . . . , sk−1

are non-constant functions on Z , and

(ii) an n× (k − 1) matrix S, where

S =


s>(Z1)

...

s>(Zn)

 =


s1(Z1) . . . sk−1(Z1)

...
...

...

s1(Zn) . . . sk−1(Zn)

 .

Terminology (Reparameterizing matrix, regressors).
Matrix S from Definition 4.1 is called reparameterizing matrix1 of a covariate. Its columns, i.e.,
vectors

X1 =


s1(Z1)

...

s1(Zn)

 , . . . , Xk−1 =


sk−1(Z1)

...

sk−1(Zn)


determine the regressors of the linear model based on the covariate values Z1, . . . , Zn.

1 reparametrizační matice
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Notes.
• A model matrix X of the model with the regression function (4.2) is

X =
(
1n, S

)
=
(
1n, X

1, . . . , Xk−1
)

=


1 X1,1 . . . X1,k−1
...

...
...

...

1 Xn,1 . . . Xn,k−1

 =


1 X>1
...

...

1 X>n

 ,

Xi = s(Zi), Xi,j = sj(Zi), i = 1, . . . , n, j = 1, . . . , k − 1.

• Definition 4.1 is such that an intercept vector 1n (or a vector c1n, c ∈ R) is (with a positive prob-
ability provided a non-degenerated covariate distribution) not included in the reparameterizing
matrix S. Nevertheless, it will be useful in some situations to consider such parameterizations
that (almost surely) include an intercept term in the space generated by the columns of the
reparameterizing matrix S itself. That is, for some parameterizations (see the regression splines
in Section 4.3.4), we will have 1n ∈M

(
S
)
.

4.2.2 Covariate types

The covariate space Z and the corresponding univariate covariates Z1, . . . , Zn are usually of one
of the two types and di�erent parameterizations are useful depending on the covariate type which
are the following.

Numeric covariates

Numeric2 covariates are such covariates where a ratio of the two covariate values makes sense and
a unity increase of the covariate value has an unambiguous meaning. The numeric covariate is
then usually of one of the two following subtypes:

(i) continuous, in which case Z is mostly an interval in R. Such covariates have usually a physical
interpretation and some units whose choice must be taken into account when interpreting
the results of the statistical analysis. The continuous numeric covariates are mostly (but not
necessarily) represented by continuous random variables.

(ii) discrete, in which case Z is infinite countable or finite (but “large”) subset of R. The most
common situation of a discrete numeric covariate is a count3 with Z ⊆ N0. The numeric
discrete covariates are represented by discrete random variables.

Categorical covariates

Categorical4 covariates (in the R software referred to as factors), are such covariates where the ratio
of the two covariate values does not necessarily make sense and a unity increase of the covariate
value does not necessarily have an unambiguous meaning. The sample space Z is a finite (and
mostly “small”) set, i.e.,

Z =
{
ω1, . . . , ωG

}
,

where the values ω1 < · · · < ωG are somehow arbitrarily chosen labels of categories purely used
to obtain a mathematical representation of the covariate values. The categorical covariate is always
represented by a discrete random variable. Even for categorical covariates, it is useful to distinguish
the two subtypes:

2 numerické, příp. kvantitativní 3 počet 4 kategoriální, příp. kvalitativní
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(i) nominal5 where from a practical point of view, chosen values ω1, . . . , ωG are completely
arbitrary. Consequently, practically interpretable results and conclusions of any sensible
statistical analysis should be invariant towards the choice of ω1, . . . , ωG. The nominal
categorical covariate mostly represents a pertinence to some group (a group label), e.g.,
region of residence.

(ii) ordinal6 where ordering ω1 < · · · < ωG makes sense also from a practical point of view. An
example is a school grade.

Notes.
• From the practical point of view, it is mainly important to distinguish numeric and categorical
covariates.

• Often, ordinal categorical covariate can be viewed also as a discrete numeric. Whatever in this
lecture that will be applied to the discrete numeric covariate can also be applied to the ordinal
categorical covariate if it makes sense to interprete, at least into some extent, its unity increase
(and not only the ordering of the covariate values).

Illustrations
Cars2004nh (n = 425)

data(Cars2004nh, package = "mffSM")

head(Cars2004nh)

vname type drive price.retail price.dealer price

1 Chevrolet.Aveo.4dr 1 1 11690 10965 11327.5

2 Chevrolet.Aveo.LS.4dr.hatch 1 1 12585 11802 12193.5

3 Chevrolet.Cavalier.2dr 1 1 14610 13697 14153.5

4 Chevrolet.Cavalier.4dr 1 1 14810 13884 14347.0

5 Chevrolet.Cavalier.LS.2dr 1 1 16385 15357 15871.0

6 Dodge.Neon.SE.4dr 1 1 13670 12849 13259.5

cons.city cons.highway consumption engine.size ncylinder horsepower

1 8.4 6.9 7.65 1.6 4 103

2 8.4 6.9 7.65 1.6 4 103

3 9.0 6.4 7.70 2.2 4 140

4 9.0 6.4 7.70 2.2 4 140

5 9.0 6.4 7.70 2.2 4 140

6 8.1 6.5 7.30 2.0 4 132

weight iweight lweight wheel.base length width ftype fdrive

1 1075 0.0009302326 6.980076 249 424 168 personal front

2 1065 0.0009389671 6.970730 249 389 168 personal front

3 1187 0.0008424600 7.079184 264 465 175 personal front

4 1214 0.0008237232 7.101676 264 465 173 personal front

5 1187 0.0008424600 7.079184 264 465 175 personal front

6 1171 0.0008539710 7.065613 267 442 170 personal front

5 nominální 6 ordinální
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Illustrations
Cars2004nh (n = 425)

summary(subset(Cars2004nh,

select = c("price.retail", "price.dealer", "price", "cons.city", "cons.highway",

"consumption", "engine.size", "horsepower", "weight",

"wheel.base", "length", "width")))

price.retail price.dealer price cons.city

Min. : 10280 Min. : 9875 Min. : 10078 Min. : 6.20

1st Qu.: 20370 1st Qu.: 18973 1st Qu.: 19600 1st Qu.:11.20

Median : 27905 Median : 25672 Median : 26656 Median :12.40

Mean : 32866 Mean : 30096 Mean : 31481 Mean :12.36

3rd Qu.: 39235 3rd Qu.: 35777 3rd Qu.: 37514 3rd Qu.:13.80

Max. :192465 Max. :173560 Max. :183012 Max. :23.50

NA's :14

cons.highway consumption engine.size horsepower

Min. : 5.100 Min. : 5.65 Min. :1.300 Min. :100.0

1st Qu.: 8.100 1st Qu.: 9.65 1st Qu.:2.400 1st Qu.:165.0

Median : 9.000 Median :10.70 Median :3.000 Median :210.0

Mean : 9.142 Mean :10.75 Mean :3.208 Mean :216.8

3rd Qu.: 9.800 3rd Qu.:11.65 3rd Qu.:3.900 3rd Qu.:255.0

Max. :19.600 Max. :21.55 Max. :8.300 Max. :500.0

NA's :14 NA's :14

weight wheel.base length width

Min. : 923 Min. :226.0 Min. :363.0 Min. :163.0

1st Qu.:1412 1st Qu.:262.0 1st Qu.:450.0 1st Qu.:175.0

Median :1577 Median :272.0 Median :472.0 Median :180.0

Mean :1626 Mean :274.9 Mean :470.6 Mean :181.1

3rd Qu.:1804 3rd Qu.:284.0 3rd Qu.:490.0 3rd Qu.:185.0

Max. :3261 Max. :366.0 Max. :577.0 Max. :206.0

NA's :2 NA's :2 NA's :26 NA's :28
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Illustrations
Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = c("type", "drive")))

type drive

Min. :1.000 Min. :1.000

1st Qu.:1.000 1st Qu.:1.000

Median :1.000 Median :1.000

Mean :2.219 Mean :1.692

3rd Qu.:3.000 3rd Qu.:2.000

Max. :6.000 Max. :3.000

table(Cars2004nh[, "type"], useNA = "ifany")

1 2 3 4 5 6

242 30 60 24 49 20

table(Cars2004nh[, "drive"], useNA = "ifany")

1 2 3

223 110 92

Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = c("ftype", "fdrive")))

ftype fdrive

personal:242 front:223

wagon : 30 rear :110

SUV : 60 4x4 : 92

pickup : 24

sport : 49

minivan : 20
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Illustrations
Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = "ncylinder"))

ncylinder

Min. :-1.000

1st Qu.: 4.000

Median : 6.000

Mean : 5.791

3rd Qu.: 6.000

Max. :12.000

table(Cars2004nh[, "ncylinder"], useNA = "ifany")

-1 4 5 6 8 10 12

2 134 7 190 87 2 3
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4.3 Numeric covariate

It is now assumed that Zi ∈ Z ⊆ R, i = 1, . . . , n, are numeric covariates. Our aim is now to
propose their sensible parameterizations.

4.3.1 Simple transformation of the covariate

The regression function is
m(z) = β0 + β1 s(z), z ∈ Z, (4.3)

where s : Z −→ R is a suitable non-constant function. The corresponding reparameterizing matrix
is

S =


s(Z1)

...

s(Zn)

 .

Due to interpretability issues, “simple” functions like: identity, logarithm, exponential, square root,
reciprocal, . . . , are considered in place of the transformation s.

Illustrations
Houses1987 (n = 546)
log(price) ∼ log(ground), m̂(z) = 7.76 + 0.54 log(z)
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Illustrations
Houses1987 (n = 546)
log(price) ∼ log(ground), m̂(z) = 7.76 + 0.54 log(z)
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Houses1987 (n = 546)
log(price) ∼ log(ground), residual plots
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Evaluation of the effect of the original covariate

Advantage of a model with the regression function (4.3) is the fact that a single regression coe�cient
β1 (the slope in a model with the regression line in x = s(z)) quantifies the e�ect of the covariate
on the response expectation which can then be easily summarized by a single point estimate and
a confidence interval. Evaluation of a statistical significance of the e�ect of the original covariate
on the response expectation is achieved by testing the null hypothesis

H0 : β1 = 0.

A possible test procedure will be introduced in Section 6.2.

Interpretation of the regression coefficients

Disadvantage is the fact that the slope β1 expresses the change of the response expectation that
corresponds to a unity change of the transformed covariate X = s(Z), i.e., for z ∈ Z :

β1 = E
(
Y
∣∣X = s(z) + 1

)
− E

(
Y
∣∣X = s(z)

)
,

which is not always easily interpretable.

Moreover, unless the transformation s is a linear function, the change in the response expectation
that corresponds to a unity change of the original covariate is a function of that covariate:

E
(
Y
∣∣Z = z + 1

)
− E

(
Y
∣∣Z = z

)
= β1

{
s(z + 1)− s(z)

}
, z ∈ Z.

In other words, a model with the regression function (4.3) and a non-linear transformation s
expresses the fact that the original covariate has di�erent influence on the response expectation
depending on the value of this covariate.

Note. It is easily seen that if n > k = 2, the transformation s is strictly monotone and the
data contain at least two di�erent values among Z1, . . . , Zn (which has a probability of one if the
covariates Zi are sampled from a continuous distribution), the model matrix X =

(
1n, S

)
is of

a full-rank r = k = 2.

Illustrations
Houses1987 (n = 546)
E�ect of the covariate, interpretation of the regression coe�cients

summary(lm(log(price) ~ log(ground), data = Houses1987))

Residuals:

Min 1Q Median 3Q Max

-0.8571 -0.1988 0.0046 0.1929 0.8969

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.75625 0.19933 38.91 <2e-16 ***

log(ground) 0.54216 0.03265 16.61 <2e-16 ***

---

Residual standard error: 0.3033 on 544 degrees of freedom

Multiple R-squared: 0.3364, Adjusted R-squared: 0.3351

F-statistic: 275.7 on 1 and 544 DF, p-value: < 2.2e-16
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4.3.2 Raw polynomials

The regression function is polynomial of a chosen degree k − 1, i.e.,

m(z) = β0 + β1 z + · · · + βk−1 z
k−1, z ∈ Z. (4.4)

The parameterization is

s : Z −→ Rk−1, s(z) =
(
z, . . . , zk−1

)>
, z ∈ Z

and the corresponding reparameterizing matrix is

S =


Z1 . . . Zk−11
...

...
...

Zn . . . Zk−1n

 .
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Illustrations
Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, d)
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Illustrations
Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, 3),

m̂(z) = 9.97 + 3.78 · 10−3 z − 3.31 · 10−6 z2 + 9.70 · 10−10 z3
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Evaluation of the effect of the original covariate

The e�ect of the original covariate on the response expectation is now quantified by a set of k− 1

regression coe�cients βZ :=
(
β1, . . . , βk−1

)>
. To evaluate a statistical significance of the e�ect

of the original covariate on the response expectation we have to test the null hypothesis

H0 : βZ = 0k−1.

An appropriate test procedure will be introduced in Section 6.2.

Interpretation of the regression coefficients

With k > 2 (at least a quadratic regression function), the single regression coe�cients β1, . . . ,
βk−1 only occasionally have a direct reasonable interpretation. Analogously to simple non-linear
transformation of the covariate, the change in the response expectation that corresponds to a unity
change of the original covariate is a function of that covariate:

E
(
Y
∣∣Z = z + 1

)
− E

(
Y
∣∣Z = z

)
= β1 + β2

{
(z + 1)2 − z2

}
+ · · · + βk−1

{
(z + 1)k−1 − zk−1

}
, z ∈ Z.

Note. It is again easily seen that if n > k and the data contain at least k di�erent values
among among Z1, . . . , Zn (which has a probability of one if the covariates Zi are sampled from
a continuous distribution), the model matrix

(
1n, S

)
is of a full-rank r = k.

Illustrations
Houses1987 (n = 546)
E�ect of the covariate, interpretation of the regression coe�cients

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Residuals:

Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Degree of a polynomial

Test on a subset of regression coe�cients (Section 6.2) or a submodel test (Section 8.2) can be
used to infer on the degree of a polynomial in the regression function (4.4). The null hypothesis
expressing, for d < k, belief that the regression function is a polynomial of degree d−1 corresponds
to the null hypothesis

H0 : βd = 0 & . . . & βk−1 = 0.

Illustrations
Houses1987 (n = 546)
Degree? Cubic versus quadratic, cubic versus linear polynomial

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)

rp1 <- lm(log(price) ~ ground, data = Houses1987)

anova(rp1, rp3)

Analysis of Variance Table

Model 1: log(price) ~ ground

Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186

2 542 48.968 2 4.2181 23.344 1.883e-10 ***

---
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Illustrations
Houses1987 (n = 546)
log(price) ∼ log(ground) and log(price) ∼ rawpoly(ground, d),

m̂ with 95% prediction band
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Illustrations
Houses1987 (n = 546)
Practical importance of higher order polynomials?

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Residuals:

Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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4.3.3 Orthonormal polynomials

The regression function is again polynomial of a chosen degree k − 1, nevertheless, a di�erent
basis of the regression space, i.e., a di�erent parameterization of the polynomial is used. Namely,
the regression function is

m(z) = β0 + β1 P
1(z) + · · · + βk−1 P

k−1(z), z ∈ Z, (4.5)

where P j is an orthonormal polynomial of degree j, j = 1, . . . , k − 1 built above a set of the
covariate datapoints Z1, . . . , Zn. That is,

P j(z) = aj,0 + aj,1 z + · · ·+ aj,j z
j , j = 1, . . . , k − 1, (4.6)

and the polynomial coe�cients aj,l, j = 1, . . . , k − 1, l = 0, . . . , j are such that vectors

P j =


P j(Z1)

...

P j(Zn)

 , j = 1, . . . , k − 1,

are all orthonormal and also orthogonal to an intercept vector P 0 =
(
1, . . . , 1

)>
. The corre-

sponding reparameterizing matrix is

S =
(
P 1, . . . , P k−1

)
=


P 1(Z1) . . . P k−1(Z1)

...
...

...

P 1(Zn) . . . P k−1(Zn)

 , (4.7)

which leads to the model matrix X =
(
1n, S

)
which have all columns mutually orthogonal and

the non-intercept columns having even a unity norm. For methods of calculation of the coe�cients
of the polynomials (4.6), see lectures on linear algebra. It can only be mentioned here that as soon
as the data contain at least k di�erent values among Z1, . . . , Zn, those polynomial coe�cients
exist and are unique.

Note. For given dataset and given polynomial degree k−1, the model matrix X =
(
1n, S

)
based

on the orthonormal polynomial provide the same regression space as the model matrix based on
the raw polynomials. Hence, the two model matrices determine two equivalent linear models.

Illustrations
Houses1987 (n = 546)
log(price) ∼ orthpoly(ground, 3)

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Residuals:

Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***

poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***

poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***

poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Illustrations
Houses1987 (n = 546)
log(price) ∼ orthpoly(ground, 3),

m̂(z) = 11.06 + 4.71P 1(z)− 1.97P 2(z) + 0.59P 3(z)
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log(price) ∼ orthpoly(ground, 3), residual plots
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Advantages of orthonormal polynomials compared to raw polynomials

• All non-intercept columns of the model matrix have the same (unity) norm. Consequently, all
non-intercept regression coe�cients β1, . . . , βk−1 have the same scale. This may be helpful
when evaluating a practical (not statistical!) importance of higher-order degree polynomial terms.

• Matrix X>X is a diagonal matrix diag(n, 1, . . . , 1). Consequently, the covariance matrix
var
(
β̂
∣∣X) is also a diagonal matrix, i.e., the LSE of the regression coe�cients are uncorre-

lated.

Illustrations
Houses1987 (n = 546)
Basis orthonormal and raw polynomials
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Illustrations
Houses1987 (n = 546)
Advantages of orthonormal polynomials compared to raw polynomials

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***

poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***

poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***

poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Evaluation of the effect of the original covariate

The e�ect of the original covariate on the response expectation is again quantified by a set of k−1

regression coe�cients βZ :=
(
β1, . . . , βk−1

)>
. To evaluate a statistical significance of the e�ect

of the original covariate on the response expectation we have to test the null hypothesis

H0 : βZ = 0k−1.

See Section 6.2 for a possible test procedure.

Illustrations
Houses1987 (n = 546)
E�ect of the covariate (cubic versus constant regression function)

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***

poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***

poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***

poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Interpretation of the regression coefficients

The single regression coe�cients β1, . . . , βk−1 do not usually have a direct reasonable interpre-
tation.

Degree of a polynomial

Test on a subset of regression coe�cients/test on submodels (will be introduced in Sections 6.2
and 8.2) can again be used to infer on the degree of a polynomial in the regression function (4.5)
in the same way as with the raw polynomials. The null hypothesis expressing, for d < k, belief
that the regression function is a polynomial of degree d− 1 corresponds to the null hypothesis

H0 : βd = 0 & . . . & βk−1 = 0.

Illustrations
Houses1987 (n = 546)
Degree? Cubic versus quadratic regression function

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***

poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***

poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***

poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .

---

Residual standard error: 0.3006 on 542 degrees of freedom

Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Illustrations
Houses1987 (n = 546)
Degree? Cubic versus linear regression function

rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)

rp1 <- lm(log(price) ~ ground, data = Houses1987)

anova(rp1, rp3)

Analysis of Variance Table

Model 1: log(price) ~ ground

Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186

2 542 48.968 2 4.2181 23.344 1.883e-10 ***

---

op3 <- lm(log(price) ~ poly(ground, degree = 3), data = Houses1987)

op1 <- lm(log(price) ~ poly(ground, degree = 1), data = Houses1987)

anova(op1, op3)

Analysis of Variance Table

Model 1: log(price) ~ poly(ground, degree = 1)

Model 2: log(price) ~ poly(ground, degree = 3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186

2 542 48.968 2 4.2181 23.344 1.883e-10 ***

---

Houses1987 (n = 546)
log(price) ∼ poly(ground, 4), global e�ect
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4.3.4 Regression splines

Basis splines

The advantage of a polynomial regression function introduced in Sections 4.3.2 and 4.3.3 is that it
is smooth (have continuous derivatives of all orders) on the whole real line. Nevertheless, with the
least squares estimation, each data point a�ects globally the fitted regression function. This often
leads to undesirable boundary e�ects when the fitted regression function only poorly approximates
the response expectation E

(
Y
∣∣Z = z

)
for the values of z being close to the boundaries of the

covariate space Z . This can be avoided with so-called regression splines.

Definition 4.2 Basis spline with distinct knots.
Let d ∈ N0 and λ =

(
λ1, . . . , λd+2

)> ∈ Rd+2, where −∞ < λ1 < · · · < λd+2 < ∞. The basis
spline of degree d with distinct knots7 λ is such a function Bd(z; λ), z ∈ R that

(i) Bd(z; λ) = 0, for z ≤ λ1 and z ≥ λd+2;

(ii) On each of the intervals (λj , λj+1), j = 1, . . . , d+ 1, Bd(·; λ) is a polynomial of degree d;

(iii) Bd(·; λ) has continuous derivatives up to an order d− 1 on R.

Notes.
• The basis spline with distinct knots is piecewise8 polynomial of degree d on (λ1, λd+2).

• The polynomial pieces are connected smoothly (of order d− 1) at inner knots λ2, . . . , λd+1.

• On the boundary (λ1 and λd+2), the polynomial pieces are connected smoothly (of order d− 1)
with a constant zero.

Illustrations
Some basis splines of degree d = 0, . . . , 5
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Definition 4.3 Basis spline with coincident left boundary knots.
Let d ∈ N0, 1 < r < d + 2 and λ =

(
λ1, . . . , λd+2

)> ∈ Rd+2, where −∞ < λ1 = · · · = λr <
· · · < λd+2 < ∞. The basis spline of degree d with r coincident left boundary knots9 λ is such
a function Bd(z; λ), z ∈ R that

(i) Bd(z; λ) = 0, for z ≤ λr and z ≥ λd+2;

(ii) On each of the intervals (λj , λj+1), j = r, . . . , d+ 1, Bd(·; λ) is a polynomial of degree d;

(iii) Bd(·; λ) has continuous derivatives up to an order d− 1 on (λr, ∞);

(iv) Bd(·; λ) has continuous derivatives up to an order d− r in λr .

Notes.
• The only qualitative di�erence between the basis spline with coincident left boundary knots and
the basis spline with distinct knots is the fact that the basis spline with coincident left boundary
knots is at the left boundary smooth of order only d− r compared to order d− 1 in case of the
basis spline with distinct knots.

• By mirroring Definition 4.3 to the right boundary, basis spline with coincident right boundary
knots is defined.

Illustrations
Some basis splines of degree d = 1 with possibly coincident boundary knots
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9 bazický spline stupně d s r překrývajícími se levými uzly
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Illustrations
Some basis splines of degree d = 2 with possibly coincident boundary knots
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Some basis splines of degree d = 3 with possibly coincident boundary knots
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Basis B-splines

There are many ways on how to construct the basis splines that satisfy conditions of Definitions 4.2
and 4.3, see Fundamentals of Numerical Mathematics (NMNM201) course. In statistics, so called
B-splines have proved to be extremely useful for regression purposes. It goes beyond the scope of
this lecture to explain in detail their construction which is fully covered by two landmark books
de Boor (1978, 2001); Dierckx (1993) or in a compact way, e.g., by a paper Eilers and Marx (1996). For
the purpose of this lecture it is assumed that a routine is available to construct the basis B-splines
of given degree with given knots (e.g., the R function bs from the recommended package splines).

An important property of the basis B-splines is that they are positive inside their support interval
(general basis splines can also attain negative values inside the support interval). That is, if

λ =
(
λ1, . . . , λd+2

)>
is a set of knots (either distinct or coincident left or right) and Bd(·, λ) is

a basis B-spline of degree d built above the knots λ then

Bd(z, λ) > 0, λ1 < z < λd+2,

Bd(z, λ) = 0, z ≤ λ1, z ≥ λd+2.

Spline basis

Definition 4.4 Spline basis.
Let d ∈ N0, k ≥ d + 1 and λ =

(
λ1, . . . , λk−d+1

)> ∈ Rk−d+1, where −∞ < λ1 < . . . <
λk−d+1 <∞. The spline basis10 of degree d with knots λ is a set of basis splines B1, . . . , Bk , where
for z ∈ R,

B1(z) = Bd(z; λ1, . . . , λ1︸ ︷︷ ︸
(d+1)×

, λ2),

B2(z) = Bd(z; λ1, . . . , λ1︸ ︷︷ ︸
d×

, λ2, λ3),

...

Bd(z) = Bd(z; λ1, λ1︸ ︷︷ ︸
2×

, λ2, . . . , λd+1),

Bd+1(z) = Bd(z; λ1, λ2, . . . , λd+2),

Bd+2(z) = Bd(z; λ2, . . . , λd+3),

...

Bk−d(z) = Bd(z; λk−2d, . . . , λk−d+1),

Bk−d+1(z) = Bd(z; λk−2d+1, . . . , λk−d+1, λk−d+1︸ ︷︷ ︸
2×

),

...

Bk−1(z) = Bd(z; λk−d−1, λk−d . . . , λk−d+1, . . . , λk−d+1︸ ︷︷ ︸
d×

),

Bk(z) = Bd(z; λk−d . . . , λk−d+1, . . . , λk−d+1︸ ︷︷ ︸
(d+1)×

).

10 splinová báze
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Illustrations
Linear B-spline basis (of degree d = 1)
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Quadratic B-spline basis (of degree d = 2)
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Illustrations
Cubic B-spline basis (of degree d = 3)
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Properties of the B-spline basis
If k ≥ d + 1, a set of knots λ =

(
λ1, . . . , λk−d+1

)>
, −∞ < λ1 < . . . < λk−d+1 < ∞ is

given and B1, . . . , Bk is the spline basis of degree d with knots λ composed of basis B-splines

k ≥ d+ 1, a set of knots λ =
(
λ1, . . . , λk−d+1

)>
, −∞ < λ1 < . . . < λk−d+1 <∞ is given and

B1, . . . , Bk is the spline basis of degree d with knots λ composed of basis B-splines then

(a)
k∑
j=1

Bj(z) = 1 for all z ∈
(
λ1, λk−d+1

)
; (4.8)

(b) for each m ≤ d there exist a set of coe�cients γm1 , . . . , γ
m
k such that

k∑
j=1

γmj Bj(z) is on (λ1, λk−d+1) a polynomial in z of degree m. (4.9)

Regression spline

It will now be assumed that the covariate space is a bounded interval, i.e., Z =
(
zmin, zmax

)
,

−∞ < zmin < zmax <∞. The regression function that exploits the regression splines is

m(z) = β1B1(z) + · · · + βk Bk(z), z ∈ Z, (4.10)

where B1, . . . , Bk is the spline basis of chosen degree d ∈ N0 composed of basis B-splines built

above a set of chosen knots λ =
(
λ1, . . . , λk−d+1

)>
, zmin = λ1 < . . . < λk−d+1 = zmax. The
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corresponding reparameterizing matrix coincided with the model matrix and is

X = S =


B1(Z1) . . . Bk(Z1)

...
...

...

B1(Zn) . . . Bk(Zn)

 =: B. (4.11)

Notes.
• It follows from (4.8) that

1n ∈M
(
B
)
.

This is also the reason why we do not explicitely include the intercept term in the regression
function since it is implicitely included in the regression space. Due to clarity of notation, the
regression coe�cients are now indexed from 1 to k. That is, the vector of regression coe�cients

is β =
(
β1, . . . , βk

)>
.

• It also follows from (4.9) that for any m ≤ d, a linear model with the regression function based
on either raw or orthonormal polynomials of degree m is a submodel of the linear model with
the regression function given by a regression spline and the model matrix B.

• With d = 0, the regression spline (4.10) is simply a piecewise constant function.

• In practice, not much attention is paid to the choice of the degree d of the regression spline.
Usually d = 2 (quadratic spline) or d = 3 (cubic spline) is used which provides continuous first
or second derivatives, respectively, of the regression function inside the covariate domain Z .

• On the other hand, the placement of knots (selection of the values of λ1, . . . , λk−d+1) is quite
important to obtain the regression function that su�ciently well approximates the response
expectations E

(
Y
∣∣Z = z

)
, z ∈ Z . Unfortunately, only relatively ad-hoc methods towards

selection of the knots will be demonstrated during this lecture as profound methods of the knots
selection go far beyond the scope of this course.

Illustrations
Houses1987 (n = 546)
B-spline basis (cubic, d = 3, λ =

(
150, 400, 650, 900, 1510

)>
)
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Illustrations
Houses1987 (n = 546)
log(price) ∼ spline(ground, degree = 3), model matrix X = B

lambda.inner <- c(400, 650, 900)

lambda.bound <- c(150, 1510)

Bx <- bs(Houses1987[, "ground"],

knots = lambda.inner, Boundary.knots = lambda.bound,

degree = 3, intercept = TRUE)

showBx <- data.frame(ground = Houses1987[, "ground"],

B1 = Bx[,1], B2 = Bx[,2], B3 = Bx[,3],

B4 = Bx[,4], B5 = Bx[,5], B6 = Bx[,6], B7 = Bx[,7])

print(showBx)

ground B1 B2 B3 B4 B5 B6 B7

1 544 0.000 0.019 0.424 0.535 0.022 0 0

2 372 0.001 0.341 0.541 0.117 0.000 0 0

3 285 0.097 0.583 0.293 0.026 0.000 0 0

4 619 0.000 0.000 0.235 0.689 0.076 0 0

5 592 0.000 0.003 0.302 0.644 0.051 0 0

6 387 0.000 0.291 0.567 0.142 0.000 0 0

7 361 0.004 0.379 0.517 0.100 0.000 0 0

8 387 0.000 0.291 0.567 0.142 0.000 0 0

9 447 0.000 0.134 0.590 0.275 0.001 0 0

10 512 0.000 0.042 0.497 0.451 0.010 0 0

11 670 0.000 0.000 0.130 0.729 0.142 0 0

12 279 0.113 0.590 0.273 0.023 0.000 0 0

13 158 0.907 0.091 0.002 0.000 0.000 0 0

14 268 0.147 0.597 0.238 0.018 0.000 0 0

15 335 0.018 0.465 0.450 0.068 0.000 0 0

...

Houses1987 (n = 546)
log(price) ∼ spline(ground, degree = 3)

summary(lm(log(price) ~ Bx - 1, data = Houses1987))

Residuals:

Min 1Q Median 3Q Max

-0.90457 -0.19497 0.00698 0.19693 0.94698

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Bx1 10.71312 0.12078 88.70 <2e-16 ***

Bx2 10.66519 0.07956 134.06 <2e-16 ***

Bx3 10.97388 0.07464 147.03 <2e-16 ***

Bx4 11.46283 0.06699 171.11 <2e-16 ***

Bx5 11.17900 0.16773 66.65 <2e-16 ***

Bx6 11.41145 0.31448 36.29 <2e-16 ***

Bx7 11.69708 0.25076 46.65 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.2974 on 539 degrees of freedom

Multiple R-squared: 0.9993, Adjusted R-squared: 0.9993

F-statistic: 1.079e+05 on 7 and 539 DF, p-value: < 2.2e-16
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Illustrations
Houses1987 (n = 546)
log(price) ∼ spline(ground), m̂(z) = 10.71B1(z) + 10.67B2(z) + 10.97B3(z)+

11.46B4(z) + 11.18B5(z) + 11 41B6(z) + 11.70B7(z) and the 95% prediction band
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Houses1987 (n = 546)
log(price) ∼ spline(ground), residual plots
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Illustrations
Houses1987 (n = 546)
log(price) ∼ spline(ground), residuals versus covariate plot
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Advantages of the regression splines compared to raw/orthogonal polyno-
mials

• Each data point influences the LSE of the regression coe�cients and hence the fitted regression
function only locally. Indeed, only the LSE of those regression coe�cients that correspond to the
basis splines whose supports cover a specific data point are influenced by those data points.

• Regression splines of even a low degree d (2 or 3) are, with a suitable choice of knots, able to
approximate su�ciently well even functions with a highly variable curvature and that globally
on the whole interval Z .

Evaluation of the effect of the original covariate

To evaluate a statistical significance of the e�ect of the original covariate on the response expecta-
tion we have to test the null hypothesis

H0 : β1 = · · · = βk.

Due to the property (4.8), this null hypothesis corresponds to assuming that E
(
Y
∣∣Z) ∈M(1n) ⊂

M
(
B
)
. Consequently, it is possible to use a test on submodel that will be introduced in Section 8.1

to test the above null hypothesis.
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Illustrations
Houses1987 (n = 546)
E�ect of the covariate

mB <- lm(log(price) ~ Bx - 1, data = Houses1987)

m0 <- lm(log(price) ~ 1, data = Houses1987)

anova(m0, mB)

Analysis of Variance Table

Model 1: log(price) ~ 1

Model 2: log(price) ~ Bx - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 545 75.413

2 539 47.663 6 27.75 52.302 < 2.2e-16 ***

---

Houses1987 (n = 546)
Spline better than a (global) cubic polynomial?

mB <- lm(log(price) ~ Bx - 1, data = Houses1987)

mpoly3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)

anova(mpoly3, mB)

Analysis of Variance Table

Model 1: log(price) ~ ground + I(ground^2) + I(ground^3)

Model 2: log(price) ~ Bx - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 542 48.968

2 539 47.663 3 1.3045 4.9174 0.002226 **

---
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Illustrations
Houses1987 (n = 546)
log(price) ∼ log(ground), log(price) ∼ poly(ground, 3),
log(price) ∼ spline(ground, degree = 3), m̂ with the 95% prediction band
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Interpretation of the regression coefficients

The single regression coe�cients β1, . . . , βk do not usually have a direct reasonable interpretation.
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Illustrations
Motorcycle (n = 133)
haccel ∼ time
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Motorcycle (n = 133)
haccel ∼ time, scatterplot with the LOWESS smoother
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Illustrations
Motorcycle (n = 133)
B-spline basis (cubic, d = 3, λ =

(
0, 11, 12, 13, 20, 30, 32, 34, 40, 50, 60

)>
)
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Motorcycle (n = 133)
haccel ∼ spline(time), m̂(z) = −11.62B1(z)+12.45B2(z)−13.99B3(z)+2.99B4(z)+6.11B5(z)−237.28B6(z)+

17.34B7(z) + 53.26B8(z) + 5.07B9(z) + 12.72B10(z)− 22.00B11(z) + 11.37B12(z) + 6.97B13(z)
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Illustrations
Motorcycle (n = 133)
haccel ∼ spline(time), residual plots
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4.4 Categorical covariate

In this Section, it is assumed that Zi ∈ Z , i = 1, . . . , n, are values of a categorical covariate. That
is, the covariate sample space Z is finite and its elements are only understood as labels. Without
loss of generality, we will use, unless stated otherwise, a simple sequence 1, . . . , G for those labels,
i.e.,

Z =
{

1, . . . , G
}
.

Unless explicitely stated (in Section 4.4.3), even the ordering of the labels 1 < · · · < G will not
be used for any but notational purposes and the methodology described below is then suitable for
both nominal and ordinal categorical covariates.

The regression function, m : Z −→ R is now a function defined on a finite set aiming in
parameterizing just G (conditional) response expectations E

(
Y
∣∣Z = 1

)
, . . . , E

(
Y
∣∣Z = G

)
. For

some clarity in notation, we will also use symbols m1, . . . , mG for those expectations, i.e.,

m(1) = E
(
Y
∣∣Z = 1

)
=: m1,

...
...

m(G) = E
(
Y
∣∣Z = G

)
=: mG.

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive
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Notation and terminology (One-way classified group means).
Since a categorical covariate often indicates pertinence to one of G groups, we will call m1, . . . ,mG

as group means11 or one-way classified group means. A vector

m =
(
m1, . . . , mG

)>
will be called a vector of group means,12 or a vector of one-way classified group means.

Note. Perhaps appealing simple regression function of the form

m(z) = β0 + β1 z, z = 1, . . . , G,

is in most cases fully inappropriate. First, it orders ad-hoc the group means to form a monotone
sequence (increasing if β1 > 0, decreasing if β1 < 0). Second, it ad-hoc assumes a linear
relationship between the group means. Both those properties also depend on the ordering or
even the values of the labels (1, . . . , G in our case) assigned to the G categories at hand. With
a nominal categorical covariate, none of it is justifiable, with an ordinal categorical covariate, such
assumptions should, at least, never be taken for granted and used without proper verification.

11 skupinové střední hodnoty 12 vektor skupinových středních hodnot
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4.4.1 Link to a G-sample problem

Illustrations
4.4.1 Link to a G-sample problem
Cars2004nh (subset, n = 409)
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For following considerations, we will additionally assume (again without loss of generality) that the

data
(
Yi, Zi

)>
, i = 1, . . . , n, are sorted according to the covariate values Z1, . . . , Zn. Further-

more, we will also exchangeably use a double subscript with the response where the first subscript
will indicate the covariate value, i.e.,

Z =



Z1

...

Zn1

−−−
...

−−−
Zn−nG+1

...

Zn



=



1
...

1

−−
...

−−
G
...

G



,

n1-times

nG-times

Y =



Y1
...

Yn1

−−−−
...

−−−−
Yn−nG+1

...

Yn



=



Y1,1
...

Y1,n1

−−−
...

−−−
YG,1
...

YG,nG



.

Finally, let

Y g =
(
Yg,1, . . . , Yg,ng

)>
, g = 1, . . . , G,

denote a subvector of the response vector that corresponds to observations with the covariate value
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being equal to g. That is,

Y =
(
Y1, . . . , Yn

)>
=
(
Y >1 , . . . , Y

>
G

)>
.

Notes.
• Suppose that it can be assumed that

(
Yi, Zi

)> i.i.d.∼
(
Y, Z

)>
, where E

(
Y
∣∣Z = g

)
=: mg ,

var
(
Y
∣∣Z = g

)
= σ2, g = 1, . . . , G. In that case, for given g ∈ {1, . . . , G}, the random

variables Yg,1, . . . , Yg,nG (elements of the vector Y g ) are i.i.d. from a distribution of Y |Z = g
whose mean is mg and the variance is σ2 (which does not depend on a “group”). That is,

Y1,1, . . . , Y1,n1

i.i.d.∼
(
m1, σ

2
)
,

...

YG,1, . . . , YG,nG
i.i.d.∼

(
mG, σ

2
)
.

(4.12)

Note that (4.12) describes a classical G sample problem where the samples are assumed to be
homoscedastic (having the same variance).

• If the covariates Z1, . . . , ZG are random then also n1, . . . , nG are random.

• In the following, it is always assumed that n1 > 0, . . . , nG > 0 (almost surely).
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4.4.2 Linear model parameterization of one-way classified group
means

As usual, let µ be the (conditional) response expectation, i.e.,

E
(
Y
∣∣Z) = µ :=



µ1,1
...

µ1,n1

−−
...

−−
µG,1
...

µG,nG



=



m1

...

m1

−−
...

−−
mG

...

mG



n1-times

nG-times

=


m1 1n1

...

mG 1nG

. (4.13)

Notation and terminology (Regression space of a categorical covariate).
A vector space 


m1 1n1

...

mG 1nG

 : m1, . . . , mG ∈ R

 ⊆ Rn

will be called the regression space of a categorical covariate (factor) with levels frequencies n1, . . . , nG
and will be denoted asMF (n1, . . . , nG).

Note. Obviously, with n1 > 0, . . . , nG > 0, a vector dimension of MF (n1, . . . , nG) is equal
to G and a possible (orthogonal) vector basis is

Q =



1 . . . 0
...

...
...

1 . . . 0

−−−−
...

...
...

−−−−
0 . . . 1
...

...
...

0 . . . 1



n1-times

nG-times

=


1n1 ⊗

(
1, . . . , 0

)
...

1nG ⊗
(
0, . . . , 1

)
 . (4.14)

When using the linear model, we are trying to allow for expressing the response expectation µ, i.e.,
a vector fromMF (n1, . . . , nG) as a linear combination of columns of a suitable n× k matrix X,
i.e., as

µ = Xβ, β ∈ Rk.

It is obvious that any model matrix that parameterizes the regression space MF (n1, . . . , nG)
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must have at least G columns, i.e., k ≥ G and must be of the type

X =



x>1
...

x>1
−−
...

−−
x>G
...

x>G



n1-times

nG-times

=


1n1 ⊗x>1

...

1nG ⊗x>G

 , (4.15)

where x1, . . . , xG ∈ Rk are suitable vectors.

Problem of parameterizing a categorical covariate with G levels thus simplifies into selecting a G×k
matrix X̃ such that

X̃ =


x>1
...

x>G

 .

Clearly,
rank

(
X
)

= rank
(
X̃
)
.

Hence to be able to parameterize the regression space MF (n1, . . . , nG) which has a vector
dimension of G, the matrix X̃ must satisfy

rank
(
X̃
)

= G.

The group means then depend on a vector β =
(
β0, . . . , βk−1

)>
of the regression coe�cients as

mg = x>g β, g = 1, . . . , G,

m = X̃β.

A possible (full-rank) linear model parameterization of regression space of a categorical covariate
uses matrix Q from (4.14) as a model matrix X. In that case, X̃ = IG and we have

µ = Qβ,

m = β.
(4.16)

Even though parameterization (4.16) seems appealing since the regression coe�cients are directly
equal to the group means, it is only rarely considered in practice for reasons that will become clear
later on. Still, it is useful for some of theoretical derivations.
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4.4.3 Full-rank parameterization of one-way classified group means

In the following, we limit ourselves to full-rank parameterizations that involve an intercept column.
That is, the model matrix will be an n×G matrix

X =



1 c>1
...

...

1 c>1
−−−
...

...

−−−
1 c>G
...

...

1 c>G



n1-times

nG-times

=


1n1 ⊗

(
1, c>1

)
...

1nG ⊗
(
1, c>G

)
 ,

where c1, . . . , cG ∈ RG−1 are suitable vectors. In the following, let C be an G× (G− 1) matrix
with those vectors as rows, i.e.,

C =


c>1
...

c>G

 .

A matrix X̃ is thus a G×G matrix
X̃ =

(
1G, C

)
.

If β =
(
β0, . . . , βG−1

)> ∈ RG denote, as usual, a vector of regression coe�cients, the group
means m are parameterized as

mg = β0 + c>g β
Z , g = 1, . . . , G,

m = X̃β =
(
1G, C

)
β = β0 1G + CβZ ,

(4.17)

where βZ =
(
β1, . . . , βG−1

)>
is a non-intercept subvector of the regression coe�cients. We will

also refer to it as e�ects of the covariate Z . As we know,

rank
(
X
)

= rank
(
X̃
)

= rank
(
(1G, C)

)
.

Hence, to get the model matrix X of a full-rank (rank
(
X
)

= G), the matrix C must satisfy
rank

(
C
)

= G− 1 and 1G /∈M
(
C
)
. That is, the columns of C must be

(i) (G− 1) linearly independent vectors from RG;

(ii) being all linearly independent with a vector of ones 1G.

Definition 4.5 Full-rank parameterization of a categorical covariate.
Full-rank parameterization of a categorical covariate with G levels (G = card(Z)) is a choice of the
G× (G− 1) matrix C that satisfies

rank
(
C
)

= G− 1, 1G /∈M
(
C
)
.
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Terminology ((Pseudo)contrast matrix).
Columns of matrix C are often chosen to form a set of G − 1 contrasts (vectors which elements
sum up to zero) from RG. In this case, we will call the matrix C as a contrast matrix.13 In other
cases, the matrix C will be called as a pseudocontrast matrix.14

Note. The (pseudo)contrast matrix C also determines parameterization of a categorical covariate
according to Definition 4.1. Corresponding function s : Z −→ RG−1 is

s(z) = c>z , z = 1, . . . , G,

and the reparameterizing matrix S is an n× (G− 1) matrix

S =



c>1
...

c>1
−−
...

−−
c>G
...

c>G



n1-times

nG-times

=


1n1 ⊗ c>1

...

1nG ⊗ c>G

 .

Evaluation of the effect of the categorical covariate

With a given full-rank parameterization of a categorical covariate, evaluation of a statistical signifi-
cance of its e�ect on the response expectation corresponds to testing the null hypothesis

H0 : β1 = 0 & · · · & βG−1 = 0, (4.18)

or written concisely
H0 : βZ = 0G−1.

This null hypothesis indeed also corresponds to a submodel where only intercept is included in the
model matrix. Finally, it can be mentioned that the null hypothesis (4.18) is indeed equivalent to
the hypothesis of equality of the group means

H0 : m1 = · · · = mG. (4.19)

If normality of the response is assumed, equivalently an F-test on a submodel (Theorem 8.1) or
a test on a value of a subvector of the regression coe�cients (F-test if G ≥ 2, t-test if G = 2, see
Theorem 6.2) can be used.

13 kontrastová matice 14 pseudokontrastová matice
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Notes. The following can be shown with only a little algebra:

• If G = 2, β =
(
β0, β1

)>
. The (usual) t-statistic to test the hypothesis H0 : β1 = 0 using

point (viii) of Theorem 6.2, i.e., the statistic based on the LSE of β, is the same as a statistic of
a standard two-sample t-test.

• If G ≥ 2, the (usual) F-statistic to test the null hypothesis (4.18) using point (x) of Theorem 6.2
which is the same as the (usual) F-statistic on a submodel, where the submodel is the only-
intercept model, is the same as an F-statistic used classically in one-way analysis of variance
(ANOVA) to test the null hypothesis (4.19).

In the following, we introduce some of classically used (pseudo)contrast parameterizations which
include: (i) reference group pseudocontrasts, (ii) sum contrasts, (iii) weighted sum contrasts, (iv)
Helmert contrasts, and (v) orthonormal polynomial contrasts.

Illustrations
Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50
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Reference group pseudocontrasts (dummy variables)

C =


0 . . . 0

1 . . . 0
...

. . .
...

0 . . . 1

 =

(
0>G−1
IG−1

)
(4.20)

Hence, the group means are parameterized as follows and the regression coe�cients have the
following interpretation

m1 = β0, β0 = m1,

m2 = β0 + β1, β1 = m2 −m1,
...

...

mG = β0 + βG−1, βG−1 = mG −m1.

(4.21)

The intercept β0 is equal to the mean of the first (reference) group, the elements of βZ =(
β1, . . . , βG−1

)>
(the e�ects of Z ) provide di�erences between the means of the remaining

groups and the reference one.

The regression function can be written as

m(z) = β0 + β1 I(z = 2) + · · · + βG−1 I(z = G), z = 1, . . . , G.

That is, the related vector of regressors for each unit in a sample, X =
(
X0, X1, . . . , XG−1

)>
,

is such that Xj = I(Z = j + 1), j = 1, . . . , G− 1. The regressors Xj are also called as dummy
variables15 (or shortly dummies) in this context.

Notes.
• With the pseudocontrast matrix C given by (4.20), a group labeled by Z = 1 is chosen as
a reference for which the intercept β0 provides the group mean. In practice, any other group
can be taken as a reference by moving the zero row of the C matrix.

• In the R software, the reference group pseudocontrasts with the C matrix being of the form
(4.20) are used by default to parameterize categorical covariates (factors). Explicitely this choice
is indicated by the contr.treatment function. Alternatively, the contr.SAS function provides
a pseudocontrast matrix in which the last Gth group serves as the reference, i.e., the C matrix
has zeros on its last row.

15 umělé proměnné
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Illustrations
Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

CarsNow <- subset(Cars2004nh,

complete.cases(Cars2004nh[, c("consumption", "lweight", "engine.size")]))

mTrt <- lm(consumption ~ fdrive, data = CarsNow)

summary(mTrt)

Residuals:

Min 1Q Median 3Q Max

-4.0913 -1.2489 -0.0440 0.9587 9.0511

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7413 0.1247 78.149 < 2e-16 ***

fdriverear 1.5527 0.2146 7.237 2.32e-12 ***

fdrive4x4 2.7576 0.2292 12.030 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.815 on 406 degrees of freedom

Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764

F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16

Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

mSAS <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.SAS))

summary(mSAS)

Residuals:

Min 1Q Median 3Q Max

-4.0913 -1.2489 -0.0440 0.9587 9.0511

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.4989 0.1924 64.969 < 2e-16 ***

fdrive1 -2.7576 0.2292 -12.030 < 2e-16 ***

fdrive2 -1.2049 0.2598 -4.637 4.77e-06 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.815 on 406 degrees of freedom

Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764

F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
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Sum contrasts

C =


1 . . . 0
...

. . .
...

0 . . . 1

−1 . . . −1

 =

(
IG−1

−1>G−1

)
(4.22)

In the following, let

m =
1

G

G∑
g=1

mg

denote the mean of the group means. Those are then parameterized and the regression coe�cients
have the following interpretation

β0 = m,

m1 = β0 + β1, β1 = m1 −m,
...

...

mG−1 = β0 + βG−1, βG−1 = mG−1 −m.

mG = β0 −
G−1∑
g=1

βg,

(4.23)

The regression function can be written as

m(z) = β0 + β1 I(z = 1) + · · · + βG−1 I(z = G− 1) −
(G−1∑
g=1

βg

)
I(z = G),

z = 1, . . . , G,

which however, is not that interesting now as in the case of previously discussed reference groups
pseudocontrasts. Much better insight into the sum contrasts parameterization is obtained if we
write each group mean as

mg = α0 + αg, g = 1, . . . , G,

with a vector of parameters being α =
(
α0, α1, . . . , αG

)>
. This parameterization of G means

by G + 1 parameters would lead to a model matrix with G + 1 columns whose rank, however,
would be only G, i.e., less-than-full-rank model would have been obtained. On the other hand,
this less-than-full-rank parameterization can be so called identified by a suitable constraint. In this
case, one such constraint is to require

G∑
g=1

αg = 0. (4.24)

Expression (4.23) shows that the constraint (4.24) is satisfied if we define the α coe�cients as
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follows
α0 = β0 = m,

α1 = β1 = µ1 −m,
...

...

αG−1 = βG−1 = µG−1 −m,

αG = −
G−1∑
g=1

βg = µG −m.

(4.25)

This is also the reason why we talk about the sum constraints now.

In summary, in this case, the intercept α0 = β0 equals to the mean of the group means and the

elements of βZ =
(
β1, . . . , βG−1

)>
=
(
α1, . . . , αG−1

)>
are equal to the di�erences between

the corresponding group mean and the means of the group means. The same quantity for the last,
Gth group, αG is calculated from βZ as αG = −

∑G−1
g=1 βg .

Note. In the R software, the sum contrasts with the C matrix being of the form (4.22) can be
used by the mean of the function contr.sum.

Illustrations
Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

mSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.sum))

summary(mSum)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.17804 0.09606 116.365 <2e-16 ***

fdrive1 -1.43677 0.12003 -11.970 <2e-16 ***

fdrive2 0.11594 0.13926 0.833 0.406

Residual standard error: 1.815 on 406 degrees of freedom

Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764

F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16

Values of α̂1, α̂2, α̂3

alphaSum <- as.numeric(contr.sum(3) %*% coef(mSum)[-1])

names(alphaSum) <- levels(CarsNow[, "fdrive"])

print(alphaSum)

front rear 4x4

-1.4367702 0.1159377 1.3208326



4.4. CATEGORICAL COVARIATE 99

Weighted sum contrasts

This section of the text contains materials which will not be examined.

C =


1 . . . 0
...

. . .
...

0 . . . 1

− n1
nG

. . . −nG−1
nG

 (4.26)

Let

mW =
1

n

G∑
g=1

ngmg.

The group means are then parameterized and the regression coe�cients have the following inter-
pretation

β0 = mW ,

m1 = β0 + β1, β1 = m1 −mW ,

...
...

mG−1 = β0 + βG−1, βG−1 = mG−1 −mW .

mG = β0 −
G−1∑
g=1

ng
nG

βg,

(4.27)

The regression function can be written as

m(z) = β0 + β1 I(z = 1) + · · · + βG−1 I(z = G− 1) −
(G−1∑
g=1

ng
nG

βg

)
I(z = G),

z = 1, . . . , G.

If we consider the less-than-full-rank parameterization mg = α0 + αg, g = 1, . . . , G, it is seen
from (4.27) that the full-rank parameterization using the contrast matrix (4.26) links the regression
coe�cients of the two models as

α0 = β0 = mW ,

α1 = β1 = m1 −mW ,
...

...

αG−1 = βG−1 = mG−1 −mW ,

αG = −
G−1∑
g=1

ng
nG

βg = mG −mW .

At the same time, the vector α =
(
α0, α1, . . . , αG

)>
satisfies

G∑
g=1

ng αg = 0. (4.28)
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That is, the full-rank parameterization using the weighted sum pseudocontrasts (4.27) is equivalent
to the less-than-full-rank parameterization, where the regression coe�cients are identified by the
weighted sum constraint (4.28). The intercepts α0 = β0 equal to the weighted mean of the

group means and the elements of βZ =
(
β1, . . . , βG−1

)>
=
(
α1, . . . , αG−1

)>
are equal to the

di�erences between the corresponding group mean and the weighted means of the group means.
The same quantity for the last, Gth group, αG is calculated from βZ as αG = −

∑G−1
g=1

ng
nG
βg .

Illustrations
Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

ng <- with(CarsNow, table(fdrive))

CwSum <- rbind(diag(G - 1), - ng[-G] / ng[G])

rownames(CwSum) <- levels(CarsNow[["fdrive"]])

mwSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = CwSum))

summary(mwSum)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.75134 0.08974 119.802 < 2e-16 ***

fdrivefront -1.01007 0.08651 -11.676 < 2e-16 ***

fdriverear 0.54264 0.14982 3.622 0.000329 ***

Residual standard error: 1.815 on 406 degrees of freedom

Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764

F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16

Values of α̂1, α̂2, α̂3

alphawSum <- as.numeric(CwSum %*% coef(mwSum)[-1])

names(alphawSum) <- levels(CarsNow[, "fdrive"])

print(alphawSum)

front rear 4x4

-1.0100712 0.5426367 1.7475317
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Helmert contrasts

This section of the text contains materials which will not be examined.

C =



−1 −1 . . . −1

1 −1 . . . −1

0 2 . . . −1
...

...
. . .

...

0 0 . . . G− 1


(4.29)

The group means are obtained from the regression coe�cients as

m1 = β0 −
G−1∑
g=1

βg,

m2 = β0 + β1 −
G−1∑
g=2

βg,

m3 = β0 + 2β2 −
G−1∑
g=3

βg,

...

mG−1 = β0 + (G− 2)βG−2 − βG−1,

mG = β0 + (G− 1)βG−1.

Inversely, the regression coe�cients are linked to the group means as

β0 =
1

G

G∑
g=1

mg =: m,

β1 =
1

2
(m2 −m1),

β2 =
1

3

{
m3 −

1

2
(m1 +m2)

}
,

β3 =
1

4

{
m4 −

1

3
(m1 +m2 +m3)

}
,

...

βG−1 =
1

G

{
mG −

1

G− 1

G−1∑
g=1

mg

}
.

which provide their (slightly awkward) interpretation: βg , g = 1, . . . , G− 1, is 1/(g + 1) times the
di�erence between the mean of group g + 1 and the mean of the means of the previous groups
1, . . . , g.

Note. In the R software, the Helmert contrasts with the C matrix being of the form (4.29) can be
used by the mean of the function contr.helmert.
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Illustrations
Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

mHelmert <- lm(consumption ~ fdrive, data = CarsNow,

contrasts = list(fdrive = contr.helmert))

summary(mHelmert)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.17804 0.09606 116.365 < 2e-16 ***

fdrive1 0.77635 0.10728 7.237 2.32e-12 ***

fdrive2 0.66042 0.07342 8.995 < 2e-16 ***

Residual standard error: 1.815 on 406 degrees of freedom

Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764

F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
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Orthonormal polynomial contrasts

Illustrations
Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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C =


P 1(ω1) P 2(ω1) . . . PG−1(ω1)

P 1(ω2) P 2(ω2) . . . PG−1(ω2)
...

...
...

...

P 1(ωG) P 2(ωG) . . . PG−1(ωG)

 , (4.30)

where ω1 < · · · < ωG is an equidistant (arithmetic) sequence of the group labels and

P j(z) = aj,0 + aj,1 z + · · ·+ aj,j z
j , j = 1, . . . , G− 1,

are orthonormal polynomials of degree 1, . . . , G− 1 built above a sequence of the group labels.

Note. It can be shown that the columns of the C matrix (4.30) are for given G invariant (up to
orientation) towards the choice of the group labels as soon as they form an equidistant (arithmetic)
sequence. For example, for G = 2, 3, 4 the C matrix is

G = 2

C =

−
1√
2

1√
2

 ,

G = 3

C =



− 1√
2

1√
6

0 − 2√
6

1√
2

1√
6


,

G = 4

C =



− 3

2
√

5

1

2
− 1

2
√

5

− 1

2
√

5
− 1

2

3

2
√

5

1

2
√

5
− 1

2
− 3

2
√

5

3

2
√

5

1

2

1

2
√

5


.

The group means are then obtained as

m1 = m(ω1) = β0 + β1 P
1(ω1) + · · ·+ βG−1 P

G−1(ω1),

m2 = m(ω2) = β0 + β1 P
1(ω2) + · · ·+ βG−1 P

G−1(ω2),

...

mG = m(ωG) = β0 + β1 P
1(ωG) + · · ·+ βG−1 P

G−1(ωG),

where
m(z) = β0 + β1 P

1(z) + · · · + βG−1 P
G−1(z), z ∈

{
ω1, . . . , ωG

}
is the regression function. The regression coe�cients β now do not have any direct interpretation.
That is why, even though the parameterization with the contrast matrix (4.30) can be used with
the categorical nominal covariate, it is only rarely done so. Nevertheless, in case of the categorical
ordinal covariate where the ordered group labels ω1 < · · · < ωG have also practical interpretability,
parameterization (4.30) can be used to reveal possible polynomial trends in the evolution of the
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group means m1, . . . , mG and to evaluate whether it may make sense to consider that covariate
as numeric rather than categorical. Indeed, for d < G, the null hypothesis

H0 : βd = 0 & . . . & βG−1 = 0

corresponds to the hypothesis that the covariate at hand can be considered as numeric (with values
ω1, . . . , ωG of the form of an equidistant sequence) and the evolution of the group means can be
described by a polynomial of degree d− 1.

Note. In the R software, the orthonormal polynomial contrasts with the C matrix being of the
form (4.30) can be used by the mean of the function contr.poly. It is also a default choice if the
covariate is coded as categorical ordinal (ordered).
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Illustrations
Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46

mTrt <- lm(consumption ~ fweight, data = CarsNow)

summary(mTrt)

Residuals:

Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.7719 0.1497 51.91 <2e-16 ***

fweight1250-1500 2.0681 0.1894 10.92 <2e-16 ***

fweight1500-1750 2.9671 0.1782 16.65 <2e-16 ***

fweight1750-2000 4.0548 0.2010 20.17 <2e-16 ***

fweight>2000 6.6883 0.2202 30.37 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.13 on 404 degrees of freedom

Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193

F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16

summary(aov(consumption ~ fweight, data = CarsNow))

Df Sum Sq Mean Sq F value Pr(>F)

fweight 4 1341.0 335.3 262.4 <2e-16 ***

Residuals 404 516.2 1.3
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Illustrations
Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46

mPoly <- lm(consumption ~ fweight, data = CarsNow,

contrasts = list(fweight = contr.poly))

summary(mPoly)

Residuals:

Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.093e+01 5.975e-02 182.876 < 2e-16 ***

fweight.L 4.858e+00 1.501e-01 32.359 < 2e-16 ***

fweight.Q 3.526e-01 1.370e-01 2.574 0.0104 *

fweight.C 8.585e-01 1.320e-01 6.503 2.33e-10 ***

fweight^4 -7.193e-05 1.126e-01 -0.001 0.9995

Residual standard error: 1.13 on 404 degrees of freedom

Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193

F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16

summary(aov(consumption ~ fweight, data = CarsNow))

Df Sum Sq Mean Sq F value Pr(>F)

fweight 4 1341.0 335.3 262.4 <2e-16 ***

Residuals 404 516.2 1.3

Cars2004nh (subset, n = 409)
Polynomial of degree 4 based on representation of the covariate values by numbers 1, 2, 3,
4, 5, mg = β0 + β1 g + β2 g

2 + β3 g
3 + β4 g

4, g = 1, . . . , 5

CarsNow <- transform(CarsNow, nweight = as.numeric(fweight))

p4 <- lm(consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4),

data = CarsNow)

summary(p4)

Residuals:

Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.177e+00 1.820e+00 1.745 0.0818 .

nweight 6.312e+00 3.274e+00 1.928 0.0546 .

I(nweight^2) -1.943e+00 1.947e+00 -0.998 0.3190

I(nweight^3) 2.265e-01 4.687e-01 0.483 0.6292

I(nweight^4) -2.507e-05 3.925e-02 -0.001 0.9995

Residual standard error: 1.13 on 404 degrees of freedom

Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193

F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
Is a linear trend adequate?
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Cars2004nh (subset, n = 409)
Is a linear trend adequate?

p1 <- lm(consumption ~ nweight, data = CarsNow)

anova(p1, p4)

Analysis of Variance Table

Model 1: consumption ~ nweight

Model 2: consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 577.49

2 404 516.20 3 61.291 15.99 7.667e-10 ***

anova(p1, mPoly)

Analysis of Variance Table

Model 1: consumption ~ nweight

Model 2: consumption ~ fweight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 577.49

2 404 516.20 3 61.291 15.99 7.667e-10 ***



Chapter 5
Multiple Regression

5.1 Multiple covariates in a linear model

This section is not complete in the notes.

5.1.1 Additivity

Definition 5.1 Additivity of the covariate effect.
We say that a covariate Z1 acts additively in the regression model with covariatesZ =

(
Z1, . . . , Zp

)> ∈
Z ⊆ Rp if the regression function is of the form

E
(
Y
∣∣Z1 = z1, Z2 = z2, . . . , Zp = zp

)
= m1(z1) +m2(z(−1)), (5.1)

where z(−1) =
(
z2, . . . , zp

)>
, m1 : R −→ R and m2 : Rp−1 −→ R are some measurable func-

tions.

109
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5.1.2 Interactions

Definition 5.2 Interaction terms.
Let

(
Z, W

)> ∈ Z × W ⊆ R2 be two covariates being parameterized using parameterizations

sZ : Z −→ Rk−1 (sZ =
(
s1Z , . . . , s

k−1
Z

)>
) and sW :W −→ Rl−1 (sW =

(
s1W , . . . , s

l−1
W

)>
). By

interaction terms based on those two parameterizations we mean elements of a vector

sZW (Z, W ) := s>W (W ) ⊗ s>Z (Z)

=
(
s1Z(Z)·s1W (W ), . . . , sk−1Z (Z)·s1W (W ), . . . , s1Z(Z)·sl−1W (W ), . . . , sk−1Z (Z)·sl−1W (W )

)>
.
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5.2 Numeric and categorical covariate

This section is not complete in the notes.

5.2.1 Additivity

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), m̂(z, w) = −52.56 + 0.70 I[z = rear] + 0.88I[z =
4x4] + 8.54 log(w)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), m̂(z, w) = −52.56 + 0.70 I[z = rear] + 0.88I[z =
4x4] + 8.54 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.treatment param. of drive

Y : consumption [l/100 km], Z: drive, W : weight [kg]

m(z, w) = β0 + βZ1 I[z = rear] + βZ2 I[z = 4x4] + βW log(w)

lm(consumption ~ fdrive + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***

fdriverear 0.6964 0.1181 5.897 7.83e-09 ***

fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***

lweight 8.5381 0.2688 31.762 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom

Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922

F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.sum param. of drive

Y : consumption [l/100 km], Z: drive, W : weight [kg]

m(z, w) = β0 + βZ1 I[z = front] + βZ2 I[z = rear]− (βZ1 + βZ2 ) I[z = 4x4] + βW log(w)

lm(consumption ~ fdrive + lweight, data = CarsNow,

contrasts = list(fdrive = "contr.sum"))

Residuals:

Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.03547 1.99090 -26.137 < 2e-16 ***

fdrive1 -0.52504 0.07044 -7.454 5.53e-13 ***

fdrive2 0.17134 0.07465 2.295 0.0222 *

lweight 8.53810 0.26882 31.762 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom

Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922

F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16

Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.sum param. of drive

Y : consumption [l/100 km], Z: drive, W : weight [kg]

m(z, w) = β0 + βZ1 I[z = front] + βZ2 I[z = rear]− (βZ1 + βZ2 ) I[z = 4x4] + βW log(w)

Estimates of parameters αZ1 = βZ1 , αZ2 = βZ2 , αZ3 = −βZ1 − βZ2

Estimate Std. Error t value P value Lower Upper

front -0.5250404 0.07043545 -7.454206 5.5325e-13 -0.66350509 -0.3865756

rear 0.1713353 0.07464863 2.295224 0.022231 0.02458813 0.3180824

4x4 0.3537051 0.08437896 4.191864 3.3999e-05 0.18782965 0.5195805
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5.2.2 Partial effects

Note that the following tests and estimated e�ects make only sense if it can be assumed that the additivity
model holds.

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), partial e�ect of log(weight)?
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight)

For a given drive, does the log(weight) have an e�ect on the mean consumption? Partial e�ect of
log(weight)

lm(consumption ~ fdrive + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***

fdriverear 0.6964 0.1181 5.897 7.83e-09 ***

fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***

lweight 8.5381 0.2688 31.762 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom

Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922

F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), partial e�ect of drive?
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight)

Analysis of covariance to evaluate e�ect of drive given log(weight)

mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)

mOneLine <- lm(consumption ~ lweight, data = CarsNow)

anova(mOneLine, mAddit)

Analysis of Variance Table

Model 1: consumption ~ lweight

Model 2: consumption ~ fdrive + lweight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 435.68

2 405 383.10 2 52.577 27.791 4.896e-12 ***
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5.2.3 Interactions

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear] − 12.54I[z = 4x4] + 8.57 log(w) − 2.59 I[z = rear] log(w) +
1.78 I[z = 4x4] log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear] − 12.54I[z = 4x4] + 8.57 log(w) − 2.59 I[z = rear] log(w) +
1.78 I[z = 4x4] log(w)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight), contr.treatment param. of drive

Reference group pseudocontrasts for drive

m(z, w) = β0 + βZ1 I[z = rear] + βZ2 I[z = 4x4] + βW log(w)

+ βZW1 I[z = rear] log(w) + βZW2 I[z = 4x4] log(w)

lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.8047 2.5266 -20.900 < 2e-16 ***

fdriverear 19.8445 5.1297 3.869 0.000128 ***

fdrive4x4 -12.5366 4.6506 -2.696 0.007319 **

lweight 8.5716 0.3461 24.763 < 2e-16 ***

fdriverear:lweight -2.5890 0.6956 -3.722 0.000226 ***

fdrive4x4:lweight 1.7837 0.6240 2.858 0.004480 **

---

Residual standard error: 0.9404 on 403 degrees of freedom

Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057

F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16

Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight), contr.sum param. of drive

Sum contrasts for drive

m(z, w) = β0 + βZ1 I[z = front] + βZ2 I[z = rear]− (βZ1 + βZ2 ) I[z = 4x4] + βW log(w)

+ βZW1 I[z = front] log(w) + βZW2 I[z = rear] log(w)− (βZW1 + βZW2 ) I[z = 4x4] log(w)

lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,

contrasts = list(fdrive = contr.sum))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.3688 2.1489 -23.440 < 2e-16 ***

fdrive1 -2.4360 2.5972 -0.938 0.349

fdrive2 17.4085 3.3558 5.188 3.38e-07 ***

lweight 8.3031 0.2894 28.696 < 2e-16 ***

fdrive1:lweight 0.2684 0.3517 0.763 0.446

fdrive2:lweight -2.3206 0.4529 -5.124 4.64e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9404 on 403 degrees of freedom

Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057

F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16
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5.2.4 Additivity or interactions?

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ drive, log(weight), additivity or interactions?

Does the log(weight) have di�erent e�ect on the mean consumption depending on the drive type?

mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)

anova(mAddit, mInter)

Analysis of Variance Table

Model 1: consumption ~ fdrive + lweight

Model 2: consumption ~ fdrive + lweight + fdrive:lweight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 383.1

2 403 356.4 2 26.702 15.097 4.758e-07 ***
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5.2.5 More complex parameterizations of a numeric covariate
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5.3 Two numeric covariates

This section is not complete in the notes.

5.3.1 Additivity

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)

1000 1500 2000 2500

10
15

20

Weight [kg]

C
on

su
m

pt
io

n 
[l/

10
0 

km
]

[1,3]
(3,5]
(5,7]

2
4
6

Engine size [liters]



5.3. TWO NUMERIC COVARIATES 121

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***

engine.size 0.54231 0.08304 6.531 1.96e-10 ***

lweight 7.01155 0.43501 16.118 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom

Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867

F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***

engine.size 0.54231 0.08304 6.531 1.96e-10 ***

lweight 7.01155 0.43501 16.118 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom

Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867

F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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5.3.2 Partial effects

Note that the following tests and estimated e�ects make only sense if it can be assumed that the additivity
model holds.

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), partial e�ect of log(weight)?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***

engine.size 0.54231 0.08304 6.531 1.96e-10 ***

lweight 7.01155 0.43501 16.118 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom

Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867

F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), partial e�ect of engine.size?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***

engine.size 0.54231 0.08304 6.531 1.96e-10 ***

lweight 7.01155 0.43501 16.118 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom

Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867

F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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5.3.3 Interactions

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight), m̂(z, w) = −25.46−
5.32 z + 4.69 log(w) + 0.79 z log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight), m̂(z, w) = −25.46−
5.32 z + 4.69 log(w) + 0.79 z log(w)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight), m̂(z, w) = −25.46−
5.32 z + 4.69 log(w) + 0.79 z log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3999 -0.6538 -0.1407 0.4779 3.9219

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.4574 5.1267 -4.966 1.01e-06 ***

engine.size -5.3160 1.4338 -3.708 0.000238 ***

lweight 4.6877 0.7104 6.599 1.30e-10 ***

engine.size:lweight 0.7860 0.1921 4.092 5.15e-05 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9669 on 405 degrees of freedom

Multiple R-squared: 0.7961, Adjusted R-squared: 0.7946

F-statistic: 527.2 on 3 and 405 DF, p-value: < 2.2e-16
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5.3.4 Additivity or interactions?

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

Does the [log]weight have di�erent e�ect on the mean consumption depending on the engine size?

Does the engine size have di�erent e�ect on the mean consumption depending on the [log]weight?

lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)

Residuals:

Min 1Q Median 3Q Max

-3.3999 -0.6538 -0.1407 0.4779 3.9219

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.4574 5.1267 -4.966 1.01e-06 ***

engine.size -5.3160 1.4338 -3.708 0.000238 ***

lweight 4.6877 0.7104 6.599 1.30e-10 ***

engine.size:lweight 0.7860 0.1921 4.092 5.15e-05 ***

...

Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z: engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

Does the [log]weight have di�erent e�ect on the mean consumption depending on the engine size?

Does the engine size have di�erent e�ect on the mean consumption depending on the [log]weight?

mAddit <- lm(consumption ~ engine.size + lweight, data = CarsNow)

mInter <- lm(consumption ~ engine.size*lweight, data = CarsNow)

anova(mAddit, mInter)

Analysis of Variance Table

Model 1: consumption ~ engine.size + lweight

Model 2: consumption ~ engine.size * lweight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 406 394.26

2 405 378.60 1 15.656 16.748 5.154e-05 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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5.3.5 More complex parameterization of either covariate
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5.4 Two categorical covariates

This section is not complete in the notes.

Illustrations
HowelsAll (subset, n = 289)
Covariates: gender (G = 2) and population (H = 3)

data(HowellsAll, package = "mffSM")

gender popul oca gol fgender fpopul fgen.pop fpop.gen

1 1 1 123 176 M BERG M:BERG BERG:M

2 1 1 115 173 M BERG M:BERG BERG:M

3 1 1 117 176 M BERG M:BERG BERG:M

4 1 1 113 185 M BERG M:BERG BERG:M

...

57 0 1 125 171 F BERG F:BERG BERG:F

58 0 1 103 178 F BERG F:BERG BERG:F

59 0 1 115 165 F BERG F:BERG BERG:F

60 0 1 117 169 F BERG F:BERG BERG:F

...

110 1 0 109 194 M AUSTR M:AUSTR AUSTR:M

112 1 0 115 188 M AUSTR M:AUSTR AUSTR:M

116 1 0 115 187 M AUSTR M:AUSTR AUSTR:M

117 1 0 109 196 M AUSTR M:AUSTR AUSTR:M

...

192 0 0 109 186 F AUSTR F:AUSTR AUSTR:F

193 0 0 115 175 F AUSTR F:AUSTR AUSTR:F

194 0 0 111 185 F AUSTR F:AUSTR AUSTR:F

195 0 0 113 184 F AUSTR F:AUSTR AUSTR:F

...

241 1 2 118 180 M BURIAT M:BURIAT BURIAT:M

242 1 2 124 180 M BURIAT M:BURIAT BURIAT:M

243 1 2 117 183 M BURIAT M:BURIAT BURIAT:M

244 1 2 116 174 M BURIAT M:BURIAT BURIAT:M

...

295 0 2 116 175 F BURIAT F:BURIAT BURIAT:F

296 0 2 122 174 F BURIAT F:BURIAT BURIAT:F

297 0 2 113 174 F BURIAT F:BURIAT BURIAT:F

298 0 2 123 168 F BURIAT F:BURIAT BURIAT:F

...
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5.4.1 Additivity

Illustrations
HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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Illustrations
HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.treatment parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW1 I[w = Berg] + βW2 I[w = Burjati]

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:

Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 181.0712 0.7814 231.724 <2e-16 ***

fgenderM 9.7703 0.7529 12.977 <2e-16 ***

fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***

fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom

Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674

F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16

HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.sum parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW1 I[w = Austr] + βW2 I[w = Berg] + (−βW1 − βW2 ) I[w = Burjati]
options(contrasts = c("contr.sum", "contr.sum"))

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:

Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***

fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***

fpopul1 6.5842 0.5811 11.330 < 2e-16 ***

fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom

Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674

F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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5.4.2 Partial effects

Note that the following tests and estimated e�ects make only sense if it can be assumed that the additivity
model holds.

Illustrations
HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
partial e�ect of gender, of population?
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Illustrations
HowelsAll (subset, n = 289)
gol ∼ gender + popul

For a given population,
does gender have an e�ect in the mean value of gol?

Partial e�ect of gender

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)

mgolPopul <- lm(gol ~ fpopul, data = HowellsAll)

anova(mgolPopul, mgolAddit)

Analysis of Variance Table

Model 1: gol ~ fpopul

Model 2: gol ~ fgender + fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 286 17904

2 285 11254 1 6649.7 168.4 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

HowelsAll (subset, n = 289)
gol ∼ gender + popul

For a given gender,
does population have an e�ect in the mean value of gol?

Partial e�ect of population

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)

mgolGender <- lm(gol ~ fgender, data = HowellsAll)

anova(mgolGender, mgolAddit)

Analysis of Variance Table

Model 1: gol ~ fgender

Model 2: gol ~ fgender + fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 287 16415

2 285 11254 2 5160.7 65.345 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

HowelsAll (subset, n = 289)
gol ∼ gender + popul

F-tests of significance of both partial e�ects

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)

drop1(mgolAddit, test = "F")

Single term deletions

Model:

gol ~ fgender + fpopul

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 11254 1066.3

fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***

fpopul 2 5160.7 16415 1171.4 65.345 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Illustrations
HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
quantification of both partial e�ects?
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.treatment parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW1 I[w = Berg] + βW2 I[w = Burjati]

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:

Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 181.0712 0.7814 231.724 <2e-16 ***

fgenderM 9.7703 0.7529 12.977 <2e-16 ***

fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***

fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom

Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674

F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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Illustrations
HowelsAll (subset, n = 289)
gol ∼ gender + popul

LSE’s of E
(
Y
∣∣Z = g1,W = ?

)
− E

(
Y
∣∣Z = g2,W = ?

)
and E

(
Y
∣∣Z = ?,W = h1

)
− E

(
Y
∣∣Z = ?,W = h2

)
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)

L <- matrix(c(0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,1), ncol = 4, byrow = TRUE)

rownames(L) <- c("Male-Female", "Berg-Austr", "Burjati-Austr", "Burjati-Berg")

colnames(L) <- names(coef(mgolAddit))

print(L)

(Intercept) fgenderM fpopulBERG fpopulBURIAT

Male-Female 0 1 0 0

Berg-Austr 0 0 1 0

Burjati-Austr 0 0 0 1

Burjati-Berg 0 0 -1 1

mffSM::LSest(mgolAddit, L = L)

Estimate Std. Error t value P value Lower Upper

Male-Female 9.770313 0.7529092 12.976750 < 2e-16 8.2883454 11.252282

Berg-Austr -10.531148 0.9705782 -10.850385 < 2e-16 -12.4415591 -8.620737

Burjati-Austr -9.221329 0.9695097 -9.511332 < 2e-16 -11.1296364 -7.313021

Burjati-Berg 1.309819 0.8512377 1.538723 0.12498 -0.3656911 2.985330
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Illustrations
HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
alternative quantification of both partial e�ects?
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.sum parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW1 I[w = Austr] + βW2 I[w = Berg] + (−βW1 − βW2 ) I[w = Burjati]
options(contrasts = c("contr.sum", "contr.sum"))

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:

Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***

fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***

fpopul1 6.5842 0.5811 11.330 < 2e-16 ***

fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom

Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674

F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16



5.4. TWO CATEGORICAL COVARIATES 138

Illustrations
HowelsAll (subset, n = 289)
gol ∼ gender + popul

LSE’s of E
(
Y
∣∣Z = g,W = ?

)
− 1

G

∑G
j=1 E

(
Y
∣∣Z = j,W = ?

)
and E

(
Y
∣∣Z = ?,W = h

)
− 1

H

∑H
j=1 E

(
Y
∣∣Z = ?,W = j

)
options(contrasts = c("contr.sum", "contr.sum"))

mgolAdditSum <- lm(gol ~ fgender + fpopul, data = HowellsAll)

L <- matrix(c(0,1,0,0, 0,-1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,-1), ncol = 4, byrow = TRUE)

rownames(L) <- c("Female", "Male", "Australia", "Berg", "Burjati")

colnames(L) <- names(coef(mgolAdditSum))

print(L)

(Intercept) fgender1 fpopul1 fpopul2

Female 0 1 0 0

Male 0 -1 0 0

Australia 0 0 1 0

Berg 0 0 0 1

Burjati 0 0 -1 -1

mffSM::LSest(mgolAdditSum, L = L)

Estimate Std. Error t value P value Lower Upper

Female -4.885157 0.3764546 -12.976750 < 2.22e-16 -5.626141 -4.144173

Male 4.885157 0.3764546 12.976750 < 2.22e-16 4.144173 5.626141

Australia 6.584159 0.5811231 11.330059 < 2.22e-16 5.440321 7.727997

Berg -3.946989 0.5156772 -7.653992 3.0336e-13 -4.962008 -2.931970

Burjati -2.637170 0.5150067 -5.120651 5.6141e-07 -3.650869 -1.623470
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5.4.3 Interactions

Illustrations
HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)
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HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)
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Illustrations
HowelsAll (subset, n = 289)
oca ∼ gender + popul + gender:popul, contr.treatment parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW1 I[w = Berg] + βW2 I[w = Burjati]

+ βZW1 I[z = male, w = Berg] + βZW2 I[z = male, w = Burjati]

lm(oca ~ fgender*fpopul, data = HowellsAll)

Residuals:

Min 1Q Median 3Q Max

-15.1607 -3.1607 0.0455 3.1636 13.8393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 114.6531 0.7186 159.548 <2e-16 ***

fgenderM -0.6985 1.2910 -0.541 0.5889

fpopulBERG 2.3092 0.9969 2.316 0.0213 *

fpopulBURIAT 2.3840 0.9925 2.402 0.0169 *

fgenderM:fpopulBERG 0.8970 1.6112 0.557 0.5782

fgenderM:fpopulBURIAT -2.5022 1.6110 -1.553 0.1215

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 5.03 on 283 degrees of freedom

Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214

F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046

HowelsAll (subset, n = 289)
oca ∼ gender + popul + gender:popul, contr.sum parameterisation

Z: gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW1 I[w = Austr.] + βW2 I[w = Berg] + (−βW1 − βW2 ) I[w = Burjati]

+ βZW1 I[z = fem., w = Aus.] + βZW2 I[z = fem., w = Berg] + (−βZW1 − βZW2 ) I[z = fem., w = Bur.]

− βZW1 I[z = male, w = Aus.]− βZW2 I[z = male, w = Berg] + (βZW1 + βZW2 ) I[z = male, w = Bur.]

options(contrasts = c("contr.sum", "contr.sum"))

lm(oca ~ fgender + fpopul, data = HowellsAll)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 115.6007 0.3129 369.455 < 2e-16 ***

fgender1 0.6168 0.3129 1.971 0.049671 *

fpopul1 -1.2969 0.4866 -2.665 0.008138 **

fpopul2 1.4608 0.4187 3.489 0.000563 ***

fgender1:fpopul1 -0.2675 0.4866 -0.550 0.582896

fgender1:fpopul2 -0.7160 0.4187 -1.710 0.088376 .

---

Residual standard error: 5.03 on 283 degrees of freedom

Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214

F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046
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5.4.4 Additivity or interactions?

Illustrations
HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
additivity or interactions?
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HowelsAll (subset, n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)

Do the mean gol di�erences between male and female depend on population?

Do the mean gol di�erences between populations depend on gender?

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)

mgolInter <- lm(gol ~ fgender*fpopul, data = HowellsAll)

anova(mgolAddit, mgolInter)

Analysis of Variance Table

Model 1: gol ~ fgender + fpopul

Model 2: gol ~ fgender * fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 11254

2 283 11254 2 0.19404 0.0024 0.9976



5.4. TWO CATEGORICAL COVARIATES 142

Illustrations
HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3),
additivity or interactions?
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HowelsAll (subset, n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)

Do the mean oca di�erences between male and female depend on population?

Do the mean oca di�erences between populations depend on gender?

mocaAddit <- lm(oca ~ fgender + fpopul, data = HowellsAll)

mocaInter <- lm(oca ~ fgender*fpopul, data = HowellsAll)

anova(mocaAddit, mocaInter)

Analysis of Variance Table

Model 1: oca ~ fgender + fpopul

Model 2: oca ~ fgender * fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 7326

2 283 7161 2 165.02 3.2607 0.03981 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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5.5 Multiple regression model

5.5.1 Model terms

In majority of applications of a linear model, a particular covariate Z ∈ Z ⊆ R enters the regression function using
one of the parameterizations described in Sections 4.3 and 4.4 or inside an interaction (see Defition 5.2) or inside a so
called higher order interaction (will be defined in a while). As a summary, depending on whether the covariate is
numeric or categorical, several parameterizations s were introduced in Sections 4.3 and 4.4 that with the covariate values
Z1, . . . , Zn in the data lead to a reparameterizing matrix

S =


s>(Z1)

...

s>(Zn)

 =


X>1
...

X>n

 ,

where X1 = s(Z1), . . ., Xn = s(Zn) are the regressors used in the linear model. The considered parameterizations
were the following.

Numeric covariate

(i) Simple transformation: s = s : Z −→ R with

S =


s(Z1)

...

s(Zn)

 =
(
S
)
,

X1 = X1 = s(Z1),
...

Xn = Xn = s(Zn).

(5.2)

(ii) Polynomial: s =
(
s1, . . . , sk−1

)>
such that sj(z) = P j(z) is polynomial in z of degree j, j =

1, . . . , k − 1. This leads to

S =


P 1(Z1) . . . P k−1(Z1)

...
...

...

P 1(Zn) . . . P k−1(Zn)

 =
(
P 1, . . . , P k−1

)
, (5.3)

X1 =
(
P 1(Z1), . . . , P

k−1(Z1)
)>
,

...

Xn =
(
P 1(Zn), . . . , P

k−1(Zn)
)>
.

For a particular form of the basis polynomials P 1, . . . , P k−1, raw or orthonormal polynomials have been
suggested in Sections 4.3.2 and 4.3.3. Other choices are possible as well.

(iii) Regression spline: s =
(
s1, . . . , sk

)>
such that sj(z) = Bj(z), j = 1, . . . , k, where B1, . . . , Bk is

the spline basis of chosen degree d ∈ N0 composed of basis B-splines built above a set of chosen knots

λ =
(
λ1, . . . , λk−d+1

)>
. This leads to

S = B =


B1(Z1) . . . Bk(Z1)

...
...

...

B1(Zn) . . . Bk(Zn)

 =
(
B1, . . . , Bk

)
, (5.4)

X1 =
(
B1(Z1), . . . , Bk(Z1)

)>
,

...

Xn =
(
B1(Zn), . . . , B

k(Zn)
)>
.

Categorical covariate with Z =
{
1, . . . , G

}
. The parameterization s is s(z) = cz , z ∈ Z , where c1, . . . , cG ∈

RG−1 are the rows of a chosen (pseudo)contrast matrix CG×G−1. This leads to

S =


c>Z1

...

c>Zn

 =
(
C1, . . . , CG−1

)
,

X1 = cZ1 ,
...

Xn = cZn .

(5.5)
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Main effect model terms

In the following, we restrict ourselves only into situations when the considered covariates are parameterized by one of
above mentioned ways. The following definitions define sets of elements of a chosen parameterization s and columns
of a possible model matrix which will be called the model terms and which are useful to be always considered “together”
when proposing a linear model for a problem at hand.

Definition 5.3 The main effect model term.
Depending on a chosen parameterization s, the main e�ect model term1 (of order one) of a given covariate Z is defined as
a transformation t with elements as follows and a matrix T with columns as follows:

Numeric covariate

(i) Simple transformation with s : Z −→ R.
t = s and T is (the only) column S of the reparameterizing matrix S given by (5.2), i.e.,

T =
(
S
)
.

(ii) Polynomial with s =
(
s1, . . . , sk−1

)>
, sj(z) = P j(z), j = 1, . . . , k − 1.

t = s1 = P 1 (linear polynomial) and T is the first column P 1 of the reparameterizing matrix S (given by
Eq. 5.3) that corresponds to the linear transformation of the covariate Z , i.e.,

T =
(
P 1).

(iii) Regression spline with s =
(
s1, . . . , sk

)>
, sj(z) = Bj(z), j = 1, . . . , k.

t = s (all basis splines) and the matrix T contains (all) columnsB1, . . . , Bk of the reparameterizing matrix
S = B given by (5.4), i.e.,

T =
(
B1, . . . , Bk).

Categorical covariate with s(z) = c(z).

t = s (row of a chosen (pseudo)contrast matrix) and the matrix T contains (all) columns C1, . . . , CG−1 of the
reparameterizing matrix S given by (5.5), i.e.,

T =
(
C1, . . . , CG−1).

Definition 5.4 The main effect model term of order j.
If a numeric covariate Z is parameterized using the polynomial of degree k−1, i.e., s =

(
s1, . . . , sk−1

)>
, sj(z) = P j(z),

j = 1, . . . , k − 1, then the main e�ect model term of order j , j = 2, . . . , k − 1, means the element sj(z) = P j(z)
of the polynomial parameterization and a matrix Tj whose the only column is the jth column P j of the reparameterizing
matrix S (given by Eq. 5.3) that corresponds to the polynomial of degree j , i.e.,

Tj =
(
P j).

Note. The terms T, . . ., Tj−1 are called as lower order terms included in the term Tj .

1 hlavní efekt
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Two-way interaction model terms

In the following, consider two covariates Z and W and their main e�ect model terms tZ , TZ and tW , TW .

Definition 5.5 The two-way interaction model term.
The two-way interaction2 model term means elements of a vector tW ⊗ tZ and a matrix TZW , where

TZW := TZ :TW .

Notes.
• The main e�ect model term TZ and/or the main e�ect model term TW that enters the two-way interaction may also

be of a degree j > 1.

• Both the main e�ect model terms TZ and TW are called as lower order terms included in the two-way interaction
term TZ : TW .

Higher order interaction model terms

In the following, consider three covariates Z , W and V and their main e�ect model terms tZ , TZ and tW , TW and
tV , TV .

Definition 5.6 The three-way interaction model term.
The three-way interaction3 model term means a vector tV ⊗ (tW ⊗ tZ) and a matrix TZWV , where

TZWV :=
(
TZ :TW

)
:TV .

Notes.
• Any of the main e�ect model terms TZ , TW , TV that enter the three-way interaction may also be of a degree j > 1.

• All main e�ect terms TZ , TW and TV and also all two-way interaction terms TZ :TW , TZ :TV and TW :TV are
called as lower order terms included in the three-way interaction term TZWV .

• By induction, we could define also four-way, five-way, . . . , i.e., higher order interaction model terms and a notion of
corresponding lower order nested terms.

2 dvojná interakce 3 trojná interakce
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5.5.2 Model formula

To write concisely linear models based on several covariates, the model formula is used. The following symbols in the
model formula have the following meaning:

• 1:
intercept term in the model if this is the only term in the model (i.e., intercept only model).

• Letter or abbreviation:
main e�ect of order one of a particular covariate (which is identified by the letter or abbreviation). It is assumed that
chosen parameterization is either known from context or is indicated in some way (e.g., by the used abbreviation).
Letters or abbreviations will also be used to indicate a response variable.

• Power of j, j > 1 (above a letter or abbreviation):
main e�ect of order j of a particular covariate.

• Colon (:) between two or more letters or abbreviations:
interaction term based on particular covariates.

• Plus sign (+):
a delimiter of the model terms.

• Tilde (∼):
a delimiter between the response and description of the regression function.

Further, when using a model formula, it is assumed that the intercept term is explicitely included in the regression
function. If the explicit intercept should not be included, this will be indicated by writing −1 among the model terms.
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5.5.3 Hierarchically well formulated model

Definition 5.7 Hierarchically well formulated model.
Hierarchically well formulated (HWF) model4 is such a model that contains an intercept term (possibly implicitely) and with
each model term also all lower order terms that are nested in this term.

Notes.
• Unless there is some well-defined specific reason, models used in practice should be hierarchically well formulated.

• Reason for use of the HWF models is the fact that the regression space of such models is invariant towards linear
(location-scale) transformations of the regressors where invariance is meant with respect to possibility to obtain the
equivalent linear models.

Example 5.1.
Consider a quadratic regression function

mx(x) = β0 + β1 x+ β2 x
2

and perform a linear transformation of the regressor:

x = δ (t− ϕ), t = ϕ+
x

δ
, (5.6)

where δ 6= 0 and ϕ 6= 0 are pre-specified constants and t is a new regressor. The regression function in t is

mt(t) = γ0 + γ1 t+ γ2 t
2,

where γ0 = β0 − β1δϕ+ β2δ
2ϕ2,

γ1 = β1δ − 2β2δ
2ϕ,

γ2 = β2δ
2.

With at least three di�erent x values in the data, both regression functions lead to two equivalent linear models of rank 3.

Suppose now that the initial regression function mx did not include a linear term, i.e., it was

mx(x) = β0 + β2 x
2

which leads to a linear model of rank 2 (with at least three or even two di�erent covariate values in data). Upon performing
the linear transformation (5.6) of the regressor x, the regression function becomes

mt(t) = γ0 + γ1 t+ γ2 t
2

with γ0 = β0 + β2δ
2ϕ2,

γ1 = −2β2δ2ϕ,
γ2 = β2δ

2.

With at least three di�erent covariate values in data, this leads to the linear model of rank 3.

To use a non-HWF model in practice, there should always be a (physical, . . . ) reason for that. For example,

• No intercept in the model ≡ it can be assumed that the response expectation is zero if all regressors
in a chosen parameterization take zero values.

• No linear term in a model with a quadratic regression function m(x) = β0 + β2 x
2 ≡ it can be assumed that the

regression function is a parabola with the vertex in a point (0, β0) with respect to the x parameterization.

• No main e�ect of one covariate in an interaction model with two numeric covariates and a regression function
m(x, z) = β0 + β1 z + β2 x z ≡ it can be assumed that with z = 0, the response expectation does not depend
on a value of x, i.e., E

(
Y
∣∣X = x, Z = 0

)
= β0 (a constant).

4 hierarchicky dobře formulovaný model
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5.5.4 Usual strategy to specify a multiple regression model

This section is not complete in the notes.

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight)

mAddit <- lm(consumption ~ fdrive + engine.size + lweight, data = CarsNow)

summary(mAddit)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -35.84930 3.08092 -11.636 < 2e-16 ***

fdriverear 0.46260 0.11715 3.949 9.26e-05 ***

fdrive4x4 0.98198 0.13019 7.543 3.07e-13 ***

engine.size 0.56908 0.08361 6.807 3.62e-11 ***

lweight 6.03099 0.44795 13.464 < 2e-16 ***

Residual standard error: 0.9223 on 404 degrees of freedom

Multiple R-squared: 0.8149, Adjusted R-squared: 0.8131

F-statistic: 444.8 on 4 and 404 DF, p-value: < 2.2e-16

drop1(mAddit, test = "F")

Single term deletions

Model:

consumption ~ fdrive + engine.size + lweight

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 343.69 -61.161

fdrive 2 50.574 394.26 -9.012 29.725 9.046e-13 ***

engine.size 1 39.413 383.10 -18.758 46.330 3.625e-11 ***

lweight 1 154.205 497.89 88.436 181.267 < 2.2e-16 ***

Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight)

mInter1 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight, data = CarsNow)

summary(mInter1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -37.44459 3.22260 -11.619 < 2e-16 ***

fdriverear 22.90273 4.86163 4.711 3.40e-06 ***

fdrive4x4 -8.59853 4.42520 -1.943 0.0527 .

engine.size 0.57588 0.08125 7.088 6.16e-12 ***

lweight 6.24702 0.46296 13.494 < 2e-16 ***

fdriverear:lweight -3.03731 0.65971 -4.604 5.57e-06 ***

fdrive4x4:lweight 1.26748 0.59358 2.135 0.0333 *

Residual standard error: 0.8877 on 402 degrees of freedom

Multiple R-squared: 0.8294, Adjusted R-squared: 0.8269

F-statistic: 325.8 on 6 and 402 DF, p-value: < 2.2e-16

drop1(mInter1, test = "F")

Single term deletions

Model:

consumption ~ fdrive + engine.size + lweight + fdrive:lweight

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 316.81 -90.469

engine.size 1 39.590 356.40 -44.308 50.236 6.159e-12 ***

fdrive:lweight 2 26.879 343.69 -61.161 17.054 7.782e-08 ***
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight) + engine size:log(weight)

mInter2 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight +

engine.size:lweight, data = CarsNow)

summary(mInter2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -22.8398 4.9687 -4.597 5.76e-06 ***

fdriverear 27.3567 4.9219 5.558 4.98e-08 ***

fdrive4x4 4.3904 5.5249 0.795 0.427287

engine.size -5.8845 1.6945 -3.473 0.000571 ***

lweight 4.2821 0.6873 6.230 1.18e-09 ***

fdriverear:lweight -3.6356 0.6675 -5.446 8.98e-08 ***

fdrive4x4:lweight -0.4836 0.7425 -0.651 0.515241

engine.size:lweight 0.8662 0.2270 3.817 0.000157 ***

Residual standard error: 0.8731 on 401 degrees of freedom

Multiple R-squared: 0.8354, Adjusted R-squared: 0.8325

F-statistic: 290.7 on 7 and 401 DF, p-value: < 2.2e-16

drop1(mInter2, test = "F")

consumption ~ fdrive + engine.size + lweight + fdrive:lweight +

engine.size:lweight

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 305.70 -103.064

fdrive:lweight 2 24.150 329.85 -75.966 15.839 2.395e-07 ***

engine.size:lweight 1 11.105 316.81 -90.469 14.567 0.0001566 ***

Cars2004nh (subset, n = 409)
consumption ∼ (drive + engine size + log(weight))2

mInter <- lm(consumption ~ (fdrive + engine.size + lweight)^2, data = CarsNow)

summary(mInter)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -26.124609 5.776121 -4.523 8.06e-06 ***

fdriverear 26.875936 7.367167 3.648 0.000299 ***

fdrive4x4 13.308169 8.311915 1.601 0.110147

engine.size -5.391862 1.746264 -3.088 0.002158 **

lweight 4.757609 0.817131 5.822 1.19e-08 ***

fdriverear:engine.size 0.009665 0.182958 0.053 0.957895

fdrive4x4:engine.size 0.315489 0.216880 1.455 0.146547

fdriverear:lweight -3.571144 1.061146 -3.365 0.000839 ***

fdrive4x4:lweight -1.818723 1.189560 -1.529 0.127081

engine.size:lweight 0.790111 0.233312 3.386 0.000778 ***

Residual standard error: 0.8726 on 399 degrees of freedom

Multiple R-squared: 0.8364, Adjusted R-squared: 0.8327

F-statistic: 226.7 on 9 and 399 DF, p-value: < 2.2e-16

drop1(mInter, test = "F")

consumption ~ (fdrive + engine.size + lweight)^2

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 303.78 -101.642

fdrive:engine.size 2 1.9215 305.70 -103.064 1.2619 0.2842440

fdrive:lweight 2 8.6863 312.46 -94.112 5.7045 0.0036085 **

engine.size:lweight 1 8.7315 312.51 -92.052 11.4684 0.0007782 ***
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight) + engine size:log(weight)
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Cars2004nh (subset, n = 409)
consumption ∼ (drive + engine size + log(weight))2
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)

anova(mAddit, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight

Model 2: consumption ~ (fdrive + engine.size + lweight)^2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 404 343.69

2 399 303.78 5 39.906 10.483 1.813e-09 ***

anova(mInter1, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight

Model 2: consumption ~ (fdrive + engine.size + lweight)^2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 402 316.81

2 399 303.78 3 13.027 5.7034 0.0007864 ***

anova(mInter2, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight +

engine.size:lweight

Model 2: consumption ~ (fdrive + engine.size + lweight)^2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 401 305.70

2 399 303.78 2 1.9215 1.2619 0.2842
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5.5.5 ANOVA tables

For a particular linear model, so called ANOVA tables are often produced to help the analyst to decide which model
terms are important with respect to its influence on the response expectation. Similarly to well known one-way ANOVA
table (see any of introductory statistical courses and also Section 13.1), ANOVA tables produced in a context of linear
models provide on each row input of a certain F-statistic, now that based on Theorem 8.2. The last row of the table
(labeled often as Residual, Error or Within) provides

(i) residual degrees of freedom νe of the considered model;

(ii) residual sum of squares SSe of the considered model;

(iii) residual mean square MSe = SSe/νe of the considered model.

Each of the remaining rows of the ANOVA table provides input for the numerator of the F-statistic that corresponds
to comparison of certain two models M1 ⊂ M2 which are both submodels of the considered model (or M2 is the
considered model itself) and which have ν1 and ν2 degrees of freedom, respectively. The following quantities are
provided on each of the remaining rows of the ANOVA table:

(i) degrees of freedom for the numerator of the F-statistic (e�ect degrees of freedom νE = ν1 − ν2);
(ii) di�erence in the residual sum of squares of the two models (e�ect sum of squares SSE = SS

(
M2

∣∣M1

)
);

(iii) ratio of the above two values which is the numerator of the F-statistic (e�ect mean square MSE = SSE/νE );

(iv) value of the F-statistic FE = MSE/MSe;

(v) a p-value based on the F-statistic FE and the FνE , νe distribution.

Illustrations
consumption ∼ drive + log(weight) + drive:log(weight)

Certain ANOVA table for the model:

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

anova(mInter1)

Analysis of Variance Table

Response: consumption

Df Sum Sq Mean Sq F value Pr(>F)

fdrive 2 519.89 259.94 293.935 < 2.2e-16 ***

lweight 1 954.26 954.26 1079.040 < 2.2e-16 ***

fdrive:lweight 2 26.70 13.35 15.097 4.758e-07 ***

Residuals 403 356.40 0.88

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Several types of the ANOVA tables are distinguished which di�er by definition of a pair of the two models
M1 and M2 that are being compared on a particular row. Consequently, interpretation of results provided
by the ANOVA tables of di�erent type di�ers. Further, it is important to know that in all ANOVA tables, the
lower order terms always appear on earlier rows in the table than the higher order terms that include them.
Finally, for some ANOVA tables, di�erent interpretation of the results is obtained for di�erent ordering of the
rows with the terms of the same hierarchical level, e.g., for di�erent ordering of the main e�ect terms. We
introduce ANOVA tables of three types which are labeled by the R software (and by many others as well) as
tables of type I, II or III (arabic numbers can be used as well). Nevertheless, note that there exist software
packages and literature that use di�erent typology. In the reminder of this section we assume that intercept
term is included in the considered model.

In the following, we illustrate each type of the ANOVA table on a linear model based on two covariates
whose main e�ect terms will be denoted as A and B. Next to the main e�ects, the model will include
also an interaction term A : B. That is, the model formula of the considered model, denoted as MAB

is ∼ A + B + A : B. In total, the following (sub)models of this model will appear in the ANOVA tables:
M0: ∼ 1,

MA: ∼ A,

MB : ∼ B,

MA+B : ∼ A + B,

MAB : ∼ A + B + A :B.

The symbol SS
(
F2

∣∣F1

)
will denote a di�erence in the residual sum of squares of the models with model

formulas F1 and F2.
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Type I (sequential) ANOVA table

Example 5.2 (Type I ANOVA table for model MAB :∼ A+ B+ A : B).
In the type I ANOVA table, the presented results depend on the ordering of the rows with the terms of the same
hierarchical level. In this example, those are the rows that correspond to the main e�ect terms A and B.

Order A + B + A:B

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

A ? SS
(
A
∣∣ 1) ? ? ?

B ? SS
(
A + B

∣∣A) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe

Order B + A + A:B

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

B ? SS
(
B
∣∣ 1) ? ? ?

A ? SS
(
A + B

∣∣B) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe

The row of the e�ect (term) E in the type I ANOVA table has in general the following interpretation and
properties.

• It compares two models M1 ⊂ M2, where

• M1 contains all terms included in the rows that precede the row of the term E.

• M2 contains the terms of model M1 and additionally the term E.

• The sum of squares shows increase of the explained variability of the response due to the term E on top
of the terms shown on the preceding rows.

• The p-value provides a significance of the influence of the term E on the response while controlling
(adjusting) for all terms shown on the preceding rows.

• Interpretation of the F-tests is di�erent for rows labeled equally A in the two tables in
Example 5.2. Similarly, interpretation of the F-tests is di�erent for rows labeled equally B in
the two tables in Example 5.2.

• The sum of all sums of squares shown in the type I ANOVA table gives the total sum of squares SST of the
considered model. This follows from the construction of the table where the terms are added sequentially
one-by-one and from a sequential use of Theorem 7.3 (Breakdown of the total sum of squares in a linear
model with intercept).
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear] − 12.54I[z = 4x4] + 8.57 log(w) − 2.59 I[z = rear] log(w) +
1.78 I[z = 4x4] log(w)
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

anova(mInter1)

Analysis of Variance Table

Response: consumption

Df Sum Sq Mean Sq F value Pr(>F)

fdrive 2 519.89 259.94 293.935 < 2.2e-16 ***

lweight 1 954.26 954.26 1079.040 < 2.2e-16 ***

fdrive:lweight 2 26.70 13.35 15.097 4.758e-07 ***

Residuals 403 356.40 0.88

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + drive + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + +β1 log(w) + β2 I[z = rear] + β3 I[z = 4x4]

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)

anova(mInter2)

Analysis of Variance Table

Response: consumption

Df Sum Sq Mean Sq F value Pr(>F)

lweight 1 1421.57 1421.57 1607.458 < 2.2e-16 ***

fdrive 2 52.58 26.29 29.726 9.079e-13 ***

lweight:fdrive 2 26.70 13.35 15.097 4.758e-07 ***

Residuals 403 356.40 0.88

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Type II ANOVA table

Example 5.3 (Type II ANOVA table for model MAB :∼ A+ B+ A : B).
In the type II ANOVA table, the presented results do not depend on the ordering of the rows with the terms of the
same hierarchical level as should become clear from subsequent explanation.

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

A ? SS
(
A + B

∣∣B) ? ? ?

B ? SS
(
A + B

∣∣A) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe

The row of the e�ect (term) E in the type II ANOVA table has in general the following interpretation and
properties.

• It compares two models M1 ⊂ M2, where

• M1 is the considered (full) model without the term E and also all higher order terms than E
that include E.

• M2 contains the terms of model M1 and additionally the term E (this is the same as in type
I ANOVA table).

• The sum of squares shows increase of the explained variability of the response due to the term E on top
of all other terms that do not include the term E.

• The p-value provides a significance of the influence of the term E on the response while controlling
(adjusting) for all other terms that do not include E.

• For practical purposes, this is probably the most useful ANOVA table.
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

car::Anova(mInter1, type = "II")

Anova Table (Type II tests)

Response: consumption

Sum Sq Df F value Pr(>F)

fdrive 52.58 2 29.726 9.079e-13 ***

lweight 954.26 1 1079.040 < 2.2e-16 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + drive + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + +β1 log(w) + β2 I[z = rear] + β3 I[z = 4x4]

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)

car::Anova(mInter2, type = "II")

Anova Table (Type II tests)

Response: consumption

Sum Sq Df F value Pr(>F)

lweight 954.26 1 1079.040 < 2.2e-16 ***

fdrive 52.58 2 29.726 9.079e-13 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Type III ANOVA table

Example 5.4 (Type III ANOVA table for model MAB :∼ A+ B+ A : B).
Also in the type III ANOVA table, the presented results do not depend on the ordering of the rows with the terms
of the same hierarchical level as should become clear from subsequent explanation.

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

A ? SS
(
A + B + A :B

∣∣B + A :B
)

? ? ?

B ? SS
(
A + B + A :B

∣∣A + A :B
)

? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe

The row of the e�ect (term) E in the type III ANOVA table has in general the following interpretation and
properties.

• It compares two models M1 ⊂ M2, where

• M1 is the considered (full) model without the term E.

• M2 contains the terms of model M1 and additionally the term E (this is the same as in type
I and type II ANOVA table). Due to the construction of M1, the model M2 is always equal to
the considered (full) model.

• The submodel M1 is not necessarily hierarchically well formulated. If M1 is not HWF, interpretation of its
comparison to model M2 may depend on parameterizations of covariates included in the full model M2.
Consequently, also the interpretation of the F-test depends on the used parameterization.

• For general practical purposes, most rows of the type III ANOVA table are often useless.



5.5. MULTIPLE REGRESSION MODEL 163

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference (first) group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

• β3: slope of log(w) in group z = front

mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

car::Anova(mInter, type = "III")

Anova Table (Type III tests)

Response: consumption

Sum Sq Df F value Pr(>F)

(Intercept) 386.28 1 436.793 < 2.2e-16 ***

fdrive 26.49 2 14.979 5.310e-07 ***

lweight 542.30 1 613.216 < 2.2e-16 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference (last) group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = front] + β2 I[z = rear] + β3 log(w)

+ β4 I[z = front] log(w) + β5 I[z = rear] log(w)

• β3: slope of log(w) in group z = 4x4

mInterSAS <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,

contrasts = list(fdrive = contr.SAS))

car::Anova(mInterSAS, type = "III")

Anova Table (Type III tests)

Response: consumption

Sum Sq Df F value Pr(>F)

(Intercept) 247.68 1 280.063 < 2.2e-16 ***

fdrive 26.49 2 14.979 5.310e-07 ***

lweight 351.72 1 397.714 < 2.2e-16 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Sum contrasts for drive

m(z, w) = β0 + β1 I[z = front] + β2 I[z = rear]− (β1 + β2) I[z = 4x4] + β3 log(w)

+ β4 I[z = front] log(w) + β5 I[z = rear] log(w)− (β4 + β5) I[z = 4x4] log(w)

• β3: mean of the slopes of log(w) in the three drive groups

mIntersum <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,

contrasts = list(fdrive = contr.sum))

car::Anova(mIntersum, type = "III")

Anova Table (Type III tests)

Response: consumption

Sum Sq Df F value Pr(>F)

(Intercept) 485.88 1 549.416 < 2.2e-16 ***

fdrive 26.49 2 14.979 5.310e-07 ***

lweight 728.22 1 823.440 < 2.2e-16 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Chapter 6
Normal Linear Model

Until now, all proved theorems did not pose any distributional assumptions on the random vectors
(
Yi, X

>
i

)>
,

Xi =
(
Xi,0, . . . , Xi,k−1

)>
, i = 1, . . . , n, that represent the data (upon possible transformations of original

covariates). We only assumed a certain form of the (conditional) expectation and the (conditional) covariance

matrix of Y =
(
Y1, . . . , Yn

)>
given X1, . . . ,Xn (given the model matrix X). In this chapter, we will

additionally assume that the response is conditionally normally distributed given the regressors which will
lead us to the normal linear model.

165
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6.1 Normal linear model

With i.i.d. data
(
Yi, X

>
i

)> i.i.d.∼
(
Y, X>

)>
, i = 1, . . . , n, we mentioned in Section 1.2.6 situation when it

was additionally assumed that Y
∣∣X ∼ N (X>β, σ2

)
. For the full data (Y , X), this implies

Y
∣∣X ∼ Nn(Xβ, σ2 In

)
. (6.1)

Strictly speaking, the original data vectors
(
Yi, X

>
i

)>
, i = 1, . . . , n, do not have to be i.i.d. with respect

to their joint distribution to satisfy (6.1). Remember that the joint density of the response vector and all the
regressors can be decomposed as

fY ,X(y, x) = fY |X
(
y
∣∣x) fX(x), y ∈ Rn, x ∈ Xn.

Property (6.1) is related to the conditional density fY |X which is then given as

fY |X
(
y
∣∣x) =

n∏
i=1

{
1

σ
ϕ
(yi − xi>β

σ

)}
, y ∈ Rn, x ∈ Xn.

On the other hand, the property (6.1) says nothing concerning the joint distribution of the regressors rep-
resented by their joint density fX. Since most of the results shown in this chapter can be derived while
assuming just (6.1) we will do so and open the space for applications of the developed theory even in sit-
uations when the regressors X1, . . . , Xn are perhaps not i.i.d. but jointly generated by some distribution
with a general density fX.

Definition 6.1 Normal linear model with general data.
The data

(
Y , X

)
, satisfy a normal linear model1 if

Y
∣∣X ∼ Nn(Xβ, σ2 In

)
,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.

Lemma 6.1 Error terms in a normal linear model.
Let Y

∣∣X ∼ Nn(Xβ, σ2 In
)
. The error terms

ε = Y − Xβ =
(
Y1 −X>1 β, . . . , Yn −X

>
nβ
)>

=
(
ε1, . . . , εn

)>
then satisfy

(i) ε
∣∣X ∼ Nn(0n, σ2 In

)
.

(ii) ε ∼ Nn
(
0n, σ

2 In
)
.

(iii) εi
i.i.d.∼ ε, i = 1, . . . , n, ε ∼ N

(
0, σ2

)
.

1 normální lineární model
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Proof.

(i) follows from the fact that a multivariate normal distribution is preserved after linear transformations
(only the mean and the covariance matrix changes accordingly).

(ii) follows from (i) and the fact that the conditional distribution ε
∣∣X does not depend on the condition

and hence the (unconditional) distribution of ε must be the same.

(iii) follows from (ii) and basic properties of the multivariate normal distribution (indepedence is the same
as uncorrelatedness, univariate margins are normal as well).

k
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6.2 Properties of the least squares estimators under the
normality

Theorem 6.2 Least squares estimators under the normality.
Let Y

∣∣X ∼ Nn(Xβ, σ2 In
)
, rank

(
Xn×k

)
= r ≤ k. Let Lm×k be a real matrix with non-zero rows

l>1 , . . . , l>m and θ := Lβ =
(
l>1 β, . . . , l>mβ

)>
=
(
θ1, . . . , θm

)>
be a vector of linear combinations of

regression parameters.

If additionally r = k, let β̂ =
(
X>X

)−1X>Y be the least squares estimator of regression coe�cients, θ̂ =

Lβ̂ =
(
l>1 β̂, . . . , l>mβ̂

)>
=
(
θ̂1, . . . , θ̂m

)>
and

V = L
(
X>X

)−1L> =
(
vj,t
)
j,t=1,...,m

, D = diag

(
1
√
v1,1

, . . . ,
1

√
vm,m

)
,

Tj =
θ̂j − θj√
MSe vj,j

, j = 1, . . . ,m, T =
(
T1, . . . , Tm

)>
=

1√
MSe

D
(
θ̂ − θ

)
.

The following then holds.

(i) Ŷ
∣∣X ∼ Nn(Xβ, σ2 H

)
.

(ii) U
∣∣X ∼ Nn(0n, σ2 M

)
.

(iii) θ̂
∣∣X ∼ Nm(θ, σ2 V

)
.

(iv) Statistics Ŷ and U are conditionally, given X, independent.

(v) Statistics θ̂ and SSe are conditionally, given X, independent.

(vi)

∥∥Ŷ − Xβ
∥∥2

σ2
∼ χ2

r.

(vii)
SSe
σ2
∼ χ2

n−r.

(viii) For each j = 1, . . . ,m, Tj ∼ tn−r.

(ix) T |X ∼ mvtm,n−r
(
DVD

)
.

(x) If additionally rank
(
Lm×k

)
= m ≤ r = k then the matrix V is invertible and

1

m

(
θ̂ − θ

)> (
MSe V

)−1 (
θ̂ − θ

)
∼ Fm,n−r.

Proof.
(i) We already know (Gauss-Markov theorem, Theorem 2.4) that E

(
Ŷ
∣∣X) = Xβ and var

(
Ŷ
∣∣X) = σ2 H (for

any β ∈ Rk and any σ2 > 0). At the same time Ŷ = HY is a linear function of Y for which we assume
Y
∣∣X ∼ Nn. Hence, from properties of a (multivariate) normal distribution, we get Ŷ

∣∣X ∼ Nn(Xβ, σ2 H
)
.

(ii) Analogously to point (i), we already know (Lemma 2.7) that E
(
U
∣∣X) = 0n and var

(
U
∣∣X) = σ2 M (for

any β ∈ Rk and any σ2 > 0). At the same time U = MY is a linear function of Y for which we assume
Y
∣∣X ∼ Nn. Hence, from properties of a (multivariate) normal distribution, we get U

∣∣X ∼ Nn(0n, σ2 M
)
.
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(iii) Based on Theorem 2.5 (Gauss-Markov theorem for linear combinations) we know that θ̂ = Lβ̂ is BLUE
of the vector parameter θ = Lβ (i.e., among the other things, E

(
θ̂
∣∣X) = θ for any β ∈ Rk) with

var
(
θ̂
∣∣X) = σ2 V, where V = L

(
X>X

)−1L>.
Since r = k, M

(
X>
)

= Rk (the property used also in the proof of Theorem 2.5). That is, for each
j = 1, . . . , m, lj ∈ M

(
X>
)
. In other words, M

(
L>
)
⊂ M

(
X>
)
. That is, there exist a matrix An×m

such that L> = X>A, i.e., L = A>X. Then

θ̂ = Lβ̂ = A>Xβ̂ = A>Ŷ .

From point (i), we already know that Ŷ
∣∣X ∼ Nn and since θ̂ is a linear function of Ŷ , we get that

also θ̂
∣∣X ∼ Nm. In summary (the mean and the covariance matrix have been justified above), we have

θ̂
∣∣X ∼ Nm(θ, σ2 V

)
.

(iv) For a vector
(
Ŷ
>
, U>

)>
we can write(

Ŷ

U

)
=

(
HY
MY

)
=

(
H
M

)
Y .

That is, the vector
(
Ŷ
>
, U>

)>
is a linear function of the random vector Y for which we assume Y

∣∣X ∼
Nn. Hence, from properties of the normal distribution, a joint (conditional, given X) distribution of the

vector
(
Ŷ
>
, U>

)>
is also multivariate normal. Now, to show that Ŷ and U are (conditionally, given X)

independent, we only have to show that they are uncorrelated. This is easily obtained as follows.

cov
(
Ŷ , U

∣∣X) = cov
(
HY , MY

∣∣X) = H var
(
Y
∣∣X)︸ ︷︷ ︸

σ2 In

M> = σ2 HM = σ2 Q Q>N︸ ︷︷ ︸
0

N> = σ2 0,

where Q and N are matrices with orthonormal bases of the regression and residual space in their columns,
respectively.

(v) θ̂ = Lβ̂ = A>Ŷ for some matrix A (see point iii), i.e., θ̂ is a measurable function of Ŷ .

SSe =
∥∥U∥∥2, i.e., SSe is a measurable function of U .

From point (iv), vectors Ŷ and U are (conditionally, given X) independent and hence also θ̂ and SSe are
(conditionally, given X) independent.

(vi) + (vii) Let us write the response vector Y as Y = Xβ + ε, where ε
∣∣X ∼ Nn(0n, σ

2In) and also
unconditionally ε ∼ Nn(0n, σ

2In) (Lemma 6.1). Then,

Ŷ − Xβ = HY − Xβ = HX︸︷︷︸
X

β + Hε− Xβ = Hε,

U = MY = Mε (Lemma 2.6).

From here, ∥∥Ŷ − Xβ
∥∥2 = ε>H>Hε = ε>Hε, H = QQ>,∥∥U∥∥2 = ε>M>Mε = ε>Mε, M = NN>,

where Q is an n × r matrix with the orthonormal basis of the regression space in its columns and N is
an n× (n− r) matrix with the orthonormal basis of the residual space in its columns.

Let us first explore the residual sum of squares SSe =
∥∥U∥∥2. We have

SSe =
∥∥U∥∥2 = ε>Mε = ε>NN>ε =

∥∥N>ε∥∥2.
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Hence,
1

σ2
SSe =

1

σ2

∥∥U∥∥2 =
∥∥∥ 1

σ
N>ε

∥∥∥2.
As mentioned above, ε

∣∣X ∼ Nn(0n, σ2In
)
. Hence, from linearity and properties of the normal distribution,

1

σ
N>ε

∣∣∣∣X ∼ Nn−r.
Further,

E
( 1

σ
N>ε

∣∣∣X) =
1

σ
N>E

(
ε
∣∣X) = 0n−r,

var
( 1

σ
N>ε

∣∣∣X) =
1

σ2
N> var

(
ε
∣∣X)︸ ︷︷ ︸

σ2In

N ==
σ2

σ2
N>N = In−r.

That is,
1

σ
N>ε

∣∣∣∣X ∼ Nn−r(0n−r, In−r
)
.

From here (sum of squares of independent normals),

1

σ2
SSe

∣∣∣X ∼ χ2
n−r.

The above conditional distribution is the same for almost all values of the condition and hence also
(unconditionally)

1

σ2
SSe ∼ χ2

n−r.

The properties
1

σ2

∥∥Ŷ − Xβ
∥∥2 ∼ χ2

r,
1

σ2

∥∥Ŷ − Xβ
∥∥2∣∣∣X ∼ χ2

r

are shown analogously.

(viii) We can write (for each j = 0, . . . , m)

Tj =
θ̂j − θj√
MSe vj,j

=

θ̂j − θj√
σ2 vj,j√
SSe

σ2 (n− r)

,

where from points (iii) and (vii)

θ̂j − θj√
σ2 vj,j

∣∣∣∣∣X ∼ N (0, 1),
SSe
σ2

∣∣∣∣X ∼ χ2
n−r.

Moreover, from point (v), both statistics θ̂j−θj√
σ2 vj,j

and SSe
σ2 are conditionally, given X, independent. That is,

from the definition of the Student t-distribution, Tj
∣∣X ∼ tn−r . This for almost all values of the condition

X. Hence, also unconditionally, Tj ∼ tn−r .

(ix) We have

T =
1√
MSe

D
(
θ̂ − θ

)
=

√
(n− r)σ2

SSe

√
1

σ2
D
(
θ̂ − θ

)
,

where from points (iii) and (vii)√
1

σ2
D
(
θ̂ − θ

) ∣∣∣X ∼ Nm(0m,
1

σ2
Dσ2 VD

)
≡ Nm

(
0m, DVD

)
,

SSe
σ2

∣∣∣∣X ∼ χ2
n−r.
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Moreover, from point (v), both statistics
√

1
σ2 D

(
θ̂ − θ

)
and SSe

σ2 are conditionally, given X, independent.
That is, from the definition of the multivariate t-distribution (Definition B.4), T

∣∣X ∼ mvtm,n−r(DVD).

(x) The property that the matrix V = L
(
X>X

)−1L> is invertible if rank
(
Lm×r

)
= m ≤ r(= k) was shown

in the proof of Theorem 2.5 (Gauss-Markov for linear combinations). Further,

Q :=
1

m

(
θ̂ − θ

)> (
MSe V

)−1 (
θ̂ − θ

)
=

1

m

(
θ̂ − θ

)> (
σ2 V

)−1 (
θ̂ − θ

)
SSe

σ2 (n− r)

.

From point (iii),
(
θ̂ − θ

) ∣∣X ∼ Nm(0m, σ2 V
)
. Hence,(

θ̂ − θ
)> (

σ2 V
)−1 (

θ̂ − θ
) ∣∣X ∼ χ2

m.

Further, from point (vii), SSe
σ2

∣∣X ∼ χ2
n−r , and from point (v), both statistics

(
θ̂ − θ

)> (
σ2 V

)−1 (
θ̂ − θ

)
and SSe

σ2 are conditionally, given X, independent. That is, from the definition of the F-distribution, Q
∣∣X ∼

Fm,n−r . This for almost all values of the condition X. Hence, also unconditionally, Q ∼ Fm,n−r .
k

Consequence of Theorem 6.2: Least squares estimator of the regression coeffi-
cients in a full-rank normal linear model.
Let Y

∣∣X ∼ Nn(Xβ, σ2 In
)
, rank

(
Xn×k

)
= k. Further, let

V =
(
X>X

)−1
=
(
vj,t
)
j,t=0,...,k−1,

D = diag

(
1
√
v0,0

, . . . ,
1

√
vk−1,k−1

)
.

The following then holds.

(i) β̂
∣∣X ∼ Nk(β, σ2 V

)
.

(ii) Statistics β̂ and SSe are conditionally, given X, independent.

(iii) For each j = 0, . . . , k − 1, Tj :=
β̂j − βj√
MSe vj,j

∼ tn−k.

(iv) T :=
(
T0, . . . , Tk−1

)>
=

1√
MSe

D
(
β̂ − β

)
∼ mvtk,n−k

(
DVD

)
, conditionally given X.

(v)
1

k

(
β̂ − β

)>
MS−1e X>X

(
β̂ − β

)
∼ Fk, n−k.

Proof. Use L = Ik in Theorem 6.2.
k

Theorem 6.2 and its consequence can now be used to perform principal statistical inference, i.e., calculation
of confidence intervals and regions, testing statistical hypotheses, in a normal linear model.
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6.2.1 Statistical inference in a full-rank normal linear model

Assume a full-rank normal linear model Y
∣∣X ∼ Nn(Xβ, σ2 In

)
, rank

(
Xn×k

)
= k and keep denoting

V =
(
X>X

)−1
=
(
vj,t
)
j,t=0,...,k−1.

Inference on a chosen regression coefficient

First, take a chosen j ∈
{

0, . . . , k − 1
}
. We then have the following.

• Standard error of β̂j and confidence interval for βj

We have var
(
β̂j
∣∣X) = σ2 vj,j (Lemma 2.2) which is unbiasedly estimated as MSe vj,j (Lemma 2.7). The

square root of this quantity, i.e., estimated standard deviation of β̂j is then called as standard error2 of the

estimator β̂j . That is,

S.E.
(
β̂j
)

=
√

MSe vj,j . (6.2)

The standard error (6.2) is also the denominator of the t-statistic Tj from point (iii) of Consequence of
Theorem 6.2. Hence the lower and the upper bounds of the Wald-type (1− α) 100% confidence interval
for βj based on the statistic Tj are

βLj = β̂j − S.E.
(
β̂j
)
tn−k

(
1− α

2

)
,

βUj = β̂j + S.E.
(
β̂j
)
tn−k

(
1− α

2

)
.

(6.3)

That is, for any β0 =
(
β0
0 , . . . , β

0
k−1
)> ∈ Rk and for any j = 0, . . . , k − 1

P
((
βLj , β

U
j

)
3 β0

j ; β = β0
)

= 1− α.

Analogously, also one-sided confidence interval can be constructed.

• Test on a value of βj

Suppose that for a given β0
j ∈ R, we aim in testing H0: βj = β0

j ,

H1: βj 6= β0
j .

The Wald-type test based on point (iii) of Consequence of Theorem 6.2 proceeds as follows:

Test statistic: Tj,0 =
β̂j − β0

j

S.E.
(
β̂j
) =

β̂j − β0
j√

MSe vj,j
.

Reject H0 if |Tj,0| ≥ tn−k
(

1− α

2

)
.

P-value when Tj,0 = tj,0: p = 2CDFt, n−k
(
− |tj,0|

)
.

Analogously, also one-sided tests can be conducted.

Notation. In the following, for simplicity, expressions of the Wald-type confidence intervals like (6.3) will
be briefly written as (

βLj , β
U
j

)
≡ β̂j ± S.E.

(
β̂j
)
tn−k

(
1− α

2

)
,

2 směrodatná, příp. standardní chyba
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Simultaneous inference on a vector of regression coefficients

When the interest lies in the inference for the full vector of the regression coe�cients β, the following
procedures can be used.

• Simultaneous confidence region3 for β

It follows from point (v) of Consequence of Theorem 6.2 that the simultaneous (1− α) 100% confidence
region for β is the set

S(α) =
{
β ∈ Rk :

(
β − β̂

)> (
MS−1e X>X

) (
β − β̂

)
< kFk,n−k(1− α)

}
.

That is, for any β0 ∈ Rk

P
(
S(α) 3 β0; β = β0

)
= 1− α.

Note that S(α) is an ellipsoid with center: β̂,

shape matrix: MSe
(
X>X

)−1
= v̂ar

(
β̂
∣∣X),

diameter:
√
kFk,n−k(1− α).

Remember from the linear algebra and geometry lectures that the shape matrix determines the principal
directions of the ellipsoid as those are given by the eigen vectors of this matrix. In this case, the principal
directions of the confidence ellipsoid are given by the eigen vectors of the estimated covariance matrix
v̂ar
(
β̂
∣∣X).

• Test on a value of β

Suppose that for a given β0 ∈ Rk , we aim in testing H0: β = β0,

H1: β 6= β0.

The Wald-type test based on point (v) of Consequence of Theorem 6.2 proceeds as follows:

Test statistic: Q0 =
1

k

(
β̂ − β0

)>
MS−1e X>X

(
β̂ − β0

)
.

Reject H0 if Q0 ≥ Fk,n−k(1− α).

P-value when Q0 = q0: p = 1− CDFF, k,n−k
(
q0
)
.

3 simultánní konfidenční oblast
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Inference on a chosen linear combination

Let θ = l>β, l 6= 0k and let θ̂ = l>β̂ be its least squares estimator.

• Standard error of θ̂ and confidence interval for θ

We have var
(
θ̂
∣∣X) = σ2 l>

(
X>X

)−1
l (Theorem 2.5) which is unbiasedly estimated as MSe l>

(
X>X

)−1
l

(Lemma 2.7). Hence the standard error of θ̂ is

S.E.
(
θ̂
)

=

√
MSe l>

(
X>X

)−1
l. (6.4)

The standard error (6.4) is also the denominator of the appropriate t-statistic from point (viii) of Theo-
rem 6.2. Hence the lower and the upper bounds of the Wald-type (1− α) 100% confidence interval for θ
based on this t-statistic are (

θL, θU
)
≡ θ̂ ± S.E.

(
θ̂
)
tn−k

(
1− α

2

)
.

That is, for any θ0 ∈ R,
P
((
θL, θU

)
3 θ0; θ = θ0

)
= 1− α.

Analogously, also one-sided confidence interval can be constructed.

• Test on a value of θ

Suppose that for a given θ0 ∈ R, we aim in testing H0: θ = θ0,

H1: θ 6= θ0.

The Wald-type test based on point (viii) of Theorem 6.2 proceeds as follows:

Test statistic: T0 =
θ̂ − θ0

S.E.
(
θ̂
) =

θ̂ − θ0√
MSe l>

(
X>X

)−1
l
.

Reject H0 if |T0| ≥ tn−k
(

1− α

2

)
.

P-value when T0 = t0: p = 2CDFt, n−k
(
− |t0|

)
.

Analogously, also one-sided tests can be conducted.
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Simultaneous inference on a set of linear combinations

Finally, let θ = Lβ, where L is an m × k matrix with m ≤ k linearly independent rows. Let θ̂ = Lβ̂ be
the least squares estimator of θ.

• Simultaneous confidence region for θ

It follows from point (x) of Theorem 6.2 that the simultaneous (1 − α) 100% confidence region for θ is
the set

S(α) =
{
θ ∈ Rm :

(
θ − θ̂

)> {
MSe L

(
X>X

)−1L>}−1 (θ − θ̂) < mFm,n−k(1− α)
}
.

That is, for any θ0 ∈ Rm

P
(
S(α) 3 θ0; θ = θ0

)
= 1− α.

Note that S(α) is an ellipsoid with center: θ̂,

shape matrix: MSe L
(
X>X

)−1L> = v̂ar
(
θ̂
∣∣X),

diameter:
√
mFm,n−k(1− α).

• Test on a value of θ

Suppose that for a given θ0 ∈ Rm, we aim in testing H0: θ = θ0,

H1: θ 6= θ0.

The Wald-type test based on point (x) of Theorem 6.2 proceeds as follows:

Test statistic: Q0 =
1

m

(
θ̂ − θ0

)> {
MSe L

(
X>X

)−1L>}−1 (θ̂ − θ0).
Reject H0 if Q0 ≥ Fm,n−k(1− α).

P-value when Q0 = q0: p = 1− CDFF,m,n−k
(
q0
)
.

Note. If we take L as a submatrix of the identity matrix Ik by selecting some of its rows, the above
procedures can then be used to infer simultaneously on a subvector of the regression coe�cients β.

Note. All tests, confidence intervals and confidence regions derived in this Section were derived under the
assumption of a normal linear model. Nevertheless, we show in Chapter 16 that under certain conditions,
all those methods of statistical inference remain asymptotically valid even if normality does not hold.
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6.3 Confidence interval for the model based mean, pre-
diction interval

We keep assuming that the data
(
Yi, X

>
i

)>
, i = 1, . . . , n, follow a normal linear model. That is,

Y
∣∣X ∼ Nn(Xβ, σ2 In

)
,

from which it also follows
Yi
∣∣Xi ∼ N (X>i β, σ

2), i = 1, . . . , n.

Furthermore, the error terms εi = Yi − X>i β, i = 1, . . . , n are i.i.d. distributed as ε ∼ N (0, σ2)
(Lemma 6.1).

Remember that X ⊆ Rk denotes a sample space of the regressor random vectors X1, . . . , Xn. Let
xnew ∈ X and let

Ynew = x>newβ + εnew,

where εnew ∼ N (0, σ2) is independent of ε =
(
ε1, . . . , εn

)>
. A value of Ynew is thus a value of a “new”

observation sampled from the conditional distribution

Ynew
∣∣Xnew = xnew ∼ N (x>newβ, σ

2)

independently of the “old” observations. We will now tackle two important problems:

(i) Interval estimation of µnew := E
(
Ynew

∣∣Xnew = xnew
)

= x>newβ.

(ii) Interval estimation of the value of the random variable Ynew itself, given the regressor vectorXnew =
xnew .

Solution to the outlined problems will be provided by the following theorem.

Theorem 6.3 Confidence interval for the model based mean, prediction interval.
Let Y

∣∣X ∼ Nn(Xβ, σ2 In
)
, rank

(
Xn×k

)
= k (full-rank model), β̂ =

(
X>X

)−1X>Y is the LSE of the
regression parameters β. Let xnew ∈ X , xnew 6= 0k . Let εnew ∼ N (0, σ2) is independent of ε = Y − Xβ.
Finally, let Ynew = x>newβ + εnew . The following then holds:

(i) The quantity µ̂new := x>newβ̂ is the best linear unbiased estimator (BLUE) of µnew := x>newβ. The
standard error of µ̂new is

S.E.
(
µ̂new

)
=

√
MSe x>new

(
X>X

)−1
xnew

and the lower and the upper bound of the (1− α) 100% confidence interval for µnew are(
µLnew, µ

U
new

)
≡ µ̂new ± S.E.

(
µ̂new

)
tn−k

(
1− α

2

)
. (6.5)

(ii) A (random) interval with the bounds(
Y Lnew, Y

U
new

)
≡ µ̂new ± S.E.P.

(
xnew

)
tn−k

(
1− α

2

)
, (6.6)

where

S.E.P.
(
xnew

)
=

√
MSe

{
1 + x>new

(
X>X

)−1
xnew

}
, (6.7)

covers with the probability of (1− α) the value of Ynew .
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Notes.
• Statement (i) of Theorem 6.3 says that for any xnew ∈ X and any β0 ∈ Rk providing µ0

new = x>newβ
0

the following holds:

P
((
µLnew, µ

U
new

)
3 µ0

new; β = β0
)

= 1− α.

• Statement (ii) of Theorem 6.3 says that for any xnew ∈ X , any β0 ∈ Rk and any σ2
0 ∈ (0, ∞) leading to

Y 0
new = x>newβ

0 + ε0new , where ε
0
new is sampled from N

(
0, σ2

0

)
independently of ε, the following holds:

P
((
Y Lnew, Y

U
new

)
3 Y 0

new; β = β0, σ2 = σ2
0

)
= 1− α.

Proof.
(i) The BLUE property of the estimator µ̂new follows from the Gauss-Markov theorem for linear combinations
(Theorem 2.5), the form of the confidence interval for µnew follows from point (viii) of Theorem 6.2, see also
Section 6.2.1.

(ii) Conditionally, given X1, . . . , Xn, Xnew :

Ynew ∼ N (µnew, σ
2) (since εnew ∼ N (0, σ2)),

µ̂new ∼ N (µnew, σ
2 v), v = x>new

(
X>X

)−1
xnew (point iii of Theorem 6.2),

Y and Ynew are independent (since ε and εnew are independent).

At the same time, µ̂new is a (linear) function of Y and hence also µ̂new and Ynew are independent
(conditionally, given X1, . . . , Xn, Xnew).

It now follows from above and properties of the normal distribution that

(Ynew − µ̂new)
∣∣X1, . . . , Xn, Xnew ∼ N

(
0, σ2 (1 + v)

)
,

or written in an alternative way

Ynew − µ̂new√
σ2 (1 + v)

∣∣∣∣X1, . . . , Xn, Xnew ∼ N
(
0, 1

)
.

Further, SSe and µ̂new are conditionally independent (point v of Theorem 6.2). At the same time, SSe is
a measurable function of Y and hence, SSe and Ynew are again conditionally independent. It then follows
that also (Ynew − µ̂new) and SSe are conditionally independent.

Finally, SSe
σ2 ∼ χ2

n−r (both conditionally and unconditionally, see proof of point vii of Theorem 6.2).

Hence, conditionally, given X1, . . . , Xn, Xnew ,

Ynew − µ̂new√
σ2 (1 + v)

SSe
σ2 (n− k)

=
Ynew − µ̂new√
MSe (1 + v)

∼ tn−k.

This holds for almost all values of X1 = x1, . . . , Xn = xn, Xnew = xnew and hence for any xnew ∈ X ,
any β0 ∈ Rk and any σ2

0 ∈ (0, ∞) leading to Y 0
new = x>newβ

0 + ε0new

P

(∣∣∣∣ Y 0
new − µnew√
MSe (1 + v)

∣∣∣∣ < tn−k
(
1− α

2

)
, β = β0, σ2 = σ2

0

)
= 1− α.

That is, if we define

S.E.P.(xnew) :=
√

MSe (1 + v) =

√
MSe

(
1 + x>new

(
X>X

)−1
xnew

)
,

we get

P

((
µ̂new ± S.E.P.(xnew) tn−k

(
1− α

2

))
3 Y 0

new, β = β0, σ2 = σ2
0

)
= 1− α.

k
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Terminology (Confidence interval for the model based mean, prediction interval,
standard error of prediction).
• The interval with the bounds (6.5) is called the confidence interval for the model based mean.

• The interval with the bounds (6.6) is called the prediction interval.

• The quantity (6.7) is called the standard error of prediction.

Terminology (Fitted regression function).
The function

m̂(x) = x>β̂, x ∈ X ,

which, by Theorem 6.3, provides BLUE’s of the values of

µ(x) := E
(
Ynew

∣∣Xnew = x
)

= x>β

and also provides predictions for Ynew = x>β + εnew , is called the fitted regression function.4

Terminology (Confidence band around the regression function, prediction band).
As was explained in Section 1.1.3, the regressors Xi ∈ X ⊆ Rk used in the linear model are often obtained
by transforming some original covariates Zi ∈ Z ⊆ Rp. Common situation is that Z ⊆ R is an interval and

Xi =
(
Xi,0, . . . , Xi,k−1

)>
=
(
t0(Zi), . . . , tk−1(Zi)

)>
= t(Zi), i = 1, . . . , n,

where t : R −→ Rk is a suitable transformation such that

E
(
Yi
∣∣Zi) = t>(Zi)β = X>i β.

Suppose again that the corresponding linear model is of full-rank with the LSE β̂ of the regression coef-
ficients. Confidence intervals for the model based mean or prediction intervals can then be calculated for
an (equidistant) sequence of values znew,1, . . . , znew,N ∈ Z and then drawn over a scatterplot of observed

data
(
Y1, Z1

)>
, . . . ,

(
Yn, Zn

)>
. In this way, two di�erent bands with a fitted regression function

m̂(z) = t>(z)β̂, z ∈ Z,

going through the middle of both the bands, are obtained. In this context,

(i) The band based on the confidence intervals for the model based mean (Eq. 6.5) is called the confidence
band around the regression function;5

(ii) The band based on the prediction intervals (Eq. 6.6) is called the prediction band.6

4 odhadnutá regresní funkce 5 pás spolehlivosti okolo regresní funkce 6 predikční pás
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Illustrations
Kojeni (n = 99)
bweight ∼ blength
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Hosi0 (n = 4838)
bweight ∼ blength

46 48 50 52 54

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Birth length [cm]

B
ir

th
 w

ei
gh

t [
g]

Confidence band
Prediction band



6.4. DISTRIBUTION OF THE LINEAR HYPOTHESES TEST STATISTICS UNDER THE
ALTERNATIVE 180

6.4 Distribution of the linear hypotheses test statistics
under the alternative

This section of the text contains materials which will not be examined.

Section 6.2 provided classical tests of the linear hypotheses (hypotheses on the values of linear combinations
of regression coe�cients). To allow for power or sample size calculations, we additionally need distribution
of the test statistics under the alternatives.

Theorem 6.4 Distribution of the linear hypothesis test statistics under the alterna-
tive.
Let Y

∣∣X ∼ Nn(Xβ, σ2In
)
, rank(Xn×k) = k. Let l 6= 0k and let θ̂ = l>β̂ be the LSE of the parameter

θ = l>β. Let θ0, θ1 ∈ R, θ0 6= θ1 and let

T0 =
θ̂ − θ0√

MSe l>
(
X>X

)−1
l
.

Then under the hypothesis θ = θ1,

T0
∣∣X ∼ tn−k(λ), λ =

θ1 − θ0√
σ2 l>

(
X>X

)−1
l
.

Note. The statistic T0 is the test statistic to test the null hypothesis H0: θ = θ0 using point (viii) of
Theorem 6.2.

Theorem 6.5 Distribution of the linear hypotheses test statistics under the alter-
native.
Let Y

∣∣X ∼ Nn(Xβ, σ2In
)
, rank(Xn×k) = k. Let Lm×k be a real matrix with m ≤ k linearly independent

rows. Let θ̂ = Lβ̂ be the LSE of the vector parameter θ = Lβ. Let θ0, θ1 ∈ Rm, θ0 6= θ1 and let

Q0 =
1

m

(
θ̂ − θ0

)> {
MSe L

(
X>X

)−1L>}−1 (θ̂ − θ0).
Then under the hypothesis θ = θ1,

Q0

∣∣X ∼ Fm,n−r(λ), λ =
(
θ1 − θ0

)> {
σ2 L

(
X>X

)−1L>}−1 (θ1 − θ0).

Note. The statistic Q0 is the test statistic to test the null hypothesis H0: θ = θ0 using point (x) of
Theorem 6.2.

Note. We derived only a conditional (given the regressors) distribution of the test statistics at hand. This
corresponds to the fact that power and sample size calculations for linear models are mainly used in the
area of designed experiments7 where the regressor values, i.e., the model matrix X is assumed to be fixed
and not random. A problem of the sample size calculation then involves not only calculation of needed
sample size n but also determination of the form of the model matrix X. More can be learned in the course
Experimental Design (NMST436).8

7 navržené experimenty 8 Návrhy experimentů (NMST436)



Chapter 7
Coefficient of Determination

In this chapter, we develop a quantity called coe�cient of determination which is often considered as a basic
measure of a model quality. Nevertheless, as will be shown, it only measures a prediction quality (in certain
sense) of the model. For derivations used in this chapter, we do not need to know the transformation which
links original covariates and regressors considered in a particular model. That is, we will now assume that

data are represented by n random vectors
(
Yi, X

>
i

)>
, i = 1, . . . , n, and a linear model with the response

vector Y =
(
Y1, . . . , Yn

)>
and the model matrix X with vectors X>1 , . . . , X

>
n in rows is used to model

the conditional expectations E
(
Yi
∣∣Xi

)
, i = 1, . . . , n.

181
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7.1 Intercept only model

Notation (Response sample mean).

The sample mean over the response vector Y =
(
Y1, . . . , Yn

)>
will be denoted as Y . That is,

Y =
1

n

n∑
i=1

Yi =
1

n
Y >1n.

Definition 7.1 Regression and total sums of squares in a linear model.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In
)
, rank(Xn×k) = r ≤ k. The following expressions define the

following quantities:

(i) Regression sum of squares1 and corresponding degrees of freedom:

SSR =
∥∥Ŷ − Y 1n

∥∥2 =

n∑
i=1

(
Ŷi − Y

)2
, νR = r − 1,

(ii) Total sum of squares2 and corresponding degrees of freedom:

SST =
∥∥Y − Y 1n

∥∥2 =

n∑
i=1

(
Yi − Y

)2
, νT = n− 1.

Lemma 7.1 Model with intercept only.
Let Y ∼

(
1nγ, ζ

2In
)
. Then

(i) Ŷ = Y 1n =
(
Y , . . . , Y

)>
.

(ii) SSe = SST .

Proof. This is a full-rank model with X = 1n. Further,

(
X>X

)−1
=
(
1>n 1n

)−1
=

1

n
, X>Y = 1>nY =

n∑
i=1

Yi.

Hence γ̂ = 1
n

∑n
i=1 Yi = Y and Ŷ = Xγ̂ = 1nY = Y 1n.

k

1 regresní součet čtverců 2 celkový součet čtverců
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7.2 Models with intercept

Lemma 7.2 Identity in a linear model with intercept.
Let Y

∣∣X ∼ (Xβ, σ2In
)
where 1n ∈M

(
X
)
. Then

1>nY =

n∑
i=1

Yi =

n∑
i=1

Ŷi = 1>n Ŷ .

Proof.
• Follows directly from the normal equations if 1n is one of the columns of X matrix.

• General proof:

1>n Ŷ = Ŷ
>

1n =
(
HY

)>
1n = Y >H1n = Y >1n,

since H1n = 1n due to the fact that 1n ∈M
(
X
)
.

k

Lemma 7.3 Breakdown of the total sum of squares in a linear model with inter-
cept.
Let Y

∣∣X ∼ (Xβ, σ2In
)
where 1n ∈M

(
X
)
. Then

SST = SSe + SSR

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Yi − Ŷi

)2
+

n∑
i=1

(
Ŷi − Y

)2
.

Proof. The identity SST = SSe + SSR follows trivially if r = rank
(
X
)

= 1 since thenM
(
X
)

=M
(
1n
)

and hence (by Lemma 7.1) Ŷ = Y 1n. Then SST = SSe, SSR = 0.

The identity SST = SSe + SSR for general rank r ≥ 1 can be shown directly while using a little algebra.
We have

SST =

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Yi − Ŷi + Ŷi − Y

)2
=

n∑
i=1

(
Yi − Ŷi

)2
+

n∑
i=1

(
Ŷi − Y

)2
+ 2

n∑
i=1

(
Yi − Ŷi

)(
Ŷi − Y

)
= SSe + SSR + 2

{ n∑
i=1

YiŶi − Y
n∑
i=1

Yi + Y

n∑
i=1

Ŷi −
n∑
i=1

Ŷ 2
i

}
︸ ︷︷ ︸

0

= SSe + SSR

since
∑n
i=1 Yi =

∑n
i=1 Ŷi and additionally

n∑
i=1

YiŶi = Y >Ŷ = Y >HY ,
n∑
i=1

Ŷ 2
i = Ŷ

>
Ŷ = Y >HHY = Y >HY .



7.2. MODELS WITH INTERCEPT 184

k

Using materials from the chapter on submodels (Chapter 8) we even do not need the algebra used above.
In the following, let r = rank

(
X
)
> 1. Then, model Y |X ∼

(
1nβ

0, σ2In
)
is a submodel of the model

Y
∣∣X ∼ (

Xβ, σ2In
)
and by Lemma 7.1, SST = SS0e . Further, from definition of SSR, it equals to

SSR =
∥∥D∥∥2, where D = Ŷ − Ŷ

0
. By point (iv) of Theorem 8.1 (on a submodel),

∥∥D∥∥2 = SS0e − SSe. In
other words,

SSR = SST − SSe.

k
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7.3 Theoretical evaluation of a prediction quality of the
model

One of the usual aims of regression modelling is so called prediction in which case the model based response

mean is used as the predicted response value. In such situations, it is assumed that data
(
Yi, X

>
i

)>
,

i = 1, . . . , n, are a random sample from some joint distribution of a generic random vector
(
Y, X>

)>
,

X =
(
X0, . . . , Xk−1

)>
and the conditional distribution Y |X can be described by a linear model, i.e.,

E
(
Y
∣∣X) = X>β, var

(
Y
∣∣X) = σ2 (7.1)

for some β =
(
β0, . . . , βk−1

)> ∈ Rk and some σ2 > 0, which leads to the linear model

Y |X ∼
(
Xβ, σ2In

)
, Y =


Y1
...

Yn

 , X =


X>1
...

X>n


for the data. As usually, we assume rank

(
X
)

= r ≤ k < n (almost surely).

In the following, let γ ∈ R and ζ2 > 0 be the marginal mean and the variance, respectively, of the response
random variable Y , i.e.,

E
(
Y
)

= γ, var
(
Y
)

= ζ2. (7.2)

This corresponds to the only intercept linear model

Y ∼
(
1nγ, ζ

2In
)

for the data with a model matrix 1n of rank 1.

Suppose now that all model parameters (β, γ, σ2, ζ2) related to the distribution of the random vector(
Y, X>

)>
are known and the aim is to provide the prediction Ŷ of the response value Y . We could also

say that we want to predict the Y -component of a not yet observed (“new”) random vector
(
Ynew, X

>
new

)>
which is distributed as the generic vector

(
Y, X>

)>
. Nevertheless, for simplicity of notation, we will not

use the subscript new and will simply work with the random vector
(
Y, X>

)>
whose distribution satisfies

(7.1) and (7.2).

Suppose further that the random vector
(
Y, X>

)>
is defined on a probability space

(
Ω, A, P

)
and let

σ(X) ⊆ A be a σ-algebra generated by the random vector X , P|σ(X) be a probability measure restricted
to this σ-algebra and L2(X) = L2

(
Ω, σ(X), P|σ(X)

)
. Further, let σ(∅) =

{
∅, Ω

}
be a trivial σ-algebra

on Ω, P|σ(∅) the related restricted probability measure and L2(∅) = L2
(
Ω, σ(∅), P|σ(∅)

)
.

A problem of prediction of a value of the random variable Y ∈ L2
(
Ω, A, P

)
classically corresponds to

looking for Ŷ which in a certain sense minimizes the mean squared error of prediction3 (MSEP)

MSEP
(
Ŷ
)

= E
(
Ŷ − Y

)2
.

We now distinguish two situations:

(i) No exogenous information represented by the value of a random vector X is available to construct
the prediction. In that case, we get (see also Probability Theory 1 (NMSA333) course)

Ŷ = argmin
Ỹ ∈L2(∅)

E
(
Ỹ − Y

)2
= argmin

Ỹ ∈R
E
(
Ỹ − Y

)2
= E

(
Y
)

= γ := ŶM .

In the following, we will call ŶM as a marginal prediction of Y since it is based purely on the
marginal distribution of the random variable Y . The MSEP is then

MSEP
(
ŶM

)
= E

(
γ − Y

)2
= var

(
Y
)

= ζ2.

3 střední čtvercová chyba predikce
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(ii) The value of a random vector X is available, which is mathematically represented by knowledge of
the σ-algebra σ(X) and the related probability measure P|σ(X). This can be used to construct the
prediction. Then (again, see Probability Theory 1 (NMSA333) course for details)

Ŷ = argmin
Ỹ ∈L2(X)

E
(
Ỹ − Y

)2
= E

(
Y
∣∣X) = X>β := Ŷ C ,

which will be referred to as a conditional prediction of Y since it is based on the conditional
distribution of Y given X . Its MSEP is

MSEP
(
Ŷ C
)

= E
(
X>β − Y

)2
= E

[
E
{(
X>β − Y

)2 ∣∣∣X}]
= E

{
var
(
Y
∣∣X)} = E

(
σ2
)

= σ2.

In practice, the conditional prediction corresponds to a situation when covariates/regressors represented by
the vector X are available to provide some information concerning the response Y . On the other hand, the
marginal prediction corresponds to a situation when no exogenous information on Y is available.

To compare the marginal and the conditional prediction, we introduce the ratio of the two MSEP’s:

MSEP
(
Ŷ C
)

MSEP
(
ŶM

) =
σ2

ζ2
.

That is, the ratio σ2/ζ2 quantifies advantage of using the prediction Ŷ C based on the regression model
and the covariate/regressor values X compared to using the prediction ŶM which does not require any
exogenous information and is equal to the marginal response expectation.
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7.4 Coefficient of determination

In practice, data (the response vector Y and the model matrix X) are available to estimate the unknown
parameters using the linear models MC : Y

∣∣X ∼ (Xβ, σ2 In
)
, rank

(
X
)

= r and MM : Y ∼
(
1nγ, ζ

2 In
)
.

The unbiased estimators of the conditional and the marginal variance are:

σ̂2 =
1

n− r
SSe =

1

n− r

n∑
i=1

(Yi − Ŷi)2,

ζ̂2 =
1

n− 1
SST =

1

n− 1

n∑
i=1

(Yi − Y )2,

where Ŷ =
(
Ŷ1, . . . , Ŷn

)>
are the fitted values from the model MC . Note that ζ̂2 is a classical sample

variance based on data given by the response vector Y . That is, a suitable estimator of the ratio σ2/ζ2 is

1
n−r SSe
1

n−1SST
=
n− 1

n− r
SSe
SST

. (7.3)

Alternatively, if Yi
i.i.d.∼ Y , i = 1, . . . , n, Y ∼ N (γ, ζ2), that is, if Y1, . . . , Yn is a random sample from

N (γ, ζ2), it can be (it was) easily derived that a quantity

1

n
SST =

1

n

n∑
i=1

(
Yi − Y

)2
is the maximum-likelihood estimator4 (MLE) of the marginal variance ζ2. Analogously, if Y |X ∼ N

(
X>β, σ2

)
,

it can be derived (see the exercise class) that a quantity

1

n
SSe =

1

n

n∑
i=1

(
Yi − Ŷ

)2
is the MLE of the conditional variance σ2. Alternative estimator of the ratio σ2/ζ2 is then

1
n SSe
1
nSST

=
SSe
SST

. (7.4)

Remember that in the model Y |X ∼
(
Xβ, σ2In

)
with intercept (1n ∈M

(
X
)
), we have,

n∑
i=1

(
Yi − Y

)2
︸ ︷︷ ︸

SST

=

n∑
i=1

(
Yi − Ŷi

)2
︸ ︷︷ ︸

SSe

+

n∑
i=1

(
Ŷi − Y

)2
,︸ ︷︷ ︸

SSR

where the three sums of squares represent di�erent sources of the response variability:

SST (total sum of squares): original (marginal) variability of the response,

SSe (residual sum of squares): variability not explained by the regression model,

(residual variability, conditional variability)

SSR (regression sum of squares): variability explained by the regression model.

Expressions (7.3) and (7.4) then motivate the following definition.

4 maximálně věrohodný odhad
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Definition 7.2 Coefficients of determination.
Consider a linear model Y

∣∣X ∼ (Xβ, σ2In
)
, rank(X) = r where 1n ∈M

(
X
)
. A value

R2 = 1− SSe
SST

is called the coe�cient of determination5 of the linear model.

A value

R2
adj = 1− n− 1

n− r
SSe
SST

is called the adjusted coe�cient of determination6 of the linear model.

Notes.
• By Theorem 7.3, SST = SSe + SSR and at the same time SST ≥ 0. Hence

0 ≤ R2 ≤ 1, 0 ≤ R2
adj ≤ 1,

and R2 can also be expressed as

R2 =
SSR
SST

.

• Both R2 and R2
adj are often reported as R2 · 100% and R2

adj · 100% which can be interpreted as
a percentage of the response variability explained by the regression model.

• Both R2 and R2
adj quantify a relative improvement of the quality of prediction if the regression model

and the conditional distribution of response given the covariates is used compared to the prediction based
on the marginal distribution of the response.

• Both coe�cients of determination only quantifies the predictive ability of the model. They do not say
much about the quality of the model with respect to the possibility to capture correctly the conditional
mean E

(
Y
∣∣X). Even a model with a low value of R2 (R2

adj ) might be useful with respect to modelling

the conditional mean E
(
Y
∣∣X). The model is perhaps only useless for prediction purposes.

5 koeficient determinace 6 upravený koeficient determinace



Chapter 8
Submodels

In this chapter, we will again consider the original response-covariate data being represented by n random

vectors
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp, i = 1, . . . , n. The main aim is still to find
a suitable model to express the (conditional) response expectation E

(
Y
∣∣Z), where Z is a matrix with

vectors Z1, . . ., Zn in its rows. Suppose that t0 : Rp −→ Rk0 and t : Rp −→ Rk are two transformations
of the covariates leading to the model matrices

X0 =


X0

1

>

...

X0
n

>

 ,

X0
1 = t0(Z1),

...

X0
n = t0(Zn),

X =


X>1
...

X>n

 ,

X1 = t(Z1),
...

Xn = t(Zn).

(8.1)

Briefly, we will write
X0 = t0(Z), X = t(Z).

Let (almost surely),
rank(X0) = r0, rank(X) = r, (8.2)

where 0 < r0 ≤ k0 < n, 0 < r ≤ k < n. We will now deal with a situation when the matrices X0 and X
determine two linear models:

Model M0 : Y |Z ∼
(
X0β0, σ2 In

)
,

Model M : Y |Z ∼
(
Xβ, σ2 In

)
,

and the task is to decide on whether one of the two models fits “better” the data. In this chapter, we limit
ourselves to a situation when M0 is so called submodel of the model M.

189
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8.1 Submodel

Definition 8.1 Submodel.
We say that the model M0 is the submodel1 (or the nested model2) of the model M if

M
(
X0
)
⊂M

(
X
)

with r0 < r.

Notation. Situation that a model M0 is a submodel of a model M will be denoted as

M0 ⊂ M.

Notes.
• Submodel provides a more parsimonious expression of the response expectation E

(
Y
∣∣Z).

• The fact that the submodel M0 holds means E
(
Y
∣∣Z) ∈M(X0

)
⊂M

(
X
)
. That is, if the submodel M0

holds then also the larger model M holds. That is, there exist β0 ∈ Rk0 and β ∈ Rk such that

E
(
Y
∣∣Z) = X0β0 = Xβ.

• The fact that the submodel M0 does not hold but the model M holds means that E
(
Y
∣∣Z) ∈ M(X) \

M
(
X0
)
. That is, there exist no β0 ∈ Rk0 such that E

(
Y
∣∣Z) = X0β0.

8.1.1 Projection considerations

Decomposition of the n-dimensional Euclidean space

SinceM
(
X0
)
⊂M

(
X
)
⊂ Rn, it is possible to construct an orthonormal vector basis

Pn×n =
(
p1, . . . , pn

)
of the n-dimensional Euclidean space as

P =
(
Q0, Q1, N

)
,

where

• Q0
n×r0 : orthonormal vector basis of the submodel regression space, i.e.,

M
(
X0
)

=M
(
Q0
)
.

• Q1
n×(r−r0): orthonormal vectors such that Q :=

(
Q0, Q1

)
is an orthonormal vector basis of the model

regression space, i.e.,

M
(
X
)

=M
(
Q
)

=M
((

Q0, Q1
))
.

• Nn×(n−r): orthonormal vector basis of the model residual space, i.e.,

M
(
X
)⊥

=M
(
N
)
.

Further,

1 podmodel 2 vnořený model
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• N0
n×(n−r0) :=

(
Q1, N

)
: orthonormal vector basis of the submodel residual space, i.e.,

M
(
X0
)⊥

=M
(
N0
)

=M
((

Q1, N
))
.

It follows from the orthonormality of columns of the matrix P:

In = P>P = PP> = Q0 Q0> + Q1 Q1> + NN>

= QQ> + NN>

= Q0 Q0> + N0 N0>.

Notation. In the following, let

H0 = Q0 Q0>,

M0 = N0 N0> = Q1 Q1> + NN>.

Notes.
• Matrices H0 and M0 which are symmetric and idempotent, are projection matrices into the regression
and the residual space, respectively, of the submodel.

• The hat matrix and the residual projection matrix of the model can now also be written as

H = QQ> = Q0 Q0> + Q1 Q1> = H0 + Q1 Q1>,

M = NN> = M0 −Q1 Q1>.

Projections into subspaces of the n-dimensional Euclidean space

Let y ∈ Rn. We can then write

y = In y =
(
Q0Q0> + Q1Q1> + NN>

)
y

= Q0Q0>y + Q1Q1>y︸ ︷︷ ︸
ŷ

+ NN>y︸ ︷︷ ︸
u

= Q0Q0>y︸ ︷︷ ︸
ŷ0

+ Q1Q1>y + NN>y.︸ ︷︷ ︸
u0

We have

• ŷ =
(
Q0 Q0> + Q1 Q1>)y = Hy ∈M

(
X
)
.

• u = NN>y = My ∈M
(
X
)⊥

.

• ŷ0 := Q0 Q0>y = H0y ∈M
(
X0
)
.

• u0 :=
(
Q1 Q1> + NN>

)
y = M0y ∈M

(
X0
)⊥

.

• d := Q1 Q1>y = ŷ − ŷ0 = u0 − u.
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8.1.2 Properties of submodel related quantities

Notation (Quantities related to a submodel).
When dealing with a pair of a model and a submodel, quantities related to the submodel will be denoted by
a superscript (or by a subscript) 0. In particular:

• Ŷ
0

= H0Y = Q0Q0>Y : fitted values in the submodel (projection of Y into the submodel regression
space).

• U0 = Y − Ŷ
0

= M0Y =
(
Q1Q1> + NN>

)
Y : residuals of the submodel.

• SS0e =
∥∥U0

∥∥2 : residual sum of squares of the submodel.

• ν0e = n− r0 : submodel residual degrees of freedom.

• MS0e =
SS0e
ν0e

: submodel residual mean square.

Additionally, as D, we denote projection of the response vector Y into the spaceM
(
Q1
)
, i.e.,

D = Q1 Q1>Y = Ŷ − Ŷ
0

= U0 −U . (8.3)

Theorem 8.1 On a submodel.
Consider two linear models M : Y |Z ∼

(
Xβ, σ2 In

)
and M0 : Y |Z ∼

(
X0β0, σ2 In

)
such that M0 ⊂ M.

Let the submodel M0 holds, i.e., let E
(
Y
∣∣Z) ∈M(X0

)
. Then

(i) Ŷ
0
is the best linear unbiased estimator (BLUE) of a vector parameter µ0 = X0β0 = E

(
Y
∣∣Z).

(ii) The submodel residual mean square MS0e is the unbiased estimator of the residual variance σ
2.

(iii) Statistics Ŷ
0
and U0 are conditionally, given Z, uncorrelated.

(iv) A random vector D = Ŷ − Ŷ
0

= U0 −U satisfies∥∥D∥∥2 = SS0e − SSe.

(v) If additionally, a normal linear model is assumed, i.e., if Y |Z ∼ Nn
(
X0β0, σ2 In

)
then the statistics

Ŷ
0
and U0 are conditionally, given Z, independent and

F0 =

SS0e − SSe
r − r0
SSe
n− r

=

SS0e − SSe
ν0e − νe
SSe
νe

∼ Fr−r0, n−r = Fν0
e−νe, νe . (8.4)

Proof. Proof/calculations are available in the handnotes.
k
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8.1.3 Series of submodels

When looking for a suitable model to express E
(
Y
∣∣Z), often a series of submodels is considered. Let us

now assume a series of models

Model M0 : Y |Z ∼
(
X0β0, σ2 In

)
,

Model M1 : Y |Z ∼
(
X1β1, σ2 In

)
,

Model M : Y |Z ∼
(
Xβ, σ2 In

)
,

where, analogously to (8.1), an n× k1 matrix X1 is given as

X1 =


X1

1

>

...

X1
n

>

 ,

X1
1 = t1(Z1),

...

X1
n = t1(Zn),

for some transformation t1 : Rp −→ Rk1 of the original covariates Z1, . . . , Zn, which we briefly write as

X1 = t1(Z).

Analogously to (8.2), we will assume that for some 0 < r1 ≤ k1 < n,

rank(X1) = r1.

Finally, we will assume that the three considered models are mutually submodels. That is, we will assume
that

M
(
X0
)
⊂M

(
X1
)
⊂M

(
X
)

with r0 < r1 < r,

which we denote as
M0 ⊂ M1 ⊂ M.

Notation. Quantities derived while assuming a particular model will be denoted by the corresponding
superscript (or by no superscript in case of the model M). That is:

• Ŷ
0
, U0, SS0e , ν

0
e , MS0e : quantities based on the (sub)model M0: Y |Z ∼

(
X0β0, σ2In

)
;

• Ŷ
1
, U1, SS1e , ν

1
e , MS1e : quantities based on the (sub)model M1: Y |Z ∼

(
X1β1, σ2In

)
;

• Ŷ , U , SSe, νe, MSe: quantities based on the model M: Y |Z ∼
(
Xβ, σ2In

)
.

Theorem 8.2 On submodels.
Consider three normal linear models M : Y |Z ∼ Nn

(
Xβ, σ2 In

)
, M1 : Y |Z ∼ Nn

(
X1β1, σ2 In

)
,

M0 : Y |Z ∼ Nn
(
X0β0, σ2 In

)
such that M0 ⊂ M1 ⊂ M. Let the (smallest) submodel M0 hold, i.e., let

E
(
Y
∣∣Z) ∈M(X0

)
. Then

F0,1 =

SS0e − SS1e
r1 − r0
SSe
n− r

=

SS0e − SS1e
ν0e − ν1e
SSe
νe

∼ Fr1−r0, n−r = Fν0
e−ν1

e , νe
. (8.5)

Proof. Proof/calculations are available in the handnotes.
k

Note. Both F-statistics (8.4) and (8.5) contain
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• In the numerator: a di�erence in the residual sums of squares of the two models where one of them is
a submodel of the other divided by the di�erence of the residual degrees of freedom of those two models.

• In the denominator: a residual sum of squares of the model which is larger or equal to any of the two
models whose quantities appear in the numerator, divided by the corresponding degrees of freedom.

• To obtain an F-distribution of the F-statistics (8.4) or (8.5), the smallest model whose quantities appear in
that F-statistic must hold which implies that any other larger model holds as well.

Notation (Differences when dealing with a submodel).

Let MA and MB are two models distinguished by symbols “A” and “B” such that MA ⊂ MB . Let Ŷ
A
and

Ŷ
B
, UA and UB , SSAe and SSBe denote the fitted values, the vectors of residuals and the residual sums

of squares based on models MA and MB , respectively. The following notation will be used if it becomes
necessary to indicate which are the two model related to the vector D or to the di�erence in the sums of
squares:

D
(
MB

∣∣MA

)
= D

(
B
∣∣A) := Ŷ

B
− Ŷ

A
= UA −UB .

SS
(
MB

∣∣MA

)
= SS

(
B
∣∣A) := SSAe − SSBe .

Notes.
• Both F-statistics (8.4) and (8.5) contain certain SS

(
B
∣∣A) in their numerators.

• Point (iv) of Theorem 8.1 gives

SS
(
B
∣∣A) =

∥∥∥D(B ∣∣A)∥∥∥2.
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8.1.4 Statistical test to compare nested models

Theorems 8.1 and 8.2 provide a way to compare two nested models by the mean of a statistical test.

F-test on a submodel based on Theorem 8.1

Consider two normal linear models: Model M0: Y |Z ∼ Nn
(
X0β0, σ2 In

)
,

Model M: Y |Z ∼ Nn
(
Xβ, σ2 In

)
,

where M0 ⊂ M, and a set of statistical hypotheses: H0: E
(
Y
∣∣Z) ∈M(X0

)
H1: E

(
Y
∣∣Z) ∈M(X) \M(X0

)
,

that aim in answering the questions:

• Is model M significantly better than model M0?

• Does the (larger) regression spaceM
(
X
)
provide a significantly better expression for E

(
Y
∣∣Z) over the

(smaller) regression spaceM
(
X0
)
?

The F-statistic (8.4) from Theorem 8.1 now provides a way to test the above hypotheses as follows:

Test statistic: F0 =

SS0e − SSe
r − r0
SSe
n− r

=

SS
(
M
∣∣M0

)
r − r0
SSe
n− r

.

Reject H0 if F0 ≥ Fr−r0,n−r(1− α).

P-value when F0 = f0: p = 1− CDFF, r−r0,n−r
(
f0
)
.

F-test on a submodel based on Theorem 8.2

Consider three normal linear models: Model M0: Y |Z ∼ Nn
(
X0β0, σ2 In

)
,

Model M1: Y |Z ∼ Nn
(
X1β1, σ2 In

)
,

Model M: Y |Z ∼ Nn
(
Xβ, σ2 In

)
,

where M0 ⊂ M1 ⊂ M, and a set of statistical hypotheses: H0: E
(
Y
∣∣Z) ∈M(X0

)
H1: E

(
Y
∣∣Z) ∈M(X1

)
\M

(
X0
)
,

that aim in answering the questions:

• Is model M1 significantly better than model M0?

• Does the (larger) regression spaceM
(
X1
)
provide a significantly better expression for E

(
Y
∣∣Z) over the

(smaller) regression spaceM
(
X0
)
?

The F-statistic (8.5) from Theorem 8.2 now provides a way to test the above hypotheses as follows:

Test statistic: F0,1 =

SS0e − SS1e
r1 − r0
SSe
n− r

=

SS
(
M1

∣∣M0

)
r1 − r0
SSe
n− r

.

Reject H0 if F0,1 ≥ Fr1−r0,n−r(1− α).

P-value when F0,1 = f0,1: p = 1− CDFF, r1−r0,n−r
(
f0,1
)
.
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8.2 Omitting some regressors

The most common couple (model – submodel) is Model M: Y |Z ∼
(
Xβ, σ2In

)
,

Submodel M0: Y |Z ∼
(
X0β0, σ2In

)
,

where the submodel matrix X0
n×k0 is obtained by omitting selected columns from the model matrix Xn×k .

In other words, some regressors are omitted from the original regressor vectors X0, . . . ,Xk−1 to get
the submodel and the matrix X0. In the following, we will consider only the full-rank models, that is,
rank(X0

n×k0) = k0, rank(Xn×k) = k. Without the loss of generality, let

X =
(
X0, X1

)
, 0 < rank

(
X0
n×k0

)
= k0 < k = rank

(
Xn×k

)
< n, rank

(
X1
n×k1

)
= k1 = k − k0.

The corresponding submodel F-test then evaluates whether, given the knowledge of the regressors included
in the submodel matrix X0, the regressors included in the matrix X1 has an impact on the response
expectation.

Lemma 8.3 Effect of omitting some regressors.
Consider a couple (model – submodel), where the submodel is obtained by omitting some regressors from the
model. The following then holds.

(i) IfM
(
X1
)
⊥M

(
X0
)
then

D = X1
(
X1>X1

)−1X1>Y =: Ŷ
1
,

which are the fitted values from a linear model Y |Z ∼
(
X1β1, σ2In

)
.

(ii) If for given Z, the conditional distribution Y
∣∣Z is continuous, i.e., has a density with respect to the

Lebesgue measure on
(
Rn, Bn

)
then

D 6= 0n and SS0e − SSe > 0 almost surely.

Proof. Let
M0 := In − X0

(
X0>X0

)−1X0>

be the projection matrix into the residual spaceM
(
X0
)⊥

of the submodel. We then have

M0X1 = X1 − X0
(
X0>X0

)−1X0>X1.

Hence
M
(
X0, X1

)
= M

(
X0, M0 X1

)
since both spaces are generated by columns of matrices X0 and X1. Due to the fact that M0 is the projection

matrix intoM
(
X0
)⊥

, all columns of the matrix X0 are orthogonal to all columns of the matrix M0 X1. In
other words

M
(
X0
)
⊥ M

(
M0 X1

)
.

Let
P =

(
Q0, Q1, N

)
be a matrix with the orthonormal basis of Rn in its columns such that

• Q0
n×r0 : orthonormal basis of the submodel regression spaceM

(
X0
)
, i.e.,

M
(
X0
)

= M
(
Q0
)
.
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• Q1
n×(r−r0): orthonormal vectors such that

(
Q0, Q1

)
is the orthonormal basis of the model regression

spaceM
(
X0, X1

)
, i.e.,

M
(
X0, X1

)
= M

(
Q0, Q1

)
.

• Nn×n−r : orthonormal basis of the model residual spaceM
(
X0, X1

)⊥
.

SinceM
(
X0, X1

)
= M

(
X0, M0 X1

)
andM

(
X0
)
⊥ M

(
M0 X1

)
, we also have that

M
(
Q1
)

= M
(
M0 X1

)
.

Vector D is a projection of the response vector Y into the space M
(
Q1
)

= M
(
M0 X1

)
. The corre-

sponding projection matrix, let say H1 can be calculated using the formula “X
(
X>X

)−1X>”, now with
X = M0 X1)

H1 =
(
M0 X1

) (
X1>M0M0︸ ︷︷ ︸

M0

X1
)−1 X1>M0.

Then
D = H1 Y =

(
M0 X1

) (
X1>M0X1

)−1 X1>M0Y︸ ︷︷ ︸
U0

. (8.6)

That is,
D =

(
M0 X1

) (
X1>M0X1

)−1 X1>U0,

where U0 = M0Y are residuals of the submodel.

(i) IfM
(
X1
)
⊥M

(
X0
)
, we have M0X1 = X1. Consequently,

X1>U0 = X1>M0X1 = X1>Y

and by (8.6), while realizing M0 = M0 M0, we get

D = X1
(
X1>X1

)−1X1>Y .

(ii) The vector D, as a projection of vector Y into the vector spaceM
(
Q1
)

= M
(
M0X1

)
(subspace

of Rn of vector dimension r − r0) is equal to the zero vector if and only if

Y ∈ M
(
Q1
)⊥
,

whereM
(
Q1
)⊥

is a vector subspace of Rn of vector dimension n− r + r0 < n. Hence, under our
assumption of a continuous conditional distribution Y

∣∣Z,
P
(
Y ∈M

(
Q1
)⊥ ∣∣Z) = 0,

that is, D 6= 0n almost surely.

Consequently, SS0e − SSe =
∥∥D∥∥2 > 0 almost surely.

k

Note. If we take the residual sum of squares as a measure of a quality of the model, point (ii) of
Theorem 8.3 says that the model is almost surely getting worse if some regressors are removed. Nevertheless,
in practice, it is always a question whether this worsening is statistically significant (the submodel F-test
answers this) or practically important (additional reasoning is needed).
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8.3 Linear constraints

Suppose that a full-rank linear model Y |Z ∼
(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k is given and it is our aim to

verify whether the response expectation E
(
Y
∣∣Z) lies in a constrained regression space

M
(
X; Lβ = θ0

)
:=
{
v : v = Xβ, β ∈ Rk, Lβ = θ0

}
, (8.7)

where Lm×k is a given real matrix with m linearly independent rows, m < k and θ0 ∈ Rm is a given
vector. In other words, verification of whether the response expectation lies in the spaceM

(
X; Lβ = θ0

)
corresponds to verification of whether the regression coe�cients satisfy a linear constraint Lβ = θ0.

Definition 8.2 Submodel given by linear constraints.
We say that the model M0 is a submodel given by linear constraints3 Lβ = θ0 of model M: Y |Z ∼(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k, if the response expectation E

(
Y
∣∣Z) under the model M0 is assumed to lie

in a space M
(
X; Lβ = θ0

)
, where Lm×k is a real matrix with m linearly independent rows, m < k and

θ0 ∈ Rm is a given vector.

Notation. A submodel given by linear constraints will be denoted as

M0 : Y |Z ∼
(
Xβ, σ2In

)
, Lβ = θ0.

Definition 8.3 Fitted values, residuals, residual sum of squares, rank of the model
and residual degrees of freedom in a submodel given by linear constraints.
Let b0 ∈ Rk minimize SS(β) =

∥∥Y − Xβ
∥∥2 over β ∈ Rk subject to Lβ = θ0. For the submodel

M0 : Y |Z ∼
(
Xβ, σ2In

)
, Lβ = θ0, the following quantities are defined as follows:

Fitted values: Ŷ
0

:= Xb0.
Residuals: U0 := Y − Ŷ

0
.

Residual sum of squares: SS0e :=
∥∥U0

∥∥2.
Rank of the model: r0 = k −m.
Residual degrees of freedom: ν0e := n− r0.

Note. The fitted values could also be defined as

Ŷ
0

= argmin
Ỹ ∈M

(
X;Lβ=θ0

)∥∥Y − Ỹ ∥∥2.
That is, the fitted values are (still) the closest point to Y in the constrained regression spaceM

(
X; Lβ =

θ0
)
.

Theorem 8.4 On a submodel given by linear constraints.
Let M0 : Y |Z ∼

(
Xβ, σ2In

)
, Lβ = θ0 be a submodel given by linear constraints of a model M : Y |Z ∼(

Xβ, σ2In
)
. Then

3 podmodel zadaný lineárními omezeními
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(i) There is a unique minimizer b0 to SS(β) =
∥∥Y − Xβ

∥∥2 subject to Lβ = θ0 and is given as

b0 = β̂ −
(
X>X

)−1 L>{L(X>X)−1L>}−1 (Lβ̂ − θ0),
where β̂ =

(
X>X

)−1X>Y is the (unconstrained) least squares estimator of the vector β.

(ii) The fitted values Ŷ
0
can be expressed as

Ŷ
0

= Ŷ − X
(
X>X

)−1 L>{L(X>X)−1L>}−1 (Lβ̂ − θ0).
(iii) The vector D = Ŷ − Ŷ

0
satisfies∥∥D∥∥2 = SS0e − SSe = (Lβ̂ − θ0)

>{
L
(
X>X

)−1L>}−1 (Lβ̂ − θ0). (8.8)

Proof. First mention that under our assumptions, the matrix L
(
X>X

)−1L> is invertible. This follows
from Theorem 2.5 (Gauss–Markov for linear combinations).

Second, try to look for Ŷ
0

= Xb0 such that b0 minimizes SS(β) =
∥∥Y − Xβ

∥∥2 over β ∈ Rk subject to
Lβ = θ0 by a method of Lagrange multipliers. Let

ϕ(β, λ) =
∥∥Y − Xβ

∥∥2 + 2λ>
(
Lβ − θ0

)
=
(
Y − Xβ

)>(
Y − Xβ

)
+ 2λ>

(
Lβ − θ0

)
,

where a factor of 2 in the second part of expression of the Lagrange function ϕ is only included to simplify
subsequent expressions.

The first derivatives of ϕ are as follows:

∂ϕ

∂β
(β, λ) = −2X>

(
Y − Xβ

)
+ 2L>λ,

∂ϕ

∂λ
(β, λ) = 2

(
Lβ − θ0

)
.

Realize now that
∂ϕ

∂β
(β, λ) = 0k if and only if

X>Xβ = X>Y − L>λ. (8.9)

Note that the linear system (8.9) is consistent for any λ ∈ Rm and any Y ∈ Rn. This follows from the
fact thatM

(
L>
)
⊂ Rk =M

(
X>
)
Hence the right-hand-side of the system (8.9) lies inM

(
X>
)
, for any

λ ∈ Rm and any Y ∈ Rn. The left-hand-side of the system (8.9) lies in M
(
X>X

)
, for any β ∈ Rk . On

top of that,M
(
X>
)

= Rk =M
(
X>X

)
. This proves that there always exist a solution to the linear system

(8.9).

Let b0(λ) be any solution to X>Xβ = X>Y − L>λ. That is,

b0(λ) =
(
X>X

)−1 X>Y − (X>X)−1 L>λ
= β̂ −

(
X>X

)−1 L>λ.
Further,

∂ϕ

∂λ
(β, λ) = 0m if and only if

Lb0(λ) = θ0

Lβ̂ − L
(
X>X

)−1 L>λ = θ0

L
(
X>X

)−1 L>︸ ︷︷ ︸
invertible as we already know

λ = Lβ̂ − θ0.



8.3. LINEAR CONSTRAINTS 200

That is,

λ =
{
L
(
X>X

)−1 L>}−1 (Lβ̂ − θ0).
Finally,

b0 = β̂ −
(
X>X

)−1L>{L(X>X)−1L>}−1 (Lβ̂ − θ0),

Ŷ
0

= Xb0 = Ŷ − X
(
X>X

)−1L>{L(X>X)−1L>}−1 (Lβ̂ − θ0).

It then follows that

D = Ŷ − Ŷ
0

= X
(
X>X

)−1L>{L(X>X)−1L>}−1 (Lβ̂ − θ0).

Hence,∥∥D∥∥2 = (Lβ̂ − θ0)
> {

L
(
X>X

)−1L>}−1 L (X>X)−1 X>X(X>X)−1L> {L(X>X)−L>}−1 (Lβ̂ − θ0)

= (Lβ̂ − θ0)
>{

L
(
X>X

)−L>}−1 (Lβ̂ − θ0).

It remains to be shown that
∥∥D∥∥2 = SS0e − SSe. We have

SS0e =
∥∥Y − Ŷ 0∥∥2 =

∥∥ Y − Ŷ︸ ︷︷ ︸
U ∈M

(
X
)⊥+ X

(
X>X

)−1L>{L(X>X)−1L>}−1 (Lβ̂ − θ0)︸ ︷︷ ︸
D ∈M

(
X
)

∥∥2

=
∥∥U∥∥2 +

∥∥D∥∥2 = SSe +
∥∥D∥∥2.

k

8.3.1 F-statistic to verify a set of linear constraints

Let us take the expression (8.8) for the di�erence between the residual sums of squares of the model and
the submodel given by linear constraints and derive the submodel F-statistic (8.4):

F0 =

SS0e − SSe
k − r0
SSe
n− k

=

(Lβ̂ − θ0)
>{

L
(
X>X

)−1L>}−1 (Lβ̂ − θ0)

m
SSe
n− k

=
1

m
(Lβ̂ − θ0)

>{
MSe L

(
X>X

)−1L>}−1 (Lβ̂ − θ0)

=
1

m
(θ̂ − θ0)

>{
MSe L

(
X>X

)−1L>}−1 (θ̂ − θ0), (8.10)

where θ̂ = Lβ̂ is the LSE of the vector parameter θ = Lβ in the linear model Y
∣∣X ∼ (Xβ, σ2In

)
without constraints. Note now that (8.10) is exactly equal to the Wald-type statistic Q0 (see page 175) that
we used in Section 6.2 to test the null hypothesis H0: θ = θ0 on a vector parameter θ in a normal linear
model Y

∣∣Z ∼ Nn(Xβ, σ2In
)
. If normality can be assumed, point (x) of Theorem 6.2 then provided that

under the null hypothesis H0: θ = θ0, that is, under the validity of the submodel given by linear constraints
Lβ = θ0, the statistic F0 follows the usual F-distribution Fm,n−k . This shows that the Wald-type test on the
estimable vector parameter in a normal linear model based on Theorem 6.2 is equivalent to the submodel
F-test based on Theorem 8.1.
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8.3.2 t-statistic to verify a linear constraint

Consider L = l>, l ∈ Rk , l 6= 0k and a normal linear model Y
∣∣Z ∼ Nn(Xβ, σ2In

)
. Take θ0 ∈ R and

consider the submodel given by m = 1 linear constraint l>β = θ0. Let θ̂ = l>β̂, where β̂ is the least
squares estimator of the regression coe�cients β in the model without constraints. The statistic (8.10) then
takes the form

F0 =
1

m

(
θ̂ − θ0

){
MSe l>

(
X>X

)−1
l
}−1 (

θ̂ − θ0
)

=

(
θ̂ − θ0√

MSe l>
(
X>X

)−1
l

)2

= T 2
0 ,

where

T0 =
θ̂ − θ0√

MSe l>
(
X>X

)−1
l

is the Wald-type test statistic introduced in Section 6.2 (on page 174) to test the null hypothesis H0: θ = θ0

in a normal linear model Y
∣∣Z ∼ Nn(Xβ, σ2In

)
. Point (viii) of Theorem 6.2 provided that under the null

hypothesis H0: θ = θ0, the statistic T0 follows the Student t-distribution tn−k which is indeed in agreement
with the fact that T 2

0 = F0 follows the F-distribution F1,n−k .
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8.4 Overall F-test

Lemma 8.5 Overall F-test.
Assume a normal linear model Y |X ∼ Nn

(
Xβ, σ2In

)
, rank

(
Xn×k

)
= r > 1 where 1n ∈ M

(
X
)
. Let R2

be its coe�cient of determination. The submodel F-statistic to compare model M : Y |X ∼ Nn
(
Xβ, σ2In

)
and the only intercept model M0 : Y |X ∼ Nn

(
1nγ, σ

2In
)
takes the form

F0 =
R2

1−R2
· n− r
r − 1

. (8.11)

Proof.
• R2 = 1− SSe

SST
and according to Lemma 7.1: SST = SS0e .

• Hence

R2 = 1− SSe

SS0e
=

SS0e − SSe

SS0e
, 1−R2 =

SSe

SS0e
.

• At the same time

F0 =

SS0
e−SSe
r−1
SSe
n−r

=
n− r
r − 1

SS0e − SSe
SSe

=
n− r
r − 1

SS0
e−SSe
SS0
e

SSe
SS0
e

=
n− r
r − 1

R2

1−R2
.

k

Note. The F-test with the test statistic (8.11) is sometimes (especially in some software packages) referred
to as an overall goodness-of-fit test. Nevertheless be cautious when interpreting the results of such test. It
says practically nothing about the quality of the model and the “goodness-of-fit”!



Chapter 9
Checking Model Assumptions

In Chapter 3, we introduced some basic, mostly graphical methods to check the model assumptions. Now,
we introduce some additional methods, mostly based on statistical tests. As in Chapter 3, we assume that

data are represented by n random vectors
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp i = 1, . . . , n.
Further, we assume that possibly two sets of regressors have been derived from the covariates:

(i) Xi, i = 1, . . . , n, where Xi = tX(Zi) for some transformation tX : Rp −→ Rk . They give rise to
the model matrix

Xn×k =


X>1
...

X>n

 =
(
X0, . . . , Xk−1

)
.

For most practical problems, X0 =
(
1, . . . , 1

)>
(almost surely).

(ii) V i, i = 1, . . . , n, where V i = tV (Zi) for some transformation tV : Rp −→ Rl. They give rise to
the model matrix

Vn×l =


V >1
...

V >n

 =
(
V 1, . . . , V l

)
.

Primarily, we will assume that the model matrix X is su�cient to be able to assume that E
(
Y
∣∣Z) =

E
(
Y
∣∣X) = Xβ for some β =

(
β0, . . . , βk−1

)> ∈ Rk . That is, we will arrive from assuming

Y
∣∣Z ∼ (Xβ, σ2In

)
,

or even from assuming normality, i.e.,

Y
∣∣Z ∼ Nn(Xβ, σ2In

)
.

The task is now to verify appropriateness of those assumptions that, in principle, consist of four subassump-

tions outlined in Chapter 3, which can all be written while using the error terms ε =
(
ε1, . . . , εn

)>
=(

Y1 −X>1 β, . . . , Yn −X
>
nβ
)>

= Y − Xβ:

(A1) Correct regression function ≡ (Conditionally) errors with zero mean ≡ E
(
εi
∣∣Zi) = 0, i = 1, . . . , n.

(A2) (Conditional) homoscedasticity of errors ≡ var
(
εi
∣∣Zi) = σ2 = const, i = 1, . . . , n.

(A3) (Conditionally) uncorrelated/independent errors ≡ cov
(
εi, εj

∣∣Z) = 0, i 6= j.

(A4) (Conditionally) normal errors ≡ εi
∣∣Z indep.∼ N .

The four assumptions then gradually imply

203
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(A1) Errors with (marginal) zero mean: E
(
εi
)

= 0, i = 1, . . . , n.

(A2) (Marginal) homoscedasticity of errors ≡ var
(
εi
)

= σ2 = const, i = 1, . . . , n.

(A3) (Marginally) uncorrelated/independent errors ≡ cov
(
εi, εj

)
= 0, i 6= j.

(A4) (Marginally) Normal errors ≡ εi
i.i.d.∼ N .
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9.1 Model with added regressors

In this section, we technically derive some expressions that will be useful in latter sections of this chapter
and also in Chapter 11. We will deal with two models:

(i) Model M: Y
∣∣Z ∼ (Xβ, σ2In

)
.

(ii) Model Mg : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
, where the model matrix is an n× (k + l) matrix G,

G =
(
X, V

)
.

Notation (Quantities derived under the two models).

(i) Quantities derived while assuming model M will be denoted as it is usual. In particular:

• (Any) solution to normal equations: b =
(
X>X

)−X>Y . In case of a full-rank model
matrix X:

β̂ =
(
X>X

)−1X>Y
is the LSE of a vector β in model M;

• Hat matrix (projection matrix into the regression spaceM
(
X
)
):

H = X
(
X>X

)−X> =
(
hi,t
)
i,t=1,...,n

;

• Fitted values Ŷ = HY =
(
Ŷ1, . . . , Ŷn

)>
;

• Projection matrix into the residual spaceM
(
X
)⊥

:

M = In −H =
(
mi,t

)
i,t=1,...,n

;

• Residuals: U = Y − Ŷ = MY =
(
U1, . . . , Un

)>
;

• Residual sum of squares: SSe =
∥∥U∥∥2.

(ii) Analogous quantities derived while assuming model Mg will be indicated by a subscript g:

• (Any) solution to normal equations:
(
b>g , c

>
g

)>
=
(
G>G

)−G>Y . In case of a full-rank
model matrix G: (

β̂
>
g , γ̂

>
g

)>
=
(
G>G

)−1G>Y
provides the LSE of vectors β and γ in model Mg ;

• Hat matrix (projection matrix into the regression spaceM
(
G
)
):

Hg = G
(
G>G

)−G> =
(
hg,i,t

)
i,t=1,...,n

;

• Fitted values Ŷ g = HgY =
(
Ŷg,1, . . . , Ŷg,n

)>
;

• Projection matrix into the residual spaceM
(
G
)⊥

:

Mg = In −Hg =
(
mg,i,t

)
i,t=1,...,n

;

• Residuals: U g = Y − Ŷ g = MgY =
(
Ug,1, . . . , Ug,n

)>
;

• Residual sum of squares: SSe,g =
∥∥U g

∥∥2.
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Lemma 9.1 Model with added regressors.
Quantities derived while assuming model M : Y

∣∣Z ∼ (Xβ, σ2In
)
and quantities derived while assuming

model Mg : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
are mutually in the following relationship.

Ŷ g = Ŷ + MV
(
V>MV

)−V>U
= Xbg + Vcg, for some bg ∈ Rk, cg ∈ Rl.

Vectors bg and cg such that Ŷ g = Xbg + Vcg satisfy:

cg =
(
V>MV

)−V>U ,
bg = b−

(
X>X

)−X>Vcg for some b =
(
X>X

)−X>Y .

Finally

SSe − SSe,g =
∥∥MVcg

∥∥2.

Proof.
• Ŷ g is a projection of Y intoM

(
X, V

)
=M

(
X, MV

)
.

• Use “H = X
(
X>X

)−X>”:
Hg =

(
X, MV

) 
X>X X>MV︸ ︷︷ ︸

0
V>MX︸ ︷︷ ︸

0

V>MV


− (

X>

V>M

)

=
(
X, MV

) ((X>X)− 0

0
(
V>MV

)−
) (

X>

V>M

)

= X
(
X>X

)−X> + MV
(
V>MV

)−V>M.

• So that,

Ŷ g = HgY = X
(
X>X

)−X>Y︸ ︷︷ ︸
Ŷ

+MV
(
V>MV

)−V>MY︸︷︷︸
U

= Ŷ + MV
(
V>MV

)−V>U ®

• The fitted values Ŷ g must lie in the corresponding regression spaceM
(
X, V

)
, that is, it must be possible

to write the vector of fitted values as
Ŷ g = Xbg + Vcg

for some bg ∈ Rk , cg ∈ Rl. At the same time, the vector
(
b>g , c

>
g

)>
must minimize the sum of squares

SS of model Mg . As was shown in proof of Lemma 2.1, the vector
(
b>g , c

>
g

)>
minimizes the sum of

squares if and only if it solves corresponding normal equations.

• We rewrite® to see what bg and cg could be.
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• Remember (Lemma 2.1) that Ŷ = Xb for any b =
(
X>X

)−X>Y (any solution of normal equations in

model M). Take now® and further calculate:

Ŷ g = Xb︸︷︷︸
Ŷ

+
{
In − X

(
X>X

)−X>}︸ ︷︷ ︸
M

V
(
V>MV

)−V>U
= Xb + V

(
V>MV

)−V>U − X
(
X>X

)−X>V(V>MV
)−V>U

= X
{
b −

(
X>X

)−X>V(V>MV
)−V>U}︸ ︷︷ ︸

bg

+V
(
V>MV

)−V>U︸ ︷︷ ︸
cg

.

• That is, cg =
(
V>MV

)−V>U ,

bg = b −
(
X>X

)−X>Vcg .
• Finally

SSe − SSe,g =
∥∥Ŷ g − Ŷ

∥∥2 =
∥∥MV

(
V>MV

)−V>U∥∥2=
∥∥MVcg

∥∥2.
k

Note. If all model matrices are of a full column rank, i.e., if

rank
(
Xn×k

)
= k, rank

(
Vn×l

)
= l, rank

(
Gn×(k+l)

)
= k + l

then the least squares estimators β̂ and
(
β̂
>
g , γ̂

>
g

)>
of the vector of regression coe�cients in models M

and Mg are mutually in the following relationship:

β̂ =
(
X>X

)−1X>Y , γ̂g =
(
V>MV

)−1V>U ,
β̂g = β̂ −

(
X>X

)−1X>Vγ̂g.
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9.2 Correct regression function

We are now assuming a linear model

M : Y
∣∣Z ∼ (Xβ, σ2In

)
,

where the error terms ε = Y − Xβ satisfy (Lemma 1.2):

E
(
ε
∣∣Z) = 0n, var

(
ε
∣∣Z) = σ2In.

The assumption (A1) of a correct regression function is, in particular,

E
(
Y
∣∣Z) ∈M(X), E

(
Y
∣∣Z) = Xβ for some β ∈ Rk,

E
(
ε
∣∣Z) = 0n

(
=⇒ E

(
ε
)

= 0n
)
.

As (also) explained in Section 3.1, assumption (A1) implies

E
(
U
∣∣Z) = 0n

and this property is exploited by a basic diagnostic tool which is a plot of residuals against possible factors
derived from the covariates Z that may influence the residuals expectation. Factors traditionally considered
are

(i) Fitted values Ŷ ;

(ii) Regressors included in the model M (columns of the model matrix X);
(iii) Regressors not included in the model M (columns of the model matrix V).

Assumptions.
For the rest of this section, we assume that model M is a model of full rank k with intercept, that is,

rank
(
Xn×k

)
= k < n, X =

(
X0, . . . , Xk−1

)
, X0 = 1n.

In the following, we develop methods to examine whether for given j (j ∈
{

1, . . . , k−1
}
) the jth regressor,

i.e., the column Xj , is correctly included in the model matrix X. In other words, we will aim in examining
whether the jth regressor is possibly responsible for violation of the assumption (A1).

9.2.1 Partial residuals

Notation (Model with a removed regressor).
For j ∈

{
1, . . . , k − 1

}
, let X(−j) denote the model matrix X without the column Xj and let

β(−j) =
(
β0, . . . , βj−1, βj+1, . . . , βk−1

)>
denote the regression coe�cients vector without the jth element. Model with a removed jth regressor will be
a linear model

M(−j) : Y
∣∣Z ∼ (X(−j)β(−j), σ2In

)
.

Note. We are assuming a full rank model, i.e., rank
(
Xn×k

)
= k. This implies that also the matrix X(−j)

is of a full column rank, i.e., rank
(
X(−j)) = k − 1. This further implies, among the other things that
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(i) Xj /∈M
(
X(−j));

(ii) Xj 6= 0n;

(iii) Xj is not a multiple of a vector 1n.

All quantities related to the model M(−j) will be indicated by a superscript (−j). In particular,

M(−j) = In − X(−j)
(
X(−j)>X(−j)

)−1
X(−j)>

is a projection matrix into the residual spaceM
(
X(−j))⊥;

U (−j) = M(−j)Y

is a vector of residuals of the model M(−j).

Derivations towards partial residuals

Model M is now a model with one added regressor to a model M(−j) and the two models form a pair
(model–submodel). At the same time, both models are of a full rank given our assumptions. Let

β̂ =
(
β̂0, . . . , β̂j−1, β̂j , β̂j+1, . . . , β̂k−1

)>
be the least squares estimator of the regression coe�cients in model M. Lemma 9.1 (Model with added
regressors) provides

β̂j =
(
Xj>M(−j)Xj

)−1
Xj>U (−j). (9.1)

Further, since a matrix M(−j) is idempotent and symmetric, we have

Xj>M(−j)Xj =
∥∥M(−j)Xj

∥∥2.
At the same time, M(−j)Xj 6= 0n since Xj /∈ M

(
X(−j)), Xj 6= 0n. Hence, X

j>M(−j)Xj > 0 and we
can indeed calculate its inverse used in expression (9.1). That is, the jth element of the LSE of the vector β
in model M (= BLUE of βj ) is given as

β̂j =
(
Xj>M(−j)Xj

)−1
Xj>U (−j) =

Xj>U (−j)

Xj>M(−j)Xj
.

Consequently, we define a vector of jth partial residuals of model M as follows.

Definition 9.1 Partial residuals.
A vector of jth partial residuals1 of model M is a vector

Upart,j = U + β̂jX
j =


U1 + β̂jX1,j

...

Un + β̂jXn,j

 .

Note. We have

Upart,j = U + β̂jX
j = Y −

(
Xβ̂ − β̂jXj

)
= Y −

(
Ŷ − β̂jXj

)
.

That is, the jth partial residuals are calculated as (classical) residuals where, however, the fitted values
subtract a part that corresponds to the column Xj of the model matrix.

1 vektor jtých parciálních reziduí
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Lemma 9.2 Property of partial residuals.
Let Y

∣∣Z ∼ (Xβ, σ2In
)
, rank

(
Xn×k

)
= k, X0 = 1n, β =

(
β0, . . . , βk−1

)>
. Let β̂j be the LSE of βj ,

j ∈
{

1, . . . , k − 1
}
. Let us consider a linear model (regression line with covariates Xj ) with

• the jth partial residuals Upart,j as response;

• a matrix
(
1n, X

j
)
as the model matrix;

• regression coe�cients γj =
(
γj,0, γj,1

)>
.

The least squares estimators of parameters γj,0 and γj,1 are

γ̂j,0 = 0, γ̂j,1 = β̂j .

Proof.
• Upart,j = U + β̂jX

j .

• Hence
∥∥∥Upart,j − γj,0 1n − γj,1X

j
∥∥∥2 =

∥∥∥U − {γj,0 1n + (γj,1 − β̂j)Xj
}∥∥∥2 =®.

• Since 1n ∈M
(
X
)
, Xj ∈M

(
X
)
, U ∈M

(
X
)⊥

, we have

® =
∥∥U∥∥2 +

∥∥∥γj,0 1n +
(
γj,1 − β̂j

)
Xj
∥∥∥2 ≥ ∥∥U∥∥2

with equality if and only if γj,0 = 0 & γj,1 = β̂j .

k

Shifted partial residuals

Notation (Response, regressor and partial residuals means).
Let

Y =
1

n

n∑
i=1

Yi, X
j

=
1

n

n∑
i=1

Xi,j , U
part,j

=
1

n

n∑
i=1

Upart,ji .

If X0 = 1n (model with intercept), we have

0 =

n∑
i=1

Ui =

n∑
i=1

(
Upart,ji − β̂jXi,j

)
,

1

n

n∑
i=1

Upart,ji = β̂j

( 1

n

n∑
i=1

Xi,j

)
,

U
part,j

= β̂j X
j
.

Especially for purpose of visualization by plotting the partial residuals against the regressors a shifted partial
residuals are sometimes used. Note that this only changes the estimated intercept of the regression line of
dependence of partial residuals on the regressor.
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Definition 9.2 Shifted partial residuals.
A vector of jth response-mean partial residuals of model M is a vector

Upart,j,Y = Upart,j +
(
Y − β̂jX

j
)

1n.

A vector of jth zero-mean partial residuals of model M is a vector

Upart,j,0 = Upart,j − β̂jX
j
1n.

Notes.
• A mean of the response-mean partial residuals is the response sample mean Y , i.e.,

1

n

n∑
i=1

Upart,j,Yi = Y .

• A mean of the zero-mean partial residuals is zero, i.e.,

1

n

n∑
i=1

Upart,j,0i = 0.

The zero-mean partial residuals are calculated by the R function residuals with its type argument
being set to "partial".

Notes (Use of partial residuals).
A vector of partial residuals can be interpreted as a response vector from which we removed a possible e�ect
of all remaining regressors. Hence, dependence of Upart,j on Xj shows

• a net e�ect of the jth regressor on the response Y ;

• a partial e�ect of the jth regressor on the response Y which is adjusted for the e�ect of the
remaining regressors.

The partial residuals are then mainly used twofold:

Diagnostic tool. As a (graphical) diagnostic tool, a scatterplot
(
Xj , Upart,j

)
is used. In case, the jth

regressor is correctly included in the original regression model M, i.e., if no transformation of the
regressor Xj is required to achieve E

(
Y
∣∣Z) ∈ M(X), points in the scatterplot

(
Xj , Upart,j

)
should lie along a line.

Visualization. Property that the estimated slope of the regression line in a model Upart,j ∼ Xj is the
same as the jth estimated regression coe�ent in the multiple regression model Y ∼ X is also used
to visualize dependence of the response of the jth regressor by showing a scatterplot

(
Xj , Upart,j

)
equipped by a line with zero intercept and slope equal to β̂j .
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower

m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)

summary(m)

Residuals:

Min 1Q Median 3Q Max

-3.1174 -0.6923 -0.1127 0.5473 5.2275

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.353265 2.948614 -14.364 < 2e-16 ***

lweight 6.935604 0.428971 16.168 < 2e-16 ***

engine.size 0.352687 0.096730 3.646 0.000301 ***

horsepower 0.003983 0.001085 3.672 0.000273 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9706 on 405 degrees of freedom

Multiple R-squared: 0.7946, Adjusted R-squared: 0.793

F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16

Consumption: Y = 10.75, Log(weight): X
1

= 7.37,

Engine size: X
2

= 3.18,

Horsepower: X
3

= 215.8.

Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Illustrations
Policie (n = 50)
fat ∼ weight + height

summary(mHeWe <- lm(fat ~ weight + height, data = Policie))

Residuals:

Min 1Q Median 3Q Max

-6.4011 -2.9482 -0.0211 2.3072 7.2968

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831

weight 0.50418 0.05095 9.896 4.49e-13 ***

height -0.24362 0.09728 -2.504 0.0158 *

---

Residual standard error: 3.731 on 47 degrees of freedom

Multiple R-squared: 0.714, Adjusted R-squared: 0.7018

F-statistic: 58.66 on 2 and 47 DF, p-value: 1.681e-13
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Illustrations
Policie (n = 50)
fat ∼ weight + height
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β̂ = 0.50 (0.40, 0.61)

Policie (n = 50)
fat ∼ weight + height
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β̂ = −0.24 (−0.44, −0.05)
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9.2.2 Test for linearity of the effect

To examine appropriateness of the linearity of the e�ect of the jth regressorXj on the response expectation
E
(
Y
∣∣Z) by a statistical test, we can use a test on submodel (per se, requires additional assumption of

normality). Without loss of generality, assume that the jth regressor Xj is the last column of the model
matrix X and denote the remaining non-intercept columns of matrix X as X0. That is, assume that

X =
(
1n, X0, Xj

)
.

Two classical choices of a pair model–submodel being tested in this context are the following.

More general parameterization of the jth regressor

Submodel is the model M with the model matrix X. The (larger) model is model Mg obtained by replacing
column Xj in the model matrix X by a matrix V such that

Xj ∈M
(
V
)
, rank

(
V
)
≥ 2.

That is, the model matrices of the submodel and the (larger) model are

Submodel M:
(
1n, X0, Xj

)
= X;

(Larger) model Mg :
(
1n, X0, V

)
.

Classical choices of the matrix V are such that it corresponds to:

(i) polynomial of degree d ≥ 2 based on the regressor Xj ;

(ii) regression spline of degree d ≥ 1 based on the regressor Xj . In this case, 1n ∈ V and hence for
practical calculations, the larger model Mg is usually estimated while using a model matrix(

X0, V
)

that does not explicitely include the intercept term which is included implicitely.
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Quadratic term added for horsepower

mh2 <- lm(consumption ~ lweight + engine.size + horsepower + I(horsepower^2),

data = CarsNow)

summary(mh2)

Residuals:

Min 1Q Median 3Q Max

-3.3298 -0.6501 -0.1307 0.5178 5.1163

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.386e+01 3.065e+00 -14.308 < 2e-16 ***

lweight 7.249e+00 4.641e-01 15.621 < 2e-16 ***

engine.size 3.482e-01 9.652e-02 3.607 0.000348 ***

horsepower -2.578e-03 3.914e-03 -0.659 0.510515

I(horsepower^2) 1.221e-05 7.001e-06 1.744 0.081873 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9682 on 404 degrees of freedom

Multiple R-squared: 0.7961, Adjusted R-squared: 0.7941

F-statistic: 394.3 on 4 and 404 DF, p-value: < 2.2e-16

Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

library("splines")

knots <- c(100, 200, 300, 500)

inner <- knots[-c(1, length(knots))]

bound <- knots[c(1, length(knots))]

hB <- bs(CarsNow[, "horsepower"], knots = inner, Boundary.knots = bound, degree = 3,

intercept = TRUE)

mhB <- lm(consumption ~ -1 + lweight + engine.size + hB, data = CarsNow)

summary(mhB)

Residuals:

Min 1Q Median 3Q Max

-3.0533 -0.6471 -0.1273 0.5095 5.1164

Coefficients:

Estimate Std. Error t value Pr(>|t|)

lweight 7.19154 0.48080 14.958 < 2e-16 ***

engine.size 0.36108 0.09911 3.643 0.000304 ***

hB1 -43.88205 3.25963 -13.462 < 2e-16 ***

hB2 -43.40426 3.32369 -13.059 < 2e-16 ***

hB3 -43.58750 3.39894 -12.824 < 2e-16 ***

hB4 -43.18531 3.38594 -12.754 < 2e-16 ***

hB5 -41.93832 3.43966 -12.193 < 2e-16 ***

hB6 -41.83870 3.37295 -12.404 < 2e-16 ***

...

Horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower

●●

●
●

●
●
●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●
●

●●●

●●
●

●

●●●
●●

●

●●

●

●

●●●

●

●

●

●

●
● ●●

●●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

6 8 10 12 14 16

−
2

0
2

4

Original

Fitted values

R
es

id
ua

ls

●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●
●

●●●

●●
●

●

●●●
●●

●
●●

●

●

●●●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●

●
●

●●

●●

●

●

●

● ●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●
●● ●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6 8 10 12 14 16

−
2

0
2

4

With spline(horsepower)

Fitted values

R
es

id
ua

ls



9.2. CORRECT REGRESSION FUNCTION 219

Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

m <- lm(consumption ~ lweight +

engine.size +

horsepower,

data = CarsNow)

anova(m, mhB)

Analysis of Variance Table

Model 1: consumption ~ lweight +

engine.size + horsepower

Model 2: consumption ~ -1 + lweight +

engine.size + hB

Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 381.56

2 401 377.08 4 4.4797 1.191 0.3142
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Categorization of the jth regressor

Let −∞ < xlowj < xuppj <∞ be chosen such that interval
(
xlowj , xuppj

)
covers the values X1,j , . . . , Xn,j

of the jth regressor. That is,
xlowj < min

i
Xi,j , max

i
Xi,j < xuppj .

Let I1, . . . , IH be H > 1 subintervals of
(
xlowj , xuppj

]
based on a grid

xlowj < λ1 < · · · < λH−1 < xuppj .

Let xh ∈ Ih, h = 1, . . . ,H , be chosen representative values for each of the subintervals I1, . . . , IH (e.g.,
their midpoints) and let

Xj,cut =
(
Xj,cut

1 , . . . , Xj,cut
n

)>
be obtained by categorization of the jth regressor using the division I1, . . . , IH and representatives
x1, . . . , xH , i.e., (i = 1, . . . , n):

Xj,cut
i = xh ≡ Xj

i ∈ Ih, h = 1, . . . ,H.

In this way, we obtained a categorical ordinal regressor Xj,cut whose values x1, . . . , xH , can be considered
as collapsed values of the original regressor Xj . Consequently, if linearity with respect to the original
regressor Xj holds then it also does (approximately, depending on chosen division I1, . . . , IH and the
representatives x1, . . . , xH ) with respect to the ordinal categorical regressor Xj,cut if this is viewed as
numeric one.

Let V be an n × (H − 1) model matrix corresponding to some (pseudo)contrast parameterization of the
covariate Xj,cut if this is viewed as categorical with H levels. We have

Xj,cut ∈M
(
V
)
,

and test for linearity of the jth regressor is obtained by considering the following model matrices in the
submodel and the (larger) model:

Submodel M:
(
1n, X0, Xj,cut

)
;

(Larger) model Mg :
(
1n, X0, V

)
.

Additional insight concerning the correct inclusion of the jth regressor can be obtained by using the
orthonormal polynomial contrasts (Section 4.4.3) in place of the V matrix.
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Categorized horsepower (100–150, 150–200, 250–300, 300–500)

BREAKS <- c(0, 150, 200, 250, 300, 500)

CarsNow <- transform(CarsNow, horseord = cut(horsepower, breaks = BREAKS))

levels(CarsNow[, "horseord"])[1] <- "[100, 150]"

table(CarsNow[, "horseord"])

[100, 150] (150,200] (200,250] (250,300] (300,500]

75 112 121 56 45

horsepower categories represented by midpoints

MIDS <- c(125, 175, 225, 275, 400)

CarsNow <- transform(CarsNow, horsemid = as.numeric(horseord))

CarsNow[, "horsemid"] <- MIDS[CarsNow[, "horsemid"]]

table(CarsNow[, "horsemid"])

125 175 225 275 400

75 112 121 56 45

Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Larger model (horsepower as categorical, reference group pseudocontrasts)

mhord <- lm(consumption ~ lweight + engine.size + horseord, data = CarsNow)

summary(mhord)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -43.4282 3.1974 -13.582 < 2e-16 ***

lweight 7.1578 0.4676 15.307 < 2e-16 ***

engine.size 0.3312 0.0981 3.376 0.000806 ***

horseord(150,200] 0.3928 0.1637 2.400 0.016852 *

horseord(200,250] 0.2206 0.1832 1.204 0.229119

horseord(250,300] 0.5249 0.2338 2.245 0.025332 *

horseord(300,500] 1.0871 0.2626 4.140 4.23e-05 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9628 on 402 degrees of freedom

Multiple R-squared: 0.7994, Adjusted R-squared: 0.7964

F-statistic: 267 on 6 and 402 DF, p-value: < 2.2e-16
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Submodel (horsepower intervals represented by midpoints)

mhmid <- lm(consumption ~ lweight + engine.size + horsemid, data = CarsNow)

summary(mhmid)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -43.121394 2.944142 -14.647 < 2e-16 ***

lweight 7.057884 0.427803 16.498 < 2e-16 ***

engine.size 0.338626 0.096994 3.491 0.000534 ***

horsemid 0.003519 0.009049 3.889 0.000118 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9687 on 405 degrees of freedom

Multiple R-squared: 0.7954, Adjusted R-squared: 0.7938

F-statistic: 524.7 on 3 and 405 DF, p-value: < 2.2e-16

F-test on a submodel

anova(mhmid, mhord)

Model 1: consumption ~ lweight + engine.size + horsemid

Model 2: consumption ~ lweight + engine.size + horseord

Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 380.07

2 402 372.61 3 7.4566 2.6816 0.04653 *
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Illustrations
Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Approximate submodel (original horsepower values)

m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)

summary(m)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.353265 2.948614 -14.364 < 2e-16 ***

lweight 6.935604 0.428971 16.168 < 2e-16 ***

engine.size 0.352687 0.096730 3.646 0.000301 ***

horsepower 0.003983 0.001085 3.672 0.000273 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9706 on 405 degrees of freedom

Multiple R-squared: 0.7946, Adjusted R-squared: 0.793

F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16

Approximate F-test on a submodel

anova(m, mhord)

Model 1: consumption ~ lweight + engine.size + horsepower

Model 2: consumption ~ lweight + engine.size + horseord

Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 381.56

2 402 372.61 3 8.9427 3.216 0.02285 *



9.2. CORRECT REGRESSION FUNCTION 224

Drawback of tests for linearity of the effect

Remind that hypothesis of linearity of the e�ect of the jth regressor always forms the null hypothesis of the
proposed submodel tests. Hence we are only able to confirm non-linearity of the e�ect (if the submodel is
rejected) but are never able to confirm linearity.
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9.3 Homoscedasticity

We are again assuming a linear model

M : Y
∣∣Z ∼ (Xβ, σ2In

)
,

where the error terms ε = Y − Xβ satisfy (Lemma 1.2):

E
(
ε
∣∣Z) = E

(
ε
)

= 0n, var
(
ε
∣∣Z) = var

(
ε
)

= σ2In.

The assumption (A2) of homoscedasticity is, in particular,

var
(
Y
∣∣Z) = σ2 In, var

(
ε
∣∣Z) = σ2 In,

(
=⇒ var

(
ε
)

= σ2In
)
,

where σ2 is unknown but most importantly constant.

9.3.1 Tests of homoscedasticity

Many tests of homoscedasticity can be found in literature. They mostly consider the following null and
alternative hypotheses: H0: var

(
εi
∣∣Zi) = const,

H1: var
(
εi
∣∣Zi) = certain function of some factor(s).

A particular test is then sensitive (powerful) to detect heteroscedasticity if this expresses itself such that
the conditional variance var

(
εi
∣∣Zi) is the certain function of the factor(s) as specified by the alternative

hypothesis. The test is possibly weak to detect heteroscedasticity (weak to reject the null hypothesis of ho-
moscedasticity) if heteroscedasticity expresses itself in a di�erent way compared to the considered alternative
hypothesis.

9.3.2 Score tests of homoscedasticity

A wide range of tests of homoscedasticity can be derived by assuming a (full-rank) normal linear model,
basing the alternative hypothesis on a further generalization of a general linear model and then using
an (asymptotic) maximum-likelihood theory to derive a testing procedure.

Assumptions.
For the rest of this section, we assume that model M (model under the null hypothesis) is normal of full-rank,
i.e.,

M : Y
∣∣Z ∼ Nn(Xβ, σ2In

)
, rank

(
Xn×k

)
= k,

and an alternative model is a generalization of a general normal linear model

Mhetero : Y
∣∣Z ∼ Nn(Xβ, σ2W−1

)
,

where
W = diag(w1, . . . , wn), w−1i = τ(λ, β, Zi), i = 1, . . . , n,

τ is a known function of λ ∈ Rq , β ∈ Rk (regression coe�cients), z ∈ Rp (covariates) such that

τ(0, β, z) = 1, for all β ∈ Rk, z ∈ Rp.

In particular, we have under model Mhetero:

var
(
Y i

∣∣Zi) = var
(
εi
∣∣Zi) = σ2 τ(λ, β, Zi), i = 1, . . . , n.

That is, the τ function models the assumed heteroscedasticity.
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Model Mhetero is then a model with unknown parameters β, λ, σ2 which with λ = 0 simplifies into
model M. In other words, model M is a nested2 model of model Mhetero and a test of homoscedasticity
corresponds to testing

H0 : λ = 0,

H1 : λ 6= 0.
(9.2)

Having assumed normality, both models M and Mhetero are fully parametric models and a standard (asymp-
totic) maximum-likelihood theory can now be used to derive a test of (9.2). A family of score tests based on
specific choices of the weight function τ is derived by Cook and Weisberg (1983).

Breusch-Pagan test

A particular score test of homoscedasticity was also derived by Breusch and Pagan (1979) who consider the
following weight function (x = tX(z) is a transformation of the original covariates that determines the
regressors of model M).

τ(λ, β, z) = τ(λ, β, x) = exp
(
λx>β

)
.

That is, under the heteroscedastic model, for i = 1, . . . , n,

var
(
Yi
∣∣Zi) = var

(
εi
∣∣Zi) = σ2 exp

(
λX>i β

)
= σ2 exp

(
λE
(
Yi
∣∣Zi)), (9.3)

and the test of homoscedasticity is testing

H0 : λ = 0,

H1 : λ 6= 0.

It is seen from the model (9.3) that the Breusch-Pagan test is sensitive (powerful to detect heteroscedasticity)
if the residual variance is a monotone function of the response expectation.

Note (One-sided tests of homoscedasticity).
In practical situations, if it can be assumed that the residual variance is possibly a monotone function of the
response expectation then it can mostly be also assumed that it is its increasing function. A more powerful
test of homoscedasticity is then obtained by considering the one-sided alternative

H1 : λ > 0.

Analogously, a test that is sensitive towards alternative of a residual variance which decreases with the
response expectation is obtained by considering the alternative H1 : λ < 0.

Note (Koenker’s studentized Breusch-Pagan test).
The original Breusch-Pagan test is derived using standard maximum-likelihood theory while starting from
assumption of a normal linear model. It has been shown in the literature that the test is not robust towards
non-normality. For this reason, Koenker (1981) derived a slightly modified version of the Breusch-Pagan test
which is robust towards non-normality. It is usually referred to as (Koenker’s) studentized Breusch-Pagan test
and its use is preferred to the original test.

Linear dependence on the regressors

Let tW : Rp −→ Rq be a given transformation, w := tW (z), W i = tW (Zi), i = 1, . . . , n. The following
choice of the weight function can be considered:

τ(β, λ, z) = τ(λ, w) = exp
(
λ>w

)
.

That is, under the heteroscedastic model, for i = 1, . . . , n,

var
(
Yi
∣∣Zi) = var

(
εi
∣∣Zi) = σ2 exp

(
λ>W i

)
.

2 vnořený
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On a log-scale:

log
(
var
(
Yi
∣∣Zi)) = log(σ2)︸ ︷︷ ︸

λ0

+λ>W i.

In other words, the residual variance follows on a log-scale a linear model with regressors given by vectors
W i.

If tW is a univariate transformation leading to w = tW (z), one-sided alternatives are again possible
reflecting assumption that under heteroscedasticity, the residual variance increases/decreases with a value
of W = tW (Z). The most common use is then such that tW (z) and related values of W1 = tW (Z1),
. . ., Wn = tW (Zn) correspond to one of the (non-intercept) regressors from either the model matrix X
(regressors included in the model), or from the matrix V that contains regressors currently not included in
the model. The corresponding score test of homoscedasticity then examines whether the residual variance
changes/increases/decreases (depending on chosen alternative) with that regressor.

Note (Score tests of homoscedasticity in the R software).
In the R software, the score tests of homoscedasticity are provided by functions:

(i) ncvTest (abbreviation for a “non-constant variance test”) from package car;

(ii) bptest from package lmtest.

The Koenker’s studentized variant of the test is only possible with the bptest function.

9.3.3 Some other tests of homoscedasticity

Some other tests of homoscedasticity that can be encountered in practice include the following

Goldfeld-Quandt test is an adaptation of a classical F-test of equality of the variances of the two indepen-
dent samples into a regression context proposed by Goldfeld and Quandt (1965). It is applicable in
linear models with both numeric and categorical covariates and under the alternative, heteroscedas-
ticity is expressed by a monotone dependence of the residual variance on a prespecified ordering of
the observations.

G-sample tests of homoscedasticity are tests applicable for linear models with only categorical covariates
(ANOVA models). They require repeated observations for each combination of values of the covariates
and basically test equality of variances of G independent random samples. The most common tests
of this type include:

Bartlett test by Bartlett (1937) which, however, is quite sensitive towards non-normality and hence its
use is not recommended. It is implemented in the R function bartlett.test;

Levene test by Levene (1960), implemented in the R function leveneTest from package car or in
the R function levene.test from package lawstat;

Brown-Forsythe test by Brown and Forsythe (1974) which is a robustified version of the Levene test
and is implemented in the R function levene.test from package lawstat;

Fligner-Killeen test by Fligner and Killeen (1976) which is implemented in the R function fligner.test.
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9.4 Normality

In this section, we are assuming a normal linear model

M : Y
∣∣Z ∼ Nn(Xβ, σ2In

)
, rank(Xn×k) = r ≤ k,

where the error terms ε = Y − Xβ =
(
ε1, . . . , εn

)>
satisfy (Lemma 6.1):

εi
i.i.d.∼ N (0, σ2), i = 1, . . . , n. (9.4)

Our interest now lies in verifying assumption (A4) of normality of the error terms εi, i = 1, . . . , n.

Let us remind our standard notation needed in this section:

(i) Hat matrix (projection matrix into the regression spaceM
(
X
)
):

H = X
(
X>X

)−X> =
(
hi,t
)
i,t=1,...,n

;

(ii) Projection matrix into the residual spaceM
(
X
)⊥

:

M = In −H =
(
mi,t

)
i,t=1,...,n

;

(iii) Residuals: U = Y − Ŷ = MY =
(
U1, . . . , Un

)>
;

(iv) Residual sum of squares: SSe =
∥∥U∥∥2;

(v) Residual mean square: MSe = 1
n−r SSe.

(vi) Standardized residuals: U std =
(
Ustd1 , . . . , Ustdn

)>
, where

Ustdi =
Ui√

MSemi,i

, i = 1, . . . , n (if mi,i > 0).

Notes. If the normal linear model (9.4) holds then Lemma 3.1 and Theorem 6.2 provide:

(i) For (raw) residuals:
U
∣∣Z ∼ Nn(0n, σ2 M

)
.

That is, the (raw) residuals follow also a normal distribution, nevertheless, the variances of the
individual residuals U1, . . . , Un di�er (a diagonal of the projection matrix M is not necessarily
constant). On top of that, the residuals are not necessarily independent (the projection matrix M is
not necessarily a diagonal matrix).

(ii) For standardized residuals (if mi,i > 0 for all i = 1, . . . , n, which is always the case in a full-rank
model):

E
(
Ustdi

∣∣Z) = 0, var
(
Ustdi

∣∣Z) = 1, i = 1, . . . , n.

That is, the standardized residuals have the same mean and also the variance but are neither neces-
sarily normally distributed nor necessarily independent.

In summary, in a normal linear model, neither the raw residuals, nor standardized residuals form a random
sample (a set of i.i.d. random variables) from a normal distribution.

9.4.1 Tests of normality

There exist formal tests of the null hypothesis on a normality of the error terms:

H0 : distribution of ε1, . . . , εn is normal, (9.5)
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where a distribution of the test statistic is exactly known under the null hypothesis of normality. Nevertheless,
those tests have quite a low power and hence are only rarely used in practice.

In practice, approximate approaches are used that apply standard tests of normality on either the raw
residuals U or the standardized residuals U std (both of them, under the null hypothesis (9.5), do not form
a random sample from the normal distribution ). Several empirical studies showed that such approaches
maintain quite well a significance level of the test on a requested value. At the same time, they mostly
recommend to use the raw residuals U rather than the standardized residuals U std.

Classical tests of normality include the following:

Shapiro-Wilk test implemented in the R function shapiro.test.

Lilliefors test implemented in the R function lillie.test from package nortest.

Anderson-Darling test implemented in the R function ad.test from package nortest.
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9.5 Uncorrelated errors

In this section, we are again assuming a (not necessarily normal) linear model

M : Y
∣∣X ∼ (Xβ, σ2In

)
,

where the error terms ε = Y − Xβ satisfy (Lemma 1.2):

E
(
ε
∣∣X) = E

(
ε
)

= 0n, var
(
ε
∣∣X) = var

(
ε
)

= σ2In.

The assumption (A3) is, in particular,

cov
(
εi, εl

∣∣X) = 0, i 6= l
(
=⇒ cov

(
εi, εl

)
= 0, i 6= l

)
. (9.6)

Our interest now lies in verifying assumption (A3) of whether the error terms εi, i = 1, . . . , n, are (condi-
tionally) uncorrelated.

The fact that errors are (conditionally) uncorrelated often follows from a design of the study/data collection
(measurements on independently behaving units, . . . ) and then there is no need to check this assumption.
Situation when uncorrelated errors cannot be taken for granted is if the observations are obtained sequentially.
Typical examples are

(i) time series (time does not have to be a covariate of the model) which may lead to so called serial
depedence among the error terms of the linear model;

(ii) repeated measurements performed using one measurement unit or on one subject.

In the following, we introduce a classical procedure that is used to test a null hypothesis of uncorrelated
errors against alternative of serial dependence expressed by the first order autoregressive process.

9.5.1 Durbin-Watson test

Assumptions.
It is assumed that the ordering of the observations expressed by their indeces 1, . . . , n, has a practical
meaning and may induce depedence between the error terms ε1, . . . , εn of the model.

Model M can also be written as

M : Yi = X>i β + εi, i = 1, . . . , n,

E
(
εi
∣∣X) = 0, var

(
εi
∣∣X) = σ2, i = 1, . . . , n,

cor
(
εi, εl

∣∣X) = 0, i 6= l.

(9.7)

One of the simplest stochastic processes that capture a certain form of serial dependence is the first order
autoregressive process AR(1). Assuming this for the error terms ε1, . . . , εn of the linear model (9.7) leads to
a more general model

MAR : Yi = X>i β + εi, i = 1, . . . , n,

ε1 = η1, εi = % εi−1 + ηi, i = 2, . . . , n,

E
(
ηi
∣∣X) = 0, var

(
ηi
∣∣X) = σ2, i = 1, . . . , n,

cor
(
ηi, ηl

∣∣X) = 0, i 6= l,

(9.8)

where −1 < % < 1 is additional unknown parameter of the model.
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Notes. It has been shown in the course Stochastic Processes 2 (NMSA409):
• ε1, . . . , εn is a stacionary process (given X) if and only if −1 < % < 1.

• For each m ≥ 0: cor
(
εi, εi−m

∣∣X) = %m, i = m+ 1, . . . , n. In particular

% = cor
(
εi, εi−1

∣∣X), i = 2, . . . , n.

Test of uncorrelated errors in model M can be now be based on testing

H0: % = 0,

H1: % 6= 0

in model MAR. Since positive autocorrelation (% > 0) is more common in practice, one-sided tests (with H1:
% > 0) are used frequently as well.

Let U =
(
U1, . . . , Un

)>
be residuals from model M which corresponds to the null hypothesis. A test

statistic proposed by Durbin and Watson (1950, 1951, 1971) takes a form

DW =

n∑
i=2

(Ui − Ui−1)2

n∑
i=1

U2
i

.

A testing procedure is based on observing that a statistic DW is approximately equal to 2 (1− %̂), where %̂
is an estimator of the autoregression parameter % from model MAR.

Calculations.
First remember that

E
(
Ui
∣∣X) = 0, i = 1, . . . , n,

and this property is maintained even if the error terms of the model are not uncorrelated (see process of the
proof of Lemma 2.7).

As residuals can be considered as predictions of the error terms ε1, . . . , εn, a suitable estimator of their
(conditional) covariance of lag 1 is

σ̂1,2 = ĉov
(
εl, εl−1

∣∣X) =
1

n− 1

n∑
i=2

Ui Ui−1.

Similarly, three possible estimators of the (conditional) variance σ2 of the error terms ε1, . . . , εn are

σ̂2 = v̂ar
(
εl
∣∣X) =

1

n− 1

n−1∑
i=1

U2
i or

1

n− 1

n∑
i=2

U2
i or

1

n

n∑
i=1

U2
i .

Then,

DW =

∑n
i=2(Ui − Ui−1)2∑n

i=1 U
2
i

=

∑n
i=2 U

2
i +

∑n
i=2 U

2
i−1 − 2

∑n
i=2 Ui Ui−1∑n

i=1 U
2
i

≈ σ̂2 + σ̂2 − 2 σ̂1,2
σ̂2

= 2

(
1− σ̂1,2

σ̂2

)
= 2

(
1− %̂

)
.



9.5. UNCORRELATED ERRORS 232

Use of the test statistic DW for tests of H0 : % = 0 is complicated by the fact that distribution of DW
under the null hypothesis depends on the model matrix X. It is hence not possible to derive (and tabulate)
critical values in full generality. In practice, two approaches are used to calculate approximate critical values
and p-values:

(i) Numerical algorithm of Farebrother (1980, 1984) which is implemented in the R function dwtest from
package lmtest;

(ii) General simulation method bootstrap (introduced by Efron, 1979) whose use for the Durbin-Watson
test is implemented in the R function durbinWatsonTest from package car. For general principles
of the bootstrap method, see the course Modern Statistical Methods (NMST434).
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9.6 Transformation of response

Especially in situations when homoscedasticity and/or normality does not hold, it is often possible to achieve
a linear model where both those assumptions are fulfilled by a suitable (non-linear) transformation t : R −→
R of the response. That is, it is worked with a normal linear model

Y ?
∣∣X ∼ Nn(Xβ, σ2 In

)
,

Y ? =
(
t(Y1), . . . , t(Yn)

)>
,

(9.9)

where it is already assumed that both homoscedasticity and normality hold. That is, the elements of the
error terms vector(

ε1, . . . , εn
)>

= ε = Y ? − Xβ =
(
t(Y1)−X>1 β, . . . , t(Yn)−X>nβ

)>
are, given X, independent and N (0, σ2) distributed (marginally, they are i.i.d. N (0, σ2) distributed).
Disadvantage of a model with transformed response is that the corresponding regression function m(x) =
x>β provides a model for expectation of the transformed response and not of the original response, i.e., for
x ∈ X (sample space of the regressors):

m(x) = E
(
t(Y )

∣∣X = x
)
6= t

(
E
(
Y
∣∣X = x

))
,

unless the transformation t is a linear function. Similarly, regression coe�cients have now interpretation of
an expected change of the transformed response t(Y ) related to a unity increase of the regressor.

9.6.1 Prediction based on a model with transformed response

Nevertheless, the above mentioned interpretational issue is not a problem in a situation when prediction of
a new value of the response Ynew , given Xnew = xnew , is of interest. If this is the case, we can base the
prediction on the model (9.9) for the transormed response. In the following, we assume that t is strictly
increasing, nevertheless, the procedure can be adjusted for decreasing or even non-monotone t as well:

• Construct a prediction Ŷ ?new and a (1− α) 100% prediction interval
(
Ŷ ?,Lnew, Ŷ

?,U
new

)
for Y ?new = t(Ynew)

based on the model (9.9).

• Trivially, an interval (
Ŷ Lnew, Ŷ

U
new

)
=
(
t−1
(
Ŷ ?,Lnew

)
, t−1

(
Ŷ ?,Unew

))
(9.10)

covers a value of Ynew with a probability of 1− α.
• A value Ŷnew = t−1

(
Ŷ ?new

)
lies inside the prediction interval (9.10) and can be considered as a point

prediction of Ynew . Only note that the prediction interval
(
Ŷ Lnew, Ŷ

U
new

)
is not necessarily centered

around a value of Ŷnew .

9.6.2 Log-normal model

Suitably interpretable model is obtained if the response is logarithmically transformed. Suppose that the
following model (normal linear model for log-transformed response) holds:

log(Yi) = X>i β + εi, i = 1, . . . , n,

εi
∣∣X indep.∼ N

(
0, σ2

)
,

(9.11)

which also implies εi
i.i.d.∼ N

(
0, σ2

)
. We then have

Yi = exp
(
X>i β

)
ηi, i = 1, . . . , n,

ηi
∣∣X indep.∼ LN

(
0, σ2

)
,
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which also implies ηi
i.i.d.∼ LN

(
0, σ2

)
, where LN (0, σ2) denotes a log-normal distribution with location

parameter 0 and a scale parameter σ. That is, under validity of the model (9.11) for the log-transformed
response, errors in a model for the original response are combined multiplicatively with the regression
function.

We can easily calculate the first two moments of the log-normal distribution which provides (for i =
1, . . . , n),

M := E
(
ηi
)

= E
(
ηi
∣∣X) = exp

(σ2

2

)
> 1 (with σ2 > 0),

V := var
(
ηi
)

= var
(
ηi
∣∣X) =

{
exp(σ2)− 1

}
exp(σ2).

Hence, for x ∈ X :

E
(
Y
∣∣X = x

)
= M exp

(
x>β

)
,

var
(
Y
∣∣X = x

)
= V exp

(
2x>β

)
= V ·

(
E
(
Y
∣∣X = x

)
M

)2

. (9.12)

A log-normal model (9.11) is thus suitable in two typical situations that cause non-normality and/or het-
eroscedasticity of a linear model for the original response Y :

(i) a conditional distribution of Y given X = x is skewed. If this is the case, the log-normal distribution
which is skewed as well may provide a satisfactory model for this distribution.

(ii) a conditional variance var
(
Y
∣∣X = x

)
increases with a conditional expectation E

(
Y
∣∣X = x

)
. This

feature is captured by the log-normal model as shown by (9.12). Indeed, under the log-normal model,
var
(
Y
∣∣X = x

)
increases with E

(
Y
∣∣X = x

)
. It is then said that the logarithmic transformation

stabilizes the variance.

Interpretation of regression coefficients

With a log-normal model (9.11), the (non-intercept) regression coe�cients have the following interpretation.
Let for j ∈ {1, . . . , k − 1},

x =
(
x0, . . . , xj . . . , xk−1

)> ∈ X , and xj(+1) :=
(
x0, . . . , xj + 1 . . . , xk−1

)> ∈ X ,
and suppose that β =

(
β0, . . . , βk−1

)>
We then have

E
(
Y
∣∣X = xj(+1)

)
E
(
Y
∣∣X = x

) =
M exp

(
xj(+1)>β

)
M exp

(
x>β

) = exp(βj).

Notes.
• If a linear model with only a single categorical covariate and with log-transformed response is fitted,
estimated di�erences between the group means of the log-response are equal to estimated log-ratios
between the group means of the original response. In particular, let Z ∈

{
1, . . . , G

}
be a categorical

covariate which group means of the log-response are parameterized as

E
(
log(Y )

∣∣Z = g
)

= β0 + c>g β
Z , g = 1, . . . , G,

where c>1 , . . . , c
>
G are rows of the (pseudo)contrast matrix. If normality of the log-transformed response

is assumed, we get (as above):

E
(
Y
∣∣Z = g

)
E
(
Y
∣∣Z = h

) =
M exp

(
β0 + c>g β

Z
)

M exp
(
β0 + c>h β

Z
) = exp

{(
c>g − c>h

)
βZ
}

= exp
{
E
(
log(Y )

∣∣Z = g
)
− E

(
log(Y )

∣∣Z = h
)}
, g 6= h.
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• If a linear model with logarithmically transformed response if fitted, estimated regression coe�cients,
estimates of linear combinations etc. and corresponding confidence intervals are often reported back-
transformed (exponentiated) due to above interpretation.

Evaluation of impact of the regressors on response

Evaluation of impact of the regressors on response requires necessity to perform statistical tests on regression
coe�cients or estimable parameters of a linear model. Homoscedasticity and for small samples also normality
are needed to be able to use standard t- or F-tests. Both homoscedasticity and normality can be achieved
by a log transformation of the response. Consequently performed statistical tests still have a reasonable
practical interpretation as tests on ratios of two expectations of the (original) response.



Chapter 10
Consequences of a Problematic
Regression Space

As in Chapter 9, we assume that data are represented by n random vectors
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . ,

Zi,p
)> ∈ Z ⊆ Rp i = 1, . . . , n. As usual, let Y =

(
Y1, . . . , Yn

)>
and let Zn×p denote a matrix with

covariate vectors Z1, . . . , Zn in its rows. Finally, let Xi, i = 1, . . . , n, where Xi = tX(Zi) for some
transformation tX : Rp −→ Rk , be the regressors that give rise to the model matrix

Xn×k =


X>1
...

X>n

 =
(
X0, . . . , Xk−1

)
.

It will be assumed that X0 =
(
1, . . . , 1

)>
(almost surely) leading to the model matrix

Xn×k =
(
1n, X

1, . . . , Xk−1
)
,

with explicitely included intercept term.

Primarily, we will assume that the model matrix X is su�cient to be able to assume that E
(
Y
∣∣Z) =

E
(
Y
∣∣X) = Xβ for some β =

(
β0, . . . , βk−1

)> ∈ Rk . That is, we will arrive from assuming

Y
∣∣Z ∼ (Xβ, σ2In

)
.

It will finally be assumed in the whole chapter that the model matrix X is of full rank, i.e.,

rank
(
X
)

= k < n.

236
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10.1 Multicollinearity

A principal assumption of any regression model is correct specification of the regression function. While
assuming a linear model Y

∣∣Z ∼ (Xβ, σ2In
)
, this means that E

(
Y
∣∣Z) ∈ M(X). To guarantee this, it

seems to be optimal to choose the regression space M
(
X
)
as rich as possible. In other words, if many

covariates are available, it seems optimal to include a high number k of columns in the model matrix X.
Nevertheless, as we show in this section, this approach bears certain complications.

10.1.1 Singular value decomposition of a model matrix

We are assuming rank
(
Xn×k

)
= k < n. As was shown in the course Fundamentals of Numerical Mathematics

(NMNM201), the matrix X can be decomposed as

X = UDV> =

k−1∑
j=0

dj uj v
>
j , D = diag(d0, . . . , dk−1),

where

• Un×k =
(
u0, . . . , uk−1

)
are the first k orthonormal eigenvectors of the n× n matrix XX>.

• Vk×k =
(
v0, . . . , vk−1

)
are (all) orthonormal eigenvectors of the k × k (invertible) matrix X>X.

• dj =
√
λj , j = 0, . . . , k − 1, where λ0 ≥ · · · ≥ λk−1 > 0 are

• the first k eigenvalues of the matrix XX>;
• (all) eigenvalues of the matrix X>X, i.e.,

X>X =

k−1∑
j=0

λj vj v
>
j = VΛV>, Λ = diag(λ0, . . . , λk−1)

=

k−1∑
j=0

d2j vj v
>
j = VD2V>.

The numbers d0 ≥ · · · ≥ dk−1 > 0 are called singular values1 of the matrix X. We then have

(
X>X

)−1
=

k−1∑
j=0

1

d2j
vj v

>
j = VD−2 V>,

tr
{(

X>X
)−1}

=

k−1∑
j=0

1

d2j
.

(10.1)

Note (Moore-Penrose pseudoinverse of the matrix X>X).
The singular value decomposition of the model matrix X provides also a way to calculate the Moore-
Penrose pseudoinverse of the matrix X>X if X is of less-than-full rank. If rank

(
Xn×k

)
= r < k, then

d0 ≥ · · · ≥ dr−1 > dr = · · · = dk−1 = 0. The Moore-Penrose pseudoinverse of X>X is obtained as

(
X>X

)+
=

r−1∑
j=0

1

d2j
vj v

>
j .

1 singulární hodnoty
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10.1.2 Multicollinearity and its impact on precision of the LSE

It is seen from (10.1) that with dk−1 −→ 0:

(i) the matrix X>X tends to a singular matrix, i.e., the columns of the model matrix X tend to being
linearly dependent ;

(ii) tr
{(

X>X
)−1} −→∞.

Situation when the columns of the (full-rank) model matrix X are close to being linearly dependent is
referred to as multicollinearity.

If a linear model Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k) = k is assumed, then we know from Gauss-Markov

theorem that

(i) The fitted values Ŷ =
(
Ŷ1, . . . , Ŷn

)>
= HY , where H = X

(
X>X

)−1X>, is the best linear unbiased
estimator (BLUE) of a vector parameter µ = Xβ = E

(
Y
∣∣Z) with

var
(
Ŷ
∣∣Z) = σ2 H;

(ii) The least squares estimator β̂ =
(
β̂0, . . . , β̂k−1

)>
=
(
X>X

)−1 X>Y is the BLUE of a vector of
regression coe�cients β with

var
(
β̂
∣∣Z) = σ2

(
X>X

)−1
.

It then follows

n∑
i=1

var
(
Ŷi
∣∣Z) = tr

{
var
(
Ŷ
∣∣Z)} = tr

(
σ2 H

)
= σ2 tr(H) = σ2 k,

k−1∑
j=0

var
(
β̂j
∣∣Z) = tr

{
var
(
β̂
∣∣Z)} = tr

{
σ2
(
X>X

)−1}
= σ2 tr

{(
X>X

)−1}
.

This shows that multicollinearity

(i) does not have any impact on precision of the LSE of the response expectation µ = Xβ;
(ii) may have a serious impact on precision of the LSE of the regression coe�cients β. At the same time,

since LSE is BLUE, there exist no better linear unbiased estimator of β. If additionally normality is
assumed there even exist no better unbiased estimator at all.

An impact of multicollinearity can also be expressed by considering a problem of estimating the squared
Euclidean norm of µ = Xβ and β, respectively. As natural estimators of those squared norms are the

squared norms of the corresponding LSE’s, i.e.,
∥∥Ŷ ∥∥2 and

∥∥β̂∥∥2, respectively. As we show, those estimators
are biased, nevertheless, the amount of bias does not depend on a degree of multicollinearity in case of∥∥Ŷ ∥∥2 but depends on it in case of

∥∥β̂∥∥2.
Lemma 10.1 Bias in estimation of the squared norms.
Let Y

∣∣Z ∼ (Xβ, σ2In
)
, rank(Xn×k) = k. The following then holds.

E
(∥∥Ŷ ∥∥2 − ∥∥Xβ∥∥2 ∣∣∣ Z) = σ2 k,

E
(∥∥β̂∥∥2 − ∥∥β∥∥2 ∣∣∣ Z) = σ2 tr

{(
X>X

)−1}
.
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Proof. For clarity of notation, condition will be omitted from notation of most expectations and variances.
Nevertheless, all are still understood as conditional expectations and variances given the covariate values Z.

E
(∥∥Ŷ ∥∥2 − ∥∥Xβ∥∥2 ∣∣∣ Z)

• Let us calculate:

E
∥∥Ŷ − Xβ

∥∥2 = E
{ n∑
i=1

(
Ŷi −X>i β

)2}
=

n∑
i=1

var
(
Ŷi
)

= tr
{
var
(
Ŷ
)}

= tr
(
σ2 H

)
= σ2 tr(H)= σ2 k.

• At the same time:

E
∥∥Ŷ − Xβ

∥∥2 = E
(
Ŷ − Xβ

)>(
Ŷ − Xβ

)
= E

∥∥Ŷ ∥∥2 + E
∥∥Xβ∥∥2 − 2β>X> EŶ︸︷︷︸

Xβ

= E
∥∥Ŷ ∥∥2 +

∥∥Xβ∥∥2 − 2
∥∥Xβ∥∥2= E

∥∥Ŷ ∥∥2 − ∥∥Xβ∥∥2.
• So that, E

∥∥Ŷ ∥∥2 − ∥∥Xβ∥∥2 = σ2 k,

E
∥∥Ŷ ∥∥2 =

∥∥Xβ∥∥2 + σ2 k.

E
(∥∥β̂∥∥2 − ∥∥β∥∥2 ∣∣∣ Z)

• Let us start in a similar way:

E
∥∥β̂ − β∥∥2 = E

{k−1∑
j=0

(
β̂j − βj

)2}
=

k−1∑
j=0

var
(
β̂j
)

= tr
{
var
(
β̂
)}

= tr
{
σ2
(
X>X

)−1}
= σ2 tr

{(
X>X

)−1}
.

• At the same time:

E
∥∥β̂ − β∥∥2 = E

(
β̂ − β

)>(
β̂ − β

)
= E

∥∥β̂∥∥2 + E
∥∥β∥∥2 − 2β> Eβ̂︸︷︷︸

β

= E
∥∥β̂∥∥2 +

∥∥β∥∥2 − 2
∥∥β∥∥2= E

∥∥β̂∥∥2 − ∥∥β∥∥2.
• So that, E

∥∥β̂∥∥2 − ∥∥β∥∥2 = σ2 tr
{(

X>X
)−1}

,

E
∥∥β̂∥∥2 =

∥∥β∥∥2 + σ2 tr
{(

X>X
)−1}︸ ︷︷ ︸

k−1∑
j=0

var
(
β̂j
)

.

k
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10.1.3 Variance inflation factor and tolerance

Notation. For a given linear model Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k) = k, where

Y =
(
Y1, . . . , Yn

)>
,

X =
(
1n, X

1, . . . , Xk−1), Xj =
(
X1,j , . . . , Xn,j

)>
, j = 1, . . . , k − 1,

the following (partly standard) notation, will be used:

Response sample mean: Y =
1

n

n∑
i=1

Yi;

Square root of the total sum of squares: TY =

√√√√ n∑
i=1

(
Yi − Y

)2
=
∥∥Y − Y 1n

∥∥;
Fitted values: Ŷ =

(
Ŷ1, . . . , Ŷn

)>
;

Coe�cient of determination: R2 = 1 −
∥∥Y − Ŷ ∥∥2∥∥Y − Y 1n

∥∥2 = 1 −
∥∥Y − Ŷ ∥∥2

T 2
Y

.

Residual mean square: MSe =
1

n− k
∥∥Y − Ŷ ∥∥2.

Further, for each j = 1, . . . , k− 1, consider a linear model Mj , where the vector X
j acts as a response and

the model matrix is
X(−j) =

(
1n, X

1, . . . , Xj−1, Xj+1, . . . , Xk−1).
The following notation will be used:

Column sample mean: X
j

=
1

n

n∑
i=1

Xi,j ;

Square root of the total sum of squares from model Mj :

Tj =

√√√√ n∑
i=1

(
Xi,j −X

j)2
=
∥∥Xj −Xj

1n
∥∥;

Fitted values from model Mj : X̂
j

=
(
X̂1,j , . . . , X̂n,j

)>
;

Coe�cient of determination from model Mj :

R2
j = 1 −

∥∥Xj − X̂
j∥∥2∥∥Xj −Xj
1n
∥∥2 = 1 −

∥∥Xj − X̂
j∥∥2

T 2
j

.

Notes.
(i) If data (response random variables and non-intercept covariates)

(
Yi, Xi,1, . . . , Xi,k−1

)>
, i =

1, . . . , n are a random sample from a distribution of a generic random vector
(
Y, X1, . . . , Xk−1

)>
then

• The coe�cient of determination R2 is also a squared value of a sample coe�cient of

multiple correlation between Y and X :=
(
X1, . . . , Xk−1

)>
.
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• For each j = 1, . . . , k − 1, the coe�cient of determination R2
j is also a squared value of

a sample coe�cient of multiple correlation between Xj and X(−j) :=
(
X1, . . . , Xj−1,

Xj+1, . . . , Xk−1
)>

.

(ii) For given j = 1, . . . , k − 1:

• A value of R2
j close to 1 means that the jth columnXj is almost equal to some linear combination

of the columns of the matrix X(−j) (remaining columns of the model matrix). We then say that
Xj is collinear with the remaining columns of the model matrix.

• A value of R2
j = 0 means that

• the column Xj is orthognal to all remaining non-intercept regressors (non-intercept columns
of the matrix X(−j));

• the jth regressor represented by the random variable Xj is multiply uncorrelated with the
remaining regressors represented by the random vector X(−j).

For a given linear model Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k) = k,

v̂ar
(
β̂
∣∣Z) = MSe

(
X>X

)−1
.

The following Theorem shows that diagonal elements of the matrix MSe
(
X>X

)−1
, i.e., values v̂ar

(
β̂j
∣∣Z)

can also be calculated, for j = 1, . . . , k − 1, using above defined quantities TY , Tj , R2, R2
j .

Theorem 10.2 Estimated variances of the LSE of the regression coefficients.
For a given dataset for which a linear model Y

∣∣Z ∼ (Xβ, σ2In
)
, rank(Xn×k) = k,X =

(
1n, X

1, . . . , Xk−1)
is applied, diagonal elements of the matrix v̂ar

(
β̂
∣∣Z) = MSe

(
X>X

)−1
, can also be calculated, for j =

1, . . . , k − 1, as

v̂ar
(
β̂j
∣∣Z) =

(
TY
Tj

)2

· 1−R2

n− k
· 1

1−R2
j

.

Proof. Proof/calculations were skipped and are not requested for the exam.

Suppose that TY , T1, . . . , Tk−1 are real constants such that the vectors

Y ? =
1

TY

(
Y − Y 1n

)
,

Xj,? =
1

Tj

(
X −Xj

1n
)
, j = 1, . . . , k − 1

have all unity Euclidean norm. For a given dataset, appropriate constants TY , T1, . . . , Tk−1 are indeed
given as indicated at the beginning of Section 10.1.3. Note that since we now only want to find an expression

on how to calculate, for a given dataset, diagonal elements of a certain matrix v̂ar
(
β̂
∣∣Z) = MSe

(
X>X

)−1
,

randomness of TY , T1, . . . , Tk−1 will not be taken into account. In this context, the vector Y ? is also
called the standardized respose vector and the vectors Xj,? the standardized regressors. Further, let

X? =
(
X1,?, . . . , Xk−1,?)

be the matrix with the standardized non-intercept regressors in columns.

We have

• Vector Y ? and all columns of X? are of unity Euclidean norm.

• Vector Y ? and all columns of X? are orthogonal to a vector 1n, i.e.,(
Y ?
)>

1n = 0,
(
X?
)>

1n = 0k−1.
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Let us now consider a linear model based on standardized variables (as if TY , T1, . . . , Tk−1 were pre-

specified constants). Let
(
β?0 , β

?
1 , . . . , β

?
k−1
)>

be the regression coe�cients in a model

M? : Y ?
∣∣Z ∼ ((1n, X?)(β?0

β?

)
, (σ?)2In

)
,

with the model matrix Xst =
(
1n, X?

)
. Let β? =

(
β?1 , . . . , β

?
k−1
)>

be the subvector of the regression
coe�cients related to the non-intercept columns of the model matrix.

As usually, let β =
(
β0, β1, . . . , βk−1

)>
be the regression coe�cients in the original model

M : Y
∣∣Z ∼ (Xβ, σ2 In

)
.

Model M can be written as

Y = β01n +

k−1∑
j=1

Xjβj + ε, (10.2)

where ε
∣∣Z ∼ (0n σ2 In

)
.

That is, data satisfying model M also satisfy

Y − Y 1n = (β0 − Y )1n +

k−1∑
j=1

(Xj −Xj
1n)βj +

k−1∑
j=1

X
j
βj1n + ε,

1

TY
(Y − Y 1n)︸ ︷︷ ︸
Y ?

=

(
β0 − Y +

∑k−1
j=1 X

j
βj
)

TY︸ ︷︷ ︸
β?0

1n +

k−1∑
j=1

1

Tj
(Xj −Xj

1n)︸ ︷︷ ︸
Xj,?

Tj
TY

βj︸ ︷︷ ︸
β?j

+
1

TY
ε︸︷︷︸

ε?

.

In other words, if data satisfy model M then the standardized data satisfy the model M? with the error
terms ε? = Y ? − β?01n − X?β? having ε?

∣∣Z ∼ (0n (σ?)2 In
)
and parameters of the two models are in

mutual relationships

β?0 =
β0 − Y +

∑k−1
j=1 Xjβj

TY
,

β?j =
Tj
TY

βj , j = 1, . . . , k − 1,

σ? =
σ

TY
.

That is,

• β?0 is only shifted-scaled β0.

• β?j is only scaled βj , j = 1, . . . , k − 1.

• σ? is only scaled σ.

Due to linearity, the same relationships hold also for the LSE in both models. That is (now written in the
opposite direction):

β̂0 = TY β̂
?
0 + Y −

k−1∑
j=1

Xj
TY
Tj
β̂?j ,

β̂j =
TY
Tj
β̂?j , j = 1, . . . , k − 1.



10.1. MULTICOLLINEARITY 243

Moreover, the fitted values in both models must also be linked by the same (linear) relationship as the
standardized and original response variables. That is,

Ŷ
?

=
1

TY

(
Ŷ − Y 1n

)
, Ŷ ?i =

1

TY
(Ŷi − Y ), i = 1, . . . , n,

Ŷ = TY Ŷ
?

+ Y 1n, Ŷi = TY Ŷ
?
i + Y , i = 1, . . . , n.

The residual sum of squares in model M? is then:

SS?e =
∥∥Y ? − Ŷ

?∥∥2
=

n∑
i=1

(Y ?i − Ŷ ?i )2 =
1

T 2
Y

n∑
i=1

(TY Y
?
i − TY Ŷ ?i )2

=
1

T 2
Y

n∑
i=1

{
TY Y

?
i + Y − (TY Ŷ

?
i + Y )

}2
=

1

T 2
Y

n∑
i=1

(Yi − Ŷi)2 =
1

T 2
Y

SSe,

where SSe is the residual sum of squares in the original model M.

Moreover, note that T 2
Y =

∥∥Y −Y 1n
∥∥2 is also the total sum of squares SST for the original response vector

Y . That is,

SS?e =
SSe
SST

= 1−R2, (10.3)

where R2 is the coe�cient of determination of the original model M. The residual mean square in model
M? can now be written as

MS?e =
SS?e
n− k

=
1−R2

n− k
.

Let us now explicitely express the LSE of the regression coe�cients vector
(
β?0 , β

?>)> in model M? which
are given as (

β̂?0

β̂
?

)
=
(
X>stXst

)−1
X>stY

?.

First,

X>stXst =
(
1n, X?

)>(
1n, X?

)
=

(
n 0>k−1

0k−1
(
X?
)>X?

)
=

(
n 0>k−1

0k−1 RX,X

)
,

where RX,X :=
(
X?
)>X? =

(
rj,lX,X

)
j,l=1,...,k−1, has elements

rj,lX,X =

∑n
i=1(Xi,j −X

j
)(Xi,l −X

l
)

Tj Tl

=

∑n
i=1(Xi,j −X

j
)(Xi,l −X

l
)√∑n

i=1(Xi,j −X
j
)2
√∑n

i=1(Xi,l −X
l
)2
, j, l = 1, . . . , k − 1.

That is, RX,X =
(
X?
)>X? is a sample correlation matrix (with ones on a diagonal) of the non-intercept

regressors from the original model matrix X.
We then also have, (

X>stXst
)−1

=

(
n 0>k−1

0k−1 RX,X

)
=

 1

n
0>k−1

0k−1 R−1X,X

 .
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Second,

X>stY
? =

(
1n, X?

)>
Y ? =

(∑n
i=1 Y

?
i(

X?
)>
Y ?

)
=

(
0

rX,Y

)
,

where rX,Y :=
(
X?
)>
Y ? =

(
rjX,Y

)
j=1,...,k−1, has elements

rjX,Y =

∑n
i=1(Xi,j −X

j
)(Yi − Y )

Tj TY

=

∑n
i=1(Xi,j −X

j
)(Yi − Y )√∑n

i=1(Xi,j −X
j
)2
√∑n

i=1(Yi − Y )2
, j = 1, . . . , k − 1,

That is, rX,Y =
(
X?
)>
Y ? is a vector of sample correlation coe�cients between the regressors from the

model matrix X and the response Y .

Hence, (
β̂?0

β̂
?

)
=

 1

n
0>k−1

0k−1 R−1X,X

 (
0

rX,Y

)
=

(
0

R−1X,X rX,Y

)
,

var

{(
β̂?0

β̂
?

) ∣∣∣∣∣Z
}

= (σ?)2
(
X>stXst

)−1
= (σ?)2

 1

n
0>k−1

0k−1 R−1X,X

 .

That is, we have

β̂?0 = 0, var
(
β̂?0
∣∣Z) =

(σ?)2

n
,

β̂
?

= R−1X,X rX,Y var
(
β̂
? ∣∣Z) = (σ?)2 R−1X,X . (10.4)

Before we proceed, let us derive the hat matrix and the fitted values of model M?. The hat matrix of model
M? is calculated as

Hst =
(
1n, X?

) (
X>stXst

)−1 (
1n, X?

)>
=
(
1n, X?

)  1

n
0>k−1

0k−1 R−1x,x

 (
1n, X?

)>
=

1

n
1n 1n

> + X?R−1X,X
(
X?
)>︸ ︷︷ ︸

=: H?
.

Observe that

• Hst is the projection matrix intoM
((

1n, X?
))

.

• H? = X?R−1X,X
(
X?
)>

is the projection matrix intoM
(
X?
)
.

The fitted values of the model M? are then given by

Ŷ
?

= HstY ? =
1

n
1n 1n

>Y ?︸ ︷︷ ︸
0

+ H?Y ? = H?Y ?.

Finally, observe that (while remembering that any hat matrix is symmetric and idempotent)(
Ŷ
?)>

Y ? =
(
Y ?
)>H?Y ? =

(
Y ?
)>H?H?Y ? =

(
Ŷ
?)>

Ŷ
?
.
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Consequently,

SS?e =
∥∥Y ? − Ŷ

?∥∥2 =
(
Y ?
)>
Y ? −

(
Y ?
)>
Ŷ
?
−
(
Ŷ
?)>

Y ? +
(
Ŷ
?)>

Ŷ
?

=
(
Y ?
)>
Y ? −

(
Ŷ
?)>

Ŷ
?
. (10.5)

Let dj,jX,X , j = 1, . . . , k − 1 be diagonal elements of the matrix R−1X,X . That is, from (10.4):

var
(
β̂?j
∣∣Z) = (σ?)2 dj,jX,X , j = 1, . . . , k − 1.

To derive the value of dj,jX,X , j = 1, . . . , k − 1, let us first consider the sample correlation matrix based on
both the response vector and the non-intercept regressors:

R(Y,X),(Y,X) =

(
1 r>X,Y

rX,Y RX,X

)
.

Using Theorem A.4, we can express its inverse:

R−1(Y,X),(Y,X) =

((
1− r>X,Y R

−1
X,XrX,Y

)−1
V

V V

)
.

Further (while also using Eqs. 10.3 and 10.5),

1− r>X,Y R−1X,XrX,Y
= (Y ?)

>
Y ? − (Y ?)

>X?
{

(X?)>X?
}−1

(X?)>︸ ︷︷ ︸
H?

Y ?

= (Y ?)
>
Y ? − (Ŷ

?
)
>
Ŷ
?

= SS?e = 1−R2,

where R2 is coe�cient of determination from the linear model M : Y
∣∣Z ∼ (Xβ, σ2 In

)
.

That is, the (Y − Y ) diagonal element of matrix R−1(Y,X),(Y,X) equals to (1 − R2)−1, where R2 is the
coe�cient of determination from a model with Y as response and the model matrix composed of the
intercept column and the original regressors X1, . . . , Xk−1, i.e., the model matrix

X =
(
1n, X

1, . . . , Xk−1).
Now, consider for given j = 1, . . . , k− 1 a linear model where the response vector is equal to Xj (the jth
regressor from the original model) and the model matrix is

X(−j) =
(
1n, X

1, . . . , Xj−1, Xj+1, . . . , Xk−1).
The role of the matrix R−1(Y,X),(Y,X) would now be played by matrix R−1X,X whose rows and columns were

reordered and its (1− 1) element is equal to dj,jX,X , i.e., to the jth diagonal element of the matrix R−1X,X . By
the same arguments as above, we arrive at

dj,jX,X =
1

1−R2
j

,

where R2
j is the coe�cient of determination from a linear model with Xj as response and the model matrix

X(−j).

So we have,

var
(
β̂?j
∣∣Z) =

(σ?)2

1−R2
j

, j = 1, . . . , k − 1.
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The jth diagonal element (j = 1, . . . , k − 1) of the matrix var
(
β̂
∣∣Z) can now be expressed as

var
(
β̂j
∣∣Z) = var

(
TY
Tj
β̂?j

∣∣∣∣Z) =

(
TY
Tj

)2

var
(
β̂?j
∣∣Z) =

(
TY
Tj

)2
(σ?)2

1−R2
j

.

Let us now replace an unknown (σ?)2 by its estimator MS?e =
SS?e
n−k = 1−R2

n−k . We get

v̂ar
(
β̂j
∣∣Z) =

(
TY
Tj

)2
1−R2

n− k
1

1−R2
j

j = 1, . . . , k − 1.

k

Definition 10.1 Variance inflation factor and tolerance.
For given j = 1, . . . , k − 1, the variance inflation factor2 and the tolerance3 of the jth regressor of the linear
model Y

∣∣Z ∼ (Xβ, σ2In
)
, rank(Xn×k) = k are values VIFj and Tolerj , respectively, defined as

VIFj =
1

1−R2
j

, Tolerj = 1−R2
j =

1

VIFj
.

Notes.
• With Rj = 0 (the jth regressor orthogonal to all remaining regressors, the j regressor multiply uncorrelated
with the remaining ones), VIFj = 1.

• With Rj −→ 1 (the jth regressor collinear with the remaining regressors, the jth regressor almost
perfectly multiply correlated with the remaining ones), VIFj −→∞.

Interpretation and use of VIF

• If we take into account the statement of Theorem 10.2, the VIF of the jth regressor (j = 1, . . . , k − 1)
can be interpreted as a factor by which the (estimated) variance of β̂j is multiplied (inflated) compared to
an optimal situation when the jth regressor is orthogonal to (multiply uncorrelated with) the remaining
regressors included in the model. Hence the term variance inflation factor.

• Under assumption of normality, the confidence interval for βj with a coverage of 1−α has the lower and
the upper bounds given as

β̂j ± tn−k
(

1− α

2

)√
v̂ar
(
β̂j
∣∣Z).

Using the statement of Theorem 10.2, the lower and the upper bounds of the confidence interval for βj
can also be written as

β̂j ± tn−k
(

1− α

2

) TY
Tj

√
1−R2

n− k
√
VIFj .

That is, the (square root of) VIF also provides a factor by which the half-length (radius) of the confidence
interval is inflated compared to an optimal situation when the jth regressor is orthogonal to (multiply
uncorrelated with) the remaining regressors included in the model, namely,

VIFj =

(
Volj
Vol0,j

)2

, (10.6)

where Volj = length (volume) of the confidence interval for βj ;

Vol0,j = length (volume) of the confidence interval for βj if it was R2
j = 0.

• Regressors with a high VIF are possibly responsible for multicollinearity. Nevertheless, the VIF does not
reveal which regressors are mutually collinear.

2 varianční inflační faktor 3 tolerance
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Generalized variance inflation factor
Beginning of
skipped partA generalized variance inflation factor was derived by Fox and Monette (1992) to evaluate a degree of

collinearity between a specified group of regressors and the remaining regressors. Let

• J ⊂
{

1, . . . , k − 1
}
,
∣∣J ∣∣ = m;

• β[J ] be a subvector of β having the elements indexed by j ∈ J .
Under normality, a confidence ellipsoid for βJ with a coverage 1− α is{

β[J ] ∈ Rm :
(
β[J ] − β̂[J ]

)> (
MSeV[J ]

)−1 (
β[J ] − β̂[J ]

)
< mFm,n−k(1− α)

}
,

V[J ] = (J − J ) block of the matrix
(
X>X

)−1
. (10.7)

Let VolJ : volume of the confidence ellipsoid (10.7);

Vol0,J : volume of the confidence ellipsoid (10.7) would all columns of X corespond-
ing to β[J ] be orthogonal to the remaining colums of X.

A definition of the generalized variance inflation factor gVIF is motivated by (10.6) as it is given as

gVIFJ =

(
VolJ
Vol0,J

)2

.

It is seen that with J = {j} for some j = 1, . . . , k − 1, the generalized VIF simplifies into a standard VIF,
i.e.,

gVIFj = VIFj .

Notes.
• The generalized VIF is especially useful if J relates to the regression coe�cients corresponding to the
reparameterizing (pseudo)contrasts of one categorical covariate. It can then be shown that gVIFJ does
not depend on a choice of the (pseudo)contrasts. gVIFJ then evaluates the magnitude of the linear
dependence of a categorical variable and the remaining regressors.

• When comparing gVIFJ for index sets J ,
∣∣J ∣∣ of di�erent cardinality m, quantities

gVIF
1

2m
J =

(
VolJ
Vol0,J

) 1
m

(10.8)

should be compared which all relate to volume units in 1D.

• Generalized VIF’s (and standard VIF’s if m = 1) together with (10.8) are calculated by the R function vif

from the package car.
End of
skipped part

10.1.4 Basic treatment of multicollinearity

Especially in situations when inference on the regression coe�cients is of interest, i.e., when the primary
purpose of the regression modelling is to evaluate which variables influence significantly the response
expectation and which not, multicollinearity is a serious problem. Basic treatment of multicollinearity
consists of preliminary exploration of mutual relationships between all covariates and then choosing only
suitable representatives of each group of mutually multiply correlated covariates. Very basic decision can
be based on pairwise correlation coe�cients. In some (especially “cook-book”) literature, rules of thumb are
applied like “Covariates with a correlation (in absolute value) higher than 0.80 should not be included together in
one model.” Nevertheless, such rules should never be applied in an automatic manner (why just 0.80 and not
0.79, . . . ?) Decision on which covariates cause multicollinearity can additionally be based on (generalized)
variance inflation factors. Nevertheless, also those should be used comprehensively. In general, if a large set
of covariates is available to relate it to the response expectation, a deep (and often timely) analyzis of mutual
relationships and their understanding must preceed any regression modelling that is to lead to useful results.
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Illustrations
IQ (n = 111)
iq ∼ gender + zn7 + zn8

iq
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IQ (n = 111)
iq ∼ gender + zn7 + zn8

summary(m1 <- lm(iq ~ gender + zn7 + zn8, data = IQ))

Residuals:

Min 1Q Median 3Q Max

-22.1677 -7.5243 -0.4338 7.1780 26.4095

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 138.222 3.119 44.314 < 2e-16 ***

gender 4.563 2.221 2.055 0.04232 *

zn7 -16.767 5.536 -3.029 0.00308 **

zn8 -1.149 5.557 -0.207 0.83658

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 10.81 on 107 degrees of freedom

Multiple R-squared: 0.4943, Adjusted R-squared: 0.4801

F-statistic: 34.87 on 3 and 107 DF, p-value: 8.472e-16

library("car")

vif(m1)

gender zn7 zn8

1.16923 11.26866 11.40240
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Illustrations
IQ (n = 111)
iq ∼ gender + zn7

(sm27 <- summary(m27 <- lm(iq ~ gender + zn7, data = IQ)))

Residuals:

Min 1Q Median 3Q Max

-21.9606 -7.4290 -0.1927 7.0047 26.5244

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 138.093 3.043 45.376 <2e-16 ***

gender 4.513 2.198 2.054 0.0424 *

zn7 -17.852 1.765 -10.116 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 10.77 on 108 degrees of freedom

Multiple R-squared: 0.4941, Adjusted R-squared: 0.4848

F-statistic: 52.74 on 2 and 108 DF, p-value: < 2.2e-16

vif(m27)

gender zn7

1.15531 1.15531

IQ (n = 111)
iq ∼ gender + zn8

(sm28 <- summary(m28 <- lm(iq ~ gender + zn8, data = IQ)))

Residuals:

Min 1Q Median 3Q Max

-25.5378 -7.9585 -0.0763 7.1273 31.0778

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 137.402 3.223 42.634 < 2e-16 ***

gender 4.474 2.303 1.943 0.0547 .

zn8 -17.095 1.846 -9.263 2.21e-15 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 11.22 on 108 degrees of freedom

Multiple R-squared: 0.451, Adjusted R-squared: 0.4408

F-statistic: 44.36 on 2 and 108 DF, p-value: 8.673e-15

vif(m28)

gender zn8

1.169022 1.169022
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Illustrations
IQ (n = 111)
iq ∼ gender + znX
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10.2 Misspecified regression space

We are often in a situation when a large (potentially enormous) number p of candidate regressors is available.
The question is then which of them should be included in a linear model. As shown in Section 10.1, inclusion
of all possible regressors in the model is not necessarily optimal and may even have seriously negative impact
on the statistical inference we would like to draw using the linear model. In this section, we explore some
(additional) properties of the least squares estimators and of the related prediction in two situations:

(i) Omitted important regressors.

(ii) Irrelevant regressors included in a model.

10.2.1 Omitted and irrelevant regressors

We will assume that possibly two sets of regressors are available:

(i) Xi, i = 1, . . . , n, where Xi = tX(Zi) for some transformation tX : Rp −→ Rk . They give rise to
the model matrix

Xn×k =


X>1
...

X>n

 =
(
X0, . . . , Xk−1

)
.

It will still be assumed that X0 =
(
1, . . . , 1

)>
(almost surely) leading to the model matrix

Xn×k =
(
1n, X

1, . . . , Xk−1
)
,

with explicitely included intercept term.

(ii) V i, i = 1, . . . , n, where V i = tV (Zi) for some transformation tV : Rp −→ Rl. They give rise to
the model matrix

Vn×l =


V >1
...

V >n

 =
(
V 1, . . . , V l

)
.

We will assume that both matrices X and V are of a full column rank and their columns are linearly
independent, i.e., we assume

rank
(
Xn×k

)
= k, rank

(
Vn×l

)
= l,

for Gn×(k+l) :=
(
X, V

)
, rank

(
G
)

= k + l < n.

The matrices X and G give rise to two nested linear models:

Model MX Y
∣∣Z ∼ (Xβ, σ2In

)
;

Model MXV Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
.

Depending on which of the two models is a correct one and which model is used for inference, we face two
situations:

Omitted important regressors mean that the larger model MXV is correct (with γ 6= 0l) but we base
inference on model MX . In particular,

• β is estimated using model MX ;

• σ2 is estimated using model MX ;

• prediction is based on the fitted model MX .
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Irrelevant regressors included in a model that the smaller model MX is correct but we base inference on
model MXV . In particular,

• β is estimated (together with γ) using model MXV ;

• σ2 is estimated using model MXV ;

• prediction is based on the fitted model MXV .

Note that if MX is correct then MXV is correct as well. Nevertheless, it includes redundant parameters
γ which are known to be equal to zeros.

Notation (Quantities derived under the two models).
Quantities derived while assuming model MX will be indicated by subscript X , quantities derived while
assuming model MXV will be indicated by subscript XV . Namely,

(i) Quantities derived while assuming model MX :

• Least squares estimator of β:

β̂X =
(
X>X

)−1X>Y =
(
β̂X,0, . . . , β̂X,k−1

)>
;

• Projection matrices into the regression spaceM
(
X
)
and into the residual spaceM

(
X
)⊥

:

HX = X
(
X>X

)−1X>, MX = In −HX ;

• Fitted values (LSE of a vector Xβ):

Ŷ X = HXY = Xβ̂X =
(
ŶX,1, . . . , ŶX,n

)>
;

• Residuals
UX = MXY = Y − Ŷ X =

(
UX,1, . . . , UX,n

)>
;

• Residual sum of squares and residual mean square:

SSe,X =
∥∥UX

∥∥2, MSe,X =
SSe,X
n− k

.

(ii) Quantities derived while assuming model MXV :

• Least squares estimator of
(
β>, γ>

)>
:(

β̂
>
XV , γ̂

>
XV

)>
=
(
G>G

)−1G>Y ,
β̂XV =

(
β̂XV,0, . . . , β̂XV,k−1

)>
, γ̂XV =

(
γ̂XV,1, . . . , γ̂XV,l

)>
;

• Projection matrices into the regression spaceM
(
G
)
and into the residual spaceM

(
G
)⊥

:

HXV = G
(
G>G

)−1G>, MXV = In −HXV ;

• Fitted values (LSE of a vector Xβ + Vγ):

Ŷ XV = HXV Y = Xβ̂XV + VγXV =
(
ŶXV,1, . . . , ŶXV,n

)>
;

• Residuals
UXV = MXV Y = Y − Ŷ XV =

(
UXV,1, . . . , UXV,n

)>
;
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• Residual sum of squares and residual mean square:

SSe,XV =
∥∥UXV

∥∥2, MSe,XV =
SSe,XV
n− k − l

.

Consequence of Lemma 9.1: Relationship between the quantities derived while
assuming the two models.
Quantities derived while assuming models MX and MXV are mutually in the following relationships:

Ŷ XV − Ŷ X = MXV
(
V>MXV

)−1V>UX ,

= X
(
β̂XV − β̂X

)
+ Vγ̂XV ,

γ̂XV =
(
V>MXV

)−1V>UX ,

β̂XV − β̂X = −
(
X>X

)−1X>Vγ̂XV ,
SSe,X − SSe,XV =

∥∥MXVγ̂XV
∥∥2,

HXV = HX + MXV
(
V>MXV

)−1 V>MX .

Proof. Direct use of Lemma 9.1 while taking into account the fact that now, all involved model matrices
are of full-rank.

Relationship HXV = HX +MXV
(
V>MXV

)−1 V>MX was shown inside the proof of Lemma 9.1. It easily
follows from a general expression of the hat matrix if we realize that

M
(
X, V

)
=M

(
X, MXV

)
,

and that X>MXV = 0k×l.
k
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Lemma 10.3 Variance of the LSE in the two models.
Irrespective of whether MX or MXV holds, the covariance matrices of the fitted values and the LSE of the
regression coe�cients satisfy the following:

var
(
Ŷ XV

∣∣Z) − var
(
Ŷ X

∣∣Z) ≥ 0,

var
(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z) ≥ 0.

Proof.

var
(
Ŷ XV

∣∣Z) − var
(
Ŷ X

∣∣Z) ≥ 0

We have, var
(
Ŷ X

∣∣Z) = var
(
HXY

∣∣Z) = HX(σ2In)HX

= σ2 HX (even if MX is not correct).

var
(
Ŷ XV

∣∣Z) = var
(
HXV Y

∣∣Z) = σ2HXV

= σ2
{
HX + MXV(V>MXV)−1V>MX

}
= var

(
Ŷ X

∣∣Z) + σ2 MXV(V>MXV)−1V>MX .︸ ︷︷ ︸
positive semidefinite matrix

var
(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z) ≥ 0

Proof/calculations for this part were skipped and are not requested for the exam.
Proof/calculations below are shown only for those who are interested.

First, use a formula to calculate an inverse of a matrix divided into blocks (Theorem A.4):

var

{(
β̂XV
γ̂XV

) ∣∣∣∣∣Z
}

= σ2

(
X>X X>V

V>X V>V

)−1
= σ2

{X>X − X>V
(
V>V

)−1V>X}−1 V

V V

 .

Further,

var
(
β̂X

∣∣Z) = var
((

X>X
)−1X>Y ∣∣∣Z) =

(
X>X

)−1X>(σ2In)X
(
X>X

)−1
= σ2

(
X>X

)−1
(even if MX is not correct).

var
(
β̂XV

∣∣Z) = σ2
{
X>X − X>V

(
V>V

)−1V>X}−1.
Property of positive definite matrices (“A− B ≥ 0 ⇔ B−1 − A−1 ≥ 0”) finalizes the proof.

k

Notes.
• Estimator of the response mean vector µ = E

(
Y
∣∣Z) based on a (smaller) model MX is always (does

not matter which model is correct) less or equally variable than the estimator based on the (richer) model
MXV .

• Estimators of the regression coe�cients β based on a (smaller) model MX have always lower (or equal if
X>V = 0k×m) standard errors than the estimator based on the (richer) model MXV .
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10.2.2 Prediction quality of the fitted model

To evaluate a prediction quality of the fitted model, we will assume that data
(
Yi, Z

>
i

)>
, Zi =

(
Zi,1, . . . ,

Zi,p
)> ∈ Z ⊆ Rp, i = 1, . . . , n, are a random sample from a distribution of a generic random vector(

Y, Z>
)>

, Z =
(
Z1, . . . , Zp

)>
. Let the conditional distribution Y |Z of Y given the covariates Z

satisfies
E
(
Y
∣∣Z) = m(Z), var

(
Y
∣∣Z) = σ2, (10.9)

for some (regression) function m and some σ2 > 0.

Replicated response

Let z1, . . . , zn be the values of the covariate vectors Z1, . . . , Zn in the original data that are available

to estimate the parameters of the model (10.9). Further, let
(
Yn+i, Z

>
n+i

)>
, i = 1, . . . , n, be independent

random vectors (new or future data) being distributed as a generic random vector
(
Y, Z

)
and being

independent of the original data
(
Yi, Z

>
i

)>
, i = 1, . . . , n. Suppose that our aim is to predict values of

Yn+i, i = 1, . . . , n, under the condition that the new covariate values are equal to the old ones. That is, we
want to predict, for i = 1, . . . , n, values of Yn+i given Zn+i = zi.

Terminology (Replicated response).
A random vector

Y new =
(
Yn+1, . . . , Yn+n

)>
,

where Yn+i is supposed to come from the conditional distribution Y |Z = zi, i = 1, . . . , n, is called the
replicated response vector or replicated data.

Notes.
• The original (old) response vector Y and the replicated response vector Y new are assumed to be inde-
pendent.

• Both Y and Y new are assumed to be generated by the same conditional distribution (given Z), where

E
(
Y
∣∣Z1 = z1, . . . ,Zn = zn

)
= µ = E

(
Y new

∣∣Zn+1 = z1, . . . ,Zn+n = zn
)
,

var
(
Y
∣∣Z1 = z1, . . . ,Zn = zn

)
= σ2In = var

(
Y new

∣∣Zn+1 = z1, . . . ,Zn+n = zn
)
,

for some σ2 > 0,

and
µ =

(
m(z1), . . . , m(zn)

)>
=
(
µ1, . . . , µn

)>
.

Prediction of replicated response

Let
Ŷ new =

(
Ŷn+1, . . . , Ŷn+n

)>
be the prediction of a vector Y new based on the assumed regression model (10.9) estimated using the
original data Y with Z1 = z1, . . . , Zn = zn. That is, Ŷ new is some statistic of Y (and Z). Analogously
to Section 7.3, we shall evaluate a quality of the prediction by the mean squared error of prediction (MSEP).
Nevertheless, in contrast to Section 7.3, the following issues will be di�erent:

(i) A value of a random vector rather than a value of a random variable (as in Section 7.3) is predicted
now. Now, the MSEP will be given as a sum of the MSEPs of the elements of the random vector
being predicted.
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(ii) Since we are now interested in prediction of new response values given the covariate values being
equal to the covariate values in the original data, the MSEP now will be based on a conditional
distribution of the responses given Z (given Zi = Zn+i = zi, i = 1, . . . , n). In contrast, variability
of the covariates was taken into account in Section 7.3.

(iii) Variability of the prediction induced by estimation of the model parameters (estimation of the re-
gression function) using the original data Y will also be taken into account now. In contrast, model
parameters were assumed to be known when deriving the MSEP in Section 7.3.

Definition 10.2 Quantification of a prediction quality of the fitted regression model.

Prediction quality of the fitted regression model will be evaluated by the mean squared error of prediction
(MSEP)4 defined as

MSEP
(
Ŷ new

)
=

n∑
i=1

E
{(
Ŷn+i − Yn+i

)2 ∣∣∣Z}, (10.10)

where the expectation is with respect to the (n+n)-dimensional conditional distribution of the vector
(
Y >, Y >new

)>
given

Z =


Z>1
...

Z>n

 =


Z>n+1

...

Z>n+n

 .

Additionally, we define the averaged mean squared error of prediction (AMSEP)5 as

AMSEP
(
Ŷ new

)
=

1

n
MSEP

(
Ŷ new

)
.

Prediction of replicated response in a linear model

With a linear model, it is assumed that m(z) = x>β for some (known) transformation x = tX(z) and
a vector of (unknown) parameters β. Hence, it is assumed that

µ =
(
µ1, . . . , µn

)>
= E

(
Y
∣∣Z1 = z1, . . . , Zn = zn

)
= E

(
Y new

∣∣Zn+1 = z1, . . . , Zn+n = zn
)

satisfies
µ = Xβ =

(
x>1 β, . . . , x

>
nβ
)>
,

for a model matrix X based on the (transformed) covariate values xi = tX(zi), i = 1, . . . , n.

If we restrict our attention to unbiased and linear predictions of Y new , i.e., to predictions of the form
Ŷ new = a + AY for some vector a ∈ Rn and some n × n matrix A satisfying E

(
Ŷ new

∣∣Z) =

E
(
Y new

∣∣Z) = µ, a variant of the Gauss-Markov theorem would show that (10.10) is minimized for

Ŷ new = Ŷ , Ŷ = X
(
X>X

)−X>Y ,
Ŷn+i = Ŷi, i = 1, . . . , n.

That is, for Ŷ new being equal to the fitted values of the model estimated using the original data. Note also
that

Ŷ new = Ŷ =: µ̂,

where µ̂ is the LSE of a vector µ = E
(
Y
∣∣Z1 = z1, . . . ,Zn = zn

)
= E

(
Y new

∣∣Zn+1 = z1, . . . ,Zn+n =

zn
)
.

4 střední čtvercová chyba predikce 5 průměrná střední čtvercová chyba predikce
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Lemma 10.4 Mean squared error of the BLUP in a linear model.
In a linear model, the mean squared error of the best linear unbiased prediction can be expressed as

MSEP
(
Ŷ new

)
= nσ2 +

n∑
i=1

MSE
(
Ŷi
)
,

where
MSE

(
Ŷi
)

= E
{(
Ŷi − µi

)2 ∣∣∣Z}, i = 1, . . . , n,

is the mean squared error6 of Ŷi if this is viewed as estimator of µi, i = 1, . . . , n.

Proof. To simplify notation, condition will be omitted from notation of all expectations and variances.
Nevertheless, all are still understood as conditional expectations and variances given the covariate values Z.

We have for i = 1, . . . , n (remember, Ŷn+i = Ŷi, i = 1, . . . , n),

E
(
Ŷn+i − Yn+i

)2
= E

(
Ŷi − Yn+i

)2
= E

{
Ŷi − µi − (Yn+i − µi)

}2
= E

(
Ŷi − µi

)2
+ E

(
Yn+i − µi

)2 −2 E(Ŷi − µi)(Yn+i − µi)︸ ︷︷ ︸
E(Ŷi − µi)E(Yn+i − µi) = E(Ŷi − µi) · 0

= E
(
Ŷi − µi

)2
+ E

(
Yn+i − µi

)2
= MSE(Ŷi) + σ2.

So that

MSEP(Ŷ new) =

n∑
i=1

E
(
Ŷn+i − Yn+i

)2
= nσ2 +

n∑
i=1

MSE
(
Ŷi
)
.

k

Notes.
• We can also write

n∑
i=1

MSE
(
Ŷi
)

= E
{∥∥Ŷ − µ∥∥2 ∣∣∣Z}.

Hence,

MSEP
(
Ŷ new

)
= nσ2 + E

{∥∥Ŷ − µ∥∥2 ∣∣∣Z}.
• If the assumed linear model is a correct model for data at hand, Gauss-Markov theorem states that Ŷ is
the BLUE of the vector µ in which case

MSE
(
Ŷi
)

= E
{(
Ŷi − µi

)2 ∣∣∣Z} = var
(
Ŷi
∣∣Z), i = 1, . . . , n.

• Nevertheless, if the assumed linear model is not a correct model for data at hand, estimator Ŷ might be
a biased estimator of the vector µ, in which case

MSE
(
Ŷi
)

= E
{(
Ŷi − µi

)2 ∣∣∣Z}
= var

(
Ŷi
∣∣Z)+

{
E
(
Ŷi − µi

∣∣Z)}2

= var
(
Ŷi
∣∣Z)+

{
bias

(
Ŷi
)}2

, i = 1, . . . , n.

6 střední čtvercová chyba
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• Expression of the mean squared error of prediction is

MSEP(Ŷ new) = nσ2 +

n∑
i=1

MSE
(
Ŷi
)

= nσ2 + E
{∥∥Ŷ − µ∥∥2 ∣∣∣Z}.

By specification of a model for the conditional response expectation, i.e., by specification of a model for

µ, we can influence only the second factor E
{∥∥Ŷ − µ∥∥2 ∣∣∣Z}. The first factor (nσ2) reflects the true

(conditional) variability of the response which does not depend on specification of the model for the
expectation. Hence, if evaluating a prediction quality of a linear model with respect to ability to predict
replicated data, the only term that matters is

n∑
i=1

MSE
(
Ŷi
)

= E
{∥∥Ŷ − µ∥∥2 ∣∣∣Z},

that relates to the error of the fitted values being considered as an estimator of the vector µ.

10.2.3 Omitted regressors

In this section, we will assume that the correct model is model

MXV : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
,

with γ 6= 0l. Hence all estimators derived under model MXV are derived under the correct model and
hence have usual properties of the LSE, namely,

E
(
β̂XV

∣∣Z) = β,

E
(
Ŷ XV

∣∣Z) = Xβ + Vγ =: µ,

n∑
i=1

MSE
(
ŶXV,i

)
=

n∑
i=1

var
(
ŶXV,i

∣∣Z) = tr
(
var
(
Ŷ XV

∣∣Z)) = tr
(
σ2 HXV

)
= σ2 (k + l),

E
(
MSe,XV

∣∣Z) = σ2.

(10.11)

Nevertheless, all estimators derived under model MX : Y
∣∣Z ∼ (Xβ, σ2In

)
are calculated while assuming

a misspecified model with omitted important regressors and their properties do not coincide with properties
of the LSE calculated under the correct model.

Lemma 10.5 Properties of the LSE in a model with omitted regressors.
Let MXV : Y

∣∣Z ∼ (Xβ + Vγ, σ2In
)
hold, i.e., µ := E

(
Y
∣∣Z) satisfies

µ = Xβ + Vγ

for some β ∈ Rk , γ ∈ Rl.

Then the least squares estimators derived while assuming model MX : Y
∣∣Z ∼ (

Xβ, σ2In
)
attain the

following properties:

E
(
β̂X

∣∣Z) = β +
(
X>X

)−1X>Vγ,
E
(
Ŷ X

∣∣Z) = µ − MXVγ,

n∑
i=1

MSE
(
ŶX,i

)
= k σ2 +

∥∥MXVγ
∥∥2,

E
(
MSe,X

∣∣Z) = σ2 +

∥∥MXVγ
∥∥2

n− k
.
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Proof. As several times before, condition will be omitted from notation of all expectations and variances
that appear in the proof. Nevertheless, all are still understood as conditional expectations and variances
given the covariate values Z.

E
(
β̂X

∣∣Z)
By Lemma 9.1: β̂XV − β̂X = −

(
X>X

)−1X>Vγ̂XV .
Hence, E

(
β̂X
)

= E
{
β̂XV +

(
X>X

)−1X>Vγ̂XV }
= β +

(
X>X

)−1X>Vγ ,
bias

(
β̂X
)

=
(
X>X

)−1X>Vγ .
E
(
Ŷ X

∣∣Z)
By Lemma 9.1: Ŷ XV − Ŷ X = X

(
β̂XV − β̂X

)
+ Vγ̂XV .

Hence, E
(
Ŷ X

)
= E

(
Ŷ XV − Xβ̂XV + Xβ̂X − Vγ̂XV

)
= µ− Xβ + Xβ + X

(
X>X

)−1X>Vγ − Vγ

= µ+
{
X
(
X>X

)−1X> − In

}
Vγ

= µ−MXVγ ,

bias
(
Ŷ X

)
= −MXVγ .

∑n
i=1 MSE

(
ŶX,i

)
Let us first calculate MSE

(
Ŷ X

)
= E

{(
Ŷ X − µ

)(
Ŷ X − µ

)>}
:

MSE
(
Ŷ X

)
= var

(
Ŷ X

)
+ bias

(
Ŷ X

)
bias>

(
Ŷ X

)
= σ2HX + MXVγγ>V>MX .

Hence,
n∑
i=1

MSE
(
ŶX,i

)
= tr

(
MSE

(
Ŷ X

))
= tr

(
σ2HX + MXVγγ>V>MX

)
= tr

(
σ2HX

)
+ tr

(
MXVγγ>V>MX

)
= σ2 k + tr

(
γ>V>MXMXVγ

)
= σ2 k +

∥∥MXVγ
∥∥2.

E
(
MSe,X

∣∣Z)
Proof/calculations for this part were skipped and are not requested for the exam.
Proof/calculations below are shown only for those who are interested.

Let us first calculate E
(
SSe,X

)
:= E

(
SSe,X

∣∣Z). To do that, write the linear model MXV using the error
terms as

Y = Xβ + Vγ + ε, E
(
ε
∣∣Z) = 0n, var

(
ε
∣∣Z) = σ2In.
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E
(
SSe,X

)
= E

∥∥MXY
∥∥2 = E

∥∥MX(Xβ + Vγ + ε)
∥∥2

= E
∥∥MXVγ + MXε

∥∥2
= E

∥∥MXVγ
∥∥2 + E

∥∥MXε
∥∥2 + 2 E

(
γ>V>MXMXε

)︸ ︷︷ ︸
γ>V>MX Eε=0

=
∥∥MXVγ

∥∥2 + E
(
ε>MXε

)︸ ︷︷ ︸
E
(
tr(ε>MXε)

)
=tr
(
E(MXεε>)

)
=tr
(
σ2 MX

)
=σ2 (n−k)

=
∥∥MXVγ

∥∥2 + σ2 (n− k).

Hence, E
(
MSe,X

)
= E

(
SSe,X
n− k

)
= σ2 +

∥∥MXVγ
∥∥2

n− k
,

bias
(
MSe,X

)
=

∥∥MXVγ
∥∥2

n− k
.

k

Least squares estimators

Lemma 10.5 shows that bias
(
β̂X
)

= E
(
β̂X −β

∣∣Z) =
(
X>X

)−1X>Vγ , nevertheless, the estimator β̂X is
not necessarily biased. Let us consider two situations.

(i) X>V = 0k×l, which means that each column of X is orthogonal with each column in V. In other
words, regressors included in the matrix X are uncorrelated with regressors included in the matrix V.
Then

• β̂X = β̂XV and bias
(
β̂X
)

= 0k .

• Hence β can be estimated using the smaller model MX without any impact on a quality
of the estimator.

(ii) X>V 6= 0k×l

• β̂X is a biased estimator of β.

Further, for the fitted values Ŷ X if those are considered as an estimator of the response vector expectation
µ = Xβ + Vγ , we have

bias
(
Ŷ X

)
= −MXVγ.

In this case, all elements of the bias vector would be equal to zero if MXV = 0n×l. Nevertheless, this
would mean thatM

(
V
)
⊆M

(
X
)
which is in contradition with our assumption rank

(
X, V

)
= k+ l. That

is, if the omitted covariates (included in the matrix V) are linearly independent (are not perfectly multiply
correlated) with the covariates included in the model matrix X, the fitted values Ŷ X always provide a biased
estimator of the response expectation.

Prediction

Let us compare predictions Ŷ new,X = Ŷ X based on a (misspecified) modelMX and predictions Ŷ new,XV =

Ŷ XV based on a (correct) model MXV . Properties of the fitted values in a correct model (Expressions (10.11))
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together with results of Lemma 10.4 and Lemma 10.5 give

MSEP
(
Ŷ new,XV

)
= nσ2 + k σ2 + l σ2,

MSEP
(
Ŷ new,X

)
= nσ2 + k σ2 +

∥∥MXVγ
∥∥2.

That is, the average mean squared errors of prediction are

AMSEP
(
Ŷ new,XV

)
= σ2 +

k

n
σ2 +

l

n
σ2,

AMSEP
(
Ŷ new,X

)
= σ2 +

k

n
σ2 +

1

n

∥∥MXVγ
∥∥2.

We can now conclude the following.

• The term
∥∥MXVγ

∥∥2 might be huge compared to l σ2 in which case the prediction using the model with
omitted important covariates is (much) worse than the prediction using the (correct) model.

• Additionally, ln σ
2 → 0 with n→∞ (while increasing the number of predictions).

• On the other hand, 1
n

∥∥MXVγ
∥∥2 does not necessarily tend to zero with n→∞.

Estimator of the residual variance

Lemma 10.5 shows that the mean residual square MSe,X in a misspecified model MX is a biased estimator
of the residual variance σ2 with the bias amounting to

bias
(
MSe,X

)
= E

(
MSe,X − σ2

∣∣Z) =

∥∥MXVγ
∥∥2

n− k
.

Also in this case, bias does not necessarily tend to zero with n→∞.

10.2.4 Irrelevant regressors

In this section, we will assume that the correct model is model

MX : Y
∣∣Z ∼ (Xβ, σ2In

)
.

This means, that also model
MXV : Y

∣∣Z ∼ (Xβ + Vγ, σ2In
)

holds, nevertheless, γ = 0l and hence the regressors from the matrix V are irrelevant.

Since both models MX and MXV hold, estimators derived under both models have usual properties of the
LSE, namely,

E
(
β̂X

∣∣Z) = E
(
β̂XV

∣∣Z) = β,

E
(
Ŷ X

∣∣Z) = E
(
Ŷ XV

∣∣Z) = Xβ =: µ,

n∑
i=1

MSE
(
ŶX,i

)
=

n∑
i=1

var
(
ŶX,i

∣∣Z) = tr
(
var
(
Ŷ X

∣∣Z)) = tr
(
σ2 HX

)
= σ2 k,

n∑
i=1

MSE
(
ŶXV,i

)
=

n∑
i=1

var
(
ŶXV,i

∣∣Z) = tr
(
var
(
Ŷ XV

∣∣Z)) = tr
(
σ2 HXV

)
= σ2 (k + l),

E
(
MSe,X

∣∣Z) = E
(
MSe,XV

∣∣Z) = σ2.
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Least squares estimators

Both estimators β̂X and β̂XV are unbiased estimators of a vector β. Nevertheless, as stated in Lemma 10.3,
their quality expressed by the mean squared error which in this case coincide with the covariance matrix
(may) di�er since

MSE
(
β̂XV

)
−MSE

(
β̂X
)

= E
{(
β̂XV − β

)(
β̂XV − β

)> ∣∣∣Z}− E
{(
β̂X − β

)(
β̂X − β

)> ∣∣∣Z}
= var

(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z) ≥ 0.

In particular, we derived during the proof of Lemma 10.3 that

var
(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z) = σ2

[{
X>X − X>V

(
V>V

)−1V>X}−1 − (X>X)−1].
Let us again consider two situations.

(i) X>V = 0k×l, which means that each column of X is orthogonal with each column in V. In other
words, regressors included in the matrix X are uncorrelated with regressors included in the matrix V.
Then

• β̂X = β̂XV and var
(
β̂X

∣∣Z) = var
(
β̂XV

∣∣Z).
• Hence β can be estimated using the model MXV with irrelevant covariates included
without any impact on a quality of the estimator.

(ii) X>V 6= 0k×l

• The estimator β̂XV is worse than the estimator β̂X in terms of its variability.

• If we take into account a fact that by including more regressors in the model, we are
increasing a danger of multicollinearity, di�erence between variability of β̂XV and that
of β̂X may become huge.

Prediction

Let us now compare predictions Ŷ new,X = Ŷ X based on a correct model MX and predictions Ŷ new,XV =

Ŷ XV based on also a correct model MXV , where however, irrelevant covariates were included. Properties
of the fitted values in a correct model together with results of Lemma 10.4 give

MSEP
(
Ŷ new,XV

)
= nσ2 + (k + l)σ2,

MSEP
(
Ŷ new,X

)
= nσ2 + k σ2.

That is, the average mean squared errors of prediction are

AMSEP
(
Ŷ new,XV

)
= σ2 +

k + l

n
σ2,

AMSEP
(
Ŷ new,X

)
= σ2 +

k

n
σ2.

The following can now be concluded.

• If n→∞, both AMSEP
(
Ŷ new,XV

)
and AMSEP

(
Ŷ new,X

)
tend to σ2. Hence on average, if su�ciently

large number of predictions is needed, both models provide predictions of practically the same quality.

• On the other hand, by using the richer model MXV (which for a finite n provides worse predictions than
the smaller model MX ), we are eliminating a possible problem of omitted important covariates that leads
to biased predictions with possibly even worse MSEP and AMSEP than that of model MXV .
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10.2.5 Summary

Interest in estimation of the regression coefficients and inference on them

If interest lies in estimation of and inference on the regression coe�cients β related to the regressors
included in the model matrix X, the following was derived in Sections 10.2.3 and 10.2.4.

(i) If we omit important regressors which are (multiply) correlated with the regressors of main interest
included in the matrix X, the LSE of the regression coe�cients is biased.

(ii) If we include irrelevant regressors which are (multiply) correlated with the regressors of main interest
in the matrix X, we are facing a danger of multicollinearity and related inflation of the standard errors
of the LSE of the regression coe�cients.

(iii) Regressors which are (multiply) uncorrelated with regressors of main interest influence neither bias
nor variability of β̂ irrespective of whether they are omitted or irrelevantly included.

Consequently, if a primary task of the analysis is to evaluate whether and how much the primary regressors
included in the model matrix X influence the response expectation, detailed exploration and understanding
of mutual relationships among all potential regressors and also between the regressors and the response is
needed. In particular, regressors which are (multiply) correlated with the regressors from the model matrix
X and at the same time do not have any influence on the response expectation should not be included in
the model. On the other hand, regressors which are (multiply) uncorrelated with the regressors of primary
interest can, without any harm, be included in the model. In general, it is necessary to find a trade-o�
between too poor and too rich model.

Interest in prediction

If prediction is the primary purpose of the regression analysis, results derived in Sections 10.2.3 and 10.2.4
dictate to follow a strategy to include all available covariates in the model. The reasons are the following.

(i) If we omit important regressors, the predictions get biased and the averaged mean squared error of
prediction is possibly not tending to the optimal value of σ2 with n→∞.

(ii) If we include irrelevant regressors in the model, this has, especially with n → ∞, a negligible e�ect
on a quality of the prediction. The averaged mean squared error of prediction is still tending to the
optimal value of σ2.



Chapter 11
Unusual Observations

In this chapter, we develop tools for identification of observations which are in a certain sense unusual with
respect to the assumed linear model. First, in Section 11.2, we shall deal with so called outliers which are
observations with unusual response values. Second, in Section 11.3, we shall talk about so called leverage
points, which are observations with unusual covariate values. Finally, in Section 11.4, we discuss tools for
identification of those observations which, in a certain sense, might have harmful influence on statistical
inference based on the considered model.

In the whole chapter, we assume a full-rank linear model

M : Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k) = k,

where standard notation is considered. That is,

• β̂ =
(
X>X

)−1X>Y =
(
β̂0, . . . , β̂k−1

)>
: LSE of the vector β;

• H = X
(
X>X

)−1X> =
(
hi,t
)
i,t=1,...,n

: the hat matrix;

• M = In −H =
(
mi,t

)
i,t=1,...,n

: the residual projection matrix;

• Ŷ = HY = Xβ̂ =
(
Ŷ1, . . . , Ŷn

)>
: the vector of fitted values;

• U = MY = Y − Ŷ =
(
U1, . . . , Un

)>
: the residuals;

• SSe =
∥∥U∥∥2: the residual sum of squares;

• MSe = 1
n−k SSe is the residual mean square;

• U std =
(
Ustd1 , . . . , Ustdn

)>
: vector of standardized residuals,

Ustdi = Ui√
MSemi,i

, i = 1, . . . , n.

The whole chapter will deal with identification of “unusual” observations in a particular dataset. Any
probabilistic statements will hence be conditioned by the realized covariate valuesX1 = x1, . . . , Xn = xn.
The same symbol X will be used for (in general random) model matrix and its realized counterpart, i.e.,

X =


X>1
...

X>n

 =


x>1
...

x>n

 .

264
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11.1 Leave-one-out and outlier model

Notation. For chosen t ∈
{

1, . . . , n
}
, we will use the following notation.

• Y (−t): vector Y without the tth element;

• xt: the tth row (understood as a column vector) of the matrix X;
• X(−t): matrix X without the tth row;

• jt: vector
(
0, . . . , 0, 1, 0, . . . , 0

)>
of length n with 1 on the tth place.

Definition 11.1 Leave-one-out model.
The tth leave-one-out model1 is a linear model

M(−t) : Y (−t)
∣∣X(−t) ∼

(
X(−t)β, σ

2In−1
)
.

Definition 11.2 Outlier model.
The tth outlier model2 is a linear model

Mout
t : Y

∣∣X ∼ (Xβ + jtγ
out
t , σ2In

)
.

Lemma 11.1 Three equivalent statements.
While assuming rank(Xn×k) = k, the following three statements are equivalent:

(i) rank(X) = rank
(
X(−t)

)
= k, i.e., xt ∈M

(
X>(−t)

)
;

(ii) mt,t > 0;

(iii) rank
(
X, jt

)
= k + 1.

Proof. Proof/calculations were skipped and are not requested for the exam.

• We will proof the lemma by showing non(i) ⇔ non(ii) ⇔ non(iii).

• non(i) means that xt /∈M
(
X>(−t)

)
⊂M

(
X>
)
.

• That is,

M
(
X>(−t)

)
⊂M

(
X>
)

andM
(
X>(−t)

)
6=M

(
X>
)
.

⇔M
(
X>
)⊥ ⊂M(X>(−t))⊥ andM

(
X>
)⊥ 6=M(X>(−t))⊥.

⇔ ∃a ∈M
(
X>(−t)

)⊥
such that a /∈M

(
X>
)⊥

.

⇔ ∃a ∈ Rk such that a>X>(−t) = 0> & a>X> 6= 0>.

⇔ ∃a ∈ Rk such that X(−t)a = 0 & Xa 6= 0.

It must be
Xa =

(
0, . . ., 0, c, 0, . . ., 0

)>
= c jt

for some c 6= 0.

1 model vynechaného ttého pozorovńí 2 model ttého odlehlého pozorovńí
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⇔ ∃a ∈ Rk such that Xa = cjt, c 6= 0.

⇔ jt ∈M
(
X
)

⇔ non(iii)

⇔ Mjt︸︷︷︸
tth column of M

= 0.

⇔ mt = 0.

⇔
∥∥mt

∥∥2 = mt,t = 0.

⇔ non(ii).

mt denotes the tth row of M (and also its t column since M is symmetric).

k

Note. Under the assumption of either (i), (ii) or (iii) of Lemma 11.1, both the leave-one-out and the outlier
model are full rank models.

Notation (Quantities related to the leave-one-out and outlier models).

• Quantities related to model M(−t) will be recognized by subscript (−t), i.e.,

β̂(−t), Ŷ (−t),SSe,(−t),MSe,(−t), . . .

• Quantities related to model Mout
t will be recognized by subscript t and superscript out, i.e.,

β̂
out

t , Ŷ
out

t ,SSoute,t ,MSoute,t , . . .

• Solutions to normal equations in model Mout
t (the LSE of

(
(βoutt )

>
, γoutt

)>
) will be denoted as

(
(β̂

out

t )
>
, γ̂outt

)>
.

Lemma 11.2 Equivalence of the outlier model and the leave-one-out model.

1. The residual sums of squares in models M(−t) and Mout
t are the same, i.e.,

SSe,(−t) = SSoute,t .

2. Vector β̂(−t) solves the normal equations of model M(−t) if and only if a vector
(
(β̂

out

t )
>
, γ̂outt

)>
solves the normal equations of model Mout

t , where

β̂
out

t = β̂(−t),

γ̂outt = Yt − xt>β̂(−t).
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Proof.
Solution to normal equations minimizes the corresponding sum of squares.

The sum of squares to be minimized w.r.t. β and γoutt in the outlier model Mout
t is

SSoutt

(
β, γoutt

)
=

∥∥Y − Xβ − jtγoutt

∥∥2 separate the tth element of the sum

=
∥∥Y (−t) − X(−t)β

∥∥2 +
(
Yt − x>t β − γoutt

)2
= SS(−t)(β) +

(
Yt − x>t β − γoutt

)2
,

where SS(−t)(β) is the sum of squares to be minimized w.r.t. β in the leave-one-out model M(−t).

The term
(
Yt − x>t β − γoutt

)2
can for any β ∈ Rk be equal to zero if we, for given β ∈ Rk , take

γoutt = Yt − x>t β.

That is

(i) min
β, γoutt

SSoutt (β, γoutt )︸ ︷︷ ︸
SSoute,t

= min
β

SS(−t)(β)︸ ︷︷ ︸
SSe,(−t)

;

(ii) A vector β̂(−t) ∈ Rk minimizes SS(−t)(β) if and only if a vector

(
β̂
>
(−t)︸ ︷︷ ︸
β̂
out

t

, Yt − x>t β̂(−t)︸ ︷︷ ︸
γ̂outt

)>
∈ Rk+1

minimizes SSoutt (β, γoutt ).

k

Notation (Leave-one-out least squares estimators of the response expectations).
If mt,t > 0 for all t = 1, . . . , n, we will use the following notation:

Ŷ[t] := x>t β̂(−t), t = 1, . . . , n,

which is the LSE of the parameter µt = E
(
Yt
∣∣Xt = xt

)
= x>t β based on the leave-one-out model M(−t);

Ŷ [•] :=
(
Ŷ[1], . . . , Ŷ[n]

)>
,

which is an estimator of the parameter µ =
(
µ1, . . . , µn

)>
= E

(
Y
∣∣X), where each element is estimated

using the linear model based on data with the corresponding observation being left out.

Calculation of quantities of the outlier and the leave-one-out models

Model Mout
t is a model with added regressor for model M. Suppose that mt,t > 0 for given t = 1, . . . , n.

By applying Lemma 9.1, we can express the LSE of the parameter γoutt as

γ̂outt =
(
j>t Mjt

)−
j>t U = (mt,t)

− Ut = (mt,t)
−1Ut =

Ut
mt,t

.
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Analogously, other quantities of the outlier model can be expressed using the quantities of model M. Namely,

β̂
out

t = β̂ − Ut
mt,t

(
X>X

)−1
xt,

Ŷ
out

t = Ŷ +
Ut
mt,t

mt,

SSe − SSoute,t =
U2
t

mt,t
= MSe

(
Ustdt

)2
,

where mt denotes the tth column (and row as well) of the residual projection matrix M.

Lemma 11.3 Quantities of the outlier and leave-one-out model expressed using
quantities of the original model.
Suppose that for given t ∈ {1, . . . , n}, mt,t > 0. The following quantities of the outlier model Mout

t and the
leave-one-out model M(−t) are expressable using the quantities of the original model M as follows.

γ̂outt = Yt − x>t β̂(−t) = Yt − Ŷ[t] =
Ut
mt,t

,

β̂(−t) = β̂
out

t = β̂ − Ut
mt,t

(
X>X

)−1
xt,

SSe,(−t) = SSoute,t = SSe −
U2
t

mt,t
= SSe −MSe

(
Ustdt

)2
,

MSe,(−t)
MSe

=
MSoute,t

MSe
=

n− k −
(
Ustdt

)2
n− k − 1

.

(11.1)

Proof. Equality between the quantities of the outlier and the leave-one-out model follows from Lemma 11.2.
Remaining expressions follow from previously conducted calculations.

To see the last equality in (11.1), remember that the residual degrees of freedom of both the outlier and the
leave-one-out models are equal to n− k − 1. That is, whereas in model M,

MSe =
SSe
n− k

,

in the outlier and the leave-one-out model,

MSe,(−t) =
SSe,(−t)
n− k − 1

=
SSoute,t

n− k − 1
= MSoute,t .

k

Notes.
• Expressions in Lemma 11.3 quantify the influence of the tth observation on

(i) the LSE of a vector β of the regression coe�cients;

(ii) the estimate of the residual variance.

• Lemma 11.3 also shows that it is not necessary to fit n leave-one-out (or outlier models) to calculate their
LSE-related quantities. All important quantities can be calculated directly from the LSE-related quantities
of the original model M.
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Definition 11.3 Deleted residual.
If mt,t > 0, then the quantity

γ̂outt = Yt − Ŷ[t] =
Ut
mt,t

is called the tth deleted residual of the model M.
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11.2 Outliers

By outliers3 of the model M, we shall understand observations for which the response expectation does not
follow the assumed model, i.e., the tth observation (t ∈ {1, . . . , n}) is an outlier if

E
(
Yt
∣∣Xt = xt

)
6= x>t β,

in which case we can write
E
(
Yt
∣∣Xt = xt

)
= x>t β + γoutt .

As such, an outlier can be characterized as an observation with unusual response (y) value.

If mt,t > 0, there exist the least squares estimator of the parameter γoutt in the tth outlier model Mout
t

(for which the model M is a submodel) and decision on whether the tth observation is an outlier can be
transferred into a problem of testing

H0 : γoutt = 0

in the tth outlier model Mout
t . Note that the above null hypothesis also expresses the fact that the submodel

M of the model Mout
t holds.

If normality is assumed, this null hypothesis can be tested using a classical t-test on a value of the regression
parameter. The corresponding t-statistic has a standard form

Tt =
γ̂outt√

v̂ar
(
γ̂outt

)
and under the null hypothesis follows the Student t distribution with n− k− 1 degrees of freedom (residual
degrees of freedom of the outlier model).

From Section 11.1, we have

γ̂outt =
Ut
mt,t

= Yt − Ŷ[t].

Hence (the variance is conditional given the covariate values),

var
(
γ̂outt

∣∣X) = var

(
Ut
mt,t

∣∣∣∣X) =
1

m2
t,t

var
(
Ut
∣∣X) (?)

=
1

m2
t,t

σ2mt,t =
σ2

mt,t
.

The equality
(?)
= holds irrespective of whether γoutt = 0 (and model M holds) or γoutt 6= 0 (and model Mout

t

holds).

The estimator γ̂outt is the LSE of a parameter of the outlier model and hence

v̂ar
(
γ̂outt

∣∣X) =
MSoute,t

mt,t
,

and finally,

Tt =
γ̂outt√
MSoute,t

mt,t

.

Two useful expressions of the statistic Tt are obtained by remembering from Section 11.1 (a) MSoute,t =

MSe,(−t) and (b) two expressions of γ̂outt = Yt − Ŷ[t] = γ̂outt = Ut
mt,t

. This leads to

Tt =
Yt − Ŷ[t]√
MSe,(−t)

√
mt,t =

Ut√
MSe,(−t)mt,t

.

3 odlehlá pozorování
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Definition 11.4 Studentized residual.
If mt,t > 0, then the quantity

Tt =
Yt − Ŷ[t]√
MSe,(−t)

√
mt,t =

Ut√
MSe,(−t)mt,t

is called the tth studentized residual4 of the model M.

Notes.
• Using the last equality in (11.1), we can derive one more expression of the studentized residual using the
standardized residual

Ustdt =
Ut√

MSemt,t

.

Namely,

Tt =

√
n− k − 1

n− k −
(
Ustdt

)2 Ustdt .

This directly shows that it is not necessary to fit the leave-one-out or the outlier model to calculate the
studentized residual of the initial model M.

Lemma 11.4 On studentized residuals.
Let Y

∣∣X ∼ Nn(Xβ, σ2In
)
, where rank

(
Xn×k

)
= k < n. Let further n > k + 1. Let for given t ∈{

1, . . . , n
}
mt,t > 0. Then

1. The tth studentized residual Tt follows the Student t-distribution with n− k − 1 degrees of freedom.

2. If additionally n > k + 2 then E
(
Tt
)

= 0.

3. If additionally n > k + 3 then var
(
Tt
)

=
n− k − 1

n− k − 3
.

Proof. Point (i) follows from preceeding derivations, points (ii) and (iii) follow from properties of the
Student t distribution.

k

Test for outliers

The studentized residual Tt of the model M is the test statistic (with tn−k−1 distribution under the null
hypothesis) of the test

H0: γoutt = 0,

H1: γoutt 6= 0

in the tth outlier model Mout
t : Y

∣∣X ∼ Nn(Xβ + jtγ
out
t , σ2In

)
.

The above testing problem can also be interpreted as a test of

4 studentizované reziduum
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H0: tth observations is not outlier of model M,

H1: tth observations is outlier of model M,

where “outlier” means outlier with respect to model M: Y
∣∣X ∼ Nn(Xβ, σ2In

)
:

• The expected value of the tth observation is di�erent from that given by model M;

• The observed value of Yt is unusual under model M.

When performing the test for outliers for all observations in the dataset, we are in fact facing a multiple
testing problem and hence adjustment of the P-values resulted from comparison of the values of the
studentized residuals with the quantiles of the Student tn−k−1 distribution are needed to keep the rate of
falsely identified outliers under the requested level of α (see Chapter 14 for more details concerning the
multiple testing problems). For example, Bonferroni adjustment can be used.
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

Observations with five highest absolute values of studentized residuals
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Ê(Y|X=x) = −59.33 + 9.5048x

Y = 10.7

305

94

348

97
69

Cars2004 (subset, n = 412), consumption ∼ log(weight)

Standardized, studentized and deleted residuals

Standardized residuals Ustd1 , . . . , Ustdn

m1 <- lm(consumption ~ lweight, data = CarsUsed)

rstandard(m1)

1 2 3 4 5 6

0.600003668 0.683558025 -0.237013632 -0.437157041 -0.237013632 -0.491068598 ...

Studentized residuals T1, . . . , Tn

rstudent(m1)

1 2 3 4 5 6

0.599534780 0.683113271 -0.236740634 -0.436725391 -0.236740634 -0.490613671 ...

Deleted residuals γ̂out1 , . . . , γ̂outn

residuals(m1) / (1 - hatvalues(m1))

1 2 3 4 5 6

0.646454917 0.736641641 -0.254845546 -0.469869858 -0.254845546 -0.528142442 ...
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

Identified outliers
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Observations with five highest absolute values of studentized residuals

vname fhybrid consumption lweight weight

305 Hummer.H2 No 21.55 7.973500 2903

94 Toyota.Prius.4dr.(gas/electric) Yes 4.30 7.178545 1311

348 Land.Rover.Discovery.SE No 17.15 7.638198 2076

97 Volkswagen.Jetta.GLS.TDI.4dr No 5.65 7.216709 1362

69 Honda.Civic.Hybrid Yes 4.85 7.122060 1239

.4dr.manual.(gas/electric)

vname gamma Tt PvalUnadj PvalBonf

305 Hummer.H2 5.223712 4.953073 0.000001 0.000441

94 Toyota.Prius.4dr.(gas/electric) -4.618542 -4.396641 0.000014 0.005782

348 Land.Rover.Discovery.SE 3.910233 3.693509 0.000251 0.103499

97 Volkswagen.Jetta.GLS.TDI.4dr -3.623890 -3.420244 0.000689 0.283692

69 Honda.Civic.Hybrid -3.531883 -3.327145 0.000957 0.394186

.4dr.manual.(gas/electric)
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Notes.
• Two or more outliers next to each other can hide each other.

• A notion of outlier is always relative to considered model (also in other areas of statistics). Observation
which is outlier with respect to one model is not necessarily an outlier with respect to some other model.

• Especially in large datasets, few outliers are not a problem provided they are not at the same time also
influential for statistical inference (see next section).

• In a context of a normal linear model, presence of outliers may indicate that the error distribution is some
distribution with heavier tails than the normal distribution.

• Outlier can also suggest that a particular observation is a data-error.

• If some observation is indicated to be an outlier, it should always be explored:

• Is it a data-error? If yes, try to correct it, if this is impossible, no problem (under certain assumptions)
to exclude it from the data.

• Is the assumed model correct and it is possible to find a physical/practical explanation for occurrence
of such unusual observation?

• If an explanation is found, are we interested in capturing such artefacts by our model or not?

• Do the outlier(s) show a serious deviation from the model that cannot be ignored (for the purposes of
a particular modelling)?

•
...

• NEVER, NEVER, NEVER exclude “outliers” from the analysis in an automatic manner.

• Often, identification of outliers with respect to some model is of primary interest:

• Example: model for amount of credit card transactions over a certain period of time depending on
some factors (age, gender, income, . . . ).

• Model found to be correct for a “standard” population (of clients).

• Outlier with respect to such model ≡ potentially a fraudulent use of the credit card.

• If the closer analysis of “outliers” suggest that the assumed model is not satisfactory capturing the reality
we want to capture (it is not useful), some other model (maybe not linear, maybe not normal) must be
looked for.
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11.3 Leverage points

By leverage points5 of the model M, we shall understand observations with, in a certain sense, unusual
regressor (x) values. As will be shown, the fact whether the regressor values of a certain observation are

unusual is closely related to the diagonal elements h1,1, . . . , hn,n of the hat matrix H = X
(
X>X

)−1X> of
the model.

Terminology (Leverage).
A diagonal element ht,t (t = 1, . . . , n) of the hat matrix H is called the leverage of the tth observation.

Interpretation of the leverage

To show that the leverage expresses how unusual the regressor values of the tth observations are, let us
consider a linear model with intercept, i.e., the realized model matrix is

X =
(
1n, x

1, . . . , xk−1
)
,

where

x1 =


x1,1
...

xn,1

 , . . . , xk−1 =


x1,k−1

...

xn,k−1

 .

Let

x1 =
1

n

n∑
i=1

xi,1, . . . , xk−1 =
1

n

n∑
i=1

xi,k−1

be the means of the non-intercept columns of the model matrix. That is, a vector

x =
(
x1, . . . , xk−1

)>
provides the mean values of the non-intercept regressors included in the model matrix X and as such is
a gravity centre of the rows of the model matrix X (with excluded intercept).

Further, let X̃ be the non-intercept part of the model matrix X with all columns being centered, i.e.,

X̃ =
(
x1 − x11n, . . . , xk−1 − xk−11n

)
=


x1,1 − x1 . . . x1,k−1 − xk−1

...
...

...

xn,1 − x1 . . . xn,k−1 − xk−1

 .

Clearly,M
(
X
)

=M
(
1n, X̃

)
. Hence the hat matrix H = X

(
X>X

)−1X> can also be calculated using the

matrix
(
1, X̃

)
, where we can use additional property 1>n X̃ = 0>k−1:

H =
(
1n, X̃

){(
1n, X̃

)> (
1n, X̃

)}−1 (
1n, X̃

)>

=
(
1n, X̃

)


1>n 1n︸ ︷︷ ︸
n

1>n X̃︸ ︷︷ ︸
0>k−1

X̃> 1n︸ ︷︷ ︸
0k−1

X̃>X̃


−1 (

1>n

X̃>

)

=
(
1n, X̃

)  1

n
0>k−1

0k−1
(
X̃> X̃

)−1
 (

1>n

X̃>

)
5 vzdálená pozorování
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=
1

n
1n1>n + X̃

(
X̃> X̃

)−1 X̃>.
That is, the tth leverage equals

ht,t =
1

n
+
(
xt,1 − x1, . . . , xt,k−1 − xk−1

)(
X̃>X̃

)−1(
xt,1 − x1, . . . , xt,k−1 − xk−1

)>
.

The second term is then a square of the generalized distance between the non-intercept regressors
(
xt,1, . . . ,

xt,k−1
)>

of the tth observation and the vector of mean regressors x. Hence the observations with a high
value of the leverage ht,t are observations with the regressor values being far from the mean regressor values
and in this sense have unusual regressor (x) values.

High value of a leverage

To evaluate which values of the leverage are high enough to call a particular observation as a leverage point,
let us remind an expression of the hat matrix using the orthonormal basis Q of the regression spaceM

(
X
)
,

which is a vector space of dimension r = rankX. We know that H = QQ> and hence

n∑
i=1

hi,i = tr(H) = tr
(
QQ>

)
= tr

(
Q>Q

)
= tr(Ik) = k.

That is,

h =
1

n

n∑
i=1

hi,i =
k

n
. (11.2)

Several rules of thumbs can be found in the literature and software implementations concerning a lower bound
for the leverage to call a particular observation as a leverage point. Owing to (11.2), a reasonable bound is
a value higher than k

n . For example, the R function influence.measures marks the tth observation as
a leverage point if

ht,t >
3 k

n
.

Influence of leverage points

The fact that the leverage points may constitute a problem for the least squares based statistical inference
in a linear model comes from remembering an expression for the variance (conditional given the covariate
values) of the residuals of a linear model:

var
(
Ut
∣∣X) = σ2mt,t = σ2 (1− ht,t), t = 1, . . . , n.

Remind that Ut = Yt − Ŷt and hence also

var
(
Yt − Ŷt

∣∣X) = σ2 (1− ht,t), t = 1, . . . , n.

That is, var
(
Ut
∣∣X) = var

(
Yt − Ŷt

∣∣X) is low for observations with a high leverage. In other words, the
fitted values of high leverage observations are forced to be closer to the observed response values than those
of low leverage observations. In this way, the high leverage observations have a higher impact on the fitted
regression function than the low leverage observations.
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverages and influence measures

Leverages h1,1, . . . , hn,n
m1 <- lm(consumption ~ lweight, data = CarsUsed)

hatvalues(m1)

1 2 3 4 5 6

0.011453373 0.011892770 0.007436292 0.006688146 0.007436292 0.007916965 ...

Influence measures

influence.measures(m1)

Influence measures of

lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat inf

1 5.81e-02 -5.73e-02 0.064533 1.015 2.09e-03 0.01145 *

2 6.78e-02 -6.69e-02 0.074943 1.015 2.81e-03 0.01189 *

3 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744

4 -2.92e-02 2.86e-02 -0.035836 1.011 6.43e-04 0.00669

5 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744

6 -3.71e-02 3.65e-02 -0.043827 1.012 9.62e-04 0.00792

7 -4.59e-02 4.50e-02 -0.055070 1.010 1.52e-03 0.00732

8 7.70e-03 -7.56e-03 0.009196 1.012 4.24e-05 0.00749

9 -2.15e-02 2.11e-02 -0.025596 1.012 3.28e-04 0.00758

...

Cars2004 (subset, n = 412), consumption ∼ log(weight)

Potentially influential observations

summary(influence.measures(m1))

Potentially influential observations of

lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat

1 0.06 -0.06 0.06 1.01_* 0.00 0.01

2 0.07 -0.07 0.07 1.01_* 0.00 0.01

17 0.07 -0.07 0.07 1.01_* 0.00 0.01

39 -0.01 0.01 -0.01 1.02_* 0.00 0.01

47 0.07 -0.07 0.07 1.02_* 0.00 0.02_*

48 0.09 -0.09 0.10 1.02_* 0.00 0.02_*

49 0.06 -0.06 0.06 1.02_* 0.00 0.02_*

69 -0.21 0.20 -0.26_* 0.96_* 0.03 0.01

70 -0.14 0.14 -0.14 1.03_* 0.01 0.03_*

94 -0.21 0.20 -0.30_* 0.92_* 0.04 0.00

97 -0.13 0.13 -0.21_* 0.95_* 0.02 0.00

204 -0.05 0.06 0.14 0.98_* 0.01 0.00

270 0.20 -0.20 0.22_* 0.99 0.02 0.01

271 0.20 -0.20 0.22_* 0.99 0.02 0.01

278 0.05 -0.04 0.12 0.98_* 0.01 0.00

294 0.21 -0.21 0.23_* 1.00 0.03 0.02_*

295 -0.02 0.02 0.02 1.02_* 0.00 0.01

301 0.00 0.00 -0.01 1.02_* 0.00 0.01

302 0.00 0.00 0.00 1.01_* 0.00 0.01

...



11.3. LEVERAGE POINTS 279

Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverage points

3 k
n = 0.0146

sum(hatvalues(m1) > 3 * k / n)

[1] 11

vname consumption weight lweight h

47 Toyota.Echo.2dr.manual 6.10 923 6.827629 0.01992471

48 Toyota.Echo.2dr.auto 6.55 946 6.852243 0.01836889

49 Toyota.Echo.4dr 6.10 932 6.837333 0.01930270

70 Honda.Insight.2dr.(gas/electric) 3.75 839 6.732211 0.02664081

294 Toyota.MR2.Spyder.convertible.2dr 8.20 996 6.903747 0.01534760

304 GMC.Yukon.XL.2500.SLT 15.95 2782 7.930925 0.02132481

305 Hummer.H2 21.55 2903 7.973500 0.02429502

307 Lincoln.Navigator.Luxury 15.60 2707 7.903596 0.01953240

323 Lexus.LX.470 15.95 2536 7.838343 0.01561382

405 Cadillac.Escalade.EXT 15.95 2667 7.888710 0.01859360

406 Chevrolet.Avalanche.1500 14.95 2575 7.853605 0.01648470

Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverage points
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11.4 Influential diagnostics

Both outliers and leverage points do not necessarily constitute a problem. This occurs if they “too much”
influence statistical inference of primary interest. Also other observations (neither outliers nor leverage
points) may harmfully influence the statistical inference. In this section, several methods of quantifying the
influence of a particular, tth (t = 1, . . . , n) observation on statistical inference will be introduced. In all
cases, we will compare a quantity of primary interest based on the model at hand, i.e.,

M : Y
∣∣X ∼ (

Xβ, σ2In
)
, rank

(
Xn×k

)
= k,

and the quantity based on the leave-one-out model

M(−t) : Y (−t)
∣∣X(−t) ∼

(
X(−t)β, σ

2In−1
)
.

It will overally be assumed, that mt,t > 0 which implies (see Lemma 11.1) rank
(
X(−t)

)
= rank

(
X
)

= k.

11.4.1 DFBETAS

The LSE’s of the vector of regression coe�cients based on the two models are

M : β̂ =
(
β̂0, . . . , β̂k−1

)>
=

(
X>X

)−1 X>Y ,
M(−t) : β̂(−t) =

(
β̂(−t),0, . . . , β̂(−t),k−1

)>
=

(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

Using (11.1):

β̂ − β̂(−t) =
Ut
mt,t

(
X>X

)−1
xt, (11.3)

which quantifies influence of the tth observation on the LSE of the regression coe�cients. In the following, let

v0 =
(
v0,0, . . . , v0,k−1

)>
, . . . , vk−1 =

(
vk−1,0, . . . , vk−1,k−1

)>
be the rows of the matrix

(
X>X

)−1
,

i.e.,

(
X>X

)−1
=


v>0
...

v>k−1

 =


v0,0 . . . v0,k−1
...

...
...

vk−1,0 . . . vk−1,k−1

 .

Expression (11.3) written elementwise lead to a quantities called DFBETA:

DFBETAt,j := β̂j − β̂(−t),j =
Ut
mt,t

v>t xt, t = 1, . . . , n, j = 0, . . . , k − 1.

Note that DFBETAt,j has a scale of the jth regressor. To get a dimensionless quantity, we can divide it by

the standard error of either β̂j or β̂(−t),j . We have

S.E.
(
β̂j
)

=
√
MSe vj,j , S.E.

(
β̂(−t),j

)
=

√
MSe,(−t) v(−t),j,j ,

where v(−t),j,j is the jth diagonal element of matrix
(
X(−t)

>X(−t)
)−1

. In practice, a combined quantity,
namely

√
MSe,(−t) vj,j is used leading to so called DFBETAS (the last “S” stands for “scaled”):

DFBETASt,j :=
β̂j − β̂(−t),j√
MSe,(−t) vj,j

=
Ut

mt,t

√
MSe,(−t) vj,j

v>t xt,

t = 1, . . . , n, j = 0, . . . , k − 1.

The reason for using
√
MSe,(−t) vj,j as a scale factor is that MSe,(−t) is a safer estimator of the residual

variance σ2 not being based on the observation whose influence is examined but at the same time, it can still
be calculated from quantities of the full model M (see Eq. 11.1). On the other hand, a value of v(−t),j,j (that
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fits with the leave-one-out residual mean square MSe,(−t)) cannot, in general, be calculated from quantities
of the full model M and hence (a close) value of vj,j is used. Consequently, all values of DFBETAS can be
calculated from quantities of the full model M and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).
The R function influence.measures marks the tth observation as being influential with respect to the
LSE of the jth regression coe�cient if ∣∣DFBETASt,j∣∣ > 1.

Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

DFBETAS

DFBETAS

dfbetas(m1)

(Intercept) lweight

1 0.058079251 -0.057288572

2 0.067760218 -0.066859700

3 -0.017131716 0.016817978

4 -0.029182966 0.028603518

5 -0.017131716 0.016817978

6 -0.037145548 0.036495821

7 -0.045873896 0.045023905

8 0.007702297 -0.007562061

9 -0.021494294 0.021106330

10 0.009424138 -0.009254036

...

Maximal absolute values of DFBETAS for each regressor

apply(abs(dfbetas(m1)), 2, max)

(Intercept) lweight

0.7344821 0.7415123
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11.4.2 DFFITS

The LSE’s of µt := E
(
Yt
∣∣Xt = xt

)
= x>t β in the two models are

M : Ŷt = x>t β̂,

M(−t) : Ŷ[t] = x>t β̂(−t).

Using (11.1):

Ŷ[t] = x>t

{
β̂ − Ut

mt,t

(
X>X

)−1
xt

}
= Ŷt −

Ut
mt,t

x>t
(
X>X

)−1
xt = Ŷt − Ut

ht,t
mt,t

.

Di�erence between Ŷt and Ŷ[t] is called DFFIT and quantifies influence of the tth observation on the LSE
of its own expectation:

DFFITt := Ŷt − Ŷ[t] = Ut
ht,t
mt,t

, t = 1, . . . , n.

Analogously to DFBETAS, also DFFIT is scaled by a quantity that resembles the standard error of either Ŷt
or Ŷ[t] (remember, S.E.

(
Ŷt
)

=
√
MSe ht,t) leading to a quantity called DFFITS:

DFFITSt :=
Ŷt − Ŷ[t]√
MSe,(−t) ht,t

=
ht,t
mt,t

Ut√
MSe,(−t) ht,t

=

√
ht,t
mt,t

Ut√
MSe,(−t)mt,t

=

√
ht,t
mt,t

Tt, t = 1, . . . , n,

where Tt is the tth studentized residual of the model M. Again, all values of DFFITS can be calculated from
quantities of the full model M and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).
The R function influence.measures marks the tth observation as excessively influencing the LSE of its
expectation if ∣∣DFFITSt∣∣ > 3

√
k

n− k
.
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

DFFITS

DFFITS

dffits(m1)

1 2 3 4 5

0.0645330957 0.0749431929 -0.0204914092 -0.0358359160 -0.0204914092 ...

3
√

k
n−k = 0.2095

sum(abs(dffits(m1)) > 3 * sqrt(k / (n-k)))

[1] 10

vname consumption weight lweight dffits

69 Honda.Civic.Hybrid.4dr 4.85 1239 7.122060 -0.2598440

manual.(gas/electric)

94 Toyota.Prius.4dr.(gas/electric) 4.30 1311 7.178545 -0.2984834

97 Volkswagen.Jetta.GLS.TDI.4dr 5.65 1362 7.216709 -0.2114462

270 Mazda.MX-5.Miata.convertible.2dr 9.30 1083 6.987490 0.2216790

271 Mazda.MX-5.Miata.LS.convertible.2dr 9.30 1083 6.987490 0.2216790

294 Toyota.MR2.Spyder.convertible.2dr 8.20 996 6.903747 0.2254823

305 Hummer.H2 21.55 2903 7.973500 0.7815812

321 Land.Rover.Range.Rover.HSE 17.15 2440 7.799753 0.2597672

326 Mercedes-Benz.G500 17.45 2460 7.807917 0.2892681

348 Land.Rover.Discovery.SE 17.15 2076 7.638198 0.3049335

Cars2004 (subset, n = 412), consumption ∼ log(weight)

Large DFFITS values

6.8 7.0 7.2 7.4 7.6 7.8 8.0

5
10

15
20

Log(weight) [log(kg)]

C
on

su
m

pt
io

n 
[l/

10
0 

km
]
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Fit without obs. 305 with the highest DFFITS value
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11.4.3 Cook distance

In this Section, we concentrate on evaluation of the influence of the tth observation on the LSE of a vector
parameter µ := E

(
Y
∣∣X) = Xβ. As in Section 11.4.2, let β̂ =

(
X>X

)−1X>Y be any solution to normal

equations in model M and let β̂(−t) =
(
X(−t)

>X(−t)
)−X(−t)

>Y (−t) be any solution to normal equations
in the leave-one-out model M(−t). The LSE’s of µ in the two models are

M : Ŷ = Xβ̂ = HY ,

M(−t) : Ŷ (−t•) := Xβ̂(−t).

Note. Remind that Ŷ (−t•), Ŷ [•] and Ŷ (−t) are three di�erent quantities. Namely,

Ŷ (−t•) = Xβ̂(−t) =


x>1 β̂(−t)

...

x>n β̂(−t)

 , Ŷ [•] =


Ŷ[1]
...

Ŷ[n]

 =


x>1 β̂(−1)

...

x>n β̂(−n)

 .

Finally, Ŷ (−t) = X(−t)β̂(−t) is a subvector of length n− 1 of a vector Ŷ (−t•) of length n.

Possible quantification of influence of the tth observation on the LSE of a vector parameter µ is obtained by
considering a quantity ∥∥Ŷ − Ŷ (−t•)

∥∥2.
Let us remind from Lemma 11.3:

β̂ − β̂(−t) =
Ut
mt,t

(
X>X

)−1
xt.

Hence,

Ŷ − Ŷ (−t•) = X
(
β̂ − β̂(−t)

)
=

Ut
mt,t

X
(
X>X

)−1
xt.

Then

∥∥Ŷ − Ŷ (−t•)
∥∥2 =

∥∥∥∥ Ut
mt,t

X
(
X>X

)−1
xt

∥∥∥∥2
=

U2
t

m2
t,t

x>t
(
X>X

)−1X>X(X>X)−1xt
=

U2
t

m2
t,t

ht,t. (11.4)

The equality (11.4) follows from noting that x>t
(
X>X

)−1X>X(X>X)−1xt is the tth diagonal element of

matrix X
(
X>X

)−1X>X(X>X)−1X> = X
(
X>X

)−1X> = H.

The so called Cook distance of the tth observation is (11.4) modified to get a unit-free quantity. Namely, the
Cook distance is defined as

Dt :=
1

kMSe

∥∥Ŷ − Ŷ (−t•)
∥∥2.

Expression (11.4) shows that it is again not necessary to fit the leave-one-out model to calculate the Cook
distance. Moreover, we can express it as follows

Dt =
1

k

ht,t
mt,t

U2
t

MSemt,t
=

1

k

ht,t
mt,t

(
Ustdt

)2
.
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Notes.
• We are assuming mt,t > 0. Hence ht,t = 1 − mt,t ∈ (0, 1) and the term ht,t/mt,t increases with
the leverage ht,t (having a limit of ∞ with ht,t → 1). The “ht,t/mt,t” part of the Cook distance thus
quantifies how much is the tth observation the leverage point.

• The “Ustdt ” part of the Cook distance increases with the distance between the observed and fitted value
which is high for outliers.

• The Cook distance is thus a combined measure being high for observations which are either leverage
points or outliers or both.

Further, directly from definition,∥∥Ŷ − Ŷ (−t•)
∥∥2 =

∥∥Xβ̂ − Xβ̂(−t)
∥∥2 =

(
β̂(−t) − β̂

)>X>X(β̂(−t) − β̂
)
.

The Cook distance is then

Dt =

(
β̂(−t) − β̂

)>X>X(β̂(−t) − β̂
)

kMSe
,

which is a distance between β̂ and β̂(−t) in a certain metric.

Remember now that under normality, the confidence region for parameter β with a coverage of 1 − α,
derived while assuming model M is

C(α) =
{
β :

(
β − β̂

)>X>X(β − β̂
)
< kMSe Fk,n−k(1− α)

}
.

That is
β̂(−t) ∈ C(α) if and only if Dt < Fk,n−k(1− α). (11.5)

This motivates the following rule-of-thumb.

Note (Rule-of-thumb used by R).
The R function influence.measures marks the tth observation as excessively influencing the LSE of the
full response expectation µ if

Dt > Fk,n−k(0.50).
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

Cook distance

Cook distance

cooks.distance(m1)

1 2 3 4 5

0.0020855185 0.0028118990 0.0002104334 0.0006433764 0.0002104334 ...

Fk,n−k(0.50) = 0.6943

Maximal Cook distance

max(cooks.distance(m1))

[1] 0.288855

Cars2004 (subset, n = 412), consumption ∼ log(weight)

R diagnostic plot (plot(m1, which = 4))
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

R diagnostic plot (plot(m1, which = 5))
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

R diagnostic plot (plot(m1, which = 6))
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11.4.4 COVRATIO

In this Section, we will again assume full-rank models (r = k) and explore influence of the tth observation on
precision of the LSE of the vector of regression coe�cients. The LSE’s of the vector of regression coe�cients
based on the two models are

M : β̂ =
(
X>X

)−1 X>Y ,
M(−t) : β̂(−t) =

(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

The estimated covariance matrices of β̂ and β̂(−t), respectively, are

v̂ar
(
β̂
∣∣X) = MSe

(
X>X

)−1
,

v̂ar
(
β̂(−t)

∣∣X) = MSe,(−t)
(
X>(−t)X(−t)

)−1
.

Influence of the tth observation on the precision of the LSE of the vector of regression coe�cients is
quantified by so called COVRATIO being defined as

COVRATIOt =
det
{
v̂ar
(
β̂(−t)

∣∣X)}
det
{
v̂ar
(
β̂
∣∣X)} , t = 1, . . . , n.

After some calculation (see below), it can be shown that

COVRATIOt =
1

mt,t

{
n− k −

(
Ustdt

)2
n− k − 1

}k
, t = 1, . . . , n.

That is, it is again not necessary to fit n leave-one-out models to calculate the COVARTIO values for all
observations in the dataset.

Note (Rule-of-thumb used by R).
The R function influence.measures marks the tth observation as excessively influencing precision of the
estimation of the regression coe�cients if∣∣1− COVRATIOt

∣∣ > 3
k

n− k
.

Calculation towards COVRATIO

First, remind a matrix identity (e.g., Anděl, 2007, Theorem A.4): If A and D are square invertible matrices
then ∣∣∣∣∣ A B

C D

∣∣∣∣∣ =
∣∣A∣∣ · ∣∣D − CA−1B

∣∣ =
∣∣D∣∣ · ∣∣A − BD−1C

∣∣.
Use twice the above identity:∣∣∣∣∣ X>X xt

x>t 1

∣∣∣∣∣ =
∣∣X>X∣∣ · ∣∣1 − x>t (X>X)−1xt︸ ︷︷ ︸

1− ht,t = mt,t

∣∣ =
∣∣X>X∣∣mt,t,

= |1| ·
∣∣X>X − xtx>t ∣∣ =

∣∣X>(−t)X(−t)
∣∣.

So that, mt,t

∣∣X>X∣∣ =
∣∣X>(−t)X(−t)

∣∣.
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Then,

det
{
v̂ar
(
β̂(−t)

∣∣X)}
det
{
v̂ar
(
β̂
∣∣X)} =

∣∣∣MSe,(−t)
(
X>(−t)X(−t)

)−1∣∣∣∣∣∣MSe
(
X>X

)−1∣∣∣
=

(
MSe,(−t)
MSe

)k
·

∣∣X>(−t)X(−t)
∣∣−1∣∣X>X∣∣−1 =

(
MSe,(−t)
MSe

)k
· 1

mt,t
.

Expression (11.1):

MSe,(−t)
MSe

=
n− k −

(
Ustdt

)2
n− k − 1

.

Hence,
det
{
v̂ar
(
β̂(−t)

∣∣X)}
det
{
v̂ar
(
β̂
∣∣X)} =

1

mt,t

(
n− k −

(
Ustdt

)2
n− k − 1

)k
.

Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

COVRATIO

COVRATIO

covratio(m1)

1 2 3 4 5 6

1.014754 1.014674 1.012147 1.010719 1.012147 1.011724 ...

3 k
n−k = 0.0146

sum(abs(1 - covratio(m1)) > 3 * (k / (n-k)))

[1] 31

vname consumption weight lweight covratio

1 Chevrolet.Aveo.4dr 7.65 1075 6.980076 1.0147544

2 Chevrolet.Aveo.LS.4dr.hatch 7.65 1065 6.970730 1.0146741

17 Hyundai.Accent.GT.2dr.hatch 7.60 1061 6.966967 1.0149481

39 Scion.xA.4dr.hatch 6.80 1061 6.966967 1.0171433

47 Toyota.Echo.2dr.manual 6.10 923 6.827629 1.0240384

48 Toyota.Echo.2dr.auto 6.55 946 6.852243 1.0211810

49 Toyota.Echo.4dr 6.10 932 6.837333 1.0237925

69 Honda.Civic.Hybrid 4.85 1239 7.122060 0.9584411

.4dr.manual.(gas/electric)

70 Honda.Insight.2dr.(gas/electric) 3.75 839 6.732211 1.0287100

...

305 Hummer.H2 21.55 2903 7.973500 0.9166531

...
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Illustrations
Cars2004 (subset, n = 412), consumption ∼ log(weight)

COVRATIO value far from 1
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11.4.5 Final remarks

• All presented influence measures should be used sensibly.

• Depending on what is the purpose of the modelling, di�erent types of influence are di�erently harmful.

• There is certainly no need to panic if some observations are marked as “influential”!



Chapter 12
Model Building

Plagiarism notice: Some parts of the text of this chapter are only a mild modification of Section
2.9 from Course notes to NMST432 Advanced Regression Models (version dated May 22, 2020) by
Michal Kulich.

In this chapter we concentrate on a situation when a (larger) set of covariates is available, i.e., the generic

covariate vector Z equals
(
Z1, . . . , Zp

)>
with p > 1 (often p� 1) and the task is to propose a regression

function to express E
(
Y
∣∣Z = z

)
for a given outcome variable Y . In particular, we will now not consider

a situation where p = 1, Z ≡ Z1 is numeric and E
(
Y
∣∣Z = z

)
is a real function of one variable. Developing

a reasonable model in this case corresponds to finding a suitable parameterization for the numeric covariate
Z and this problem was quite extensively covered already by Section 4.3.

12.1 General principles

When a larger set of covariates is available (p � 1), most numeric covariates are usually parameterized by
identity (included in the model “as they are”), categorical covariates are still parameterized by a suitable
choice of (pseudo)contrast (the reference group pseudocontrasts, i.e., the dummy variables dominate in
practical applications for easy interpretation of related regression coe�cients). Hierarchically well formulated
models are then considered while including at most two-way interactions in the regression function. The
principal and quite challenging task is to decide which model terms (which interactions, which main e�ects)
should be included in the final model which is then used to solve the research problem that triggers the
regression analyzis.

The primary tool for model building in context of a linear model are submodel tests (see Chapter 8)
comparing a larger model with a submodel. If the submodel test is significant it means that the terms in
the larger model cannot be removed without a significant decrease in the quality of model fit.

Since the development of the final model usually involves repeated applications of submodel tests, each
performed on a selected level α (usually α = 0.05), it is clear that the overall procedure does not preserve
the desired level. If many tests are done then the final model is likely to include terms that in fact do not
a�ect the response at all (overfitting). There is no universal and reliable method for adjusting the levels of
the individual tests so that the overall probability of including irrelevant terms is under control. Nevertheless
the analyst should be aware of this problem and should not interpret the p-values of submodel tests too
dogmatically.

Approaches for developing reasonable models vary with the nature of the problem, structure of the data
and questions to be addressed by the analysis. There is no universal solution to be recommended. Each
problem requires careful consideration by the analyst taking into account the nature of the problem, the data-
collection methods and tools, the meaning of the variables included in the dataset, their mutual relationships,
and the goals of the analysis. Experience of the analyst is one of the most important determinants of success

292
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in model building. That is, it is only possible to learn on how to build the model by doing it (repeatedly).
Passive reading of textbooks or course notes will not develop necessary expertise.

Even though no universal solution exists, there are two broad classes of problems requiring a bit di�erent
strategies which will now be briefly discussed.

12.2 Prediction

If prediction is the primary goal, it is useful to consider rich and flexible models. Omission of an important
term from the model or its inclusion with an inappropriate transformation may have detrimental biasing
e�ects on the predictions (Section 10.2.3). If unnecessary covariates are left in, the variability in the pre-
dicted response is increased but the predictions are not biased (Section 10.2.4). Interpretation of regression
parameters is usually not that important. That is, parameterization of some of numeric covariates by splines
or polynomials is not a problem and is recommended if it appears that the e�ect of a particular covariate is
not linear.

In prediction analyses, validation of the prediction model should be performed either by dividing the data
set into disjoint training (used for model building) and validation (used for evaluation of the predictions)
subsets or at least by cross-validation (predictions of each observation by a model fitted on data excluding
that observation compared to observed values). Validation is also a very useful tool for selection of the best
prediction model out of several candidates.

Even though multicollinearity is not a problem for fitted values (Section 10.1) which we considered as
predictions that were used to evaluate a prediction quality of the model, it might be a problem for external
validity of the developed prediction model. It means that multicollinearity may invalidate predictions for
new observations with a combination of the covariate values not being exactly present in a dataset used to
build the prediction model. Such a problem would also be revealed by (cross-)validation. Finally, even if
prediction is the primary goal, it is usually of interest to also know which covariates out of a set of available p
covariates Z1, . . . , Zp are “significantly” associated with the outcome (= those included in the final model).
For this reason, it is highly recommended to treat multicollinearity even when the model is primarily built
for prediction purposes.

12.3 Evaluation of a covariate effect

The second typical problem, often encountered with data coming from observational studies, is to evaluate
covariate e�ects. That is, there is one covariate (of few covariates) of primary interest (let us denote it as X )
and the task is to evaluate how this covariate a�ects the mean of the response. Quite often, the analyst also
hypothesize some causal pathways and tries to show that changes in the X variables cause changes in the
expected outcome.

When evaluating the covariate e�ect, one should be aware of results derived in Chapter 10. Multicollinearity
is a huge problem, especially if we include covariates being collinear with the primary covariate X . The
collinear covariates may completely diminish the e�ect of the primary covariate in a final model. On the
other hand, omission of important explanatory variables will bias estimation of the e�ects of the primary
covariate X (10.2.3). In this respect, so called confounding is the most frequent problem which requires
careful pre-analyzis of not only available data but also deep understanding of the problem at hand. It may
easily happen that important explanatory variables (e.g., confounders) are not directly available in a dataset
to be analyzed. The fact that they are not available to the analyst does not remove possible bias from
estimation of e�ects of the primary covariate.

When building a model for purpose of evaluation of a covariate e�ecf, one must be really careful about
several things.

• First, the covariate of primary interest must be kept in the model even if it is not significant –
otherwise its e�ect cannot be evaluated.

• Second, the regression parameters expressing the influence of the covariate of interest should have
a straightforward interpretation. Thus, we cannot a�ord to model the e�ect of X by a complicated
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function that cannot be easily summarized (splines of degree > 1, polynomials, . . . ), or to use complex
transformations of the response that are di�cult to interpret.

• Third, there might be covariates that should be kept in the model regardless of their significance
(suspected confounders) and/or covariates that should not be included in the model no matter how
significant they are (variables on the causal pathway between X and Y , variables that are influenced
by the value of Y ).

Thus, making reasonable decisions about which covariates should be included in the model and which
should be dropped is not based solely on significance tests but also on external expert knowledge of the
problem to be analyzed. It is precisely this issue that makes automated computer-based algorithms
(unsupervised stepwise regression, regression trees, neural networks, deep learning, etc.) unable to
solve certain problems acceptably.

12.4 Model building strategy

The common problem in model-building strategies is the inclusion of interactions, especially when the
number of covariates that can be considered for interactions is quite large. The strategy that starts with
a model that includes a lot of main e�ects as well as all possible two-way interactions between them, and
tries to gradually eliminate the superfluous terms usually does not lead to a good model. With this approach,
we are likely to end up with a model that su�ers from overfitting, keeps a lot of unnecessary interactions and
is hard to interpret. It is better to fit only the main e�ects first and eliminate those that are not contributing
to the model. As soon as the total amount of available covariates has been eliminated in this way, either all
two-way interactions based only on the included e�ects may be added to the model and then eliminated
by another sequence of submodel F-tests. Or one may try to add two-way interactions of the remaining
terms one by one. This strategy is much more likely to end up only with interactions that really matter.
Considering higher order interactions (three-way, four-way, . . . ) is usually a hopeless task. It is better not to
consider them at all, except in analyses where, for some reason, such interactions are among the terms of
interest.

There is one principle about building models with interactions, which is almost universally valid and the
analyst should take care not to violate it. The models should be built hierarchically, meaning that if a covariate
is present in a higher-order interaction, then all its corresponding lower-order interactions as well as the
main e�ects should be included in the model as well, no matter if they are significant or not. This principle
should be ignored only in analyses where there is a sound justification for its violation.

12.5 Conclusion

This brief exposition of model-building strategies cannot be complete and should be understood in the whole
context of the particular task to be done. As noted earlier, each problem should be carefully considered in
order to choose a tailor-made strategy that works well for it. This requires practical experience. The analyst
should be aware that there is no such thing as the true model and that his task is not to discover it. All
models are wrong – we are only looking for an acceptable model that provides satisfactory answers to the
questions of interest.



Chapter 13
Analysis of Variance

In this chapter, we examine few specific issues of linear models where all covariates are categorical. That is,

the covariate vector Z is Z =
(
Z1, . . . , Zp

)>
, Zj ∈ Zj , j = 1, . . . , p, and each Zj is a finite set (with

usually a “low” cardinality). The corresponding linear models are traditionally used in the area of designed
(industrial, agricultural, . . . ) experiments or controlled clinical studies. The elements of the covariate vector
Z then correspond to p factors whose influence on the response Y is of interest. The values of those
factors for experimental units/subjects are typically within the control of an experimenter in which case the
covariates are fixed rather than being random. Nevertheless, since the whole theory presented in this chapter
is based on statements on the conditional distribution of the response given the covariate values, everything
applies for both fixed and random covariates.

295
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13.1 One-way classification

One-way classification corresponds to situation of one categorical covariate Z ∈ Z = {1, . . . , G}, see also
Section 4.4. A linear model can then used to parameterize a set of G (conditional) response expectations
E
(
Y
∣∣Z = 1

)
, . . ., E

(
Y
∣∣Z = G

)
that we call as one-way classified group means:

m(g) = E
(
Y
∣∣Z = g

)
=: mg, g = 1, . . . , G.

Without loss of generality, we can assume that the response random variables Y1, . . . , Yn are sorted such
that

Z1 = · · · = Zn1
= 1,

Zn1+1 = · · · = Zn1+n2
= 2,
...

Zn1+···+nG−1+1 = · · · = Zn = G.

As in Section 4.4, it is useful (for notational clarity in theoretical derivations) to use a double subscript to index
the individual observations and to merge responses with a common covariate value Z = g, g = 1, . . . , G,
into response subvectors Y g :

Z = 1 : Y 1 =
(
Y1,1, . . . , Y1,n1

)>
=
(
Y1, . . . , Yn1

)>
,

...
...

...

Z = G : Y G =
(
YG,1, . . . , YG,nG

)>
=
(
Yn1+···+nG−1+1, . . . , Yn

)>
.

The full response vector is Y and its (conditional, given Z =
(
Z1, . . . , Zn

)>
) mean are

Y =


Y 1

...

Y G

 , E
(
Y
∣∣Z) =


m1 1n1

...

mG 1nG

 =: µ. (13.1)

By using a linear model, we just use a suitable parameterization of the mean vector µ given by (13.1). By
using a standard linear model, we additionally assume that

var
(
Y
∣∣Z) = σ2 In. (13.2)

As in Section 4.4, we keep assuming that n1 > 0, . . ., nG > 0 (almost surely in case of random covariates).
A linear model with the inference being conditioned by the covariate values can now be used to infere on
the group means m1, . . . , mG or on their linear combinations.
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13.1.1 Parameters of interest

Differences between the group means

The principal inferential interest with one-way classification lies in estimation of and tests on parameters

θg,h := mg −mh, g, h = 1, . . . , G, g 6= h,

which are the di�erences between the group means. Since each θg,h is a linear combination of the elements
of the mean vector µ = E

(
Y
∣∣Z). The LSE of each θg,h is trivially a di�erence between the corresponding

fitted values.

The principal null hypothesis being tested in context of the one-way classification is the null hypothesis on
equality of the group means, i.e., the null hypothesis

H0 : m1 = · · · = mG,

which written in terms of the di�erences between the group means is

H0 : θg,h = 0, g, h = 1, . . . , G, g 6= h.

Factor effects

One-way classification often corresponds to a designed experiment which aims in evaluating the e�ect of
a certain factor on the response. In that case, the following quantities, called as factor e�ects, are usually of
primary interest.

Definition 13.1 Factor effects in a one-way classification.
By factor e�ects in case of a one-way classification we understand the quantities η1, . . . , ηG defined as

ηg = mg −m, g = 1, . . . , G,

where m =
1

G

G∑
h=1

mh is the mean of the group means.

Notes.
• The factor e�ects are again linear combinations of the elements of the mean vector µ = E

(
Y
∣∣Z) and

hence for all of them the LSE is equal to the appropriate linear combination of the fitted values.

• Each factor e�ect shows how the mean of a particular group di�er from the mean of all the group means.

• The null hypothesis
H0 : ηg = 0, g = 1, . . . , G,

is equivalent to the null hypothesis H0 : m1 = · · · = mG on the equality of the group means.
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13.1.2 One-way ANOVA model

As a reminder from Section 4.4.2, the regression space of the one-way classification is

m1 1n1

...

mG 1nG

 : m1, . . . , mG ∈ R

 ⊆ Rn.

While assuming ng > 0, g = 1, . . . , G, n > G, its vector dimension is G. In Section 4.4.3, we introduced
class of full-rank parameterizations of this regression space and of the response mean vector µ as µ = Xβ,
β ∈ Rk :

mg = β0 + c>g β
Z , g = 1, . . . , G

with k = G, β =
(
β0, βZ︸︷︷︸(
β1, . . . , βG−1

)>
)>

,

where C =


c>1
...

c>G

 is a chosen G× (G− 1) (pseudo)contrast matrix.

Note. If the sum contrasts (see expression 4.23) are used then

α0 := β0 =
1

G

G∑
g=1

mg = m,

αg := βg = mg −
1

H

H∑
h=1

mh = mg −m = ηg, g = 1, . . . , G− 1,

αG := −
G−1∑
h=1

βh = mG −
1

H

H∑
h=1

mh = mG −m = ηG.

That is, parameters α1, . . . , αG are equal to the factor e�ects.

Terminology. Related linear model is referred to as one-way ANOVA model1

Notes.
• Depending on chosen parameterization the di�erences between the group means, parameters θg,h, are
expressed as

θg,h = αg − αh =
(
cg − ch

)>
βZ , g 6= h.

The null hypothesis H0 : m1 = · · ·mG on equality of the group means is the expressed as H0 : β1 =
0 & . . . & βG−1 = 0, i.e., H0 : βZ = 0G−1.

• If a normal linear model is assumed, test on a value of subvector of regression parameters or a submodel
test which compares the one-way ANOVA model with the intercept-only model can be used to test the
above null hypothesis. The corresponding F-test is indeed a well known one-way ANOVA F-test.

1 model analýzy rozptylu jednoduchého třídění
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13.1.3 Least squares estimation

In case of a one-way ANOVA linear model, explicit formulas for the LSE related quantities can easily be
derived.

Lemma 13.1 Least squares estimation in one-way ANOVA linear model.
The fitted values and the LSE of the group means in a one-way ANOVA linear model are equal to the group
sample means:

m̂g = Ŷg,j =
1

ng

ng∑
l=1

Yg,l =: Y g•, g = 1, . . . , G, j = 1, . . . , ng.

That is,

m̂ :=


m̂1

...

m̂G

 =


Y 1•
...

Y G•

 , Ŷ =


Y 1•1n1

...

Y G•1nG

 .

If additionally normality is assumed, i.e., Y
∣∣Z ∼ Nn(µ, σ2 In

)
, where µ =

(
m1 1>n1

, . . . , mG 1>nG
)>
, then

m̂ |Z ∼ NG
(
m, σ2 V

)
, where

V =


1
n1

. . . 0
...

. . .
...

0 . . . 1
nG

 .

Proof. Use a full-rank parameterization µ = Xβ with

X =


1n1 . . . 0n1

...
...

...

0nG
... 1nG

 , β =
(
m1, . . . ,mG

)>
.

We have

X>X =


n1 . . . 0
...

. . .
...

0 . . . nG

 , X>Y =


∑n1

j=1 Y1,j
...∑nG

j=1 YG,j

 ,
(
X>X

)−1
=


1
n1

. . . 0
...

. . .
...

0 . . . 1
nG

 ,

β̂ = m̂ =
(
m̂1, . . . , m̂G

)>
=
(
X>X

)−1 X>Y =
(
Y 1•, . . . , Y G•

)>
.

Finally,

Ŷ = Xβ̂ =


m̂11n1

...

m̂G1nG

 =


Y 1•1n1

...

Y G•1nG

 .

Normality and the form of the covariance matrix of m̂ follows from a general LSE theory.
k
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LSE of regression coefficients and their linear combinations

With a full-rank parameterization, a vector m is linked to the regression coe�cients β =
(
β0, β

Z
)>

,

βZ =
(
β1, . . . , βG−1

)>
, by the relationship

m = β01G + CβZ .

Due to the fact that Ŷ = Xβ̂, where X is a model matrix derived from the (pseudo)contrast matrix C, the
LSE β̂ =

(
β̂0, β̂

Z)>
of the regression coe�cients in a full-rank parameterization satisfy

m̂ = β̂01G + Cβ̂
Z
,

which is a regular linear system with the solution

(
β̂0

β̂
Z

)
=
(
1G, C

)−1
Y 1•
...

Y G•

 .

That is, the LSE of the regression coe�cients is always a linear combination of the group sample means.
The same then holds, of course, also for any linear combination of regression coe�cients. For example, the
LSE of the di�erences between the group means θg,h = mg −mh, g, h = 1, . . . , G, are

θ̂g,h = Y g• − Y h•, g, h = 1, . . . , G.

Analogously, the LSE of the factor e�ects ηg = mg − 1
G

∑G
h=1mh, g = 1, . . . , G, are

η̂g = Y g• −
1

G

G∑
h=1

Y h•, g = 1, . . . , G.
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13.1.4 Within and between groups sums of squares, ANOVA F-
test

Sums of squares

Let as usual, Y denote a sample mean based on the response vector Y , i.e.,

Y =
1

n

G∑
g=1

ng∑
j=1

Yg,j =
1

n

G∑
g=1

ngY g•.

In a one-way ANOVA linear model, the residual and the regression sums of squares and corresponding
degrees of freedom are

SSe =
∥∥Y − Ŷ ∥∥2 =

G∑
g=1

ng∑
j=1

(
Yg,j − Ŷg,j

)2
=

G∑
g=1

ng∑
j=1

(
Yg,j − Y g•

)2
,

νe = n−G,

SSR =
∥∥Ŷ − Y 1n

∥∥2 =

G∑
g=1

ng∑
j=1

(
Ŷg,j − Y

)2
=

G∑
g=1

ng
(
Y g• − Y

)2
,

νR = G− 1.

In this context, the residual sum of squares SSe is also called the within groups sum of squares2, the
regression sum of squares SSR is called the between groups sum of squares3.

One-way ANOVA F-test

Let us assume normality of the response and consider a submodel Y |Z ∼ Nn
(
1nβ0, σ

2In
)
of the one-way

ANOVA model. A residual sum of squares of the submodel is

SS0e = SST =
∥∥Y − Y 1n

∥∥2 =

G∑
g=1

ng∑
j=1

(
Yg,j − Y

)2
.

Breakdown of the total sum of squares (Lemma 7.3) gives SSR = SST − SSe = SS0e − SSe and hence the
statistic of the F-test on a submodel is

F =
SSR
G−1
SSe
n−G

=
MSR
MSe

, (13.3)

where

MSR =
SSR
G− 1

, MSe =
SSe
n−G

.

The F-statistic (13.3) is indeed a classical one-way ANOVA F-statistics which under the null hypothesis of
validity of a submodel, i.e., under the null hypothesis of equality of the group means, follows an FG−1, n−G
distribution. Above quantities, together with the P-value derived from the FG−1, n−G distribution are often
recorded in a form of the ANOVA table:

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

Factor G− 1 SSR MSR F p

Residual n−G SSe MSe

2 vnitroskupinový součet čtverců 3 meziskupinový součet čtverců
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Consider a terminology introduced in Section 5.5, and denote as Z main e�ect terms that correspond to the
covariate Z . We have SSR = SS

(
Z
∣∣ 1) and the above ANOVA table is now type I as well as type II ANOVA

table. If intercept is explicitely included in the model matrix then it is also the type III ANOVA table.
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13.2 Two-way classification

Suppose now that there are two categorical covariates Z and W available with

Z ∈ Z = {1, . . . , G}, W ∈ W = {1, . . . , H}.

This can be viewed as if the two covariates correspond to division of population of interest into G · H
subpopulations/groups. Each group is then identified by a combination of values of two factors (Z and W )
and hence the situation is commonly referred to as two-way classification4. A linear model can now be used
to parameterize a set of G · H (conditional) response expectations E

(
Y
∣∣Z = g, W = h

)
, g = 1, . . . , G,

h = 1, . . . ,H (group specific response expectations). Those will be called, in this context, as two-way
classified group means:

m(g, h) = E
(
Y
∣∣Z = g, W = h

)
=: mg,h, g = 1, . . . , G, h = 1, . . . ,H.

Suppose that a combination
(
Z, W

)>
=
(
g, h

)>
is repeated ng,h-times in the data, g = 1, . . . , G,

h = 1, . . . , H . That is,

n =

G∑
g=1

H∑
h=1

ng,h.

Analogously to Section 13.1, it will overally be assumed that ng,h > 0 (almost surely) for each g and h. That

is, it is assumed that each group identified by
(
Z, W

)>
=
(
g, h

)>
is (almost surely) represented in the

data.

For the clarity of notation, we will now use also a triple subscript to index the individual observations.
The first subscript will indicate a value of the covariate Z , the second subscript will indicate a value of the

covariate W and the third subscript will consecutively number the observations with the same
(
Z, W

)>
combination. Finally, without loss of generality, we will assume that data are sorted primarily with respect
to the value of the covariate W and secondarily with respect to the value of the covariate Z . That is, the
covariate matrix and the response vector take a form as shown in Table 13.1.

As usually, let Z =
(
Z1,1,1, . . . , ZG,H,nG,H

)>
denote the n× 1 matrix with all values of the Z covariate in

the data and similarly, let W =
(
W1,1,1, . . . , WG,H,nG,H

)>
denote the n× 1 matrix with all values of the

W covariate.

Still in the same spirit of Section 13.1, we merge response random variables with a common value of the two

covariates into response subvectors Y g,h =
(
Yg,h,1, . . . , Yg,h,ng,h

)>
, g = 1, . . . , G, h = 1, . . . ,H . The

overall response vector Y is then

Y =
(
Y >1,1, . . . , Y

>
G,1, . . . , Y >1,H , . . . , Y

>
G,H

)>
.

Similarly, a vector m will now be a vector of the two-way classified group means. That is,

m =
(
m1,1, . . . , mG,1, . . . . . . , m1,H , . . . , mG,H

)>
.

Further, let

ng• =

H∑
h=1

ng,h, g = 1, . . . , G

denote the number of datapoints with Z = g and similarly, let

n•h =

G∑
g=1

ng,h, h = 1, . . . , H

denote the number of datapoints with W = h. Finally, we will denote various means of the group means as
follows.

m :=
1

G ·H

G∑
g=1

H∑
h=1

mg,h,

4 dvojné třídění
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Table 13.1: Two-way classification: Covariate matrix and overall response vector.



Z1 W1

...
...

...
...

...
...

...
...

...
...

Zn Wn


=



Z1,1,1 W1,1,1

...
...

Z1,1,n1,1 W1,1,n1,1

−−−−−−−−−−
...

...

−−−−−−−−−−
ZG,1,1 WG,1,1

...
...

ZG,1,nG,1 WG,1,nG,1

−−−−−−−−−−
...

...
...

...

−−−−−−−−−−
Z1,H,1 W1,H,1

...
...

Z1,H,n1,H W1,H,n1,H

−−−−−−−−−−
...

...

−−−−−−−−−−
ZG,H,1 WG,H,1

...
...

ZG,H,nG,H WG,H,nG,H



=



1 1
...

...

1 1

−−−
...

...

−−−
G 1
...

...

G 1

−−−
...

...
...

...

−−−
1 H
...

...

1 H

−−−
...

...

−−−
G H
...

...

G H



, Y =



Y1
...
...
...
...
...

Yn


=



Y1,1,1

...

Y1,1,n1,1

−−−−
...

−−−−
YG,1,1

...

YG,1,nG,1
−−−−

...

...

−−−−
Y1,H,1

...

Y1,H,n1,H

−−−−
...

−−−−
YG,H,1

...

YG,H,nG,H



.

mg• :=
1

H

H∑
h=1

mg,h, g = 1, . . . , G,

m•h :=
1

G

G∑
g=1

mg,h, h = 1, . . . , H.

For following considerations, it is useful to view data as if each subpopulation/group corresponds to a cell
in an G×H table whose rows are indexed by the values of the Z and W covariates as shown in Table 13.2.

Notes.
• The above defined quantities mg•, m•h, m are the means of the group means which are not weighted by
the corresponding sample sizes (which are moreover random if the covariates are random). As such, all
above defined means are always real constants and never random variables (irrespective of whether the
covariates are considered as being fixed or random).

• When interpreting the means of the group means, it must be taken into account that in general, it is not
necessarily true that mg• = E

(
Y
∣∣Z = g

)
(g = 1, . . . , G), m•h = E

(
Y
∣∣W = h

)
(h = 1, . . . ,H ), or

m = E
(
Y
)
.

• Data in the overall response vector Y are sorted as if we put columns of the response matrix from
Table 13.2 one after each other.
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Table 13.2: Two-way classification: Response variables, group means, sample sizes in a tabular
display.

Response variables

W

Z 1 . . . H

1 Y 1,1 =
(
Y1,1,1, . . . , Y1,1,n1,1

)> ... Y 1,H =
(
Y1,H,1, . . . , Y1,H,n1,H

)>
...

...
...

...

G Y G,1 =
(
YG,1,1, . . . , YG,1,nG,1

)> ... Y G,H =
(
YG,H,1, . . . , YG,H,nG,H

)>
Group means

W

Z 1 . . . H •

1 m1,1
... m1,H m1•

...
...

...
...

...

G mG,1
... mG,H mG•

• m•1 . . . m•H m

Sample sizes

W

Z 1 . . . H •

1 n1,1
... n1,H n1•

...
...

...
...

...

G nG,1
... nG,H nG•

• n•1 . . . n•H n

The full response vector is Y and its (conditional, given Z and W) mean is

E
(
Y
∣∣Z, W) =



m1,1 1n1,1

...

mG,1 1nG,1
...

m1,H 1n1,H

...

mG,H 1nG,H


=: µ. (13.4)

By a linear model, we can use a suitable parameterization of the mean vector µ given by (13.4). At the same
time, if a linear model is used, it is additionally assumed that

var
(
Y
∣∣Z, W) = σ2 In. (13.5)
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13.2.1 Parameters of interest

Various quantities, all being linear combinations of the two-way classified group meansare clasically of
interest, especially in the area of designed experiments used often in industrial statistics. Here, the levels of
the two covariates Z and W correspond to certain experimental (machine) settings of two factors that may
influence the output Y of interest (e.g., production of the machine). The group mean mg,h is then the mean
outcome if the Z factor is set to level g and the W factor to level h. Next to the group means themselves,
additional quantities of interest clasically include

(i) The mean of the group means m.

• For designed experiment, this is the mean outcome value if we perform the experiment with all
combinations of the input factors Z and W (each combination equally replicated).

• If Y represents some industrial production then m provides the mean production as if all combi-
nations of inputs are equally often used in the production process.

(ii) The means of the means by the first or the second factor, i.e., parameters

m1•, . . . , mG•, and m•1, . . . , m•H .

• For designed experiment, the value of mg• (g = 1, . . . , G) is the mean outcome value if we fix
the factor Z on its level g and perform the experiment while setting the factor W to all possible
levels (again, each equally replicated).

• If Y represents some industrial production then mg• provides the mean production as if the Z
input is set to g but all possible values of the second input W are equally often used in the
production process.

• Interpretation of m•h (h = 1, . . . ,H ) just mirrors interpretation of mg•.

(iii) Di�erences between the means of the means by the first or the second factor, i.e., parameters

θg1,g2• := mg1• −mg2•, g1, g2 = 1, . . . , G, g1 6= g2,

θ•h1,h2
:= m•h1

−m•h2
, h1, h2 = 1, . . . ,H, h1 6= h2.

Those, in a certain sense quantify the mean e�ect of the first or the second factor on the response.

• For designed experiment, the value of θg1,g2• (g1 6= g2) is the mean di�erence between the
outcome values if we fix the factor Z to its levels g1 and g2, repectively and perform the
experiment while setting the factor W to all possible levels (again, each equally replicated).

• If Y represents some industrial production then θg1,g2• (g1 6= g2) provides di�erence between
the mean productions with Z set to g1 and g2, respectively while using all possible values of the
second input W equally often in the production process.

• Interpretation of θ•h1,h2
(h1 6= h2) just mirrors interpretation of θg1,g2 .

(iv) Factor main e�ects, see Definition 13.2.

Definition 13.2 Factor main effects in two-way classification.
Consider a two-way classification based on factors Z and W . By main e�ects of the factor Z , we understand
quantities ηZ1 , . . . , η

Z
G defined as

ηZg := mg• − m, g = 1, . . . , G.

By main e�ects of the factor W , we understand quantities ηW1 , . . . , ηWH defined as

ηWh := m•h − m, h = 1, . . . ,H.
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Note. Each di�erence between the means of the means can also be written as di�erence between two
main e�ects:

θg1,g2• = mg1• −mg2• = ηZg1 − η
Z
g2 , g1, g2 = 1, . . . , G, g1 6= g2,

θ•h1,h2
= m•h1

−m•h2
= ηWh1

− ηWh2
, h1, h2 = 1, . . . ,H, h1 6= h2.
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13.2.2 Two-way ANOVA models

Depending on whether additivity can be assumed or not, or whether either of the two factors has an e�ect
on the response expectation or not di�erent models can be considered in a context of two-way classification.
Each model just corresponds to di�erent structure for the two-way classified group means. The models are
as follows.

Interaction model

No structure is imposed on the group means. Under the assumption that (almost surely) ng,h > 0 for each
g = 1, . . . , G, h = 1, . . . ,H , the corresponding regression space has (almost surely) a vector dimension
G · H and the full-rank parameterization of the group means is achieved (see Section 5.4) by choosing
the two (pseudo)contrast matrices C and D having the rows c>g , g = 1, . . . , G and d>h , h = 1, . . . ,H ,
respectively. The group means are then parameterized as

mg,h = β0 + c>g β
Z + d>h β

W +
(
d>h ⊗ c>g

)
βZW , g = 1, . . . ,H, h = 1, . . . ,H, (13.6)

where

β0, βZ =
(
βZ1 , . . . , β

Z
G−1

)>
, βW =

(
βW1 , . . . , βWH−1

)>
,

βZW =
(
βZW1,1 , . . . , βZWG−1,1, . . . , βZW1,H−1, . . . , β

ZW
G−1,H−1

)>
are the regression parameters.

As in Section 5.4, it is useful to view the parameterization (13.6) as

mg,h = α0 + αZg + αWh + αZWg,h , g = 1, . . . ,H, h = 1, . . . ,H, (13.7)

where

α0 = β0,

αZg = c>g β
Z , g = 1, . . . , G,

αWh = d>h β
W , h = 1, . . . ,H,

αZWg,h =
(
d>h ⊗ c>g

)
βZW , g = 1, . . . , G, h = 1, . . . ,H.

It has also been derived in Section 5.4 that with a choice of sum contrasts (see page 97), the “α” parameters
attain the following interpretation:

α0 = β0 = m,

αZg = βZg = mg• −m = ηZg , g = 1, . . . , G− 1,

αZG = −
G−1∑
g=1

βZg = mG• −m = ηZG,

αWh = βWh = m•h −m, = ηWh h = 1, . . . ,H − 1,

αWH = −
H−1∑
h=1

βWh = m•H −m = ηWH ,

αZWg,h = mg,h −mg• −m•h +m, g = 1, . . . , G, h = 1, . . . ,H.

In the following, let symbols Z and W denote the terms in the model matrix that correspond to the
coe�cients αZ or βZ , and αW or βW , respectively. Let further Z :W denote the terms corresponding to
the interaction coe�cients αZW or βZW . The interaction model will then symbolically be written as

MZW : ∼ Z + W + Z :W.
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Illustrations
Howells (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)
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Additive model

It is obtained as a submodel of the interaction model (13.6) where it is requested

αZW1,1 = · · · = αZWG,H ,

which in the full-rank parameterization corresponds to requesting

βZW = 0(G−1)·(H−1).

Hence the group means can be written as

mg,h = α0 + αZg + αWh ,

= β0 + c>g β
Z + d>h β

W , g = 1, . . . ,H, h = 1, . . . ,H.

(13.8)

Under the condition that ng,h > 0 (almost surely) for all g, h, the rank of the linear model with the two-way
classified group means that satisfy (13.8), is G+H − 1 (almost surely). The additive model will symbolically
be written as

MZ+W : ∼ Z + W.

Note. It can easily be shown that ng• > 0 for all g = 1, . . . , G and n•h > 0 for all h = 1, . . . ,H su�ce
to get a rank of the related linear model being still G+H−1. This guarantees, among the other things, that
all linear combinations of the regression coe�cients of the additive model can still be estimated by a method
of least squares under a weaker requirement ng• for all g = 1, . . . , G and n•h for all h = 1, . . . ,H . That is,
if the additive model can be assumed, it is not necessary to have observations for all possible combinations
of the values of the two covariates (factors) and the same types of the statistical inference are possible. This
is often exploited in the area of designed experiments where it might be impractical or even impossible to
get observations under all possible covariate combinations (factor settings).

The additive model implies the following properties for the two-way classified group means:

(i) for each g1 6= g2, g1, g2 ∈ {1, . . . , G}, the di�erence mg1,h −mg2,h does not depend on a value
of h ∈ {1, . . . ,H} and is equal to the di�erence between the corresponding means of the means by
the first factor, i.e.,

mg1,h −mg2,h = mg1• − mg2• = ηZg1 − η
Z
g2 = θg1,g2•,

which is expressed using the parameterizations (13.8) as

θg1,g2• = αZg1 − αZg2 =
(
cg1 − cg2

)>
βZ ;

(ii) for each h1 6= h2, h1, h2 ∈ {1, . . . ,H}, the di�erence mg,h1
−mg,h2

does not depend on a value
of g ∈ {1, . . . , G} and is equal to the di�erence between the corresponding means of the means by
the second factor, i.e.,

mg,h1 −mg,h2 = m•h1
− m•h2

= ηWh1
− ηWh2

= θ•h1,h2
,

which is expressed using the parameterizations (13.8) as

θ•h1,h2
= αWh1

− αWh2
=

(
dh1

− dh2

)>
βW .
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Illustrations
Howells (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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Finally, remember that it has been derived in Section 5.4 that with a choice of sum contrasts (see page 97),
the “α” parameters attain the following interpretation:

α0 = β0 = m,

αZg = βZg = mg• −m = ηZg , g = 1, . . . , G− 1,

αZG = −
G−1∑
g=1

βZg = mG• −m = ηZG,

αWh = βWh = m•h −m, = ηWh h = 1, . . . ,H − 1,

αWH = −
H−1∑
h=1

βWh = m•H −m = ηWH .

Model of effect of Z only

It is obtained as a submodel of the additive model (13.8) by requesting

αW1 = · · · = αWH ,

which in the full-rank parameterization corresponds to requesting

βW = 0H−1.

Hence the group means can be written as

mg,h = α0 + αZg ,

= β0 + c>g β
Z , g = 1, . . . ,H, h = 1, . . . ,H.

(13.9)

This is in fact a linear model for the one-way classified (by the values of the covariate Z ) group means
whose rank is G as soon as ng• > 0 for all g = 1, . . . , G. The model of e�ect of Z only will symbolically
be written as

MZ : ∼ Z.

The two-way classified group means then satisfy

(i) For each g = 1, . . . , G, mg,1 = · · · = mg,H = mg•.

(ii) m•1 = · · · = m•H .

Model of effect of W only

It is the same as the model of e�ect of Z only with exchaged meaning of Z and W . That is, the model of
e�ect of W only is obtained as a submodel of the additive model (13.8) by requesting

αZ1 = · · · = αZG,

which in the full-rank parameterization corresponds to requesting

βZ = 0G−1.

Hence the group means can be written as

mg,h = α0 + αWh ,

= β0 + d>h β
W , g = 1, . . . ,H, h = 1, . . . ,H.

(13.10)

The model of e�ect of W only will symbolically be written as

MW : ∼W.
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Table 13.3: Two-way ANOVA models.

Requirement

Model Rank for Rank

MZW : ∼ Z + W + Z :W G ·H ng,h > 0 for all g = 1, . . . , G, h = 1, . . . ,H

MZ+W : ∼ Z + W G+H − 1 ng• > 0 for all g = 1, . . . , G,

n•h > 0 for all h = 1, . . . ,H

MZ : ∼ Z G ng• > 0 for all g = 1, . . . , G

MW : ∼W H n•h > 0 for all h = 1, . . . ,H

M0 : ∼ 1 1 n > 0

Intercept only model

This is a submodel of either the model (13.9) of e�ect of Z only where it is requested

αZ1 = · · · = αZG or βZ = 0G−1, respectively

or the model (13.10) of e�ect of W only where it is requested

αW1 = · · · = αWH or βW = 0H−1, respectively.

Hence the group means can be written as

mg,h = α0,

= β0, g = 1, . . . ,H, h = 1, . . . ,H.

As usual, this model will symbolically be denoted as

M0 : ∼ 1.

Summary

The models that we consider for the two-way classification are summarized by Table 13.3. The considered
models form two sequences of nested submodels:

(i) M0 ⊂ MZ ⊂ MZ+W ⊂ MZW ;

(ii) M0 ⊂ MW ⊂ MZ+W ⊂ MZW .

Related submodel testing then corresponds to evaluating whether the two-way classified group means satisfy
a particular structure invoked by the submodel at hand. If normality of the error terms is assumed, the
testing can be performed by the methodology of Chapter 8 (F-tests on submodels).
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13.2.3 Least squares estimation

Also with the two-way classification, explicit formulas for some of the LSE related quantities can be derived
and then certain properties of the least squares based inference drawn.

Notation (Sample means in two-way classification).

Y g,h• :=
1

ng,h

ng,h∑
j=1

Yg,h,j , g = 1, . . . , G, h = 1, . . . , H,

Y g• :=
1

ng•

H∑
h=1

ng,h∑
j=1

Yg,h,j =
1

ng•

H∑
h=1

ng,h Y g,h•, g = 1, . . . , G,

Y •h :=
1

n•h

G∑
g=1

ng,h∑
j=1

Yg,h,j =
1

n•h

G∑
g=1

ng,h Y g,h•, h = 1, . . . ,H,

Y :=
1

n

G∑
g=1

H∑
h=1

ng,h∑
j=1

Yg,h,j =
1

n

G∑
g=1

ng• Y g• =
1

n

H∑
h=1

n•h Y •h.

As usual, m̂g,h, g = 1, . . . , G, h = 1, . . . ,H , denote the LSE of the two-way classified group means and

m̂ =
(
m̂1,1, . . . , m̂G,H

)>
.

Lemma 13.2 Least squares estimation in two-way ANOVA linear models.
The fitted values and the LSE of the group means in two-way ANOVA linear models are given as follows (always
for g = 1, . . . , G, h = 1, . . . ,H , j = 1, . . . , ng,h).

(i) Interaction model MZW : ∼ Z + W + Z :W

m̂g,h = Ŷg,h,j = Y g,h•.

(ii) Additive model MZ+W : ∼ Z + W

m̂g,h = Ŷg,h,j = Y g• + Y •h − Y ,

but only in case of balanced data5 (ng,h = J for all g = 1, . . . , G, h = 1, . . . ,H ).

(iii) Model of e�ect of Z only MZ : ∼ Z

m̂g,h = Ŷg,h,j = Y g•.

(iv) Model of e�ect of W only MW : ∼W

m̂g,h = Ŷg,h,j = Y •h.

(v) Intercept only model M0 : ∼ 1

m̂g,h = Ŷg,h,j = Y .

Note. There exists no simple expression to calculate the fitted values in the additive model in case of
unbalanced data. See Searle (1987, Section 4.9) for more details.

5 vyvážená data
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Proof.
Only the fitted values in the additive model must be derived now.

Models MZW , MZ , MW are, in fact, one-way ANOVA models where we already know that the fitted values
are equal to the corresponding group means.

Also model M0 is nothing new.

Fitted values in the additive model can be calculated by solving the normal equations (minimizing the sum
of squares) corresponding to the parameterization

mg,h = α0 + αZg + αWh , g = 1, . . . , G, h = 1, . . . ,H.

while imposing the constraints
G∑
g=1

αZg = 0,

H∑
h=1

αWh = 0.

This corresponds to the full-rank parameterization while using the sum contrasts parameterization.

For the additive model with the balanced data (ng,h = J for all g = 1, . . . , G, h = 1, . . . ,H ):

• Sum of squares to be minimized

SS(α) =
∑
g

∑
h

∑
j

(
Yg,h,j − α0 − αZg − αWh

)2
.

• Normal equations ≡ derivatives of SS(α) divided by (−2) and set to zero:∑
g

∑
h

∑
j

Yg,h,j −GHJα0 −HJ
∑
g

αZg −GJ
∑
h

αWh = 0,

∑
h

∑
j

Yg,h,j −HJα0 −HJαZg − J
∑
h

αWh = 0, g = 1, . . . , G,

∑
g

∑
j

Yg,h,j −GJα0 − J
∑
g

αZg −GJαWh = 0, h = 1, . . . ,H.

• After exploiting the identifying constraints:∑
g

∑
h

∑
j

Yg,h,j −GHJα0 = 0,

∑
h

∑
j

Yg,h,j −HJα0 −HJαZg = 0, g = 1, . . . , G,

∑
g

∑
j

Yg,h,j −GJα0 −GJαWh = 0, h = 1, . . . ,H.

• Hence α̂0 = Y ,

α̂Zg = Y g• − Y , g = 1, . . . , G,

α̂Wh = Y •h − Y , h = 1, . . . ,H .

• And then m̂g,h = α̂0 + α̂Zg + α̂Wh = Y g• + Y •h − Y ,

g = 1, . . . , G, h = 1, . . . ,H .

k
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Consequence of Lemma 13.2: LSE of the means of the means in the interaction
and the additive model with balanced data.
With balanced data (ng,h = J for all g = 1, . . . , G, h = 1, . . . ,H ), the LSE of the means of the means by the
first factor (parameters m1•, . . . , mG•) or by the second factor (parameters m•1, . . . , m•H ) satisfy in both the
interaction and the additive two-way ANOVA linear models the following:

m̂g• = Y g•, g = 1, . . . , G,

m̂•h = Y •h, h = 1, . . . ,H.

If additionally normality is assumed then m̂
Z

:=
(
m̂1•, . . . , m̂G•

)>
and m̂

W
:=
(
m̂•1, . . . , m̂•H

)>
satisfy

m̂
Z
|Z, W ∼ NG

(
mZ , σ2 VZ

)
, m̂

W
|Z, W ∼ NH

(
mW , σ2 VW

)
,

where

mZ =


m1•
...

mG•

 , VZ =


1
J H . . . 0
...

. . .
...

0 . . . 1
J H

 ,

mW =


m•1
...

m•H

 , VW =


1
J G . . . 0
...

. . .
...

0 . . . 1
J G

 .

Proof. All parameters mg•, g = 1, . . . , G, and m•h, h = 1, . . . ,H are linear combinations of the
group means (of the response mean vector µ = E

(
Y
∣∣Z, W)) and hence their LSE is an appropriate linear

combination of the LSE of the group means. With balanced data, we get for the the considered models
(calculation shown only for LSE of mg•, g = 1, . . . , G):

(i) Interaction model

m̂g• =
1

H

H∑
h=1

m̂g,h =
1

H

H∑
h=1

Y g,h• =
1

H J

H∑
h=1

J Y g,h• =
1

ng•

H∑
h=1

ng,h Y g,h• = Y g•.

(ii) Additive model

m̂g• =
1

H

H∑
h=1

m̂g,h =
1

H

H∑
h=1

(
Y g• + Y •h − Y

)

= Y g• +
1

H

H∑
h=1

Y •h − Y = Y g• +
1

H GJ

H∑
h=1

GJY •h − Y

= Y g• +
1

n

H∑
h=1

n•hY •h︸ ︷︷ ︸
Y

−Y = Y g•.

Further, E
(
Y g•

∣∣Z, W) = mg• follows from properties of the LSE which are unbiased or from direct
calculation. Next,

var
(
Y g•

∣∣Z, W) = var

[
1

J H

H∑
h=1

J∑
j=1

Yg,h,j

∣∣∣∣Z, W] =
σ2

J H
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follows from the linear model assumption var
(
Y
∣∣Z, W) = σ2 In. This also implies cov

(
Y g1•, Y g2•

∣∣Z, W) =
0 for g1 6= g2 and zero o�-diagonal elements of the matrix VZ .
Finally, normality of Y g• in case of a normal linear model, follows from the general LSE theory.

k
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13.2.4 Sums of squares and ANOVA tables with balanced data

Sums of squares

As already mentioned in Section 13.2.2, the considered models form two sequence of nested submodels:

(i) M0 ⊂ MZ ⊂ MZ+W ⊂ MZW ;

(ii) M0 ⊂ MW ⊂ MZ+W ⊂ MZW .

Corresponding di�erences in the residual sums of squares (that enter the numerator of the respective
F-statistic) are given as squared Euclidean norms of the fitted values from the models being compared
(Section 8.1). In particular, in case of balanced data (ng,h = J , g = 1, . . . , G, h = 1, . . . ,H ), we get

SS
(
Z + W + Z :W

∣∣Z + W
)

=

G∑
g=1

H∑
h=1

J
(
Y g,h• − Y g• − Y •h + Y

)2
,

SS
(
Z + W

∣∣W) =

G∑
g=1

H∑
h=1

J
(
Y g• + Y •h − Y − Y •h

)2
=

G∑
g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SS
(
Z + W

∣∣Z) =

G∑
g=1

H∑
h=1

J
(
Y g• + Y •h − Y − Y g•

)2
=

G∑
g=1

H∑
h=1

J
(
Y •h − Y

)2
,

SS
(
Z
∣∣ 1) =

G∑
g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SS
(
W
∣∣ 1) =

G∑
g=1

H∑
h=1

J
(
Y •h − Y

)2
.

We see,

SS
(
Z + W

∣∣W) = SS
(
Z
∣∣ 1),

SS
(
Z + W

∣∣Z) = SS
(
W
∣∣ 1).

Nevertheless, note that this does not hold in case of unbalanced data.

Notation (Sums of squares in two-way classification).
In case of two-way classification and balanced data, we will use the following notation.

SSZ :=
G∑
g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SSW :=

G∑
g=1

H∑
h=1

J
(
Y •h − Y

)2
,

SSZW :=

G∑
g=1

H∑
h=1

J
(
Y g,h• − Y g• − Y •h + Y

)2
,

SST :=

G∑
g=1

H∑
h=1

J∑
j=1

(
Yg,h,j − Y

)2
,

SSZWe :=

G∑
g=1

H∑
h=1

J∑
j=1

(
Yg,h,j − Y g,h•

)2
.
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Notes.
• Quantities SSZ , SSW , SSZW are di�erences of the residual sums of squares of two models that di�er by
terms Z, W or Z :W, respectively.

• Quantity SST is a classical total sum of squares.

• Quantity SSZWe is a residual sum of squares from the interaction model.

Lemma 13.3 Breakdown of the total sum of squares in a balanced two-way clas-
sification.
In case of a balanced two-way classification, the following identity holds

SST = SSZ + SSW + SSZW + SSZWe .

Proof.
Decomposition in the lemma corresponds to the numerator sum of squares of the F -statistics when testing
a series of submodels

M0 ⊂ MZ ⊂ MZ+W ⊂ MZW

or a series of submodels
M0 ⊂ MW ⊂ MZ+W ⊂ MZW .

LetM0,MZ ,MW ,MZ+W ,MZW be the regression spaces of the models M0, MZ , MW , MZ+W , MZW ,
respectively.

That is, SST = ‖U0‖2, where U0 are residuals of model M0 and

U0 = D1 +D2 +D3 +UZW ,

where D1, D2, D3, U
ZW are mutually orthogonal projections of Y into subspaces of Rn:

(i) D1: projection intoMZ \M0, ‖D1‖2 = SSZ .

(ii) D2: projection intoMZ+W \MZ , ‖D2‖2 = SSW .

(iii) D3: projection intoMZW \MZ+W , ‖D3‖2 = SSZW .

(iv) UZW : projection into Rn \MZW (residual space of MZW ).

From orthogonality: SST = SSZ + SSW + SSZW + SSZWe .

k
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ANOVA tables

As consequence of the above considerations, it holds for balanced data:

(i) Equally labeled rows in the type I ANOVA table are the same irrespective of whether the table is
formed in the order Z + W + Z:W or in the order W + Z + Z:W.

(ii) Type I and type II ANOVA tables are the same.

Both type I and type II ANOVA table then take the form

Degrees E�ect E�ect

E�ect of sum of mean

(Term) freedom squares square F-stat. P-value

Z G− 1 SSZ ? ? ?

W H − 1 SSW ? ? ?

Z :W GH −G−H + 1 SSZW ? ? ?

Residual n−GH SSZWe ?
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13.3 Higher-way classification

Situation of three or more, let say p ≥ 3 factors whose influence on the response expectation is of interest
could further be examined. This would lead to a linear model with p categorical covariates. Each of the
covariates can be parameterized by the means of (pseudo)contrast as explained in Section 4.4. In general,
higher order (up to order of p) interactions can be included in the model. Depending on included interactions,
models with di�erent interpretation with respect to the structure of higher-order classified group means are
obtained. Nevertheless, more details go beyond the scope of this course. More can be learned, for example,
in the Experimental Design (NMST436) course or in Seber and Lee (2003, Section 8.6).



Chapter 14
Simultaneous Inference in
a Linear Model

As usual, we will assume that data are represented by a set of n random vectors
(
Yi, X

>
i

)>
, Xi =(

Xi,0, . . . , Xi,k−1
)>

, i = 1, . . . , n, that satisfy a linear model. Throughout the whole chapter, full rank and
normality will also be assumed. That is, we assume that

Y
∣∣X ∼ Nn(Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n,

where Y =
(
Y1, . . . , Yn

)>
, X is a matrix with vectors X>1 , . . . ,X

>
n in its rows and β =

(
β0, . . . ,

βk−1
)> ∈ Rk and σ2 > 0 are unknown parameters. Further, we will assume that a matrix Lm×k (m > 1)

with rows l>1 , . . . , l>m (all non-zero vectors) is given:

θ = Lβ =
(
l>1 β, . . . , l>mβ

)>
=
(
θ1, . . . , θm

)>
Our interest will lie in a simultaneous inference on elements of the parameter θ. This means, we will be
interested in

(i) deriving confidence regions for a vector parameter θ;

(ii) testing the null hypothesis H0: θ = θ0 for given θ0 ∈ Rm.

322
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14.1 Basic simultaneous inference

If matrix Lm×k is such that

(i) m ≤ k;
(ii) its rows, i.e., vectors l1, . . . , lm ∈ Rk are linearly independent,

then we already have a tool for a simultaneous inference on θ = Lβ. It is based on point (x) of Theorem 6.2
(Least squares estimators under the normality). It provides a confidence region for θ with a coverage of
1− α which is{

θ ∈ Rm :
(
θ − θ̂

)> {
MSe L

(
X>X

)−1L>}−1 (θ − θ̂) < mFm,n−k(1− α)
}
, (14.1)

where θ̂ = Lβ̂ is the LSE of θ. The null hypothesis H0: θ = θ0 is tested using the statistic

Q0 =
1

m

(
θ̂ − θ0

)> {
MSe L

(
X>X

)−1L>}−1 (θ̂ − θ0), (14.2)

which under the null hypothesis follows an Fm,n−k distribution and the critical region of a test on the level
of α is

C(α) =
[
Fm,n−k(1− α), ∞

)
. (14.3)

The P-value if Q0 = q0 is then given as p = 1 − CDFF,m, n−k(q0). Note that the confidence region (14.1)
and the test based on the statistic Q0 and the critical region (14.3) are mutually dual. That is, the null
hypothesis is rejected on a level of α if and only if θ0 is not covered by the confidence region (14.1) with
a coverage 1− α.
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14.2 Multiple comparison procedures

14.2.1 Multiple testing

The null hypothesis H0: θ = θ0 (θ0 =
(
θ01, . . . , θ

0
m

)>
) on a vector parameter θ =

(
θ1, . . . , θm

)>
can also

be written as H0 : θ1 = θ01 & · · · & θm = θ0m.

Definition 14.1 Multiple testing problem, elementary null hypotheses, global null
hypothesis.
A testing problem with the null hypothesis

H0 : θ1 = θ01 & . . . & θm = θ0m, (14.4)

is called the multiple testing problem1 with the m elementary hypotheses2

H1 : θ1 = θ01, . . . , Hm : θm = θ0m.

Hypothesis H0 is called in this context also as a global null hypothesis.

Note. The above definition of the multiple testing problem is a simplified definition of a general multiple
testing problem where the elementary null hypotheses are not necessarily simple hypotheses. Further, general
multiple testing procedures consider also problems where the null hypothesis H0 is not necessarily given
as a conjunction of the elementary hypotheses. Nevertheless, for our purposes in context of this lecture,
Definition 14.1 will su�ce. Also subsequent theory of multiple comparison procedures will be provided in
a simplified way in an extent needed for its use in context of the multiple testing problem according to
Definition 14.1 and in context of a linear model.

Notation.
• When dealing with a multiple testing problem, we will also write

H0 ≡ H1 & . . . & Hm

or
H0 ≡ H1, . . . , Hm

or

H0 =

m⋂
j=1

Hj .

• In context of a multiple testing, subscript 1 at H1 will never indicate an alternative hypothesis. A symbol
{ will rather be used to indicate an alternative hypothesis.

• The alternative hypothesis of a multiple testing problem with the null hypothesis (14.4) will always be given
by a complement of the parameter space under the global null hypothesis, i.e.,

H{
0 : θ1 6= θ01 OR . . . OR θm 6= θ0m,

≡ H{
1 OR . . . OR H{

m,

where H{
j : θj 6= θ0j , j = 1, . . . ,m. We will also write

H{
0 =

m⋃
j=1

H{
j .

1 problém vícenásobného testování 2 elementární hypotézy
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• Di�erent ways of indexing the elementary null hypotheses will also be used (e.g., a double subscript)
depending on a problem at hand.

Example 14.1 (Multiple testing problem for one-way classified group means).
Suppose that a normal linear model Y

∣∣X ∼ Nn(Xβ, σ2In
)
is used to model dependence of the response Y

on a single categorical covariate Z with a sample space Z = {1, . . . , G}, where the regression spaceM
(
X
)

of a vector dimension G parameterizes the one-way classified group means

m1 := E
(
Y
∣∣Z = 1

)
, . . . , mG = E

(
Y
∣∣Z = G

)
.

If we restrict ourselves to full-rank parameterizations (see Section 4.4.3), the regression coe�cients vector is

β =
(
β0, β

Z>)>, βZ =
(
β1, . . . , βG−1

)>
and the group means are parameterized as

mg = β0 + c>g β
Z , g = 1, . . . , G,

where

C =


c>1
...

c>G


is a chosen G× (G− 1) (pseudo)contrast matrix.

The null hypothesis H0: m1 = · · · = mG on equality of the G group means can be specified as a multiple
testing problem with m =

(
G
2

)
elementary hypotheses (double subscript will be used to index them):

H1,2 : m1 = m2, . . . , HG−1,G : mG−1 = mG.

The elementary null hypotheses can now be written in terms of a vector estimable parameter

θ =
(
θ1,2, . . . , θG−1,G

)>
,

θg,h = mg −mh =
(
cg − ch

)>
βZ , g = 1, . . . , G− 1, h = g + 1, . . . , G

as
H1,2 : θ1,2 = 0, . . . , HG−1,G : θG−1,G = 0,

or written directly in term of the group means as

H1,2 : m1 −m2 = 0, . . . , HG−1,G : mG−1 −mG = 0,

The global null hypothesis is H0: θ = 0, where θ = Lβ. Here, L is an
(
G
2

)
×G matrix

L =


0

(
c1 − c2

)>
...

...

0
(
cG−1 − cG

)>
 .

Since rank
(
C
)

= G− 1, we have rank
(
L
)

= G− 1. We then have

• For G ≥ 4, m =
(
G
2

)
> G. That is, in this case, the number of elementary null hypotheses is higher than the

rank of the underlying linear model.

• For G ≥ 3, the matrix L has linearly dependent rows.

That is, for G ≥ 3, we can

(i) neither calculate a simultaneous confidence region (14.1) for θ;

(ii) nor use the test statistic (14.2) to test H0: θ = 0.

In this chapter,
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(i) we develop procedures that allow to test the null hypothesis H0: Lβ = θ0 and provide a simultaneous
confidence region for θ = Lβ even if the rows of the matrix L are linearly dependent or its rank is
higher than the rank of the underlying linear model;

(ii) the test procedure will also decide which of the elementary hypotheses is/are responsible (in a certain
sense) for rejection of the global null hypothesis;

(iii) developed confidence regions will have a more appealing form of a product of intervals.

14.2.2 Simultaneous confidence intervals

Suppose that a distribution of the random vector D depends on a (vector) parameter θ =
(
θ1, . . . ,

θm
)> ∈ Θ1 × · · · ×Θm = Θ ⊆ Rm.

Definition 14.2 Simultaneous confidence intervals.
(Random) intervals

(
θLj , θ

U
j

)
, j = 1, . . . ,m, where θLj = θLj (D) and θUj = θUj (D), j = 1, . . . ,m, are called

simultaneous confidence intervals3 for parameter θ with a coverage of 1−α if for any θ0 =
(
θ01, . . . , θ

0
m

)> ∈
Θ,

P
((
θL1 , θ

U
1

)
× · · · ×

(
θLm, θ

U
m

)
3 θ0; θ = θ0

)
≥ 1− α.

Notes.
• The condition in the definition can also be written as

P
(
∀ j = 1, . . . ,m :

(
θLj , θ

U
j

)
3 θ0j ; θ = θ0

)
≥ 1− α.

• The product of the simultaneous confidence intervals indeed forms a confidence region in a classical
sense.

Example 14.2 (Bonferroni simultaneous confidence intervals).
Let for each j = 1, . . . ,m,

(
θLj , θ

U
j

)
be a classical confidence interval for θj with a coverage of 1− α

m . That is,

∀ j = 1, . . . ,m, ∀ θ0j ∈ Θj : P
((
θLj , θ

U
j

)
3 θ0j ; θj = θ0j

)
≥ 1− α

m
.

We then have
∀ j = 1, . . . ,m, ∀ θ0j ∈ Θj : P

((
θLj , θ

U
j

)
63 θ0j ; θj = θ0j

)
≤ α

m
.

Further, using elementary property of a probability (for any θ0 ∈ Θ)

P
(
∃ j = 1, . . . ,m :

(
θLj , θ

U
j

)
63 θ0j ; θ = θ0

)
≤

m∑
j=1

P
((
θLj , θ

U
j

)
63 θ0j ; θ = θ0

)

≤
m∑
j=1

α

m
= α.

Hence,

P
(
∀ j = 1, . . . ,m :

(
θLj , θ

U
j

)
3 θ0j ; θ = θ0

)
≥ 1− α.

That is, intervals
(
θLj , θ

U
j

)
, j = 1, . . . ,m, are simultaneous confidence intervals for parameter θ with a coverage

of 1−α. Simultaneous confidence intervals constructed in this way from univariate confidence intervals are called
Bonferroni simultaneous confidence intervals. Their disadvantage is that they are often seriously conservative,
i.e., having a coverage (much) higher than requested 1− α.
3 simultánní intervaly spolehlivosti
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14.2.3 Multiple comparison procedure, P-values adjusted for mul-
tiple comparison

Suppose again that a distribution of the random vector D depends on a (vector) parameter θ =
(
θ1, . . . ,

θm
)> ∈ Θ1 × · · · × Θm = Θ ⊆ Rm. Let for each 0 < α < 1 a procedure be given to construct the

simultaneous confidence intervals
(
θLj (α), θUj (α)

)
, j = 1, . . . ,m, for parameter θ with a coverage of 1−α.

Let for each j = 1, . . . ,m, the procedure creates intervals satisfying a monotonicity condition

1− α1 < 1− α2 =⇒
(
θLj (α1), θUj (α1)

)
⊆
(
θLj (α2), θUj (α2)

)
.

Definition 14.3 Multiple comparison procedure.
Multiple comparison procedure (MCP)4 for a multiple testing problem with the elementary null hypotheses
Hj: θj = θ0j , j = 1, . . . ,m, based on given procedure for construction of simultaneous confidence intervals for
parameter θ is the testing procedure that for given 0 < α < 1

(i) rejects the global null hypothesis H0 : θ = θ0 if and only if(
θL1 (α), θU1 (α)

)
× · · · ×

(
θLm(α), θUm(α)

)
63 θ0;

(ii) for j = 1, . . . ,m, rejects the jth elementary hypothesis Hj : θj = θ0j if and only if(
θLj (α), θUj (α)

)
63 θ0j .

Note. Since
(
θL1 (α), θU1 (α)

)
× · · · ×

(
θLm(α), θUm(α)

)
63 θ0 if and only if there exists j = 1, . . . ,m,

such that
(
θLj (α), θUj (α)

)
63 θ0j , the MCP rejects, for given 0 < α < 1, the global null hypothesis H0 : θ =

θ0 if and only if, it rejects at least one out of m elementary null hypotheses.

Note (Control of the type-I error rate).
Classical duality between confidence regions and testing procedures provides that for any 0 < α < 1, the
multiple comparison procedure defines a statistical test which

(i) controls the type-I error rate with respect to the global null hypothesis H0 : θ = θ0, i.e.,

P
(
H0 rejected; θ = θ0

)
≤ α;

(ii) at the same time, for each j = 1, . . . ,m, controls the type-I error rate with respect to the elementary
hypothesis Hj : θj = θ0j , i.e.,

P
(
Hj rejected; θj = θ0j

)
≤ α.

Definition 14.4 P-values adjusted for multiple comparison.
P-values adjusted for multiple comparison for a multiple testing problem with the elementary null hypotheses
Hj: θj = θ0j , j = 1, . . . ,m, based on given procedure for construction of simultaneous confidence intervals for

parameter θ are values padj1 , . . . , padjm defined as

padjj = inf
{
α :

(
θLj (α), θUj (α)

)
63 θ0j

}
, j = 1, . . . ,m.

4 procedura vícenásobného srovnávání
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Notes. The following is clear from construction:

• The multiple comparison procedure rejects for given 0 < α < 1 the jth elementary hypothesis Hj : θj =

θ0j (j = 1, . . . ,m) if and only if padjj ≤ α.

• Since the global null hypothesis H0 : θ = θ0 is rejected by the MCP if and only if at least one elementary
hypothesis is rejected, we have that the global null hypothesis is for given α rejected if and only if

min
{
padj1 , . . . , padjm

}
≤ α.

That is,
padj := min

{
padj1 , . . . , padjm

}
is the P-value of a test of the global null hypothesis based on the considered MCP.

Example 14.3 (Bonferroni multiple comparison procedure, Bonferroni adjusted
P-values).
Let for 0 < α < 1,

(
θLj (α), θUj (α)

)
, j = 1, . . . ,m, be the confidence intervals for parameters θ1, . . . , θm,

each with a (univariate) coverage of 1− α
m . That is,

∀ j = 1, . . . ,m, ∀ θ0j ∈ Θj : P
((
θLj (α), θUj (α)

)
3 θ0j ; θj = θ0j

)
≥ 1− α

m
.

As shown in Example 14.2,
(
θLj (α), θUj (α)

)
, j = 1, . . . ,m, are the Bonferroni simultaneous confidence intervals

for parameter θ =
(
θ1, . . . , θm

)>
with a coverage of 1− α.

Let for j = 1, . . . ,m, punij be a P-value related to the (single) test of the (jth elementary) hypothesis Hj : θj = θ0j
being dual to the confidence interval

(
θLj (α), θUj (α)

)
. That is,

punij = inf

{
α

m
:
(
θLj (α), θUj (α)

)
63 θ0j

}
.

Hence,

min
{
mpunij , 1

}
= inf

{
α :

(
θLj (α), θUj (α)

)
63 θ0j

}
.

That is, the P-values adjusted for multiple comparison based on the Bonferroni simultaneous confidence intervals
are

pBj = min
{
mpunij , 1

}
, j = 1, . . . ,m.

The related multiple comparison procedure is called the Bonferroni MCP.

Conservativeness of the Bonferroni MCP is seen, for instance, on the fact that the global null hypothesis H0 : θ =
θ0 is rejected for given 0 < α < 1 if and only if, at least one of the elementary hypothesis is rejected by its
single test on a significance level of α/m which approaches zero as m, the number of elementary hypotheses,
increases.
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14.2.4 Bonferroni simultaneous inference in a normal linear model

Consider a linear model

Y
∣∣X ∼ Nn(Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n.

Let
θ = Lβ =

(
l>1 β, . . . , l>mβ

)>
=
(
θ1, . . . , θm

)>
be a vector of linear combinations of regression coe�cients. At this point, we shall only require that lj 6= 0k
for each j = 1, . . . ,m. Nevertheless, we allow for m > k and also for possibly linearly dependent vectors
l1, . . . , lm.

As usual, let θ̂ = Lβ̂ =
(
l>1 β̂, . . . , l>mβ̂

)>
=
(
θ̂1, . . . , θ̂m

)>
be the LSE of the vector θ and let MSe be

the residual mean square of the model.

It follows from properties of the LSE under normality that for given α, the
(

1 − α

m

)
100% confidence

intervals for parameters θ1, . . . , θm have the lower and the upper bounds given as

θLj (α) = l>j β̂ −
√

MSe l>j
(
X>X

)−1
lj tn−k

(
1− α

2m

)
,

θUj (α) = l>j β̂ +

√
MSe l>j

(
X>X

)−1
lj tn−k

(
1− α

2m

)
, j = 1, . . . ,m.

(14.5)

By the Bonferroni principle, intervals
(
θLj (α), θUj (α)

)
, j = 1, . . . ,m, are simultaneous confidence intervals

for parameter θ with a coverage of 1− α.

For each j = 1, . . . ,m, the confidence interval (14.5) is dual to the (single) test of the (jth elementary)
hypothesis Hj : θj = θ0j based on the statistic

Tj(θ
0
j ) =

l>j β̂ − θ0j√
MSe l>j

(
X>X

)−1
lj

,

(which under the hypothesis Hj follows the Student tn−k distribution) while having the critical region of the
test on a level of α/m as

Cj =

(
−∞, −tn−k

(
1− α

2m

)] ⋃ [
tn−k

(
1− α

2m

)
, ∞

)
.

The related univariate P-values are then calculated as

punij = 2CDFt, n−k
(
− |tj,0|

)
,

where tj,0 is the value of the statistic Tj(θ0j ) attained with given data. Hence the Bonferroni adjusted
P-values for a multiple testing problem with the elementary null hypotheses Hj : θj = θ0j , j = 1, . . . ,m,
are

pBj = min
{

2mCDFt, n−k
(
− |tj,0|

)
, 1
}
, j = 1, . . . ,m.
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14.3 Tukey’s T-procedure

Method presented in this section is due to John Wilder Tukey (1915 – 2000) who published the initial version
of the method in 1949 (Tukey, 1949).

14.3.1 Tukey’s pairwise comparisons theorem

Lemma 14.1 Studentized range.
Let T1, . . . , Tm be a random sample from N (µ, σ2), σ2 > 0. Let

R = max
j=1,...,m

Tj − min
j=1,...,m

Tj

be the range of the sample. Let S2 be the estimator of σ2 such that S2 and T =
(
T1, . . . , Tm

)>
are

independent and
ν S2

σ2
∼ χ2

ν for some ν > 0.

Let

Q =
R

S
.

The distribution of the random variable Q then depends on neither µ, nor σ.

Proof.
• We can write:

R

S
=

1

σ

{
max
j

(Tj − µ) − min
j

(Tj − µ)
}

S

σ

=

max
j

(
Tj − µ
σ

)
− min

j

(
Tj − µ
σ

)
S

σ

.

• Distribution of both the numerator and the denominator depends on neither µ, nor σ since

• For all j = 1, . . . ,m
Tj − µ
σ

∼ N (0, 1).

• Distribution of
S

σ
is a transformation of the χ2

ν distribution.

• At the same time, numerator and denominator are independent and hence also their joint distribution
depends on neither µ, nor σ. Consequently, also distribution of their ratio depends on neither µ, nor σ.

k

Note. The distribution of the random variable Q = R
S from Lemma 14.1 still depends on m (the sample

size of T ) and ν (degrees of freedom of the χ2 distribution related to the variance estimator S2).



14.3. TUKEY’S T-PROCEDURE 331

Definition 14.5 Studentized range.

The random variable Q =
R

S
from Lemma 14.1 will be called studentized range5 of a sample of size m with ν

degrees of freedom and its distribution will be denoted as qm,ν .

Notation.
• For 0 < p < 1, the p 100% quantile of the random variable Q with distribution qm,ν will be denoted as
qm,ν(p).

• The distribution function of the random variable Q with distribution qm,ν will be denoted CDFq,m,ν(·).

Illustrations
Studentized range: distribution functions
For m = 3, 10, 20 and ν = m− 1, R: ptukey(q, m, nu)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

P
(Q

 ≤
q)

m = 3
m = 10
m = 20

5 studentizované rozpětí
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Illustrations
Studentized range: selected quantiles

For m = 3, 10, 20 and ν = m− 1, R: qtukey(p, m, nu)

p <- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)

quants <- data.frame(p = p,

q3 = round(qtukey(p, 3, 2), 4),

q10 = round(qtukey(p, 10, 9), 4),

q20 = round(qtukey(p, 20, 19), 4))

colnames(quants) <- c("p", paste("m = ", c(3, 10, 20), sep = ""))

print(quants)

p m = 3 m = 10 m = 20

1 0.025 0.3050 1.5291 2.2698

2 0.050 0.4370 1.7270 2.4650

3 0.100 0.6351 1.9800 2.7087

4 0.250 1.1007 2.4726 3.1664

5 0.500 1.9082 3.1494 3.7626

6 0.750 3.3080 4.0107 4.4724

7 0.900 5.7326 5.0067 5.2315

8 0.950 8.3308 5.7384 5.7518

9 0.975 11.9365 6.4790 6.2498

Theorem 14.2 Tukey’s pairwise comparisons theorem, balanced version.
Let T1, . . . , Tm be independent random variables and let Tj ∼ N (µj , v

2σ2), j = 1, . . . ,m, where v2 > 0 is

a known constant. Let S2 be the estimator of σ2 such that S2 and T =
(
T1, . . . , Tm

)>
are independent and

ν S2

σ2
∼ χ2

ν for some ν > 0.

Then
P
(
for all j 6= l:

∣∣Tj − Tl − (µj − µl)
∣∣ < qm,ν(1− α)

√
v2 S2

)
= 1− α.

Proof.

• It follows from the assumptions that random variables
Tj − µj

v
, j = 1, . . . ,m, are i.i.d. with the

distribution N (0, σ2).

• Let R = max
j

(
Tj − µj

v

)
− min

j

(
Tj − µj

v

)
.

⇒ R

S
∼ qm, ν .

• Hence for any 0 < α < 1 (qm,ν is a continuous distribution):

1− α = P

max
j

(
Tj − µj

v

)
− min

j

(
Tj − µj

v

)
S

< qm,ν(1− α)





14.3. TUKEY’S T-PROCEDURE 333

= P

max
j

(Tj − µj) − min
j

(Tj − µj)

v S
< qm,ν(1− α)


= P

(
max
j

(Tj − µj) − min
j

(Tj − µj) < v S qm,ν(1− α)
)

= P
(
for all j 6= l

∣∣(Tj − µj) − (Tl − µl)
∣∣ < v S qm,ν(1− α)

)
= P

(
for all j 6= l

∣∣Tj − Tl − (µj − µl)
∣∣ < qm,ν(1− α)

√
v2 S2

)
.

k

Theorem 14.3 Tukey’s pairwise comparisons theorem, general version.
Let T1, . . . , Tm be independent random variables and let Tj ∼ N (µj , v

2
jσ

2), j = 1, . . . ,m, where v2j > 0,

j = 1, . . . ,m are known constants. Let S2 be the estimator of σ2 such that S2 and T =
(
T1, . . . , Tm

)>
are

independent and
ν S2

σ2
∼ χ2

ν for some ν > 0.

Then

P

(
for all j 6= l

∣∣Tj − Tl − (µj − µl)
∣∣ < qm,ν(1− α)

√
v2j + v2l

2
S2

)
≥ 1− α.

Proof. Proof/calculations were skipped and are not requested for the exam.

See Hayter (1984).
k

Notes.
• Tukey suggested that statement of Theorem 14.3 holds already in 1953 (in an unpublished manuscript
Tukey, 1953) without proving it. Independently, it was also suggested by Kramer (1956). Consequently, the
statement of Theorem 14.3 was called as Tukey–Kramer conjecture.

• The proof is not an easy adaptation of the proof of the balanced version.
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14.3.2 Tukey’s honest significance differences (HSD)

A method of multiple comparison that will now be developed appears under several di�erent names in the
literature: Tukey’s method, Tukey–Kramer method, Tukey’s range test, Tukey’s honest significance di�erences
(HSD) test.

Assumptions.
In the following, we assume that

T =
(
T1, . . . , Tm

)> ∼ Nm(µ, σ2 V),

where

• µ =
(
µ1, . . . , µm

)> ∈ Rm and σ2 > 0 are unknown parameters;

• V is a known diagonal matrix with v21 , . . . , v
2
m on a diagonal.

That is, T1, . . . , Tm are independent and Tj ∼ N (µj , σ
2 vj), j = 1, . . . ,m. Further, we will assume that

an estimator S2 of σ2 is available which is independent of T and which satisfies ν S2/σ2 ∼ χ2
ν for some

ν > 0.

Multiple comparison problem.
A multiple comparison procedure that will be developed aims in testing m? =

(
m
2

)
elementary hypotheses

on all pairwise di�erences between the means µ1, . . . , µm. Let

θj,l = µj − µl, j = 1, . . . , m− 1, l = j + 1, . . . , m,

θ =
(
θ1,2, θ1,3, . . . , θm−1,m

)>
.

The elementary hypotheses of a multiple testing problem that we shall consider are

Hj,l : θj,l(= µj − µl) = θ0j,l, j = 1, . . . , m− 1, l = j + 1, . . . , m,

for some θ0 =
(
θ01,2, θ

0
1,3, . . . , θ

0
m−1,m

)> ∈ Rm? . The global null hypothesis is as usual H0 : θ = θ0.

Note. The most common multiple testing problem in this context is with θ0 = 0m? which corresponds
to all pairwise comparisons of the means µ1, . . . , µm. The global null hypothesis then states that all the
means are equal.

Some derivations

Using either of the Tukey’s pairwise comparison theorems (Theorems 14.2 and 14.3), we have (for chosen
0 < α < 1):

P

(
for all j 6= l

∣∣Tj − Tl − (µj − µl)
∣∣ < qm,ν(1− α)

√
v2j + v2l

2
S2

)
≥ 1− α,

with equality of the above probability to 1− α in the balanced case of v21 = · · · = v2m. That is, we have,

P

for all j 6= l

∣∣∣∣∣Tj − Tl − (µj − µl)√
v2j+v

2
l

2 S2

∣∣∣∣∣ < qm,ν(1− α)

 ≥ 1− α.
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Let for j 6= l and for θ0j,l ∈ R

Tj,l(θ
0
j,l) :=

Tj − Tl − θ0j,l√
v2j + v2l

2
S2

.

That is

1− α ≤ P

(
for all j 6= l

∣∣Tj,l(θ0j,l)∣∣ < qm,ν(1− α); θ = θ0

)
(14.6)

= P

for all j 6= l

∣∣∣∣∣∣Tj − Tl − θ
0
j,l√

v2j+v
2
l

2 S2

∣∣∣∣∣∣ < qm,ν(1− α); θ = θ0


= P

(
for all j 6= l

(
θTLj,l (α), θTUj,l (α)

)
3 θ0j,l; θ = θ0

)
, (14.7)

where

θTLj,l (α) = Tj − Tl − qm,ν(1− α)

√
v2j+v

2
l

2 S2,

θTUj,l (α) = Tj − Tl + qm,ν(1− α)

√
v2j+v

2
l

2 S2, j < l.

(14.8)

Theorem 14.4 Tukey’s honest significance differences.
Random intervals given by (14.8) are simultaneous confidence intervals for parameters θj,l = µj − µl, j =
1, . . . ,m− 1, l = j + 1, . . . ,m with a coverage of 1− α.

In the balanced case of v21 = · · · = v2m, the coverage is exactly equal to 1− α, i.e., for any θ0 ∈ Rm?

P

(
for all j 6= l

(
θTLj,l (α), θTUj,l (α)

)
3 θ0j,l; θ = θ0

)
= 1− α.

Related P-values for a multiple testing problem with elementary hypotheses Hj,l : θj,l = θ0j,l, θ
0
j,l ∈ R, j < l,

adjusted for multiple comparison are given by

pTj,l = 1 − CDFq,m,ν

(∣∣t0j,l∣∣), j < l,

where t0j,l is a value of Tj,l(θ
0
j,l) =

Tj−Tl−θ0j,l√
v2
j
+v2
l

2 S2

attained with given data.

Proof.
The fact that

(
θTLj,l (α), θTUj,l (α)

)
, j < l, are simultaneous confidence intervals for parameters θj,l = µj−µl

with a coverage of 1− α follows from (14.7).

The fact that the coverage of the simultaneous confidence intervals is exactly equal to 1− α in a balanced
case follows from the fact that inequality in (14.6) is equality in a balanced case.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with the
elementary hypotheses Hj,l : θj,l = θ0j,l, j < l, follows from noting the following (for each j < l):(

θTLj,l (α), θTUj,l (α)
)
63 θ0j,l ⇐⇒

∣∣∣Tj,l(θ0j,l)∣∣∣ ≥ qm, ν(1− α)

It now follows from monotonicity of the quantiles of a continuous Studentized range distribution that

pTj,l = inf

{
α :

(
θTLj,l (α), θTUj,l (α)

)
63 θ0j,l

}
= inf

{
α :

∣∣∣Tj,l(θ0j,l)∣∣∣ ≥ qm, ν(1− α)

}
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is attained for pTj,l satisfying ∣∣∣Tj,l(θ0j,l)∣∣∣ = qm, ν
(
1− pTj,l

)
.

That is, if t0j,l is a value of the statistic Tj,l
(
θ0j,l
)
attained with given data, we have

pTj,l = 1 − CDFq,m,ν

(∣∣t0j,l∣∣).
k

14.3.3 Tukey’s HSD in a linear model

In context of a normal linear model Y
∣∣X ∼ Nn(Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n, the Tukey’s honest

significance di�erences are applicable in the following situation.

• Lm×k is a matrix with non-zero rows l>1 , . . . , l>m,

η := Lβ =
(
l>1 β, . . . , l>mβ

)>
=
(
η1, . . . , ηm

)>
.

• Matrix L is such that
V := L

(
X>X

)−1 L> =
(
vj,l
)
j,l=1,...,m

is a diagonal matrix with v2j := vj,j , j = 1, . . . ,m.

With β̂ =
(
X>X

)−1X>Y and the residual mean square MSe of the fitted linear model, we have (condi-
tionally, given the model matrix X):

T := η̂ =
(
l>1 β̂, . . . , l>mβ̂

)>
= Lβ̂ ∼ Nm

(
η, σ2V

)
,

(n− k)MSe
σ2

∼ χ2
n−k,

η̂ and MSe independent.

Hence the Tukey’s T-procedure can be used for a multiple comparison problem on (also estimable) parameters

θj,l = ηj − ηl =
(
lj − ll

)>
β, j < l.

The Tukey’s simultaneous confidence intervals for parameters θj,l, j < l, with a coverage of 1−α have then
the lower and the upper bound given as

θTLj,l (α) = η̂j − η̂l − qm,n−k(1− α)

√
v2j+v

2
l

2 MSe,

θTUj,l (α) = η̂j − η̂l + qm,n−k(1− α)

√
v2j+v

2
l

2 MSe, j < l.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with
elementary hypotheses

Hj,l : θj,l = θ0j,l, j < l,

for chosen θ0j,l ∈ R, is based on statistics

Tj,l(θ
0
j,l) =

η̂j − η̂l − θ0j,l√
v2j + v2l

2
MSe

, j < l.

The above procedure is in particular applicable if all involved covariates are categorical and the model
corresponds to one-way, two-way or higher-way classification. If normal and homoscedastic errors in the
underlying linear model are assumed, the Tukey’s HSD method can then be used to develop a multiple
comparison procedure for di�erences between the group means or between the means of the group means.
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One-way classification

Let Y =
(
Y1,1, . . . , YG,nG

)>
, n =

∑G
g=1 ng , and

Yg,j ∼ N (mg, σ
2),

Yg,j independent for g = 1, . . . , G, j = 1, . . . , ng,

We then have (see Lemma 13.1, with random covariates conditionally given the covariate values)

T :=


Y 1

...

Y G

 ∼ NG


m1

...

mG

 , σ2


1
n1

. . . 0
...

. . .
...

0 . . . 1
nG


 .

Moreover, the mean square error MSe of the underlying one-way ANOVA linear model satisfies, with νe =
n−G,

νeMSe
σ2

∼ χ2
νe , MSe and T independent

(due to the fact that T is the LSE of the vector of group means m =
(
m1, . . . , mG

)>
). Hence the Tukey’s

simultaneous confidence intervals for θg,h = mg−mh, g = 1, . . . , G−1, h = g+1, . . . , G with a coverage
of 1− α, have then the lower and upper bounds given as

Y g − Y h ± qG,n−G(1− α)

√
1

2

( 1

ng
+

1

nh

)
MSe, g < h.

In case of a balanced data (n1 = · · · = nG), the coverage of those intervals is even exactly equal to 1 − α,
otherwise, the intervals are conservative (having a coverage greater than 1− α).
Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with
elementary hypotheses

Hg,h : θg,h = θ0g,h, g < h,

for chosen θ0g,h ∈ R, is based on statistics

Tg,h(θ0g,h) =
Y g − Y h − θ0g,h√
1

2

( 1

ng
+

1

nh

)
MSe

, g < h.

Note. The R function TukeyHSD applied to objects obtained using the function aov (performs LSE based
inference for linear models involving only categorical covariates) provides a software implementation of the
Tukey’s T multiple comparison described here.

Two-way classification

Let Y =
(
Y1,1,1, . . . , YG,H,nG,H

)>
, n =

∑G
g=1

∑H
h=1 ng,h, and

Yg,h,j ∼ N (mg,h, σ
2),

Yg,h,j independent for g = 1, . . . , G, h = 1, . . . ,H, j = 1, . . . , ng,h,

Let, as usual,

ng• =

H∑
h=1

ng,h, Y g• =
1

ng•

H∑
h=1

ng,h∑
j=1

Yg,h,j ,

mg• =
1

H

H∑
h=1

mg,h, mwt
g• =

1

ng•

H∑
h=1

ng,hmg,h, g = 1, . . . , G.
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Balanced data

In case of balanced data (ng,h = J for all g, h), we have ng• = J H , mwt
g = mg . Further,

T :=


Y 1•
...

Y G•

 ∼ NG


m1•
...

mG•

 , σ2


1
J H . . . 0
...

. . .
...

0 . . . 1
J H


 ,

see Consequence of Lemma 13.2. Further, let MSZWe and MSZ+W
e be the residual mean squares from the

interaction model and the additive model, respectively, νZWe = n − GH , and νZ+W
e = n − G − H + 1

degrees of freedom, respectively. We have shown in the proof of Consequence of Lemma 13.2 that for both
the interaction model and the additive model, the sample means Y 1•, . . . , Y G• are LSE’s of estimable
parameters m1•, . . . , mG• and hence, for both models, vector T is independent of the corresponding
residual mean square. Further, depending on whether the interaction model or the additive model is
assumed, we have

ν?e MS?e
σ2

∼ χ2
ν?e
,

where MS?e is the residual mean square of the model that is assumed (MSZWe or MSZ+W
e ) and ν?e the

corresponding degrees of freedom (νZWe or νZ+W
e ). Hence the Tukey’s simultaneous confidence intervals

for θg1,g2 = mg1• −mg2•, g1 = 1, . . . , G− 1, g2 = g1 + 1, . . . , G have then the lower and upper bounds
given as

Y g1• − Y g2• ± qG, ν?e (1− α)

√
1

J H
MS?e,

and the coverage of those intervals is even exactly equal to 1− α.
Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with
elementary hypotheses

Hg1,g2 : θg1,g2 = θ0g1,g2 , g1 < g2,

for chosen θ0g1,g2 ∈ R, is based on statistics

Tg1,g2(θ0g1,g2) =
Y g1• − Y g2• − θ0g1,g2√

1

J H
MS?e

, g1 < g2.

Unbalanced data

With unbalanced data, direct calculation shows that Beginning of
skipped part

T :=


Y 1•
...

Y G•

 ∼ NG


mwt

1•
...

mwt
G•

 , σ2


1
n1•

. . . 0
...

. . .
...

0 . . . 1
nG•


 .

Further, the sample means Y 1•, . . . , Y G• are LSE’s of the estimable parameters mwt
1• , . . ., m

wt
G• in both

the interaction and the additive model. This is obvious for the interaction model since there we know the
fitted values (≡ LSE’s of the group means mg,h). Those are Ŷg,h,j = Y g,h•, g = 1, . . . , G, h = 1, . . . ,H ,
j = 1, . . . , ng,h (Lemma 13.2). Hence the sample means Y 1•, . . ., Y G•, which are their linear combinations,
are LSE’s of the corresponding linear combinations of the group means mg,h. Those are the weighted means
of the means mwt

1• , . . ., m
wt
G•. To show that the sample means Y 1•, . . ., Y G• are the LSE’s for the estimable

parameters mwt
1• , . . ., m

wt
G• in the additive model would, nevertheless, require additional derivations.

For the rest, we can proceed in the same way as in the balanced case. That is, let MS?e and ν?e denote the
residual mean square and the residual degrees of freedom of the model that can be assumed (interaction
or additive). Owing to the fact that T is a vector of the LSE’s of the estimable parameters for both models,
it is independent of MS?e . The Tukey’s T multiple comparison procedure is now applicable for inference on
parameters

θwtg1,g2 = mwt
g1• −m

wt
g2•, g1 = 1, . . . , G− 1, g2 = g1 + 1, . . . , G.
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The Tukey’s simultaneous confidence intervals for θwtg1,g2 = mwt
g1• −m

wt
g2•, g1 = 1, . . . , G − 1, g2 = g1 +

1, . . . , G, with a coverage of 1− α, have the lower and upper bounds given as

Y g1• − Y g2• ± qG, ν?e (1− α)

√
1

2

( 1

ng1•
+

1

ng2•

)
MS?e.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with
elementary hypotheses

Hg1,g2 : θwtg1,g2 = θwt,0g1,g2 , g1 < g2,

for chosen θwt,0g1,g2 ∈ R, is based on statistics

Tg1,g2(θwt,0g1,g2) =
Y g1• − Y g2• − θwt,0g1,g2√
1

2

( 1

ng1•
+

1

ng2•

)
MS?e

, g1 < g2.

Notes.
• Analogous procedure applies for the inference on the means of the means

m•h =
1

G

G∑
g=1

mg,h, mwt
•h =

1

n•h

G∑
g=1

ng,hmg,h, h = 1, . . . ,H,

by the second factor of the two-way classification.

• The weighted means of the means mwt
g• or mwt

•h have a reasonable interpretation only in certain special
situations. If this is not the case, the Tukey’s multiple comparison with unbalanced data does not make
much sense.

• Even with unbalanced data, we can, of course, calculate the LSE’s of the (unweighted) means of the means
mg• or m•h. Nevertheless, those LSE’s are correlated with unbalanced data and hence we cannot apply
the Tukey’s procedure.

Note (Tukey’s HSD in the R software).
The R function TukeyHSD provides the Tukey’s T-procedure also for the two-way classification (for both the
additive and the interaction model). For balanced data, it performs a simultaneous inference on parameters
θg1,g2 = mg1• − mg2• (and analogous parameters with respect to the second factor) in a way described
here. For unbalanced data, it performs a simultaneous inference on parameters θwtg1,g2 = mwt

g1• −m
wt
g2• as

described here, nevertheless, only for the first factor mentioned in the model formula. Inference on di�erent
parameters is provided with respect to the second factor in the model formula. That is, with unbalanced
data, output from the R function TukeyHSD and interpretation of the results depend on the order of the
factors in the model formula.

TukeyHSD with two-way classification for the second factor uses “new” observations that adjust for the e�ect
of the first factor. That is, it is worked with “new” observations Y ?g,h,j , given as

Y ?g,h,j = Yg,h,j − Y g• + Y , g = 1, . . . , G, h = 1, . . . ,H, j = 1, . . . , ng,h.

The Tukey’s T procedure is then applied to the sample means

Y
?

•h = Y •h −
1

n•h

G∑
g=1

ng,h Y g• + Y , h = 1, . . . ,H,

whose expectations are

mwt
•h −

1

n•h

G∑
g=1

ng,hm
wt
g• +

1

n

G∑
g=1

H∑
h2=1

ng,h2mg,h2 , h = 1, . . . ,H,

which, with unbalanced data, are not equal to mwt
•h . End of

skipped part
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14.4 Hothorn-Bretz-Westfall procedure

The multiple comparison procedure presented in this section is applicable for any parametric model where
the parameters estimators follow either exactly (as in the case of a normal linear model) or at least asymp-
totically a (multivariate) normal or t-distribution. In full generality, it was published only rather recently
(Hothorn et al., 2008, 2011), nevertheless, the principal ideas behind the method are some decades older.

14.4.1 Max-abs-t distribution

Definition 14.6 Max-abs-t-distribution.
Let T =

(
T1, . . . , Tm

)> ∼ mvtm,ν
(
Σ
)
, where Σ is a positive semidefinite matrix. The distribution of

a random variable
H = max

j=1,...,m
|Tj |

will be called the max-abs-t-distribution of dimension m with ν degrees of freedom and a scale matrix Σ and
will be denoted as hm,ν(Σ).

Notation.
• For 0 < p < 1, the p 100% quantile of the distribution hm,ν(Σ) will be denoted as hm,ν(p; Σ). That is,
hm,ν(p; Σ) is the number satisfying

P
(

max
j=1,...,m

|Tj | ≤ hm,ν(p; Σ)
)

= p.

• The distribution function of the random variable with distribution hm,ν(Σ) will be denoted CDFh,m,ν(·; Σ).

Notes.
• If the scale matrix Σ is positive definite (invertible), the random vector T ∼ mvtm,ν

(
Σ
)
has a density

w.r.t. Lebesgue measure

fT (t) =
Γ
(
ν+m
2

)
Γ
(
ν
2

)
ν
m
2 π

m
2

∣∣Σ∣∣− 1
2

{
1 +

t>Σ−1t

ν

}− ν+m
2

, t ∈ Rm.

• The distribution function CDFh,m,ν(·; Σ) of a random variable H = maxj=1,...,m |Tj | is then (for h > 0):

CDFh,m,ν(h; Σ) = P
(

max
j=1,...,m

|Tj | ≤ h
)

= P
(
∀j = 1, . . . ,m |Tj | ≤ h

)

=

∫ h

−h
· · ·
∫ h

−h
fT (t1, . . . , tm) dt1 · · · dtm.

• That is, when calculating the CDF of the random variable H having the max-abs-t distribution, it is
necessary to calculate integrals from a density of a multivariate t-distribution.

• Computationally e�cient methods not available until 90’s of the 20th century.

• Nowadays, see, e.g., Genz and Bretz (2009) and the R packages mvtnorm or mnormt.

• Calculation of CDFh,m,ν(·; Σ) is also possible with a singular scale matrix Σ.
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14.4.2 General multiple comparison procedure for a linear model

Assumptions.
In the following, we consider a normal linear model

Y
∣∣X ∼ Nn(Xβ, σ2In

)
, rank(Xn×k) = k.

Further, let

Lm×k =


l>1
...

l>m


be a matrix and

θ := Lβ =
(
l>1 β, . . . , l>mβ

)>
=
(
θ1, . . . , θm

)>
,

l1 6= 0k, . . . , lm 6= 0k .

Notes.
• The number m of the estimable parameters of interest may be arbitrary, i.e., even greater than k.

• The rows of the matrix L may be linearly dependent vectors.

Multiple comparison problem.
A multiple comparison procedure that will be developed aims in providing a simultaneous inference on m
estimable parameters θ1, . . . , θm with the multiple testing problem composed of m elementary hypotheses

Hj : θj = θ0j , j = 1, . . . , m,

for some θ0 =
(
θ01, . . . , θ

0
m

)> ∈ Rm. The global null hypothesis is as usual H0 : θ = θ0.

Notation. In the following, the following (standard) notation will be used:

• β̂ =
(
X>X

)−1X>Y ;

• θ̂ = Lβ̂ =
(
l>1 β̂, . . . , l>mβ̂

)>
=
(
θ̂1, . . . , θ̂m

)>
: LSE of θ;

• V = L
(
X>X

)−1L> =
(
vj,l
)
j,l=1,...,m

;

• D = diag

(
1
√
v1,1

, . . . ,
1

√
vm,m

)
;

• MSe: the residual mean square of the model with νe = n− k degrees of freedom.

Reminders from Chapter 6

• For j = 1, . . . ,m, (both conditionally given X and unconditionally as well):

Zj :=
θ̂j − θj√
σ2 vj,j

∼ N (0, 1), Tj :=
θ̂j − θj√
MSe vj,j

∼ tn−k.

• Further (conditionally given X):

Z =
(
Z1, . . . , Zm

)>
=

1√
σ2

D
(
θ̂ − θ

)
∼ Nm

(
0m, DVD

)
,

T =
(
T1, . . . , Tm

)>
=

1√
MSe

D
(
θ̂ − θ

)
∼ mvtm,n−k

(
DVD

)
.
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Notes.
• Matrices V and DVD are not necessarily invertible.

• If rank
(
L
)

= m ≤ k then both matrices V and DVD are invertible and Theorem 6.2 further provides
(both conditionally given X and unconditionally as well) that under H0 : θ = θ0:

Q0 =
1

m

(
θ̂ − θ0

)> (
MSeV

)−1(
θ̂ − θ0

)
=

1

m
T>

(
DVD

)−1
T ∼ Fm,n−k.

This was used to test the global null hypothesis H0 : θ = θ0 and to derive the elliptical confidence sets
for θ.

• It can also be shown that if m0 = rank
(
L
)
then under H0 : θ = θ0:

Q0 =
1

m

(
θ̂ − θ0

)> (
MSe V

)+(
θ̂ − θ0

)
=

1

m
T>

(
DVD

)+
T ∼ Fm0, n−k

(both conditionally given X and unconditionally), where symbol + denotes the Moore-Penrose pseudoin-
verse.

Some derivations

Let for θ0j ∈ R, j = 1, . . . ,m,

Tj(θ
0
j ) =

θ̂j − θ0j√
MSe vj,j

, j = 1, . . . ,m.

Then, under H0 : θ = θ0:

T
(
θ0
)

:=
(
T1(θ01), . . . , Tm(θ0m)

)> ∼ mvtm,n−k(DVD).

We then have, for 0 < α < 1:

1− α = P
(

max
j=1,...,m

∣∣Tj(θ0j )∣∣ < hm,n−k(1− α; DVD); θ = θ0
)

= P
(
for all j = 1, . . . ,m

∣∣Tj(θ0j )∣∣ < hm,n−k(1− α; DVD); θ = θ0
)

= P

(
for all j = 1, . . . ,m

∣∣∣∣ θ̂j − θ0j√
MSe vj,j

∣∣∣∣ < hm,n−k(1− α; DVD); θ = θ0

)

= P

(
for all j = 1, . . . ,m

(
θHLj (α), θHUj (α)

)
3 θ0j ; θ = θ0

)
, (14.9)

where
θHLj (α) = θ̂j − hm,n−k(1− α; DVD)

√
MSe vj,j ,

θHUj (α) = θ̂j + hm,n−k(1− α; DVD)
√
MSe vj,j , j = 1, . . . , m.

(14.10)
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Theorem 14.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in a normal lin-
ear model.
Random intervals given by (14.10) are simultaneous confidence intervals for parameters θj = l>j β, j = 1, . . . ,m,

with an exact coverage of 1− α, i.e., for any θ0 =
(
θ01, . . . , θ

0
m

)> ∈ Rm

P

(
for all j = 1, . . . ,m

(
θHLj (α), θHUj (α)

)
3 θ0j ; θ = θ0

)
= 1− α.

Related P-values for a multiple testing problem with elementary hypotheses Hj : θj = θ0j , θ
0
j ∈ R, j = 1, . . . ,m,

adjusted for multiple comparison are given by

pHj = 1 − CDFh,m,n−k

(∣∣t0j ∣∣; DVD), j = 1, . . . ,m,

where t0j is a value of Tj(θ
0
j ) =

θ̂j−θ0j√
MSe vj,j

attained with given data.

Proof.
The fact that

(
θHLj (α), θHUj (α)

)
, j = 1, . . . ,m, are simultaneous confidence intervals for parameters

θj = l>j β with an exact coverage of 1− α follows from (14.9).

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with
the elementary hypotheses Hj : θj = θ0j , j = 1, . . . ,m, follows from noting the following (for each
j = 1, . . . ,m): (

θHLj (α), θHUj (α)
)
63 θ0j ⇐⇒

∣∣∣Tj(θ0j )∣∣∣ ≥ hm,n−k(1− α; DVD).

It now follows from monotonicity of the quantiles of a continuous max-abs-t-distribution that

pHj = inf

{
α :

(
θHLj (α), θHUj (α)

)
63 θ0j

}
= inf

{
α :

∣∣∣Tj(θ0j )∣∣∣ ≥ hm,n−k(1− α; DVD)

}
is attained for pHj satisfying ∣∣∣Tj(θ0j )∣∣∣ = hm,n−k(1− pHj ; DVD).

That is, if t0j is a value of the statistic Tj
(
θ0j
)
attained with given data, we have

pHj = 1 − CDFh,m,n−k

(∣∣t0j ∣∣; DVD).
k
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Note (Hothorn-Bretz-Westfall MCP in the R software).
In the R software, the Hothorn-Bretz-Westfall MCP for linear hypotheses on parameters of (generalized) linear
models is implemented in the package multcomp. After fitting a model (by the function lm), it is necessary
to call sequentially the following functions:

(i) glht. One of its arguments specifies the linear hypothesis of interest (specification of the L matrix).
Note that for some common hypotheses, certain keywords can be used. For example, pairwise
comparison of all group means in context of the ANOVA models is achieved by specifying the
keyword “Tukey”. Nevertheless, note that invoked MCP is still that of Hothorn-Bretz-Westfall and it is
not based on the Tukey’s procedure. The “Tukey” keyword only specifies what should be compared
and not how it should be compared.

(ii) summary (applied on an object of class glht) provides P-values adjusted for multiple comparison.

(iii) confint (applied on an object of class glht) provides simultaneous confidence intervals which,
among other things, requires calculation of a critical value hm,n−k(1 − α), that is also available in
the output.

Note that both calculation of the P-values adjusted for multiple comparison and calculation of the critical
value hm,n−k(1−α) needed for the simultaneous confidence intervals requires calculation of a multivariate
t integral. This is calculated by a Monte Carlo integration (i.e., based on a certain stochastic simulation) and
hence the results slightly di�er if repeatedly calculated at di�erent occasions. Setting a seed of the random
number generator (set.seed()) is hence recommended for full reproducibility of the results.
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14.5 Confidence band for the regression function

In this section, we shall assume that data are represented by i.i.d. random vectors
(
Yi, Z

>
i

)>
, i = 1, . . . , n,

being sampled from a distribution of a generic random vector
(
Y, Z>

)> ∈ R1+p. It is further assumed
that for some known transformation t : Rp −→ Rk , a normal linear model with regressors Xi = t(Zi),
i = 1, . . . , n, holds. That is, it is assumed that for the response vector Y , the covariate matrix Z and the
model matrix X, where

Y =


Y1
...

Yn

 , Z =


Z>1
...

Z>n

 , X =


X>1
...

X>n

 =


t>(Z1)

...

t>(Zn)

 ,

we have
Y
∣∣Z ∼ Nn(Xβ, σ2 In

)
(14.11)

for some β ∈ Rk , σ2 > 0. Remember that it follows from (14.11) that

Yi
∣∣ Zi ∼ N (X>i β, σ2

)
,

and the error terms εi = Yi−X>i β, i = 1, . . . , n are i.i.d. distributed as ε ∼ N (0, σ2). The corresponding
regression function is

E
(
Y
∣∣X = t(z)

)
= E

(
Y
∣∣Z = z

)
= m(z) = t>(z)β, z ∈ Rp.

It will further be assumed that the model matrix X is of full-rank (almost surely), i.e., rank
(
Xn×k

)
= k. As

it is usual, β̂ will be the LSE of a vector of β and MSe the residual mean square.

Reminder from Section 6.3

Let z ∈ Rp be given. Theorem 6.3 then states that a random interval with the lower and upper bounds
given as

t>(z)β̂ ± tn−k
(

1− α

2

)√
MSe t

>(z)
(
X>X

)−1
t(z),

is the confidence interval for m(z) = t>(z)β with a coverage of 1− α. That is, for given z ∈ Rp, for any
β0 ∈ Rk , σ2

0 > 0,

P
(
t>(z)β̂ ± tn−k

(
1− α

2

)√
MSe t

>(z)
(
X>X

)−1
t(z) 3 t>(z)β0; β = β0, σ2 = σ2

0

)
= 1− α.

Theorem 14.6 Confidence band for the regression function.
Let
(
Yi, Z

>
i

)>
, i = 1, . . . , n, be i.i.d. random vectors such that Y

∣∣Z ∼ Nn

(
Xβ, σ2In

)
, where X is the

n × k model matrix based on a known transformation t : Rp −→ Rk of the covariates Z1, . . . , Zn. Let
rank

(
Xn×k

)
= k. Finally, let for all z ∈ Rp t(z) 6= 0k . Then for any β

0 ∈ Rk , σ2
0 > 0,

P
(
for all z ∈ Rp

t>(z)β̂ ±
√
kFk, n−k(1− α)MSe t

>(z)
(
X>X

)−1
t(z) 3 t>(z)β0; β = β0, σ2 = σ2

0

)
= 1− α.
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Note. Requirement t(z) 6= 0k for all z ∈ Rp is not too restrictive from a practical point of view as it is
satisfied, e.g., for all linear models with intercept.

Proof. Proof/calculations were skipped and are not requested for the exam.

Let (for 0 < α < 1)

K =
{
β ∈ Rk :

(
β − β̂

)> (
X>X

) (
β − β̂

)
≤ kMSe Fk,n−k(1− α)

}
.

Section 6.2: K is a confidence ellipsoid for β with a coverage of 1− α, that is, for any β0 ∈ Rk , σ2
0 > 0,

P
(
K 3 β0; β = β0, σ2 = σ2

0

)
= 1− α.

K is an ellipsoid in Rk , that is, bounded, convex and with our definition also closed subset of Rk .

Let for z ∈ Rp:
L(z) = inf

β∈K
t>(z)β, U(z) = sup

β∈K
t>(z)β.

From construction:
β ∈ K ⇒ ∀z ∈ Rp L(z) ≤ t>(z)β ≤ U(z).

Due to the fact that K is bounded, convex and closed, we also have

∀z ∈ Rp L(z) ≤ t>(z)β ≤ U(z) ⇒ β ∈ K.

That is,
β ∈ K ⇔ ∀z ∈ Rp L(z) ≤ t>(z)β ≤ U(z).

and hence, for any β0 ∈ Rk , σ2
0 > 0,

1− α = P
(
K 3 β0; β = β0

)
= P

(
for all z ∈ Rp L(z) ≤ t>(z)β0 ≤ U(z); β = β0, σ2 = σ2

0

)
.

(14.12)

Further, since t>(z)β is a linear function (in β) and K is bounded, convex and closed, we have

L(z) = inf
β∈K

t>(z)β= min
β∈K

t>(z)β, U(z) = sup
β∈K

t>(z)β= max
β∈K

t>(z)β,

and both extremes must lie on a boundary of K, that is, both extremes are reached for β satisfying(
β − β̂

)> (
X>X

) (
β − β̂

)
= kMSe Fk,n−k(1− α).

Method of Lagrange multipliers:

ϕ(β, λ) = t>(z)β +
1

2
λ
{(
β − β̂

)> (
X>X

) (
β − β̂

)
− kMSe Fk,n−k(1− α)

}
( 12 is only included to simplify subsequent expressions).

Derivatives of ϕ:

∂ϕ

∂β
(β, λ) = t(z) + λX>X

(
β − β̂

)
,

∂ϕ

∂λ
(β, λ) =

1

2

{(
β − β̂

)> (
X>X

) (
β − β̂

)
− kMSe Fk,n−k(1− α)

}
.

With given λ, the first set of equations is solved (with respect to β) for

β(λ) = β̂ − 1

λ

(
X>X

)−1
t(z).
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Use β(λ) in the second equation:

1

λ2
t>(z)

(
X>X

)−1X>X(X>X)−1t(z) = kMSe Fk,n−k(1− α),

λ = ±

√
t>(z)

(
X>X

)−1
t(z)

kMSe Fk,n−k(1− α)
.

Hence, β which minimizes/maximizes t>(z)β subject to(
β − β̂

)> (
X>X

) (
β − β̂

)
= kMSe Fk,n−k(1− α)

is given as

βmin = β̂ −
√
kMSe Fk,n−k(1− α)

t>(z)
(
X>X

)−1
t(z)

(
X>X

)−1
t(z),

βmax = β̂ +

√
kMSe Fk,n−k(1− α)

t>(z)
(
X>X

)−1
t(z)

(
X>X

)−1
t(z).

Note that with our assumptions of t(z) 6= 0, we never divide by zero since
(
X>X

)−1
is a positive definite

matrix.

That is,

L(z) = t>(z)βmin

= t>(z)β̂ −
√
MSe t

>(z)(X>X)−1t(z) kFk,n−k(1− α),

U(z) = t>(z)βmax

= t>(z)β̂ +
√
MSe t

>(z)(X>X)−1t(z) kFk,n−k(1− α).

The proof is finalized by looking back at expression (14.12) and realizing that, due to continuity,

1− α = P
(
for all z ∈ Rp L(z) ≤ t>(z)β0 ≤ U(z); β = β0

)
= P

(
for all z ∈ Rp L(z) < t>(z)β0 < U(z); β = β0

)
= P

(
for all z ∈ Rp

t>(z)β̂ ±
√
kFk, n−k(1− α)MSe t

>(z)
(
X>X

)−1
t(z) 3 t>(z)β0; β = β0, σ2 = σ2

0

)
.

k
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Terminology (Confidence band for the regression function).
If the covariates Z1, . . . , Zn ∈ R, confidence intervals according to Theorem (14.6) are often calculated for
an (equidistant) sequence of values z1, . . . , zN ∈ R and then plotted together with the fitted regression
function m̂(z) = t>(z)β̂, z ∈ R. A band that is obtained in this way is called the confidence band for the
regression function 6 as it covers jointly all true values of the regression function with a given probability of
1− α.

Note (Confidence band for and around the regression function).
For given z ∈ R:
Half width of the confidence band FOR the regression function (overall coverage) is√

kFk,n−k(1− α) MSe t
>(z)(X>X)−1t(z).

Half width of the confidence band AROUND the regression function (pointwise coverage) is

tn−k
(

1− α

2

) √
MSe t

>(z)(X>X)−1t(z)

=
√
F1,n−k(1− α) MSe t

>(z)(X>X)−1t(z),

since for any ν > 0, t2ν

(
1− α

2

)
= F1,ν(1− α).

For k ≥ 2, and any ν > 0,
kFk,ν(1− α) > F1,ν(1− α)

and hence the confidence band for the regression function is indeed wider than the confidence band around
the regression function. Their width is the same only if k = 1.

Illustrations
Kojeni (n = 99)
bweight ∼ blength
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6 pás spolehlivosti pro regresní funkci



Chapter 15
General Linear Model

We still assume that data are represented by a set of n random vectors
(
Yi, X

>
i

)>
, Xi =

(
Xi,0, . . . ,

Xi,k−1
)>

, i = 1, . . . , n, and use symbols Y for a vector
(
Y1, . . . , Yn

)>
and X for an n × k matrix with

rows given by the covariate/regressor vectors X1, . . . , Xn. In this chapter, we mildly extend a linear model
by allowing for a (conditional) covariance matrix having di�erent form than σ2 In assumed by now.

Definition 15.1 General linear model.
The data

(
Y , X

)
satisfy a general linear model1 if

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 W−1,

where β ∈ Rk and 0 < σ2 <∞ are unknown parameters and W is a known positive definite matrix.

Notes.
• The fact that data follow a general linear model will be denoted as

Y
∣∣X ∼ (Xβ, σ2W−1

)
.

• General linear model should not be confused with a generalized linear model2 which is something di�erent
(see Advanced Regression Models (NMST432) course). In the literature, abbreviation “GLM” is used for
(unfortunately) both general and generalized linear model. It must be clear from context which of the two
is meant.

Example 15.1 (Regression based on sample means).
Suppose that data are represented by random vectors

(
Ỹ1,1, . . . , Ỹ1,w1 , X

>
1

)>
,

. . . ,(
Ỹn,1, . . . , Ỹn,wn , X

>
n

)>
such that for each i = 1, . . . , n, the random variables Ỹi,1, . . . , Ỹi,wi are uncorrelated with a common condi-
tional (given Xi) variance σ2.

Suppose that with respect to the response, we are only able to observe the sample means of the “Ỹ ” variables
leading to the response variables Y1, . . . , Yn, where

Y1 =
1

w1

w1∑
j=1

Ỹ1,j , . . . , Yn =
1

wn

wn∑
j=1

Ỹn,j .

1 obecný lineární model 2 zobecněný lineární model

349
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The covariance matrix (conditional given X) of a random vector Y =
(
Y1, . . . , Yn

)>
is then

var
(
Y
∣∣X) = σ2


1
w1

. . . 0
...

. . .
...

0 . . . 1
wn


︸ ︷︷ ︸

W−1

.

Theorem 15.1 Generalized least squares.
Assume a general linear model Y

∣∣X ∼ (Xβ, σ2W−1
)
, where rank

(
Xn×k

)
= k < n. The following then

holds:

(i) A vector
Ŷ G := X

(
X>WX

)−1X>WY
is the best linear unbiased estimator (BLUE) of a vector parameter µ := E

(
Y
∣∣X) = Xβ, and

var
(
Ŷ G

∣∣X) = σ2 X
(
X>WX

)−1X>.
If further Y

∣∣X ∼ Nn(Xβ, σ2W−1
)
then

Ŷ G

∣∣X ∼ Nn(Xβ, σ2 X
(
X>WX

)−1X>).
(ii) Let l ∈ Rk, l 6= 0k and let

β̂G :=
(
X>WX

)−1X>WY .
Then θ̂G = l>β̂G is the best linear unbiased estimator (BLUE) of θ with

var
(
θ̂G
∣∣X) = σ2 l>

(
X>WX

)−1
l.

If further Y
∣∣X ∼ Nn(Xβ, σ2W−1

)
then

θ̂G
∣∣X ∼ N (θ, σ2 l>

(
X>WX

)−1
l
)
.

(iii) The vector
β̂G :=

(
X>WX

)−1X>WY
is the best linear unbiased estimator (BLUE) of β with

var
(
β̂G
∣∣X) = σ2

(
X>WX

)−1
.

If additionally Y
∣∣X ∼ Nn(Xβ, σ2W−1

)
then

β̂G
∣∣X ∼ Nk(β, σ2

(
X>WX

)−1)
.

(iv) The statistic

MSe,G :=
SSe,G
n− k

,

where

SSe,G :=
∥∥∥W 1

2

(
Y − Ŷ G

)∥∥∥2 =
(
Y − Ŷ G

)>W(Y − Ŷ G

)
,

is the unbiased estimator of the residual variance σ2.

If additionally Y
∣∣X ∼ Nn(Xβ, σ2W−1

)
then

SSe,G
σ2

∼ χ2
n−k,

and the statistics SSe,G and Ŷ G are conditionally, given X, independent.
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Proof. Matrices W−1 and W are positive definite. Hence there exist W 1
2 such that

W = W
1
2

(
W

1
2

)>
, e.g., Cholesky decomposition

W−1 = W−
1
2

(
W−

1
2

)>
.

(i) Let Y ? = W 1
2Y .

Then E
(
Y ?
∣∣X) = W 1

2E
(
Y
∣∣X) = W 1

2Xβ,

var
(
Y ?
∣∣X) = W

1
2 var

(
Y
∣∣X)︸ ︷︷ ︸

σ2W−1

(
W

1
2

)>
= σ2In.

That is, we have a linear model M?

M? : Y ?
∣∣X ∼ (

W
1
2X︸ ︷︷ ︸

X?
β, σ2 In

)
,

where rank
(
X?
)

= rank
(
W 1

2X
)

= rank
(
X
)

= k.

The hat matrix for model M? is

H? = W
1
2X
(
X>WX

)−1X>(W 1
2

)>
,

where the matrix X>WX is, given our assumptions, invertible.

The fitted values in model M? are then calculated as

Ŷ
?

= H?Y ? = W
1
2X
(
X>WX

)−1X>WY .
By Gauss-Markov theorem (Theorem 2.4), the vector Ŷ

?
is the best linear unbiased estimator (BLUE)

of the vector E
(
Y ?
∣∣X) = W 1

2Xβ with

var
(
Ŷ
? ∣∣X) = σ2 H? = σ2 W

1
2X
(
X>WX

)−1X>(W 1
2

)>
.

By linearity, the vector

Ŷ G := W−
1
2 Ŷ

?
= X

(
X>WX

)−1X>WY
is the BLUE of the vector

W−
1
2W

1
2Xβ = Xβ = E

(
Y
∣∣X),

and

var
(
Ŷ G

∣∣X) = W−
1
2 var

(
Ŷ
? ∣∣X) (W− 1

2

)>
= σ2 X

(
X>WX

)−1 X>.
If additionally Y

∣∣X ∼ Nn(Xβ, σ2W−1
)
, then by properties of a normal distribution (both Ŷ

?
and

Ŷ G are linear functions of Y ), we have

Ŷ
? ∣∣X ∼ N(W 1

2Xβ, σ2 W 1
2X
(
X>WX

)−1X>(W 1
2

)>)
,

Ŷ G

∣∣X ∼ N(Xβ , σ2 X
(
X>WX

)−1X>).
(ii) By relationship between the least squares and normal equations, we have that

Ŷ
?

= X?β̂
?
⇐⇒ β̂

?
solves normal equations in model M?

⇐⇒ β̂
?
solves X?>X?b = X?>Y ?

⇐⇒ β̂
?
solves X>WXb = X>WY

⇐⇒ β̂
?

=
(
X>WX

)−1 X>WY .
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Remember that X? = W 1
2X. Hence,

Ŷ
?

= W
1
2Xβ̂

?
if and only if β̂

?
=
(
X>WX

)−1 X>WY .
Further, remember that Ŷ G = W− 1

2 Ŷ
?
. Hence,

Ŷ G = W−
1
2W

1
2Xβ̂

?
if and only if β̂

?
=
(
X>WX

)−1 X>WY .
That is,

Ŷ G = Xβ̂G if and only if β̂G := β̂
?

=
(
X>WX

)−1 X>WY .
Then, by Gauss-Markov theorem (Theorem 2.5),

θ̂G := θ̂? = l>β̂G

is BLUE of the parameter θ = l>β. Furthermore,

var
(
θ̂G
∣∣X) = var

(
θ̂?
∣∣X) = σ2 l>

(
X>WX

)−1
l.

If additionally, Y
∣∣X ∼ Nn(Xβ, σ2W−1

)
then by properties of a normal distribution (only linear

transformations are involved to calculate θ̂G from Y ), we have

θ̂G
∣∣X ∼ N (θ, σ2 l>

(
X>WX

)−1
l
)
.

(iii) Suppose that for an m× k matrix, the parameter θ = Lβ is a vector parameter being given as non-
trivial linear combinations of regression coe�cients of the model M : Y

∣∣X ∼ (
Xβ, σ2 W−1

)
. By

analogous steps as in (ii), we show that

θ̂G := Lβ̂G, β̂G =
(
X>WX

)−1 X>WY
is BLUE of θ. Furthermore,

var
(
θ̂G
∣∣X) = σ2 L

(
X>WX

)−1L>,
and under assumption of normality,

θ̂G
∣∣X ∼ Nm(θ, σ2 L

(
X>WX

)−1L>).
Now, if rank

(
X
)

= k, the matrix X>WX is invertible. Moreover, by taking L = Ik we obtain that
the BLUE of the vector β is

β̂G :=
(
X>WX

)−1 X>WY ,
var
(
β̂G
∣∣X) = σ2

(
X>WX

)−1
,

and under assumption of normality,

β̂G
∣∣X ∼ Nk(β, σ2

(
X>WX

)−1)
.

(iv) Let us first calculate the residual sum of squares of the model M? : Y ?
∣∣X ∼

(
X?β, σ2 In

)
,

where Y ? = W 1
2Y , X? = W 1

2X, rank
(
X?
)

= rank
(
X
)

= k. We have (remember further that

Ŷ
?

= W 1
2 Ŷ G)

SS?e =
(
Y ? − Ŷ

?)>(
Y ? − Ŷ

?)
=
(
W

1
2Y −W

1
2 Ŷ G

)>(
W

1
2Y −W

1
2 Ŷ G

)
=
(
Y − Ŷ G

)>W(Y − Ŷ G

)
=: SSe,G.

By Lemma 2.7, we have

E
(
SSe,G

)
= E

(
SS?e
)

= (n− k)σ2 = E
(
SS?e

∣∣X) = E
(
SSe,G

∣∣X).
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That is,

MSe,G :=
SSe,G
n− k

is the unbiased estimator of the residual variance σ2.

Furthermore, if normality is assumed, Theorem 6.2 applied to model M? provides that

SS?e
σ2
∼ χ2

n−k.

Since SS?e = SSe,G, we have directly
SSe,G
σ2

∼ χ2
n−k.

Finally, Theorem 6.2 also provides (conditional, given X) independence of Ŷ
?
and SS?e . Nevertheless,

since Ŷ G = W− 1
2 Ŷ

?
and SSe,G = SS?e , we also have (conditional, given X) independence of Ŷ G

and SSe,G.

k

Note. As consequence of the above theorem, all classical tests, confidence intervals etc. work in the same
way as in the OLS case.

Terminology (Generalized fitted values, residual sum of squares, mean square,
least square estimator).

• The statistic Ŷ G = X
(
X>WX

)−1 X>WY is called the vector of the generalized fitted values.3

• The statistic SSe,G =
∥∥∥W 1

2

(
Y − Ŷ G

)∥∥∥2 =
(
Y − Ŷ G

)>
W
(
Y − Ŷ G

)
is called the generalized resid-

ual sum of squares.4

• The statistic MSe,G =
SSe,G
n− k

is called the generalized mean square.5

• The statistic β̂G =
(
X>WX

)−1 X>WY in a full-rank general linear model is called the generalized least
squares (GLS) estimator6 of the regression coe�cients.

Note. The most common use of the generalized least squares is the situation described in Example 15.1,
where

W−1 =


1
w1

. . . 0
...

. . .
...

0 . . . 1
wn

 .

We then get

X>WY =

n∑
i=1

wiYiXi, X>WX =

n∑
i=1

wiXiX
>
i ,

SSe,G =

n∑
i=1

wi
(
Yi − ŶG,i

)2
.

The method of the generalized least squares is then usually referred to as the method of the weighted least
squares (WLS).7

3 zobecněné vyrovnané hodnoty 4 zobecněný reziduální součet čtverců 5 zobecněný střední čtverec 6 odhad metodou
zobecněných nejmenších čtverců 7 vážené nejmenší čtverce
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Illustrations
Kojeni

• Data on n = 99 newborn children.

• Y : birth weight (bweight).

• X : birth length (blength)

• Only (nine) discrete values 46, 47, . . . , 54 [cm] appear in data due to rounding.

wKojeni
• n = 9.

• Y : average birth weight of all children from data Kojeni with the same birth length.
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Illustrations
Data Kojeni and wKojeni
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Illustrations
Data Kojeni
bweight ∼ blength

Ordinary least squares using complete data Kojeni

m1 <- lm(bweight ~ blength, data = Kojeni)

summary(m1)

confint(m1)

### summary(m1):

Call:

lm(formula = bweight ~ blength, data = Kojeni)

Residuals:

Min 1Q Median 3Q Max

-685.93 -152.83 -30.76 196.83 664.07

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7905.80 895.45 -8.829 4.52e-14 ***

blength 224.83 17.69 12.709 < 2e-16 ***

---

Residual standard error: 271.7 on 97 degrees of freedom

Multiple R-squared: 0.6248, Adjusted R-squared: 0.6209

F-statistic: 161.5 on 1 and 97 DF, p-value: < 2.2e-16

### confint(m1):

2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -9683.0226 -6128.5847 blength 189.7184 259.9372

Data wKojeni
bweight ∼ blength

Weighted least squares using averaged data wKojeni

wm1 <- lm(bweight ~ blength, weights = w, data = wKojeni)

summary(wm1)

confint(wm1)

### summary(wm1):

Call:

lm(formula = bweight ~ blength, data = wKojeni, weights = w)

Weighted Residuals:

Min 1Q Median 3Q Max

-396.28 -234.90 10.75 223.76 403.12

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7905.80 975.42 -8.105 8.39e-05 ***

blength 224.83 19.27 11.667 7.68e-06 ***

---

Residual standard error: 295.9 on 7 degrees of freedom

Multiple R-squared: 0.9511, Adjusted R-squared: 0.9441

F-statistic: 136.1 on 1 and 7 DF, p-value: 7.676e-06

### confint(wm1):

2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -10212.3079 -5599.2995 blength 179.2623 270.3934
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Illustrations
Data Kojeni and wKojeni
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Illustrations
Data wKojeni replicated
bweight ∼ blength

Ordinary least squares for data replicated from wKojeni

replKojeni <- data.frame(bweight = rep(wKojeni[, "bweight"], wKojeni[, "w"]),

blength = rep(wKojeni[, "blength"], wKojeni[, "w"]))

m1repl <- lm(bweight ~ blength, data = replKojeni)

summary(m1repl)

confint(m1repl)

### summary(m1repl):

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7905.804 262.033 -30.17 <2e-16 ***

blength 224.828 5.177 43.43 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 79.5 on 97 degrees of freedom

Multiple R-squared: 0.9511, Adjusted R-squared: 0.9506

F-statistic: 1886 on 1 and 97 DF, p-value: < 2.2e-16

### confint(m1repl):

2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -8425.8658 -7385.7416 blength 214.5539 235.1018

Data Kojeni and wKojeni
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Chapter 16
Asymptotic Properties of the
LSE and Sandwich Estimator

16.1 Assumptions and setup

Assumption (A0).

(i) Let
(
Y1, X

>
1

)>
,
(
Y2, X

>
2

)>
, . . . be a sequence of (1 + k)-dimensional independent and identically

distributed (i.i.d.) random vectors being distributed as a generic random vector
(
Y, X>

)>
, (X =(

X0, X1, . . . , Xk−1
)>

, Xi =
(
Xi,0, Xi,1, . . . , Xi,k−1

)>
, i = 1, 2, . . .);

(ii) Let β =
(
β0, . . . , βk−1

)>
be an unknown k-dimensional real parameter;

(iii) Let E
(
Y
∣∣X) = X>β.

Notation (Error terms).
We denote ε = Y −X>β,

εi = Yi −X>i β, i = 1, 2, . . ..

Notes.
• In this chapter, all unconditional expectations must be understood as expectations with respect to the

joint distribution of a random vector
(
Y, X>

)>
(which depends on the vector β).

• From assumption (A0), the error terms ε1, ε2, . . . are i.i.d. with a distribution of a generic error term ε.
The following can be concluded for their first two (conditional) moments:

E
(
ε
∣∣X) = E

(
Y −X>β

∣∣X) = 0,

var
(
ε
∣∣X) = var

(
Y −X>β

∣∣X) = var
(
Y
∣∣X) =: σ2(X),

E
(
ε
)

= E
(
E
(
ε
∣∣X)) = E

(
0
)

= 0,

var
(
ε
)

= var
(
E
(
ε
∣∣X))+ E

(
var
(
ε
∣∣X)) = var

(
0
)

+ E
{
σ2(X)

}
= E

{
σ2(X)

}
.

359
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Assumption (A1).
Let the covariate random vector X =

(
X0, . . . , Xk−1

)>
satisfy

(i) E
∣∣Xj Xl

∣∣ <∞, j, l = 0, . . . , k − 1;

(ii) E
(
XX>

)
= W, where W is a positive definite matrix.

Notation (Covariates second and first mixed moments).
Let W =

(
wj,l

)
j,l=0,...,k−1. We have,

w2
j := wj,j = E

(
X2
j

)
, j = 0, . . . , k − 1,

wj,l = E
(
Xj Xl

)
, j 6= l.

Let
V := W−1 =

(
vj,l
)
j,l=0,...,k−1.

Notation (Data of size n).
For n ≥ 1:

Y n :=


Y1
...

Yn

 , Xn :=


X>1
...

X>n

 ,

Wn := X>nXn =

n∑
i=1

XiX
>
i ,

Vn :=
(
X>nXn

)−1
(if it exists).

Lemma 16.1 Consistent estimator of the second and first mixed moments of the
covariates.
Let assumpions (A0) and (A1) hold. Then

1

n
Wn

a.s.−→ W as n→∞,

nVn
a.s.−→ V as n→∞.

Proof. The statement of Lemma follows from applying, for each j = 0, . . . , k − 1 and l = 0, . . . , k − 1,
the strong law of large numbers for i.i.d. random variables (Theorem C.2) to a sequence

Zi,j,l = Xi,j Xi,l, i = 1, 2, . . . .

k



16.1. ASSUMPTIONS AND SETUP 361

LSE based on data of size n

Since 1
n X>nXn

a.s.−→ W > 0 then

P
(
there exists n0 > k such that for all n ≥ n0 rank

(
Xn
)

= k
)

= 1

and we define (for n ≥ n0)

β̂n =
(
X>nXn

)−1X>nY n =
( n∑
i=1

XiX
>
i

)−1( n∑
i=1

XiYi

)
,

MSe,n =
1

n− k
∥∥Y n − Xnβ̂n

∥∥2 =
1

n− k

n∑
i=1

(Yi − X>i β̂n)2,

which are the LSE of β and the residual mean square based on the assumed linear model for data of size n.

Mn : Y n

∣∣Xn ∼ (Xnβ, σ2 In
)
.

Further, for n ≥ n0 any non-trivial linear combination of regression coe�cients is estimable parameter of
model Mn.

• For a given real vector l =
(
l0, l1, . . . , lk−1

)> 6= 0k we denote

θ = l>β, θ̂n = l>β̂n.

• For a given m× k matrix L with rows l>1 6= 0>k , . . . , l>m 6= 0>k we denote

ξ = Lβ, ξ̂n = Lβ̂n.

It will be assumed that m ≤ k and that the rows of L are lineary independent.

Interest will be in asymptotic (as n→∞) behavior of

(i) β̂n;

(ii) MSe,n;

(iii) θ̂n = l>β̂n for given l 6= 0k ;

(iv) ξ̂n = Lβ̂n for given m× k matrix L with linearly independent rows;

under two di�erent scenarios (two di�erent truths)

(i) homoscedastic errors (i.e., model Mn : Y n

∣∣Xn ∼ (Xnβ, σ2 In
)
is correct);

(ii) heteroscedastic errors where var
(
ε
∣∣X) is not necessarily constant and perhaps depends on

the covariate values X (i.e., model Mn is not necessarily fully correct).

Normality of the errors will not be assumed.
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Assumption (A2 homoscedastic).
Let the conditional variance of the response satisfy

σ2(X) := var
(
Y
∣∣X) = σ2,

where ∞ > σ2 > 0 is an unknown parameter.

Assumption (A2 heteroscedastic).
Let σ2(X) := var

(
Y
∣∣X) satisfy E

{
σ2(X)

}
<∞ and also for each j, l = 0, . . . , k − 1,

E
{
σ2(X)Xj Xl

}
<∞.

Notes.
• Condition (A2 heteroscedastic) states that the matrix

WF := E
{
σ2(X)XX>

}
is a real matrix (with all elements being finite).

• If (A0) and (A1) are assumed then

(A2 homoscedastic) =⇒ (A2 heteroscedastic).

Hence everything that will be proved under (A2 heteroscedastic) holds also under (A2 homoscedastic).

• Under assumptions (A0) and (A2 homoscedastic), we have

E
(
Yi
∣∣Xi

)
= X>i β, var

(
Yi
∣∣Xi

)
= var

(
εi
∣∣Xi

)
= σ2, i = 1, 2, . . . ,

and for each n > 1, Y1, . . . , Yn are, given Xn, independent and satisfying a linear model

Y n

∣∣Xn ∼ (
Xnβ, σ2 In

)
.

• Under assumptions (A0) and (A2 heteroscedastic), we have

E
(
Yi
∣∣Xi

)
= X>i β, var

(
Yi
∣∣Xi

)
= var

(
εi
∣∣Xi

)
= σ2(Xi), i = 1, 2, . . . ,

and for each n > 1, Y1, . . . , Yn are, given Xn, independent with

E
(
Y n

∣∣Xn) = Xnβ, var
(
Y n

∣∣Xn) =


σ2(X1) . . . 0

...
. . .

...

0 . . . σ2(Xn)

 .
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16.2 Consistency of LSE

We shall show in this section:

(i) Strong consistency of β̂n, θ̂n, ξ̂n (LSE’s regression coe�cients or their linear combinations).

• No need of normality;

• No need of homoscedasticity.

(ii) Strong consistency of MSe,n (unbiased estinator of the residual variance).

• No need of normality.

Theorem 16.2 Strong consistency of LSE.
Let assumptions (A0), (A1) and (A2 heteroscedastic) hold.
Then

β̂n
a.s.−→ β as n→∞,

l>β̂n = θ̂n
a.s.−→ θ = l>β as n→∞,

Lβ̂n = ξ̂n
a.s.−→ ξ = Lβ as n→∞.

Proof.
It is su�cient to show that β̂n

a.s.−→ β. The remaining two statements follow from properties of convergence
almost surely.

We have

β̂n =
(
X>nXn

)−1 (X>nY n

)
=

(
1

n
X>nXn

)−1
︸ ︷︷ ︸

An

(
1

n
X>nY n

)
︸ ︷︷ ︸

Bn

,

where An =

(
1

n
X>nXn

)−1
a.s.−→W−1 by Lemma 16.1.

Further

Bn =
1

n
X>nY n =

1

n

n∑
i=1

Xi

(
Yi −X>i β +X>i β

)
=

1

n

n∑
i=1

Xiεi︸ ︷︷ ︸
Cn

+
1

n

n∑
i=1

XiX
>
i β︸ ︷︷ ︸

Dn

.

(a) Cn =
1

n

n∑
i=1

Xiεi
a.s.−→ 0k due to the SLLN (i.i.d., Theorem C.2). This is justified as follows.

• The jth (j = 0, . . . , k − 1) element of the vector
1

n

n∑
i=1

Xiεi is
1

n

n∑
i=1

Xi,jεi.

• The random variables Xi,jεi, i = 1, 2, . . . are i.i.d. by (A0).

• By Cauchy-Schwarz inequality: E
∣∣Xi,jεi

∣∣ ≤ √EX2
i,j Eε2i < ∞, because EX2

i,j < ∞ by

(A1) and Eε2i = varεi = E
{
σ2(X)

}
<∞ by (A2).
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• E
(
Xi,jεi

)
= E

(
E
(
Xi,jεi

∣∣Xi

))
= E

(
Xi,jE

(
εi
∣∣Xi

))
= E

(
Xi,j 0

)
= 0.

(b) Dn =
1

n

n∑
i=1

XiX
>
i β =

1

n
Wnβ

a.s.−→Wβ by Lemma 16.1.

In summary: β̂n = An

(
Cn +Dn

)
, where An

a.s.−→W−1,

Cn
a.s.−→ 0k ,

Dn
a.s.−→Wβ.

Hence
β̂n

a.s.−→W−1 Wβ = β.

k
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Theorem 16.3 Strong consistency of the mean squared error.
Let assumptions (A0), (A1), (A2 homoscedastic) hold.

Then
MSe,n

a.s.−→ σ2 as n→∞.

Proof.
We have

MSe,n =
1

n− k
SSe,n =

n

n− k
1

n

n∑
i=1

(
Yi − X>i β̂

)2
.

Since lim
n→∞

n
n−k = 1, it is su�cient to show that

1

n

n∑
i=1

(
Yi − X>i β̂n

)2 a.s.−→ σ2 as n→∞.

We have

1

n

n∑
i=1

(
Yi − X>i β̂n

)2
=

1

n

n∑
i=1

(
Yi − X>i β + X>i β − X>i β̂n

)2
=

1

n

n∑
i=1

(
Yi −X>i β

)2
︸ ︷︷ ︸

An

+
1

n

n∑
i=1

{
X>i

(
β − β̂n

)}2

︸ ︷︷ ︸
Bn

+
2

n

n∑
i=1

(
Yi −X>i β

)
X>i

(
β − β̂n

)
︸ ︷︷ ︸

Cn

.

(a) An =
1

n

n∑
i=1

(
Yi −X>i β

)2
=

1

n

n∑
i=1

ε2i
a.s.−→ σ2 due to the SLLN (i.i.d., Theorem C.2). This is

justified by noting the following.

• The random variables ε2i , i = 1, 2, . . . are i.i.d. by (A0).

• E
(
εi
)

= 0

=⇒ E
(
ε2i
)

= var
(
εi
)

= E
{
σ2(Xi)

}
= E

(
σ2
)

= σ2 by assumption (A2 homoscedastic).

• E
∣∣ε2i ∣∣ = E

(
ε2i
)

= σ2 <∞ by assumption (A2 homoscedastic).

(b) Bn =
1

n

n∑
i=1

{
X>i

(
β − β̂n

)}2 a.s.−→ 0, which is seen as follows.

Bn =
1

n

n∑
i=1

{
X>i

(
β − β̂n

)}2

=
1

n

n∑
i=1

(
β − β̂n

)>
XiX

>
i

(
β − β̂n

)
=

(
β − β̂n

)> ( 1

n

n∑
i=1

XiX
>
i

) (
β − β̂n

)
=

(
β − β̂n

)> ( 1

n
X>nXn

) (
β − β̂n

)
.
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Now
(
β − β̂n

) a.s.−→ 0k due to Theorem 16.2.

1

n
X>nXn

a.s.−→W due to Lemma 16.1.

Hence
Bn

a.s.−→ 0>k W0k = 0.

(c) Cn =
2

n

n∑
i=1

(
Yi −X>i β

)
X>i

(
β − β̂n

) a.s.−→ 0, which is justified by the following.

Cn =
2

n

n∑
i=1

(
Yi −X>i β

)
X>i

(
β − β̂n

)
= 2

( 1

n

n∑
i=1

εiX
>
i

) (
β − β̂n

)
.

Now
1

n

n∑
i=1

εiX
>
i

a.s.−→ 0>k as was shown in the proof of Theorem 16.2.(
β − β̂n

) a.s.−→ 0k due to Theorem 16.2.

Hence
Cn

a.s.−→ 0>k 0k = 0.

In summary: MSe,n =
n

n− k
(
An + Bn + Cn

)
, where n

n−k → 1,

An
a.s.−→ σ2,

Bn
a.s.−→ 0,

Cn
a.s.−→ 0.

Hence
MSe,n

a.s.−→ 1 (σ2 + 0 + 0) = σ2.

k
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16.3 Asymptotic normality of LSE under homoscedas-
ticity

We shall show in this section: asymptotic normality of β̂n, θ̂n, ξ̂n (LSE’s regression coe�cients or their
linear combinations) when homoscedasticity of the errors is assumed but not their normality.

Reminder. V =
{
E
(
XX>

)}−1
.

Theorem 16.4 Asymptotic normality of LSE in homoscedastic case.
Let assumptions (A0), (A1), (A2 homoscedastic) hold. Further, let E

∣∣ε2Xj Xl

∣∣ <∞ for each j, l = 0, . . . , k−1.
Then √

n
(
β̂n − β

) D−→ Nk(0k, σ
2 V) as n→∞,

√
n
(
θ̂n − θ

) D−→ N1(0, σ2 l>V l) as n→∞,
√
n
(
ξ̂n − ξ

) D−→ Nm(0m, σ
2 LVL>) as n→∞.

Proof. Will be provided jointly with Theorem 16.5.
k

16.3.1 Asymptotic validity of the classical inference under ho-
moscedasticity but non-normality

For given n ≥ n0 > k, the following statistics are used to infer on estimable parameters of the linear model
Mn based on the response vector Y n and the model matrix Xn (see Chapter 6):

Tn :=
θ̂n − θ√

MSe,n l>
(
X>nXn

)−1
l
, (16.1)

Qn :=
1

m

(
ξ̂n − ξ

)> {
L
(
X>nXn

)−1L>}−1 (ξ̂n − ξ)
MSe,n

. (16.2)

Reminder.
• Vn =

(
X>nXn

)−1
.

• Under assumptions (A0) and (A1): nVn
a.s.−→ V as n→∞.
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Consequence of Theorem 16.4: Asymptotic distribution of t- and F-statistics.
Under assumptions of Theorem 16.4:

Tn
D−→ N1(0, 1) as n→∞,

mQn
D−→ χ2

m as n→∞.

Proof. It follows directly from Lemma 16.1, Theorem 16.4 and Cramér-Slutsky theorem (Theorem C.7) as
follows.

Tn =
l>β̂n − l>β√

MSe,n l>
(
X>nXn

)−1
l

=

√
n
(
l>β̂n − l>β

)√
σ2 l>Vl︸ ︷︷ ︸

D−→ N (0, 1)

√√√√ σ2 l>Vl

MSe,nl>
{
n
(
X>nXn

)−1}
l
.

︸ ︷︷ ︸
P−→ 1

mQm =
(
Lβ̂n − Lβ

)>{
MSe,nL

(
X>nXn

)−1L>}−1(Lβ̂n − Lβ
)

=
√
n
(
Lβ̂n − Lβ

)>︸ ︷︷ ︸
D−→ Nm

(
0m, σ

2 LVL>
)
{
MSe,nLn

(
X>nXn

)−1L>︸ ︷︷ ︸
P−→ σ2LVL>

}−1 (
Lβ̂n − Lβ

)√
n︸ ︷︷ ︸

D−→ Nm
(
0m, σ

2 LVL>
) .

Convergence to χ2
m in distribution follows from a property of (multivariate) normal distribution concerning

the distribution of a quadratic form.
k

If additionaly normality is assumed, i.e., if it is assumed Y n

∣∣Xn ∼ Nn(Xnβ, σ2In
)
then Theorem 6.2

(LSE under the normality) provides

Tn ∼ tn−k,

Qn ∼ Fm,n−k.

This is then used for inference (derivation of confidence intervals and regions, construction of tests) on the
estimable parameters of a linear model under assumption of normality.

The following holds in general:

Tν ∼ tν then Tν
D−→ N (0, 1) as ν →∞,

Qν ∼ Fm, ν then mQν
D−→ χ2

m as ν →∞.
(16.3)

This, together with Consequence of Theorem 16.4 then justify asymptotic validity of a classical inference based
on statistics Tn (Eq. 16.1) and Qn (Eq. 16.2), respectively and a Student t and F-distribution, respectively, even
if normality of the error terms of the linear model does not hold. The only requirements are assumptions of
Theorem 16.4.

That is, for example, both intervals

(i) INn :=
(
θ̂n − u(1− α/2)

√
MSe,n l>

(
X>nXn

)−1
l, θ̂n + u(1− α/2)

√
MSe,n l>

(
X>nXn

)−1
l
)
;
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(ii) Itn :=
(
θ̂n− tn−k(1−α/2)

√
MSe,n l>

(
X>nXn

)−1
l, θ̂n + tn−k(1−α/2)

√
MSe,n l>

(
X>nXn

)−1
l
)
,

satisfy, for any θ0 ∈ R (even without normality of the error terms)

P
(
INn 3 θ0; θ = θ0

)
−→ 1− α as n→∞,

P
(
Itn 3 θ0; θ = θ0

)
−→ 1− α as n→∞.

Analogously, due to a general asymptotic property of the F-distribution (Eq. 16.3), asymptotically valid in-
ference on the estimable vector parameter ξ = Lβ of a linear model can be based either on the statistic
mQn and the χ2

m distribution or on the statistic Qn and the Fm,n−k distribution. For example, for both
ellipsoids

(i) Kχn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> {
MSe,nL

(
X>nXn

)−1L>}−1 (ξ − ξ̂) < χ2
m(1− α)

}
;

(ii) KFn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> {
MSe,nL

(
X>nXn

)−1L>}−1 (ξ − ξ̂) < mFm,n−k(1− α)
}
,

we have for any ξ0 ∈ Rm (under assumptions of Theorems 16.4):

P
(
Kχn 3 ξ

0; ξ = ξ0
)
−→ 1− α as n→∞,

P
(
KFn 3 ξ

0; ξ = ξ0
)
−→ 1− α as n→∞.
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16.4 Asymptotic normality of LSE under heteroscedas-
ticity

We shall show in this section: asymptotic normality of β̂n, θ̂n, ξ̂n (LSE’s regression coe�cients or their
linear combinations) when even homoscedasticity of the errors is not assumed.

Reminder.

• V =
{
E
(
XX>

)}−1
.

• WF = E
{
σ2(X)XX>

}
.

Theorem 16.5 Asymptotic normality of LSE in heteroscedastic case.
Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Further, let E

∣∣ε2Xj Xl

∣∣ <∞ for each j, l = 0, . . . , k−1.
Then √

n
(
β̂n − β

) D−→ Nk(0k, VWFV) as n→∞,
√
n
(
θ̂n − θ

) D−→ N1(0, l>VWFV l) as n→∞,
√
n
(
ξ̂n − ξ

) D−→ Nm(0m, LVWFVL>) as n→∞.

Proof. We will jointly prove also Theorem 16.4.

We have

β̂n =
(
X>nXn

)−1︸ ︷︷ ︸
Vn

X>nY n

= Vn
n∑
i=1

XiYi

= Vn
n∑
i=1

Xi

(
X>i β + εi

)
= Vn

( n∑
i=1

XiX
>
i

)
︸ ︷︷ ︸

V−1
n

β + Vn
n∑
i=1

Xiεi

= β + Vn
n∑
i=1

Xiεi.

That is,

β̂n − β = Vn
n∑
i=1

Xiεi = nVn
1

n

n∑
i=1

Xiεi. (16.4)

By Lemma 16.1, nVn
a.s.−→ V which implies

nVn
P−→ V as n→∞. (16.5)

In the following, let us explore asymptotic behavior of the term 1
n

∑n
i=1Xiεi.



16.4. ASYMPTOTIC NORMALITY OF LSE UNDER HETEROSCEDASTICITY 371

From assumption (A0), the term 1
n

∑n
i=1Xiεi is a sample mean of i.i.d. random vector Xi εi, i = 1, . . . , n.

The mean of the distribution of those random vectors is

E
(
Xε
)

= 0k (was shown in the proof of Theorem 16.2).

The covariance matrix is equal to var
(
Xε
)
. All elements of this covariance matrix are finite due to

assumption E
∣∣ε2Xj Xl

∣∣ <∞ for each j, l = 0, . . . , k − 1.

Then

var
(
Xε
)

= E
(
var
(
Xε

∣∣X)) + var
(
E
(
Xε

∣∣X))
= E

(
X var

(
ε
∣∣X)︸ ︷︷ ︸

σ2(X)

X>
)

+ var
(
X E

(
ε
∣∣X)︸ ︷︷ ︸
0

)
= E

(
σ2(X)XX>

)
.

Depending, on whether (A2 homoscedastic) or (A2 heteroscedastic) is assumed, we have

var
(
Xε
)

= E
(
σ2(X)XX>

)
=

{
σ2 E

(
XX>

)
= σ2W, (A2 homoscedastic),

WF, (A2 heteroscedastic).
(16.6)

Under both (A2 homoscedastic) and (A2 heteroscedastic) all elements of the covariance matrix var
(
Xε
)
are

finite. Hence by Theorem C.5 (multivariate CLT for i.i.d. random vectors):

√
n

1

n

n∑
i=1

Xiεi =
1√
n

n∑
i=1

Xiεi
D−→ Nk

(
0k, E

(
σ2(X)XX>

))
as n→∞.

From (16.4) and (16.5), we now have,

(
β̂n − β

)
= nVn︸︷︷︸

P−→V

1√
n

n∑
i=1

Xiεi︸ ︷︷ ︸
D−→Nk

(
0k, E

(
σ2(X)XX>

))
1√
n
.

That is,
√
n
(
β̂n − β

)
= nVn︸︷︷︸

P−→V

1√
n

n∑
i=1

Xiεi︸ ︷︷ ︸
D−→Nk

(
0k, E

(
σ2(X)XX>

))
.

Finally, by applying Theorem C.7 (Cramér–Slutsky):

√
n
(
β̂n − β

) D−→ Nk
(
0k, VE

(
σ2(X)XX>

)
V>
)

as n→∞.

By using (16.6) and realizing that V> = V, we get

Under (A2 homoscedastic)

VE
(
σ2(X)XX>

)
V> = Vσ2 WV = σ2 VV−1 V = σ2 V

and hence √
n
(
β̂n − β

) D−→ Nk
(
0k, σ

2 V
)

as n→∞.

Under (A2 heteroscedastic)
VE
(
σ2(X)XX>

)
V> = VWF V

and hence √
n
(
β̂n − β

) D−→ Nk
(
0k, VWF V

)
as n→∞.
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Asymptotic normality of θ̂n = l>β̂n and of ξn = Lβ̂n follows now from Theorem C.6 (Cramér–Wold).

k

Notation (Residuals and related quantities based on a model for data of size n).
For n ≥ n0 > k, the following notation will be used for quantities based on the model

Mn : Y n

∣∣Xn ∼ (
Xnβ, σ2 In

)
.

• Hat matrix: Hn = Xn
(
X>nXn

)−1 X>n ;
• Residual projection matrix: Mn = In −Hn;

• Diagonal elements of matrix Hn: hn,1, . . . , hn,n;

• Diagonal elements of matrix Mn: mn,1 = 1− hn,1, . . . , mn,n = 1− hn,n;

• Residuals: Un = MnY n =
(
Un,1, . . . , Un,n

)>
.

Reminder.

• Vn =
( n∑
i=1

XiXi
>
)−1

=
(
X>nXn

)−1
.

• Under assumptions (A0) and (A1): nVn
a.s.−→ V as n→∞.

Theorem 16.6 Sandwich estimator of the covariance matrix.
Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Let additionally, for each s, t, j, l = 0, . . . , k − 1

E
∣∣ε2Xj Xl

∣∣ <∞, E
∣∣εXsXj Xl

∣∣ <∞, E
∣∣XsXtXj Xl

∣∣ <∞.
Then

nVnWF
n Vn

a.s.−→ VWF V as n→∞,
where for n = 1, 2, . . .,

WF
n =

n∑
i=1

U2
n,iXiX

>
i = X>nΩnXn,

Ωn = diag
(
ωn,1, . . . , ωn,n

)
, ωn,i = U2

n,i, i = 1, . . . , n.

Proof.
First, remind that

VWF V =
{
E
(
XX>

)}−1
E
(
σ2(X)XX>

){
E
(
XX>

)}−1
,

and we know from Lemma 16.1 that

nVn = n
(
X>nXn

)−1 a.s.−→
{
E
(
XX>

)}−1
= V as n→∞.

Hence, if we show that

1

n
WF
n =

1

n

n∑
i=1

U2
n,iXiX

>
i

a.s.−→ E
(
σ2(X)XX>

)
= WF as n→∞,



16.4. ASYMPTOTIC NORMALITY OF LSE UNDER HETEROSCEDASTICITY 373

the statement of Theorem will be proven.

Remember,
σ2(X) = var

(
ε
∣∣X) = E

(
ε2
∣∣X).

From here, for each j, l = 0, . . . , k − 1

E
(
ε2Xj Xl

)
= E

(
E
(
ε2Xj Xl

∣∣X))
= E

(
Xj Xl E

(
ε2
∣∣X))

= E
(
σ2(X)Xj Xl

)
.

For each j, l = 0, . . . , k − 1,
E
∣∣ε2Xj Xl

∣∣ <∞
by assumptions of Theorem. By assumption (A0), εiXi,j Xi,l, i = 1, 2, . . ., is a sequence of i.i.d. random
variables. Hence by Theorem C.2 (SLLN, i.i.d.),

1

n

n∑
i=1

ε2i Xi,j Xi,l
a.s.−→ E

(
σ2(X)Xj Xl

)
as n→∞.

That is, in a matrix form,

1

n

n∑
i=1

ε2i XiX
>
i

a.s.−→ E
(
σ2(X)XX>

)
= WF as n→∞. (16.7)

In the following, we show that (unobservable) squared error terms ε2i in (16.7) can be replaced by squared

residuals U2
n,i =

(
Yi − X>i β̂n

)2
while keeping the same limitting matrix WF as in (16.7).

We have

1

n

n∑
i=1

U2
n,iXiX

>
i︸ ︷︷ ︸

WF
n

=
1

n

n∑
i=1

(
Yi − X>i β̂n

)2
XiX

>
i

=
1

n

n∑
i=1

(
Yi − X>i β︸ ︷︷ ︸

εi

+ X>i β − X>i β̂n
)2
XiX

>
i

=
1

n

n∑
i=1

ε2i XiX
>
i︸ ︷︷ ︸

An

+
1

n

n∑
i=1

(
β − β̂n

)>
XiX

>
i

(
β − β̂n

)
XiX

>
i︸ ︷︷ ︸

Bn

+
2

n

n∑
i=1

(
β − β̂n

)>
XiεiXiX

>
i︸ ︷︷ ︸

Cn

.

(a) An =
1

n

n∑
i=1

ε2i XiX
>
i

a.s.−→ E
(
σ2(X)XX>

)
= WF due to (16.7).
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(b) To work with Bn =
1

n

n∑
i=1

(
β−β̂n

)>
XiX

>
i

(
β−β̂n

)
XiX

>
i , we can realize that

(
β−β̂n

)>
Xi =

X>i
(
β − β̂n

)
is a scalar quantity. Hence

Bn =
1

n

n∑
i=1

(
β − β̂n

)>
Xi

(
XiX

>
i

)
X>i

(
β − β̂n

)
and the (j, l)th element of matrix Bn (j, l = 0, . . . , k − 1) is

Bn(j, l) =
1

n

n∑
i=1

(
β − β̂n

)>
Xi (Xi,j Xi,l)X

>
i

(
β − β̂n

)
=

(
β − β̂n

)> { 1

n

n∑
i=1

(Xi,j Xi,l)XiX
>
i

} (
β − β̂n

)
.

• From Theorem 16.2:
(
β − β̂n

) a.s.−→ 0k as n→∞.

• Due to assumption (A0) and assumption E
∣∣XsXtXj Xl

∣∣ <∞ for any s, t, j, l = 0, . . . , k− 1, by
Theorem C.2 (SLLN, i.i.d.), for any j, l = 0, . . . , k − 1:

1

n

n∑
i=1

(Xi,j Xi,l)XiX
>
i

a.s.−→ E
(
Xj XlXX

>).
• Hence, for any j, l = 0, . . . , k − 1, Bn(j, l)

a.s.−→ 0>k E
(
Xj XlXX

>)0k = 0 and finally,

Bn
a.s.−→ 0k×k as n→∞.

(c) Cn =
2

n

n∑
i=1

(
β− β̂n

)>
XiεiXiX

>
i and the (j, l)th element of matrix Cn (j, l = 0, . . . , k− 1) is

Cn(j, l) =
2

n

n∑
i=1

(
β − β̂n

)>
XiεiXi,jXi,l

= 2
(
β − β̂n

)>( 1

n

n∑
i=1

XiεiXi,jXi,l

)
.

• From Theorem 16.2:
(
β − β̂n

) a.s.−→ 0k as n→∞.

• Due to assumption (A0) and assumption E
∣∣εXsXj Xl

∣∣ < ∞ for any s, j, l = 0, . . . , k − 1, by
Theorem C.2 (SLLN, i.i.d.), for any j, l = 0, . . . , k − 1:

1

n

n∑
i=1

XiεiXi,jXi,l
a.s.−→ E

(
XεXjXl

)
.

• Hence, for any j, l = 0, . . . , k − 1, Cn(j, l)
a.s.−→ 2 0>k E

(
XεXjXl

)
= 0 and finally,

Cn
a.s.−→ 0k×k as n→∞.

In summary:

nVnWF
n Vn = nVn

( 1

n
WF
n

)
nVn

= nVn
(
An + Bn + Cn

)
nVn,
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where nVn
a.s.−→ V,

An
a.s.−→ WF,

Bn
a.s.−→ 0k×k ,

Cn
a.s.−→ 0k×k .

Hence
nVnWF

n Vn
a.s.−→ V

(
WF + 0k×k + 0k×k

)
V = VWFV as n→∞.

k

Terminology (Heteroscedasticity consistent (sandwich) estimator of the covari-
ance matrix).
Matrix

VnWF
n Vn =

(
X>nXn

)−1 X>n ΩnXn
(
X>nXn

)−1
(16.8)

is called the heteroscedasticity consistent (HC) estimator of the covariance matrix of the LSE β̂n of the
regression coe�cients. Due to its form, the matrix (16.8) is also called as the sandwich estimator composed

of a bread
(
X>nXn

)−1 X>n and a meat Ωn.

Notes (Alternative sorts of meat for the sandwich).
• It is directly seen that the meat matrix Ωn can, for a chosen sequence νn, such that n

νn
→ 1 as n→∞,

be replaced by a matrix
n

νn
Ωn,

and the statement of Theorem 16.6 remains valid. A value νn is then called degrees of freedom of the
sandwich.

• It can also be shown (see references below) that the meat matrix Ωn can, for a chosen sequence νn, such
that n

νn
→ 1 as n → ∞ and a suitable sequence δn =

(
δn,1, . . . , δn,n

)
, n = 1, 2, . . ., be replaced by

a matrix

ΩHC
n := diag

(
ωn,1, . . . , ωn,n

)
,

ωn,i =
n

νn

U2
n,i

m
δn,i
n,i

, i = 1, . . . , n.

• The following choices of sequences νn and δn have appeared in the literature (n = 1, 2, . . ., i =
1, . . . , n):

HC0: νn = n, δn,i = 0, that is,
ωn,i = U2

n,i.

This is the choice due to White (1980) who was the first who proposed the sandwich estimator of
the covariance matrix. This choice was also used in Theorem 16.6.

HC1: νn = n− k, δn,i = 0, that is,

ωn,i =
n

n− k
U2
n,i.

This choice was suggested by MacKinnon and White (1985).

HC2: νn = n, δn,i = 1, that is,

ωn,i =
U2
n,i

mn,i
.

This is the second proposal of MacKinnon and White (1985).
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HC3: νn = n, δn,i = 2, that is,

ωn,i =
U2
n,i

m2
n,i

.

This is the third proposal of MacKinnon and White (1985).

HC4: νn = n, δn,i = min
{

4, n hn,i/k
}
, that is,

ωn,i =
U2
n,i

m
δn,i
n,i

.

This was proposed relatively recently by Cribari-Neto (2004). Note that k =
∑n
i=1 hn,i, and hence

δn,i = min
{

4,
hn,i

hn

}
, hn =

1

n

n∑
i=1

hn,i.

• An extensive study towards small sample behavior of di�erent sandwich estimators was carried out by
Long and Ervin (2000) who recommended usage of the HC3 estimator. Even better small sample behavior,
especially in presence of influential observations was later concluded by Cribari-Neto (2004) for the HC4
estimator.

• Labels HC0, HC1, HC2, HC3, HC4 for the above sandwich estimators are used by the R package sandwich
(Zeileis, 2004) that enables for their easy calculation based on the fitted linear model.

16.4.1 Heteroscedasticity consistent asymptotic inference

Let for given sequences νn and δn, n = 1, 2, . . ., ΩHC
n be a sequence of the meat matrices that lead to the

heteroscedasticity consistent estimator of the covariance matrix of the LSE β̂n. Let for given n ≥ n0 > k,

VHCn :=
(
X>nXn

)−1 X>n ΩHC
n Xn

(
X>nXn

)−1
.

Finally, let the statistics THCn and QHCn be defined as

THCn :=
θ̂n − θ√
l>VHCn l

,

QHCn :=
1

m

(
ξ̂n − ξ

)> (
LVHCn L>

)−1 (
ξ̂n − ξ

)
.

Note that the statistics THCn and QHCn , respectively, are the usual statistics Tn (Eq. 16.1) and Qn (16.2),

respectively, in which the term MSe,n
(
X>nXn

)−1
is replaced by the sandwich estimator VHCn .

Consequence of Theorems 16.5 and 16.6: Heteroscedasticity consistent asymp-
totic inference.
Under assumptions of Theorem 16.5 and 16.6:

THCn
D−→ N1(0, 1) as n→∞,

mQHCn
D−→ χ2

m as n→∞.
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Proof. Proof/calculations are available in the handnotes.
k

Due to a general asymptotic property of the Student t-distribution (Eq. 16.3), asymptotically valid inference
on the estimable parameter θ = l>β of a linear model where neither normality, nor homoscedasticity is
necessarily satisfied, can be based on the statistic THCn and either a Student tn−k or a standard normal
distribution. Under assumptions of Theorems 16.5 and 16.6, both intervals

(i) INn :=
(
θ̂n − u(1− α/2)

√
l>VHCn l, θ̂n + u(1− α/2)

√
l>VHCn l

)
;

(ii) Itn :=
(
θ̂n − tn−k(1− α/2)

√
l>VHCn l, θ̂n + tn−k(1− α/2)

√
l>VHCn l

)
,

satisfy, for any θ0 ∈ R:

P
(
INn 3 θ0; θ = θ0

)
−→ 1− α as n→∞,

P
(
Itn 3 θ0; θ = θ0

)
−→ 1− α as n→∞.

Analogously, due to a general asymptotic property of the F-distribution (Eq. 16.3), asymptotically valid in-
ference on the estimable vector parameter ξ = Lβ of a linear model can be based either on the statistic
mQHCn and the χ2

m distribution or on the statistic QHCn and the Fm,n−k distribution. For example, for
both ellipsoids

(i) Kχn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> (
LVHCn L>

)−1 (
ξ − ξ̂

)
< χ2

m(1− α)
}
;

(ii) KFn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> (
LVHCn L>

)−1 (
ξ − ξ̂

)
< mFm,n−k(1− α)

}
,

we have for any ξ0 ∈ Rm (under assumptions of Theorems 16.5 and 16.6):

P
(
Kχn 3 ξ

0; ξ = ξ0
)
−→ 1− α as n→∞,

P
(
KFn 3 ξ

0; ξ = ξ0
)
−→ 1− α as n→∞.



Appendix A
Matrices

A.1 Pseudoinverse of a matrix

Definition A.1 Pseudoinverse of a matrix.
The pseudoinverse of a real matrix An×k is such a matrix A− of dimension k × n that satisfies

AA−A = A.

Notes.
• The pseudoinverse always exists. Nevertheless, it is not necessarily unique.

• If A is invertible then A− = A−1 is the only pseudoinverse.

Definition A.2 Moore-Penrose pseudoinverse of a matrix.
The Moore-Penrose pseudoinverse of a real matrix An×k is such a matrix A+ of dimension k×n that satisfies
the following conditions:

(i) AA+A = A;
(ii) A+AA+ = A+;

(iii)
(
AA+

)>
= AA+;

(iv)
(
A+A

)>
= A+A.

Notes.
• The Moore-Penrose pseudoinverse always exists and it is unique.

• The Moore-Penrose pseudoinverse can be calculated from the singular value decomposition (SVD) of the
matrix A.
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Theorem A.1 Pseudoinverse of a matrix and a solution of a linear system.
Let An×k be a real matrix and let cn×1 be a real vector. Let there exist a solution of a linear system Ax = c,
i.e., the linear system Ax = c is consistent. Let A− be the pseudoinverse of A.
A vector xk×1 solves the linear system Ax = c if and only if

x = A−c.

Proof. See Anděl (2007, Appendix A.4).
k

Theorem A.2 Five matrices rule.
For a real matrix An×k , it holds

A
(
A>A

)−A>A = A.

That is, a matrix
(
A>A

)−A> is a pseudoinverse of a matrix A.

Proof. See Anděl (2007, Theorem A.19).
k
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A.2 Kronecker product

Definition A.3 Kronecker product.
Let Am×n and Cp×q be real matrices. Their Kronecker product A⊗ C is a matrix Dm·p×n·q such that

D = A⊗ C =


a1,1C . . . a1,sC
...

...
...

ar,1C . . . ar,sC

 =
(
ai,jC

)
i=1,...,m,j=1,...,n

.

Note. For a ∈ Rm, b ∈ Rp, we can write

ab> = a ⊗ b>.

Theorem A.3 Properties of a Kronecker product.
It holds for the Kronecker product:

(i) 0⊗ A = 0, A⊗ 0 = 0.

(ii) (A1 + A2)⊗ C = (A1 ⊗ C) + (A2 ⊗ C).

(iii) A⊗ (C1 + C2) = (A⊗ C1) + (A⊗ C2).

(iv) aA⊗ cC = a c (A⊗ C).

(v) A1A2 ⊗ C1C2 = (A1 ⊗ C1) (A2 ⊗ C2).

(vi)
(
A⊗ C

)−1
= A−1 ⊗ C−1, if the inversions exist.

(vii)
(
A⊗ C

)−
= A− ⊗ C−, for arbitrary pseudoinversions.

(viii)
(
A⊗ C

)>
= A> ⊗ C>.

(ix)
(
A, C

)
⊗ D =

(
A⊗ D, C⊗ D

)
.

(x) Upon a suitable reordering of the columns, matrices
(
A⊗C, A⊗D

)
and A ⊗

(
C, D

)
are the same.

(xi) rank
(
A⊗ C

)
= rank

(
A
)
rank

(
C
)
.

Proof. See Rao (1973, Section 1b.8).
k
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Definition A.4 Elementwise product of two vectors.
Let a =

(
a1, . . . , ap

)> ∈ Rp, c =
(
c1, . . . , cp

)> ∈ Rp. Their elementwise product1 is a vector
(
a1 c1, . . . , ap cp

)>
that will be denoted as a : c. That is,

a : c =


a1 c1
...

ap cp

 .

Definition A.5 Columnwise product of two matrices.
Let

An×p =
(
a1, . . . , ap

)
and Cn×q =

(
c1, . . . , cq

)
be real matrices. Their columnwise product2 A : C is a matrix Dn×p·q such that

D = A : C =
(
a1 : c1, . . . , ap : c1, . . . , a1 : cq, . . . , ap : cq

)
.

Notes.
• If we write

A =


a>1
...

a>n

 , C =


c>1
...

c>n

 ,

the columnwise product of two matrices can also be written as a matrix rows of which are obtained as
Kronecker products of the rows of the two matrices:

A : C =


c>1 ⊗a>1

...

c>n ⊗a>n

 . (A.1)

• It perhaps looks more logical to define the columnwise product of two matrices as

A : C =


a>1 ⊗ c>1

...

a>n ⊗ c>n

 =
(
a1 : c1, . . . , a1 : cq, . . . , ap : c1, . . . , ap : cq

)
,

which only di�ers by ordering of the columns of the resulting matrix. Our definition (A.1) is motivated by
the way in which an operator : acts in the R software.

1 součin po složkách 2 součin po sloupcích
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A.3 Additional theorems on matrices

Theorem A.4 Inverse of a matrix divided into blocks.
Let

M =

 A B

B> D


be a positive definite matrix divided in blocks A, B, D.
Then the following holds:

(i) Matrix Q = A− BD−1B> is positive definite.
(ii) Matrix P = D− B>A−1B is positive definite.

(iii) The inverse to M is

M−1 =

 Q−1 −Q−1BD−1

−D−1B>Q−1 D−1 + D−1B>Q−1BD−1



=

A−1 + A−1BP−1B>A−1 −A−1BP−1

−P−1B>A−1 P−1

 .

Proof. See Anděl (2007, Theorem A.10 in Appendix A.2).
k



Appendix B
Distributions

B.1 Non-central univariate distributions

Definition B.1 Non-central Student t-distribution.
Let U ∼ N (0, 1), let V ∼ χ2

ν for some ν > 0 and let U and V be independent. Let λ ∈ R. Then we say that
a random variable

T =
U + λ√

V

ν

follows a non-central Student t-distribution1 with ν degrees of freedom2 and a non-centrality parameter 3 λ.
We shall write

T ∼ tν(λ).

Notes.
• Non-central t-distribution is di�erent from simply a shifted (central) t-distribution.

• Directly seen from definition: tν(0) ≡ tν .

• Moments of a non-central Student t-distribution:

E(T ) =

 λ

√
ν

2

Γ
(
ν−1
2

)
Γ
(
ν
2

) , if ν > 1,

does not exist, if ν ≤ 1.

var(T ) =


ν(1 + λ2)

ν − 2
− νλ2

2

{
Γ
(
ν−1
2

)
Γ
(
ν
2

) }2

, if ν > 2,

does not exist, if ν ≤ 2.

1 necentrální Studentovo t-rozdělení 2 stupně volnosti 3 parametr necentrality
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Definition B.2 Non-central χ2 distribution.
Let U1, . . . , Uk be independent random variables. Let further Ui ∼ N (µi, 1), i = 1, . . . , k, for some

µ1, . . . , µk ∈ R. That is U =
(
U1, . . . , Uk

)> ∼ Nk(µ, Ik
)
, where µ =

(
µ1, . . . , µk

)>
. Then we say

that a random variable

X =

k∑
i=1

U2
i =

∥∥U∥∥2
follows a non-central chi-squared distribution4 with k degrees of freedom and a non-centrality parameter

λ =

k∑
i=1

µ2
i = ‖µ‖2.

We shall write
X ∼ χ2

k(λ).

Notes.
• It can easily be proved that the distribution of the random variable X from Definition B.2 indeed depends
only on k and λ =

∑k
i=1 µ

2
i and not on the particular values of µ1, . . . , µk .

• As an exercise for the use of a convolution theorem, we can derive a density of the χ2
k(λ) distribution

which is

f(x) =


e−

x+λ
2 x

k−2
2

2
k
2 Γ
(
k−1
2

)
Γ
(
1
2

) ∞∑
j=0

λj xj

(2j)!
B

(
k − 1

2
,

1

2
+ j

)
, x > 0,

0, x ≤ 0.

• The non-central χ2 distribution with general degrees of freedom ν ∈ (0, ∞) is defined as a distribution
with the density given by the above expression with k replaced by ν .

• χ2
ν(0) ≡ χ2

ν .

• Moments of a non-central χ2 distribution:

E(X) = ν + λ,

var(X) = 2 (ν + 2λ).

4 necentrální chí-kvadrát rozdělení
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Definition B.3 Non-central F-distribution.
Let X ∼ χ2

ν1(λ), where ν1, λ > 0. Let Y ∼ χ2
ν2 , where ν2 > 0. Let further X and Y be independent. Then

we say that a random variable

Q =

X

ν1
Y

ν2

follows a non-central F-distribution5 with ν1 and ν2 degrees of freedom and a noncentrality parameter λ. We
shall write

Q ∼ Fν1,ν2(λ).

Notes.
• Directly seen from definition: Fν1,ν2(0) ≡ Fν1,ν2 .
• Moments of a non-central F-distribution:

E(Q) =


ν2 (ν1 + λ)

ν1 (ν2 − 2)
, if ν2 > 2,

does not exist, if ν2 ≤ 2.

var(Q) =

 2
(ν1 + λ)2 + (ν1 + 2λ) (ν2 − 2)

(ν2 − 2)2 (ν2 − 4)

(
ν2
ν1

)2

, if ν2 > 4,

does not exist, if ν2 ≤ 4.

5 necentrální F-rozdělení
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B.2 Multivariate distributions

Definition B.4 Multivariate Student t-distribution.
Let U ∼ Np(0p, Σ), where Σp×p is a positive semidefinite matrix. Let further V ∼ χ2

ν for some ν > 0 and
let U and V be independent. Then we say that a random vector

T = U

√
ν

V

follows a p-dimensional multivariate Student t-distribution6 with ν degrees of freedom and a scale matrix7 Σ.
We shall write

T ∼ mvtp,ν(Σ).

Notes.
• Directly seen from definition: mvt1,ν(1) ≡ tν .

• If Σ is a regular (positive definite) matrix, then the density (with respect to the p-dimensional Lebesgue
measure) of the mvtp,ν(Σ) distribution is

f(t) =
Γ
(
ν+p
2

)
Γ
(
ν
2

)
ν
p
2 π

p
2

∣∣Σ∣∣− 1
2

{
1 +

t>Σ−1t

ν

}− ν+p
2

, t ∈ Rp.

• Expectation and a covariance matrix of T ∼ mvtp,ν(Σ) are

E(T ) =

 0p, if ν > 1,

does not exist, if ν ≤ 1.

var(T ) =


ν

ν − 2
Σ, if ν > 2,

does not exist, if ν ≤ 2.

Lemma B.1 Marginals of the multivariate Student t-distribution.
Let T =

(
T1, . . . , Tp

)> ∼ mvtp,ν(Σ), where the scale matrix Σ has positive diagonal elements σ2
1 > 0, . . . ,

σ2
p > 0. Then

Tj
σj
∼ tν , j = 1, . . . , p.

Proof.
• From definition of the multivariate t-distribution, T can be written as T = U

√
ν

V
, where U =(

U1, . . . , Up
)> ∼ Np(0p, Σ) and V ∼ χ2

ν are independent.

• Then for all j = 1, . . . , p:
Tj
σj

=
Uj
σj

√
ν

V
=

Zj√
V
ν

,

where Zj ∼ N (0, 1) is independent of V ∼ χ2
ν .

k

6 vícerozměrné Studentovo t-rozdělení 7 měřítková matice
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B.3 Some distributional properties

Lemma B.2 Property of a normal distribution.
Let Z ∼ Nn(0, σ2In). Let T : Rn −→ R be a measurable function satisfying T (cz) = T (z) for all c > 0
and z ∈ Rn. The random variables T (Z) and ‖Z‖ are then independent.

Proof.
• Consider spherical coordinates:

Z1 = R cos(φ1),

Z2 = R sin(φ1) cos(φ2),

Z3 = R sin(φ1) sin(φ2) cos(φ3),

...

Zn−1 = R sin(φ1) · · · sin(φn−2) cos(φn−1),

Zn = R sin(φ1) · · · sin(φn−2) sin(φn−1).

• Distance from origin: R = ‖Z‖.
• Direction: φ =

(
φ1, . . . , φn−1

)>
.

• Exercise for the 3rd year bachelor students:
If Z ∼ Nn(0, σ2In) then distance R from the origin and direction φ are independent.

• R = ‖Z‖ (distance from origin itself), T (Z) depends on the direction only (since T (Z) = T (cZ) for all
c > 0) and hence ‖Z‖ and T (Z) are independent.

k



Appendix C
Asymptotic Theorems

Theorem C.1 Strong law of large numbers (SLLN) for i.n.n.i.d. random variables.
Let Z1, Z2, . . . be a sequence of independent not necessarily identically distributed (i.n.n.i.d.) random vari-
ables. Let E(Zi) = µi, var(Zi) = σ2

i , i = 1, 2, . . .. Let

∞∑
i=1

σ2
i

i2
<∞.

Then
1

n

n∑
i=1

(Zi − µi)
a.s.−→ 0 as n→∞.

Proof. See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study programme).
k

Theorem C.2 Strong law of large numbers (SLLN) for i.i.d. random variables.
Let Z1, Z2, . . . be a sequence of independent identically distributed (i.i.d.) random variables.

Then
1

n

n∑
i=1

Zi
a.s.−→ µ as n→∞

for some µ ∈ R if and only if
E
∣∣Z1

∣∣ <∞,
in which case µ = E

(
Z1

)
.

388
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Proof. See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study programme).
k

Theorem C.3 Central limit theorem (CLT), Lyapunov.
Let Z1, Z2, . . . be a sequence of i.n.n.i.d. random variables with

E
(
Zi
)

= µi, ∞ > var
(
Zi
)

= σ2
i > 0, i = 1, 2, . . .

Let for some δ > 0 ∑n
i=1 E

∣∣Zi − µi∣∣2+δ(∑n
i=1 σ

2
i

) 2+δ
2

−→ 0 as n→∞.

Then ∑n
i=1(Zi − µi)√∑n

i=1 σ
2
i

D−→ N (0, 1) as n→∞.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).
k

Theorem C.4 Central limit theorem (CLT), i.i.d..
Let Z1, Z2, . . . be a sequence of i.i.d. random variables with

E
(
Zi
)

= µ, ∞ > var
(
Zi
)

= σ2 > 0, i = 1, 2, . . . .

Let Zn = 1
n

∑n
i=1 Zi.

Then

1√
n

n∑
i=1

Zi − µ
σ

D−→ N (0, 1) as n→∞,

√
n
(
Zn − µ

) D−→ N (0, σ2) as n→∞.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).
k

Theorem C.5 Central limit theorem (CLT), i.i.d. multivariate.
Let Z1, Z2, . . . be a sequence of i.i.d. p-dimensional random vectors with

E
(
Zi
)

= µ, var
(
Zi
)

= Σ, i = 1, 2, . . . ,
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where Σ is a real positive semidefinite matrix. Let Zn = 1
n

∑n
i=1 Zi.

Then √
n
(
Zn − µ

) D−→ Np(0p, Σ).

If Σ is positive definite then also

1√
n

n∑
i=1

Σ−1/2
(
Zi − µ

) D−→ Np(0p, Ip).

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).
k

Theorem C.6 Cramér-Wold.
Let Z1, Z2, . . . be a sequence of p-dimensional random vectors. Let Z be a p-dimensional random vector.

Zn
D−→ Z as n→∞

if and only if for all l ∈ Rp

l>Zn
D−→ l>Z as n→∞.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).
k
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Theorem C.7 Cramér-Slutsky.
Let Z1, Z2, . . . be a sequence of random vectors such that

Zn
D−→ Z as n→∞,

where Z be a random vector. Let S1, S2, . . . be a sequence of random variables such that

Sn
P−→ S as n→∞,

where S ∈ R is a real constant.

Then

(i) SnZn
D−→ SZ as n→∞.

(ii)
1

Sn
Zn

D−→ 1

S
Z as n→∞, if S 6= 0.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

See also Shao (2003, Theorem 1.11 in Section 1.5).
k
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