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I. Robust procedures for detection of a change in regression

Robust procedures versus classical L2 procedures

off-line and on-line procedures

II. Two-sample change point analysis

Motivated by real data – measurements of jump height and speed:
432 girls, 364 boys (6–19 years)
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I. Robust procedures for detection of a change in regression

Regression model-off-line version:

Yi = xT
i β + xT

i δnI{i > k0}+ ei , i = 1, . . . , n

β = (β1, . . . , βp)T – unknown parameters

δn = (δn1, . . . , δnp)T – unknown parameters

xi = (xi1, . . . , xip)T -observed regressors

k0 – change-point – unknown

e1, . . . , en – random errors with some properties

Basic problems:

(a) H0 : k0 = n, H1 : k0 < n

(b) Estimator of k0 and other parameters
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Hušková
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Typically max-likelihood type test under the assumption that the
error are i.i.d. N(0, σ2) are derived and it is checked whether the
test have a good performance under weaker assumptions (usually
asymptotic behavior is studied).

It is well-known that such procedures are sensitive w.r.t.
non-normality of errors (heavy tailed or there are outliers), therefore
robust procedures were developed. Typically related to the so called
M-estimators developed by P. Huber.

Rcall: M-estimator of β under H0 is defined as a minimizer of

n∑
i=1

ρ(Yi − xT
i b)

w.r.t. b, ρ is a convex loss function, denote ψ = ρ′– called score
function
βn(ψ) – minimizer
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Typical choices of ψ(·):

• ψ(x) = x , x ∈ R– L2 norm

• ψ(x) = sign(x), x ∈ R– L1 norm

• Huber function, K > 0

ψ(x) = x , |x | > K

= K sign(x), |x | ≤ K

• ψβ(x) = βI{x > 0} − (1− β)I{x ≤ 0} - β-quantile, β ∈ (0, 1)

• score function related likelihood ratio
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Hušková
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Test statistics:

Tn(ψ) = sup
0<t<1

{1

n
ST
b(n+1)tc(ψ)

(
Σ̂n(ψ)

)−1
Sb(n+1)tc(ψ)

}
Sk(ψ) =

k∑
i=1

xiψ(Yi − xT
i βn(ψ)), k = 1, . . . , n

Σ̂n(ψ) – an estimator of Σ(ψ)

Σ(ψ) = lim
n→∞

var
{1

n

n∑
i=1

ψ(ei )
}

Basic property under the null hypothesis: If 1
n

∑k
i=1 xix

T
i ≈ k

n Σ
then as n→∞

Tn(ψ)→d sup
0<t<1

{ p∑
j=1

B2
j (t)

}
B1(t), . . . ,Bp(t) – independent Brownian bridges
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Simulations

the R-package sandwich (see Zeileis).
n = 100, 200, 400
β0 = 1.0, 1.0)
xi = (1, xi ), xi – AR (1)
k0 = n/2
α = 0.05, p = 2
regressors to be i.i.d. N(0,1); the errors were generated as AR(1)
with heavy tailed innovations coming either from the Student
distribution t1 and t2; for various values of the coefficient :
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δ (0, 0) (0.5, 0) (1, 0) (0, 0.5) (0, 1) (0.5, 0.5) (1, 1)
ρ n L2

100 1.7 (5) 4 (12) 18 (36) 4 (12) 16 (35) 8 (20) 34 (56)
0 200 1.5 (5) 13 (26) 53 (70) 13 (26) 55 (71) 29 (45) 79 (88)

400 2.0 (5) 29 (40) 83 (89) 30 (41) 83 (88) 56 (66) 94 (97)
100 2.3 (5) 3 (9) 10 (23) 4 (12) 16 (35) 7 (17) 26 (49)

0.2 200 2.1 (5) 7 (15) 34 (49) 13 (24) 52 (67) 22 (34) 69 (80)
400 2.1 (5) 17 (26) 64 (73) 30 (42) 83 (88) 47 (58) 92 (94)
100 3.1 (5) 4 (7) 7 (14) 5 (10) 14 (27) 7 (12) 19 (35)

0.4 200 2.7 (5) 6 (10) 20 (28) 13 (19) 49 (58) 18 (25) 61 (70)
400 3.6 (5) 11 (15) 43 (51) 27 (33) 80 (84) 37 (44) 88 (91)

ρ n Huber
100 2.4 (5) 12 (22) 48 (65) 9 (19) 34 (53) 20 (33) 66 (83)

0 200 2.7 (5) 38 (48) 96 (98) 35 (46) 92 (95) 68 (77) 100 (100)
400 4.1 (5) 79 (82) 100 (100) 76 (78) 100 (100) 98 (98) 100 (100)
100 1.5 (5) 5 (14) 23 (43) 8 (19) 31 (54) 12 (28) 50 (75)

0.2 200 2.2 (5) 19 (29) 72 (82) 31 (44) 87 (93) 50 (62) 98 (99)
400 3.2 (5) 48 (56) 99 (99) 70 (77) 100 (100) 89 (92) 100 (100)
100 1.5 (5) 3 (9) 11 (24) 6 (15) 23 (45) 8 (20) 34 (59)

0.4 200 3.1 (5) 10 (15) 41 (51) 24 (32) 78 (84) 35 (44) 89 (94)
400 4.2 (5) 24 (27) 81 (83) 57 (59) 99 (99) 72 (75) 100 (100)

ρ n L1

100 3.6 (5) 14 (20) 50 (60) 11 (16) 38 (47) 22 (30) 69 (77)
0 200 3.0 (5) 38 (45) 95 (97) 35 (42) 91 (94) 67 (72) 100 (100)

400 4.7 (5) 78 (79) 100 (100) 74 (74) 100 (100) 96 (97) 100 (100)
100 2.9 (5) 8 (12) 29 (40) 10 (14) 33 (43) 15 (22) 56 (66)

0.2 200 3.7 (5) 22 (26) 78 (82) 31 (36) 86 (89) 50 (57) 98 (99)
400 4.2 (5) 53 (55) 99 (99) 67 (70) 100 (100) 89 (90) 100 (100)
100 2.7 (5) 6 (9) 17 (24) 9 (13) 24 (35) 10 (17) 39 (51)

0.4 200 3.2 (5) 13 (18) 47 (56) 23 (30) 73 (79) 34 (41) 89 (92)
400 4.1 (5) 27 (30) 86 (87) 51 (54) 99 (99) 72 (74) 100 (100)

Table 5: Empirical power of the test in % with the size-corrected power in the parentheses, AR(1) errors
with t2 innovations, flat-top kernel
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Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 11 / 28



Two
contributions

to
change-point

analysis

Marie
Hušková
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δ (0, 0) (1/2, 0) (1, 0) (0, 1/2) (0, 1) (1/2, 1/2) (1, 1)
n L2

100 1.6 1.9 2.3 2.0 3.1 2.4 4.4
200 0.9 1.8 3.3 1.8 4.0 2.4 7.6
400 1.3 2.0 3.9 2.0 4.7 2.8 8.2
n Huber

100 2.3 7.0 24.6 6.7 19.1 11.5 39.9
200 3.2 22.3 73.1 20.4 64.8 39.1 92.4
400 4.1 49.0 98.0 46.6 97.4 81.0 100.0
n L1

100 3.8 11.6 38.9 9.5 27.6 17.4 52.8
200 4.5 30.7 88.5 27.7 78.8 52.5 97.7
400 4.8 64.6 99.9 60.6 99.6 91.5 100.0

Table 6: Empirical power of the test (in %), i.i.d. errors ∼ t1, flat-top kernel

δ (0, 0) (1/2, 0) (1, 0) (0, 1/2) (0, 1) (1/2, 1/2) (1, 1)
ρ n Huber

100 2.0 21.3 77.0 14.0 60.0 35.4 95.3
0 200 3.3 69.6 99.6 62.3 100.0 94.4 100.0

400 4.6 98.4 100.0 97.5 100.0 100.0 100.0
100 2.1 11.5 56.5 12.5 55.4 24.2 87.7

0.2 200 2.5 47.9 98.9 60.1 100.0 88.2 100.0
400 4.3 86.7 100.0 96.9 100.0 99.9 100.0
100 1.4 6.0 30.3 12.0 53.6 19.8 77.2

0.4 200 2.9 25.6 88.8 54.3 99.6 74.5 100.0
400 4.0 62.2 99.9 94.4 100.0 99.4 100.0

Table 7: Empirical power of the test (in %), AR(1) errors with the Bernoulli innovations, flat-top kernel
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On-line procedures
Robust monitoring for CAPM for high-frequency portfolio
betas

ri (s) = αi + βi ri ,M(s) + ei (s), i ∈ Z, s ∈ [0, 1],

ri (s) = (ri ,1(s), . . . , ri ,d(s))T – d-dimensional vector of (functional)
log-returns at (say) “day” i and “intra-day time” s,

ri ,M(s) – the log-return of the market portfolio at day i and time s,

ei (s) = (ei ,1(s), . . . , ei ,d(s))T – d-dimensional (functional) error
terms

αi ’s and βi ’s are d-dimensional unknown parameters

βi ’s are the parameters of interest, usually called the “portfolio
betas”

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 13 / 28



Two
contributions

to
change-point

analysis

Marie
Hušková
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We assume a training sample of size m with no instabilities is
available, i.e.,

α1 = . . . = αm =: α0 = (α0
1, . . . , α

0
d)T ,

β1 = . . . = βm =: β0 = (β0
1 , . . . , β

0
d)T ,

α0 and β0 – unknown parameters

Null hypothesis

H0 : β1 = . . . = βm = βm+1 = . . .

of no “change versus” the alternative

HA : β1 = . . . = βm+k∗ 6= βm+k∗+1 = . . .

a “structural break” at an unknown change-point k∗ = k∗m.

ri ,j(s) = α0
j +β0

j ri ,M(s)+(α1
j +β1

j ri ,M(s))δmI{i > m+k∗}+ei ,j(s), j = 1, . . . , d , i = 1, 2, . . . , s ∈ [0, 1],
(1)

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 14 / 28
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Define

ψ(êi (sν)) = (ψ1(êi ,1(sν)), . . . , ψd(êi ,d(sν)))T

êi (sν) = (êi ,1(sν), . . . , êi ,d(sν))T ,

êi ,j(sν) = ri ,j(sν)− α̂jm − β̂jmri ,M(sν).

sν = ν/n, ν = 1, . . . , n, n = n(m)

test statistic based on the first m + k (functional) observations:

Q̂(k ,m) =
( 1√

m

m+k∑
i=m+1

1

n

n∑
ν=1

ri ,M(sν)ψ(êi (sν))
)T

(Σ̂m)−1

( 1√
m

m+k∑
i=m+1

1

n

n∑
ν=1

ri ,M(sν)ψ(êi (sν))
)

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 15 / 28
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Σ̂m is an estimator of the asymptotic variance (matrix)

Σ = lim
m

var
{ 1√

m

m∑
i=1

∫ 1

0
ri ,M(s)ψ(ei (s))ds

}
based on the first m observations.

The null hypothesis is rejected if

Q̂(k,m)/qγ(k/m) ≥ c

for properly chosen c .

For a vector-valued random variable X define

||X||p =
(
E |X|p

)1/p
, p ≥ 1,

the Lp-norm of X, where |X| denotes the Euclidean norm of X.

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 16 / 28
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Hušková
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Assumptions

(B.1) For any i ∈ Z, ri ,M(·) = h(ξi (·), ξi−1(·), . . .), where h(·) is a
measurable function, {ξi (·)} is a sequence of i.i.d. random
functions, and sups∈[0,1] E |ri ,M(s)|3 <∞.

(B.2) For any i ∈ Z, ei (·) = g(ζ i (·), ζ i−1(·), . . .), where g(·) is a
measurable function, {ζ i (·)} is a sequence of i.i.d. random
functions having some further properties to be specified later.

(B.3) The sequences {ξi (·)} and {ζ i (·)} are independent.

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 17 / 28



Two
contributions

to
change-point

analysis

Marie
Hušková
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(B.4) For all i ∈ Z,

sup
s∈[0,1]

∞∑
L=1

‖ri ,M(s)− r
(L)
iM (s)‖2 <∞,

r
(L)
iM (·) = h(ξi (·), ξi−1(·), . . . , ξi−L+1(·), ξ(L)

i−L(·), ξ(L)
i−L−1(·), . . .),

with ξ
(L)
i−L(·), ξ(L)

i−L−1(·), . . . being i.i.d. with the same
distribution as ξ0(·) and independent of {ξi (·)}.

(B.5) With ψ(ei (·)) = (ψ1(ei ,1(·)), . . . , ψd(ei ,d(·)))T , for all i ∈ Z, it
holds that

sup
s∈[0,1]

sup
|a|≤a0

∞∑
L=1

‖ψ(ei (s)− a)−ψ(e
(L)
i (s)− a)‖2 <∞

for some a0 > 0, where

e
(L)
i (·) = g(ζ i (·), ζ i−1(·), . . . , ζ i−L+1(·), ζ(L)

i−L(·), ζ(L)
i−L−1(·), . . .),

with ζ
(L)
i−L(·), ζ(L)

i−L−1(·), . . . being i.i.d. with the same
distribution as ζ0(·) and independent of {ζ i (·)}.

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 18 / 28
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(B.6) We let n = n(m)→∞ as m→∞.

(B.7) For all i ∈ Z, j = 1, . . . , d , with sν = ν/n as above and
n = n(m)→∞,

a)
limm(log m) 1

n

∑n
ν=1 suph∈[0,1/n] ||ri ,M(sν)− ri ,M(sν − h)||2 = 0

and

b)
limm(log m) 1

n

∑n
ν=1 suph∈[0,1/n] ‖ψj(ei ,j(sν))− ψj(ei ,j(sν − h))‖2 = 0.

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 19 / 28
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Application

Sectors: Boeing (BA), Bank of America (BAC), Microsoft (MSFT),
AT&T (T), and Exxon Mobile (XOM)

market portfolio, the S&P 100 index itself

The intra-day behavior of the process {ri (s) : s ∈ [0; 1]; i ∈ Z} is
defined at time s as the difference between the log-prices of the
stocks at time s and s + 15 min, is thus sampled every 15 minutes
during any trading day i .

The process riM(·) is defined analogously.

Historical training period January 29, 2001 and consists of 120
trading days ( the portfolio betas appear reasonably stable).

The monitoring horizon for the closed-end procedure was selected as
360 days, corresponding to T = 3. This covers the 9/11/2001
event.

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 20 / 28
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shows L2 estimates of portfolio betas based on moving windows of
10 trading days for each company throughout the historical and
monitoring periods. The solid black vertical line marks the end of
the historical period (120 days), whereas the dashed black line
marks the last day, when the estimate is not influenced by the
observations from the monitoring period. The grey lines refer in the
same way to the 9/11 event.
The BAC and T estimates seem to be stable throughout the whole
period, whereas there is a small temporary influence of the 9/11
event on MSFT and a very big one on BA. Finally there seems to be
a shift in the portfolio beta of XOM right after the end of the
training period. We come back to these observations later on.

Q̂(k ,m)/(c0.25(0.05) qγ(k/m)), for the L2 (dashed line), Huber
(solid line) and L1 (dotted line)

Marie Hušková ( Charles University) Two contributions to change-point analysis Lancaster University 21 / 28
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Figure: L2 estimates of portfolio beta based on moving windows of 10
trading days. Black solid vertical line marks end of training period, grey
one marks the 9/11 event. Dashed lines indicate the beginning of moving
windows that are already influenced by these events.
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Figure: Normalized test statistics for the L2 (dashed line), Huber (solid
line) and L1 (dotted line) monitoring procedures, various combinations of
stocks - given in the heading of each chart. x-axis shows number of
trading days from the beginning of the monitoring on.
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Figure: Boeing stock, normalized test statistics for L2 (dashed line), Huber
(solid line) and L1 (dotted line) monitoring procedures. 5 or 10 days
excluded from the monitoring after the 9/11.
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Hist. period
XOM 1-120 1-156 1-240 1-480 121-480

L2 0 111 118 118 0
Huber 0 109 109 118 362
L1 32 109 109 118 362

Huber
BA 0 0 112 151 0
BAC 0 0 0 0 0
MSFT 0 0 0 343 343
T 67 67 67 0 0
L2
BA 0 0 0 0 0
BAC 0 0 0 0 0
MSFT 0 0 0 343 343
T 41 41 0 0 0

Retrospective analysis

Just before 11/9 Including 11/9 After 11/9

Other indicies

 XOM indicates that  retroepctive test based 
on historical data does not  detect any change. 
 the change occurs quite close to the end of historical period
If 156 observations a changes indicated at 111st
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