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a b s t r a c t

In this work, we extend our study in Chochola et al. [7] and propose some robust sequential
procedure for the detection of structural breaks in a Functional Capital Asset Pricing Model
(FCAPM). The procedure is again based on M-estimates and partial weighted sums of M-
residuals and ‘‘robustifies’’ the approach of Aue et al. [3], in which ordinary least squares
(OLS) estimates have been used. Similar to Aue et al. [3], and in contrast to Chochola et al.
[7], high-frequency data can now also be taken into account. The main results prove some
null asymptotics for the suggested test as well as its consistency under local alternatives.
In addition to the theoretical results, some conclusions from a small simulation study to-
gether with an application to a real data set are presented in order to illustrate the finite
sample performance of our monitoring procedure.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and statistical framework

Main aim of this work is to continue and extend our study in Chochola et al. [7] concerning the robust monitoring of
CAPM portfolio betas. The Capital Asset Pricing Model (CAPM), introduced by Sharpe [18] and subsequently modified by
many authors (see, e.g. Lintner [14], Merton [15] and others), is a still very popular and widely used model for evaluating
the risk of a portfolio of assets with respect to the market risk. However, it is also well-known that the pricing of assets and
predictions of risks may be incorrect and misleading if the model parameters βi are varying over time. As in Aue et al. [3],
we adopt here the arguments of Ghysels [9] and study a (piecewise) unconditional CAPM, rather than a conditional version
of the latter (cf., e.g., Andersen et al. [1] for a comprehensive review), since in many cases misspecified conditional CAPMs
tend to produce larger pricing errors. For a more extensive discussion of this fact, we refer to Aue et al. [3], Sections 1 and 2,
and the references mentioned therein.

Indeed, contributing to avoid pricing and prediction errors was the main motivation for Aue et al. [3] in constructing a
sequential monitoring procedure for the testing of the stability of portfolio betas. The corresponding stopping rules in [3]
are based on comparing the (ordinary) least squares estimate (OLS) of the beta from a historical data set (training period) to
that from sequentially incoming new observations, and they were able to take high-frequency data into account which is a
typical situation in nowadays’ market analyses (see also Chochola et al. [7] and the references mentioned therein).
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Since OLS estimates may be sensitive with respect to outliers, we tried to ‘‘robustify’’ the Aue et al. [3] approach in [7]
by making use ofM-estimates instead of least squares estimates and so are able to deal with heavier tail distributions than
the OLS procedure. In a first step, however, we confined ourselves there to a study of the CAPM without high-frequency
observations. Aimof our presentwork now is to extend the latter study to the FunctionalCapital Asset PricingModel (FCAPM)
taking also high-frequency observations into account. It will turn out that, even in thismore general situation, somemoment
conditions may be relaxed (cf., e.g., (B.4) below compared to the corresponding assumption in [7]), but that, on the other
hand and similar to Aue et al. [3], certain smoothness conditions have to be added concerning themodel’s intra-day behavior
over time (see, e.g., (A.1)–(A.3), (B.5) and (B.7) below).

Note that, via Lp–m-approximability type conditions (cf. (B.4)–(B.5) below), our model is suitable for covering general
types of weak dependencies rather than strong dependencies in the sense of long memory. Monitoring procedures in the
latter situation are still open for future work. On the other hand, in contrast to [3], our present approach is now applicable to
data sets under heavy-tailed (leptocurtic) and contaminated distributions observed at high frequencies, which is certainly
more useful in real data applications. The price to pay, however, is thatmore involved techniques than those used in Chochola
et al. [7] are required now and the computational complexity increases as well. Nevertheless, a similar robust sequential
monitoring procedure can be constructed for the FCAPM portfolio betas, now also covering a high-frequency situation as
described below.

We would like to mention, however, that our focus here is on the methodological and theoretical side, trying to extend
the work of Aue et al. [3] by using a robust approach and that of Chochola et al. [7] by including high-frequency situations.
Moreover, for the sake of illustration and comparison, we used the same data set as in [3] for our application and a similar
setting in the small simulation study of Section 3.

Our statistical framework in the sequel will be as follows. We consider the model

ri(s) = αi + βiriM(s)+ εi(s), i ∈ Z, s ∈ [0, 1], (1.1)

where ri(s) = (ri,1(s), . . . , ri,d(s))
T is a d-dimensional vector of (functional) log-returns at (say) ‘‘day’’ i and ‘‘intra-day time’’

s, riM(s) is the log-return of the market portfolio at day i and time s, and εi(s) = (εi,1(s), . . . , εi,d(s))
T are d-dimensional

(functional) error terms. Theαi’s andβi’s are d-dimensional unknownparameters, and theβi’s are the parameters of interest,
usually called the ‘‘portfolio betas’’. Note that the sequence {(ri(·), riM(·))} is a (d + 1)-dimensional (functional) time series
satisfying certain conditions to be specified below.

We assume that a training sample of sizem with no instabilities is available, i.e.,

α1 = . . . = αm =: α0 = (α0
1, . . . , α

0
d)

T , β1 = . . . = βm =: β0 = (β0
1 , . . . , β

0
d )

T , (1.2)

where α0 and β0 are unknown parameters. The problem of the instability of the portfolio betas is formulated as a testing
problem, that is, we want to test the null hypothesis

H0 : β1 = · · · = βm = βm+1 = · · ·

of ‘‘no change’’ versus the alternative

HA : β1 = · · · = βm+k∗ ≠ βm+k∗+1 = · · ·

of a ‘‘structural break’’ at an unknown change-point k∗
= k∗

m.
For later convenience we reformulate our model as follows:

ri,j(s) = α0
j + β0

j riM(s)+ (α1
j + β1

j riM(s))δmI{i > m + k∗
} + εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (1.3)

where k∗
= k∗

m is the change-point and α0
j , β

0
j , α

1
j , β

1
j , δm are unknown parameters.

As in [7], our test procedures will be generated by convex loss functions ϱ1, . . . , ϱd with a.s. derivatives ϱ′

j = ψj called
score functions having further properties to be specified later. The estimatorsαjm =αjm(ψj),βjm = βjm(ψj) of α0

j , β
0
j based

on the training sample are defined as minimizers of

m
i=1

n
ν=1

ϱj(ri,j(sν)− aj − bjriM(sν)) (1.4)

w.r.t. aj, bj, for j = 1, . . . , d, where sν = ν/n, ν = 1, . . . , n, are n equidistant intra-day time-points.
The test procedure constructed below will be based on functionals of partial sums of weighted M-residuals, which are

defined as follows:

ψ(εi(sν)) = (ψ1(εi,1(sν)), . . . , ψd(εi,d(sν)))T (1.5)

with εi(sν) = (εi,1(sν), . . . ,εi,d(sν))T ,εi,j(sν) = ri,j(sν)−αjm −βjmriM(sν). (1.6)
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A suitable test statistic based on the firstm + k (functional) observations is

Q (k,m) =

 1
√
m

m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν))T6−1
m

 1
√
m

m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν)) (1.7)

where n = n(m) (see below) and the matrix6m is an estimator of the asymptotic variance (matrix)

6 = lim
m→∞

var
 1

√
m

m
i=1

 1

0
riM(s)ψ(εi(s))ds


(1.8)

based on the firstm observations. Details will be discussed later.
For notational convenience and later use, we introduce the notations, for i ∈ Z and n ∈ N,

zi = (zi,1, . . . , zi,d)
T

=

 1

0
riM(s)ψ(εi(s))ds, (1.9)

zi =zi,n = (zi,1, . . . ,zi,d)T =
1
n

n
ν=1

riM(sν)ψ(εi(sν)), (1.10)

zi =zi,n = (zi,1, . . . ,zi,d)T =
1
n

n
ν=1

riM(sν)ψ(εi(sν)), (1.11)

so that

Q (k,m) =

 1
√
m

m+k
i=m+1

ziT6−1
m

 1
√
m

m+k
i=m+1

zi and

6 = lim
m→∞

var
 1

√
m

m
i=1

zi

.

Similar to [7], we reject the null hypothesis as soon as the test statistic exceeds a critical level for the first time, i.e., whenQ (k,m)/qγ (k/m) ≥ c

for an appropriately chosen c = cγ (α), where qγ (t), t ∈ (0,∞), is a suitable boundary (weight) function. In this case
we stop the procedure and confirm a structural break, otherwise we continue monitoring. The associated stopping rule is
given by

τm = τm(γ ) = inf{1 ≤ k ≤ ⌊mT⌋ : Q (k,m)/qγ (k/m) ≥ c}, (1.12)

with inf∅ := ∞. Here T is a fixed positive number, that is, for practical reasons, we have a so-called closed-end procedure
again. The following class of weight functions qγ can be used, e.g.,

qγ (t) = (1 + t)2
 t
t + 1

2γ
, t ∈ (0,∞), (1.13)

where γ is a tuning constant taking values in

0, 1/2). The critical value c will be chosen such that, under H0 , for α ∈ (0, 1)

(fixed),

lim
m→∞

P

τm < ∞


= α, (1.14)

i.e., the overall asymptotic level (false alarm rate) is α and, under HA,

lim
m→∞

P

τm < ∞


= 1, (1.15)

i.e., the test is consistent (has asymptotic power 1).
The rest of the paper is organized as follows. The main results including the assumptions and limit properties of the

test procedures are presented and discussed in Section 2. Section 3 reports on the results of a small simulation study and an
application to a real data set. The proofs of ourmain results are given in Section 4, whereas Section 5 contains some auxiliary
lemmas to be used in the proofs.

2. Assumptions and main results

Compared to [7], the assumptions on the sequence {(εi,1(·), . . . , εi,d(·), riM(·))}i∈Z and on the loss functions ϱ1, . . . , ϱd
(or equivalently on the score functions ψ1, . . . , ψd) have to be extended as follows.
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We assume on ψj, the distributions of ε0,j(s) and λj(x; s) = −Eψj(ε0,j(s)− x), j = 1, . . . , d, s ∈ [0, 1], x ∈ R1.

(A.1) ψj are nondecreasing functions, λj(0, s) = 0, λ′

j(0, ·) is continuous on [0, 1], λ′

j(x, s) :=
∂
∂xλj(x, s) exists in a neighbor-

hood of 0 for all s ∈ [0, 1],

|λ′

j(x, s + z)− λ′

j(0, s + z)| ≤ D0|x|, |x| ≤ x0, s, s + z ∈ [0, 1], |z| ≤ z0,

and

|λ′

j(0, x + s)− λ′

j(0, s)| ≤ D0|x|, |x| ≤ x0, x + s, s ∈ [0, 1],

for some x0, z0,D0 > 0;

(A.2)
 1
0 λ

′

j(0, s) ds
 1
0 λ

′

j(0, s) Er0M(s)
2 ds >

 1
0 λ

′

j(0, s) Er0M(s) ds
2

;
[Note that, via the Cauchy–Schwarz inequality, we have at least ‘‘≥’’ in the latter condition, so we just assume nonde-
generacy.]

(A.3) sups∈[0,1] E|ψj(ε0,j(s))|
3 < ∞ and

E
ψj(ε0,j(s)+ t2)− ψj(ε0,j(s)+ t1)

2 ≤ C1|t2 − t1|, |t1|, |t2| ≤ c0, s ∈ [0, 1],

for some c0, C1 > 0.

For later applications, let us briefly recall some of themost often consideredψj-functions. The classical choiceψj(x) = x,
x ∈ R1, leads to the ordinary least squares (OLS) and L2-residuals. A choice ofψj(x) = sign x, x ∈ R1, leads to L1-estimators
and L1-residuals. Huber [12] introducedψj(x) = x I{|x| ≤ K} + K sign x I{|x| > K}, x ∈ R1, for some K > 0, which is one of
the most often used score functions, usually known as the Huber function.

For a vector-valued random variable X define
∥X∥p =


E|X |

p1/p, p ≥ 1,
the Lp-norm of X , where |X | denotes the Euclidean norm of X .

Concerning the assumptions on {riM(·)} and {εi(·)} we follow the setup in Aue et al. [3], but instead of fourth moment
assumptions used there it typically suffices here to have second or (2 +∆)-moment conditions:
(B.1) For any i ∈ Z, riM(·) = h(ξi(·), ξi−1(·), . . .), where h(·) is a measurable function, {ξi(·)} is a sequence of i.i.d. random

functions, and sups∈[0,1] E|r0M(s)|
3 < ∞.

[Note that {riM(·) : i ∈ Z} is a stationary and ergodic sequence.]

Remark 2.1. For the sake of simplicity, we assume a third moment condition in Assumptions (A.3) and (B.1). With some
more technical effort, the latter can be replaced by a (2 +∆)-moment condition with some∆ > 0 (cf. Lemma 5.1(i)–(ii)).
(B.2) For any i ∈ Z, εi(·) = g(ζi(·), ζi−1(·), . . .), where g(·) is a measurable function, {ζi(·)} is a sequence of i.i.d. random

functions having some further properties to be specified later.
[Note that {εi(·) : i ∈ Z} is also a stationary and ergodic sequence.]

(B.3) The sequences {ξi(·)} and {ζi(·)} are independent.
(B.4) For all i ∈ Z,

sup
s∈[0,1]

∞
L=1

∥riM(s)− r (L)iM (s)∥2 < ∞,

where

r (L)iM (·) = h(ξi(·), ξi−1(·), . . . , ξi−L+1(·), ξ
(L)
i−L(·), ξ

(L)
i−L−1(·), . . .),

with ξ(L)i−L(·), ξ
(L)
i−L−1(·), . . . being i.i.d. with the same distribution as ξ0(·) and independent of {ξi(·)}.

[Note that r (L)iM (·)
D
= riM(·)

D
= r0M(·) for all i ∈ Z and L ≥ 1.]

(B.5) With ψ(εi(·)) = (ψ1(εi,1(·)), . . . , ψd(εi,d(·)))
T , for all i ∈ Z, it holds that

sup
s∈[0,1]

sup
|a|≤a0

∞
L=1

∥ψ(εi(s)− a)− ψ(ε
(L)
i (s)− a)∥2 < ∞

for some a0 > 0, where

ε
(L)
i (·) = g(ζi(·), ζi−1(·), . . . , ζi−L+1(·), ζ

(L)
i−L(·), ζ

(L)
i−L−1(·), . . .),

with ζ(L)i−L(·), ζ
(L)
i−L−1(·), . . . being i.i.d. with the same distribution as ζ0(·) and independent of {ζi(·)}.

Remark 2.2. Assumption (B.5) could be weakened as follows, but then the proofs would require somewhat more techni-
calities:
(B.5′) lim supn→∞

1
n

n
ν=1 sup|a|≤a0


∞

L=1 ∥ψ(εi(sν)− a)− ψ(ε
(L)
i (sν)− a)∥2 < ∞

for some a0 > 0, with sν = ν/n, ν = 1, . . . , n, and {ε
(L)
i (·)} as in (B.5).
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As in Aue et al. [3] and Chochola et al. [7], the above assumptions are motivated by the work of Hörmann and
Kokoszka [10] on the concept of Lp–m-approximability, but could be relaxed here to a certain extent.

The following conditions, assuming that the processes under consideration are smooth functions of the intra-day
parameter s ∈ [0, 1], are weakened versions of the corresponding conditions in Aue et al. [3].

First we also make the following ‘‘high-frequency’’ assumption:

(B.6) We let n = n(m) → ∞ as m → ∞.

Secondly, we assume smoothness of the riM(·)’s and ψj(εi,j(·))’s:

(B.7) For all i ∈ Z, j = 1, . . . , d, with sν = 1/n as above and n = n(m) → ∞,
(a) limm→∞(logm) 1n

n
ν=1 suph∈[0,1/n] ∥riM(sν)− riM(sν − h)∥2 = 0

and
(b) limm→∞(logm) 1n

n
ν=1 suph∈[0,1/n] ∥ψj(εi,j(sν))− ψj(εi,j(sν − h))∥2 = 0.

Remark 2.3. It will be obvious from the proofs below that, if the L2-approximability conditions in Assumptions (B.4) and
(B.5) are replaced by corresponding L2+∆-approximability (with some∆ > 0), then the convergence rate condition in (B.7)
can be avoided, i.e., (B.7) can be replaced by

(B.7′) For all i ∈ Z, j = 1, . . . , d, with sν = 1/n as above and n = n(m) → ∞,
(a) limm→∞

1
n

n
ν=1 suph∈[0,1/n] ∥riM(sν)− riM(sν − h)∥2+∆ = 0

and
(b) limm→∞

1
n

n
ν=1 suph∈[0,1/n] ∥ψj(εi,j(sν))− ψj(εi,j(sν − h))∥2+∆ = 0.

Remark 2.4. The theoretical results below as well as the applications to the real data set work with equidistant grid points
being the same for all components. Nevertheless, going through the proofs this assumption can be relaxed, e.g., working
with more general sν,j’s, j = 1, . . . , d, under accordingly modified assumptions. Moreover, having a closer look at the test
statistic defined through (1.7), (1.10) and (2.4), we realize that the test procedures depend on the observations through

zi =
1
n

n
ν=1

riM(sν)ψ(εi(sν)),
that are averages over time grids sν , i.e., averages over the intra-day behavior, which also work for asynchronous data.

Next we present our results on the limit behavior of the test procedures, both under the null hypothesis H0 as well as
under the alternative HA.

2.1. Asymptotic results

Theorem 2.1. Let Assumptions (A.1)–(A.2), (B.1)–(B.7) and (1.13) with γ ∈ [0, 1/2) be satisfied and6m − 6 = oP(1) (m → ∞), (2.1)

where, with the zi’s from (1.9),

6 = lim
m→∞

var
 1

√
m

m
i=1

zi


= E[z0zT0 ] +

∞
i=1

E[z0zTi + zizT0 ], (2.2)

and 6 is a positive definite matrix. Then, under the null hypothesis H0,

max
1≤k≤⌊mT⌋

 Q (k,m)
qγ (k/m)


D

−→ sup
0<t<T/(T+1)

 d
j=1

W 2
j (t)

t2γ


(m → ∞),

where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent (standard) Brownian motions (Wiener processes).

The proof of Theorem 2.1 is postponed to Section 4.
It follows from Assumptions (A.1)–(A.2) and (B.1)–(B.5) that {riM(·)} and {ψ(εi(·))} are independent sequences. Then

Lemma 2.1 and Theorem 4.2 in Hörmann and Kokoszka [10] imply that the series in (2.2) converges (component-wise)
absolutely.

Now we turn to the model under local alternatives, i.e.

ri,j(s) = α0
j + β0

j riM(s)+ (α1
j + β1

j riM(s))δmI{i > m + k∗
} + εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (2.3)

with δm → 0 and k∗ < ⌊mT⌋.
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Theorem 2.2. Let Assumptions (A.1)–(A.2), (B.1)–(B.7) and (1.13) with γ ∈ [0, 1/2) be satisfied and6m − 6 = oP(1) (m → ∞),

where 6 is as in Theorem 2.1. Then, under (2.3), with δm → 0, |δm|m1/2
→ ∞, lim infm→∞(⌊mT⌋ − k∗)/m > 0, and β1

j ≠ 0
for at least one j,

max
1≤k≤⌊mT⌋

 Q (k,m)
qγ (k/m)


P

−→ ∞ (m → ∞).

The proof of Theorem 2.2 is also postponed to Section 4.

Remark 2.5. (a) By Theorem 2.1, the assertion (1.14) holds true if cγ (α) satisfies

P

 sup
0<t<T/(T+1)


d

j=1
W 2

j (t)

t2γ

 ≥ cγ (α)

 = α,

where cγ (α) can either be obtained by simulation of the limit distribution or by an application of a suitable form of bootstrap
based on the training sample.

(b) Theorem 2.2 implies the consistency of the test, i.e., the validity of (1.15) (asymptotic power 1).

2.2. Estimation of the variance matrix

In this section we deal with an estimator of the asymptotic variance (matrix) 6 as given in (2.2). Notice that 6 =
∞

k=−∞
0k, where 0k = E[z0zTk ] for k ≥ 0 and 0−k = 0T

k .
We consider an estimator of 6 based on the firstm (functional) observations defined as6m =


|k|<q

ωq(k)0k (2.4)

where q = q(m), ωq(k) = ω(k/q) and ω is a kernel specified below, and0k is the kth lag sample covariance corresponding
to 0k, i.e.,

0k =


1
m

m−k
i=1

zizTi+k, k ≥ 0,

0T
−k, k < 0,

(2.5)

with thezi’s as defined in (1.10), based on the riM(·)’s from (1.1) and ψ(εi)’s according to the M-residuals as given in (1.5)
and (1.6).

Theorem 2.3. Let Assumptions (A.1), (A.2), and (B.1)–(B.7) be satisfied. Let 6m be the estimator of 6 given in (2.4)with a kernel
ωq(k) = ω(k/q) satisfying the following conditions:
(i) ω(0) = 1;
(ii) ω is a symmetric and Lipschitz-continuous function;
(iii) ω has bounded support;
(iv) the Fourier transform of ω is also Lipschitz-continuous and integrable;
(v) q(m) = O(logm) (m → ∞).

Then 6m = 6+ oP(1) (m → ∞).

We can work, e.g., either with the Bartlett kernel

ω(x) = (1 − |x|)I{|x| ≤ 1} (2.6)

or with the flat-top kernel

ω(x) =


1, |x| ≤

1
2
,

2(1 − |x|),
1
2
< |x| < 1,

0, |x| ≥ 1.

(2.7)
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3. Applications and simulations

In this sectionwe present some results from a small simulation study aswell as an application to a real data set in order to
illustrate the finite sample performance of ourmonitoring procedure based on the test statistic (1.7) with boundary function
(1.13).

First we discuss some aspects which are common to both the simulation study and the application. Since the asymp-
totic distribution of the test statistic given in Theorem 2.1 coincides with the one derived in Chochola et al. [7] (cf. also
Remark 2.3), we can use the critical values given in Table 1 of [7].

The question of the choice of the tuning constant γ has also been discussed in [7] and the recommendation given there
remains valid, i.e., if a change is to be expected ‘‘early’’ after the training period, then γ near to 0.5 is advisable, whereas
for ‘‘late change scenarios’’, small γ ’s are recommended. A choice of γ = 0.25 provides a reasonably good balance between
these two scenarios and is thus used here.

We consider the L2, Huber and L1 ψ-functions and always apply the same function to all coordinates.
It remains to choose the kernel function and especially its bandwidth q in the estimator of the variance matrix suggested

in (2.4). In this aspect, we use the results of Chochola [6] which show that it can be difficult to set a proper q a priori for
the Bartlett or the flat-top kernel, because it depends on the degree of dependency of the data. Thus better results can be
obtained using a data-driven adaptive choice of the bandwidth based on the work of Andrews [2] and implemented in the
statistical software R as described in Zeileis [19]. Differences between possible kernel choices are not too big, so that we
always use the Bartlett kernel here.

As an illustration of a possible application of our robust monitoring, we investigate the data set used in Aue et al. [3] in
more detail. Recalling this data set, it consists of five stocks from different sectors of S&P 100, namely Boeing (BA), Bank of
America (BAC), Microsoft (MSFT), AT&T (T), and Exxon Mobile (XOM). As the market portfolio, the S&P 100 index itself is
used.

The intra-day behavior of the process {ri(s) : s ∈ [0; 1]; i ∈ Z}, which is defined at time s as the difference between the
log-prices of the stocks at time s and s + 15 min, is thus sampled every 15 min during any trading day i. The process riM(·)
is defined analogously.

The historical training period starts on January 29, 2001 and consists of 120 trading days for which the values of the
portfolio betas under consideration appear reasonably stable. The choice of the beginning of the period is motivated by the
fact that, prior to January 29, 2001, the tick size (i.e. the smallest value the price can change) was different. The monitoring
horizon for the closed-end procedure was selected as 360 days, corresponding to T = 3 for our stopping rule in (1.12). This
covers the 9/11 event, the influence of which we want to study.

The stability of the historical portfolio betas was checked via moving windows estimates presented in Fig. 1. The figure
shows Huber estimates of portfolio betas based on moving windows of 10 trading days for each company throughout the
historical and monitoring periods, but the figures look similar for L2 estimates. The solid black vertical line marks the end
of the historical period (120 days), whereas the dashed black line marks the last day, when the estimate is not influenced
by the observations from the monitoring period. The gray lines refer in the same way to the 9/11 event. Since ‘‘no change’’
during the historical period is assumed, we tested for a change in this period via L2 and Huber retrospective procedures and
this assumption could be confirmed.

The BAC and T estimates seem to be stable throughout the whole period, whereas there is a small temporary influence
of the 9/11 event onMSFT and a very big one on BA. Finally there seems to be a shift in the portfolio beta of XOM right after
the end of the training period. We come back to these observations later on.

Next we discuss the robustmonitoring itself. Fig. 2 shows values of the normalized test statistic, i.e.,Q (k,m)/(c0.25(0.05)
qγ (k/m)), for the L2 (dashed line), Huber (solid line) and L1 (dotted line)monitoring procedure and for various combinations
of stocks, which are given in the heading of each chart. On the x-axis the number of trading days is shown starting from the
beginning of the monitoring. A vertical gray dashed line marks the September 11, 2001, terrorist attack, the horizontal one
(at value 1) indicates the critical line, due to the normalization of the statistic.

When all companies are considered together, we get the same results as in Aue et al. [3] for the L2 procedure. The critical
value is extremely exceeded. For the Huber and L1 procedures the crossing still occurs, but in a much more moderate way.

It is possible to get further insight by looking at the stocks individually. In view of the conclusions from Fig. 1, we ex-
amined Boeing (BA) and Exxon (XOM). Portfolio betas of the three remaining companies (BAC, MSFT and T) do not show
any sign of a change as can be seen from the last chart. For Boeing (BA) we can see the extreme influence of the 9/11 event
on the L2 monitoring procedure. In case of robust procedures this has a much smaller impact, the critical value, however,
is still crossed right after the event. For Exxon (XOM) and robust monitoring, the critical line is crossed already before the
9/11 attack—there is a steady increase in the test statistic from the beginning of the monitoring on, which is in line with
the conclusions from Fig. 1. By applying the retrospective procedure to the XOM data for the first 120 and 240 trading days,
respectively, it turned out that no change could be detected based on the period of length 120, but using 240 days a change
was indicated close to trading day 110. This explains why the critical line is already crossed before the 9/11 event.

It is of further interest, whether the change in Boeing’s (BA) portfolio betas after the 9/11 was only temporary or
persistent. In order to find out, we use the same monitoring procedure, but exclude 5 or 10 trading days after the 9/11 from
themonitoring. This can be seen in Fig. 3. We can see that, if 5 days are excluded, then the crossings are much smaller and, if
10 days are excluded, then the terrorist attack has no impact at all and the change is not indicated until mid of March 2002.
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Fig. 1. Huber estimates of portfolio beta based on moving windows of 10 trading days. Black solid vertical line marks end of training period, gray one
marks the 9/11 event. Dashed lines indicate the beginning of moving windows that are already influenced by these events.

Table 1
Empirical sizes at nominal level α = 5% under H0 .

riM εi m L2 Huber L1

Bi Bi 100 8.4 7.0 5.9
200 5.3 4.8 4.1

Bi Mix 100 25.7 7.4 5.8
200 14.5 4.6 3.9

AR(1; 0.1) Bi 100 8.4 7.0 5.0
200 6.4 5.4 4.4

AR(1; 0.4) Bi 100 9.3 7.6 6.2
200 6.7 6.1 5.6

In order to further quantify the finite sample properties of the monitoring procedure, a small simulation study has been
conducted. We simulated data according to the model (1.1), with d = 2, α0 = (1/2, 1/2)T ,β0 = (1, 1)T for simplicity. Var-
ious settings have been used for the market portfolio log-returns riM(·) and the error terms εi(·). The riM(·)’s were either in-
dependent standard Brownianmotions (denoted Bi) or, similarly as in Aue et al. [3], chosen as a functional AR(1) process, i.e.,

riM(s) = ρ

 1

0
K(s, t)ri−1,M(t)dt + ηi(s), s ∈ [0, 1],

where {ηi(·) : i ∈ Z} denotes a sequence of independent standard Brownian motions and K(s; t) = c exp(−|t − s|), with
c such that the norm of K equals one. We chose ρ = 0.1 and ρ = 0.4 as the dependency coefficient and denote the models
as AR(1;0.1) or AR(1;0.4). The random errors, in both coordinates, are either standard Brownian motions or, to illustrate the
robustness of themonitoring procedures, we use a 5% contamination with Brownianmotion having larger variance, i.e. 10Bi
(denoted Mix).

Finallym = 100 orm = 200 and T = 5were chosen, with a tuning constant γ = 0.25 in the boundary function, nominal
level α = 5%, and the Bartlett kernel is used with an adaptive choice of the bandwidth q, as discussed at the beginning of
this section. All results are based on 2000 repetitions.

First we have a look at the empirical levels presented in Table 1.We can see that the levels are approximately kept for the
Huber and L1 procedures in all scenarios considered. This, however, is no longer true for the L2 procedure, especially in the
case of the contaminated model. So, in order to compare the different procedures one would have to adjust them to possess
the same empirical size.

In order to illustrate the properties of the test under the alternative hypothesis, we chose k∗
= 10 and a unit change in

both parametersα andβ and in both coordinates. Fig. 4 shows the densities of the detection delays τm−k∗ for various choices
of distributions of ri,M and εi. As long as both are standard Brownian motions (Bi, Bi), the L2 procedure performs better than
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Fig. 2. Normalized test statistics for the L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring procedures, various combinations of stocks—
given in the heading of each chart. x-axis shows number of trading days from the beginning of the monitoring on.

Fig. 3. Boeing stock, normalized test statistics for L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring procedures. 5 or 10 days excluded
from the monitoring after the 9/11.

Huber and L1, while in case of (Bi,Mix) the L2 procedure is outperformed by the robust ones, in particular by the Huber
procedure. The latter effect is even more visible if all procedures are adjusted to the same empirical size (see also Table 1).

In conclusion, in certain situations the robust monitoring procedures suggested in this work show definite advantages
over themuchmore sensitive L2 approach. They usually avoid overrejection of the test and are able to keep the approximate
size. A choice of Huber’s ψ-function seems to provide a good balance between robust and sensitive monitoring. If no prior
knowledge is available on where to expect a possible change, a choice of the tuning constant γ = 0.25 in (1.13) appears to
be appropriate.

4. Proofs

Proof of Theorem 2.1. Similar to Chochola et al. [7], the proof can be given in three steps. Let us recall that we work with
the model

ri,j(s) = α0
j + β0

j riM(s)+ (α1
j + β1

j riM(s))δmI{i > m + k∗
} + εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (4.1)

as defined in (1.3).
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Fig. 4. Densities of the detection delays for L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring procedures.

1. In a first step we make use of asymptotic representations of the estimatorsαjm, βjm of α0
j , β

0
j , j = 1, . . . , d, from (1.4).

These estimators are based on the training sample only, so thatwe are in a non-sequential setup and can proceed in the same
way as in treating the behavior of multivariate M-estimators. However, we need to take care of the dependency structure
of the random error functions.

In the following it is convenient to introduce auxiliary estimatorsα∗

jm andβ∗

jm as minimizers of

m
i=1

n
ν=1

ϱj(εi,j(sν)− a∗

j /
√
m − b∗

j riM(sν)/
√
m) (4.2)

w.r.t. a∗

j and b∗

j , for j = 1, . . . , d, where sν = ν/n, ν = 1, . . . , n. Clearly,

α∗

jm =
√
m(αjm − α0

j ),
β∗

jm =
√
m(βjm − β0

j ). (4.3)

Usually, the estimatorsα∗

jm andβ∗

jm can be obtained as solutions of the equations

m
i=1

n
ν=1

ψj(εi,j(sν)− (a∗

j + b∗

j riM(sν))/
√
m) = 0, (4.4)

m
i=1

n
ν=1

ψj(εi,j − (a∗

j + b∗

j riM(sν))/
√
m)riM = 0, (4.5)

w.r.t. a∗

j , b
∗

j , for j = 1, . . . , d.

Lemmas 5.2 and 5.3 below ensure thatα∗

jm = OP(1) andβ∗

jm = OP(1) and, moreover, we get the asymptotic representa-
tions, asm → ∞,

α∗

m =
1 1

0 λ
′(0, z)dz

1
√
m

m
i=1

 1

0
ψ(εi(s))ds −β∗

m

 1
0 λ

′(0, z)Er20M(z)dz 1
0 λ

′(0, z)dz
+ OP(m−η), (4.6)

β∗

m =

1
√
m

m
i=1

 1
0 ψ(εi(s))


riM(s)−

 1
0 λ

′(0,z)Er0M (z)dz 1
0 λ

′(0,z)dz


ds

 1
0 λ

′(0, z)Er20M(z)dz −

 1
0 λ

′(0,z)Er0M (z)dz
2

 1
0 λ

′(0,z)dz

+ OP(m−η), (4.7)

with some η > 0 (cf. Remark 5.1).

2. Next, as a consequence of Lemmas 5.2–5.4 in combination with Remarks 5.1–5.2, we observe that the limit behavior of
the weighted partial sums

H(m, k) = (H1(m, k), . . . ,Hd(m, k))T =
1

√
m

m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν)), k = 1, . . . , ⌊mT⌋,
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is the same as that of

H(m, k) =
1

√
m

 m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν))−
k
m

m
i=1

1
n

n
ν=1

riM(sν)ψ(εi(sν))

, k = 1, . . . , ⌊mT⌋.

In view of Lemma 5.5(ii) together with Assumption (2.1), this further implies that the limit behavior of

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m)
is the same as that of

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m),

where

Q (k,m) = H(m, k)T6−1H(m, k), (4.8)

with

H(m, k) =
1

√
m

 m+k
i=m+1

 1

0
riM(s)ψ(εi(s)) ds −

k
m

m
i=1

 1

0
riM(s)ψ(εi(s)) ds


, k = 1, . . . , ⌊mT⌋.

3. In order to obtain the limit behavior of

max
1≤k≤⌊mT⌋

Q (k,m)/qγ (k/m),

withQ (k,m) from (4.8), we follow the lines of proof of Theorem2.1 in Chochola et al. [7].We just have to replace the random
sequences and processes {Zi}, {Z

(L)
i } and {Zm(t)} introduced there by

Zi = (Zi,1, . . . , Zi,d)T =

 1

0
riM(s)ψ(εi(s)) ds, i = 1, 2, . . . ,

Z (L)i = (Z (L)i,1 , . . . , Z
(L)
i,d )

T
=

 1

0
r (L)iM (s)ψ(ε

(L)
i (s)), i = 1, 2, . . . , and

Zm(t) =
1

√
m

⌊mt⌋
i=1

Zi, 0 ≤ t ≤ T + 1,

where
 1
0 is to be taken componentwise.

The main step, that is, the weak convergence in the Skorokhod space Dd
[0, T + 1]

Zm(·)
Dd

[0,T+1]
−→ W6(·),

where {W6(t) : t ∈ [0, T + 1]} is a centered Gaussian process with covariance function E[W6(t)W T
6(s)] = min(t, s)6, is

again a consequence of Billingsley [5], Theorem 21.1. An application of the continuous mapping theorem then completes
the proof. For details we refer to Chochola et al. [7], pp. 383–385. �

Proof of Theorem 2.2. It suffices to show thatQ (k̃,m)
qγ (k̃/m)

P
−→ ∞

for suitably chosen k̃. We take k̃ = k∗
+ (mT − k∗)/2. In view of our assumptions on 6m and the choice of k̃ it suffices to

treat

1
√
m

k̃
i=k∗+1

1
n

n
ν=1

riM(sν)ψj(εi,j(sν))
=

1
√
m

k̃
i=k∗+1

1
n

n
ν=1

riM(sν)ψj

εi,j(sν)− (α∗

mj +
β∗

mjriM(sν))/
√
m + (α1

j + β1
j riM(sν))δm


,

whereα∗

mj = OP(1) andβ∗

mj = OP(1). Therefore it is enough to study

1
√
m

k̃
i=k∗+1

1
n

n
ν=1

riM(sν)ψj

εi,j(sν)− (a + briM(sν))/

√
m + (α1

j + β1
j riM(sν))δm


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for |a| + |b| ≤ C , C > 0. Proceeding analogously to the proof of Lemma 5.4 and recalling that δm → 0, but |δm|
√
m → ∞,

we getE∗
1

√
m

k̃
i=k∗+1

1
n

n
ν=1

riM(sν)ψj

εi,j(sν)− (a + briM(sν))/

√
m + (α1

j + β1
j riM(sν)δm)

 P
−→ ∞

and

var∗

 1
√
m

k̃
i=k∗+1

1
n

n
ν=1

riM(sν)ψj

εi,j(sν)− (a + briM(sν))/

√
m + (α1

j + β1
j riM(sν))δm


= OP(1),

uniformly in |a| + |b| ≤ C , C > 0.
From here, after some standard steps, we receive the desired assertion. �

Proof of Theorem 2.3. Let zi,zi andzi be as given in (1.9)–(1.11), respectively. Recall0k from (2.5) and further define, for
k ≥ 0,

0k =
1
m

m−k
i=1

zizTi+k,

0k =
1
m

m−k
i=1

zizTi+k,

and, for k < 0, put 0k = 0T
−k and0k =0T

−k, respectively.
Let6m be as given in (2.4) and put

6m =


|k|<q

ωq(k)0k

and 6m =


|k|<q

ωq(k)0k.

Then we have6m = 6m + (6m −6m)+ (6m − 6m).

First, let us consider 6m. Note that {zi : i ∈ Z} is a stationary, L2-approximable, centered sequence with E∥z0∥2 < ∞,
which follows from Assumptions (B.1)–(B.5) together with Lemma 2.1 in Hörmann and Kokoszka [10]. With a kernel ωq
satisfying conditions (i)–(v), all assumptions of Theorem 16.6 in Horváth and Kokoszka [11] are fulfilled. According to the
latter theorem, we get

6m
P

−→ 6 as m → ∞. (4.9)

In the next step we will show that6m −6m = Op(q(m)m−1/4). (4.10)

Herewe can proceed quite analogously to the corresponding part of the proof of Theorem2.3 in Chochola et al. [7]. Obviously,6m −6m =


|k|<q

ωq(k)(0k −0k)

and, sincezizTi+k −zizTi+k = (zi −zi)(zi+k −zi+k)
T

+ (zi −zi)zTi+k +zi(zi+k −zi+k)
T ,

we have
0≤k<q

ωq(k)(0k −0k) = S1 + S2 + S3,

where

S1 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)[ψ(εi(sµ))− ψ(εi(sµ))][ψ(εi+k(sν))− ψ(εi+k(sν))]T ,
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S2 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)[ψ(εi(sµ))− ψ(εi(sµ))]ψ(εi+k(sν))T ,

S3 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)ψ(εi(sµ))[ψ(εi+k(sν))− ψ(εi+k(sν))]T .

For s ∈ [0, 1], set di(s) = a + briM(s), where a = (a1, . . . , ad)T , b = (b1, . . . , bd)T , di(s) = (di,1(s), . . . , di,d(s))T , and
introduce

S0
1 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)[ψ(εi(sµ)− di(sµ)/
√
m)− ψ(εi(sµ))]

× [ψ(εi+k(sν)− di+k(sν)/
√
m)− ψ(εi+k(sν))]T ,

S0
2 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)[ψ(εi(sµ)− di(sµ)/
√
m)− ψ(εi(sµ))] × ψ(εi+k(sν))T ,

S0
3 =


0≤k<q

ωq(k)
1
m

m−k
i=1

1
n2

n
µ=1

n
ν=1

riM(sµ)ri+k,M(sν)ψ(εi(sµ))

× [ψ(εi+k(sν)− di+k(sν)/
√
m)− ψ(εi+k(sν))]T .

Now, for any 1 ≤ j, ℓ ≤ d,

E|riM(sµ)ri+k,M(sν)[ψj(εi,j(sµ)− di,j(sµ)/
√
m)− ψj(εi,j(sµ))]

× [ψℓ(εi+k,ℓ(sν)− di+k,ℓ(sν)/
√
m)− ψℓ(εi+k,ℓ(sν))]|

≤ E|riM(sµ)ri+k,M(sν)|(E
∗
|ψj(εi,j(sµ)− di,j(sµ)/

√
m)− ψj(εi,j(sµ))|2)1/2

× (E∗
|ψℓ(εi+k,ℓ(sν)− di+k,ℓ(sν)/

√
m)− ψℓ(εi+k,ℓ(sν))|2)1/2 ≤ Cm−1/2,

uniformly in a, b such that max1≤j≤d(|aj| + |bj|) < C for some constant C > 0, where we have used the rule of iterated
expectations (with E∗ being the conditional expectation given riM , i = 1, . . . ,m), independence of {riM(·)} and {ψ(εi(·))}
(cf. Assumption (B.3)), the Cauchy–Schwarz inequality, Assumptions (B.1) and (A.3) and the boundedness of ωq. From here
we can conclude that, as m → ∞, each (j, ℓ)th element of S0

1 is Op(q(m)m−1/2), and so is S0
1 , uniformly in a, b such that

max1≤j≤d(|aj| + |bj|) < C , with some C > 0.
Proceeding in the same way, we obtain S0

2 = Op(q(m)m−1/4) and S0
3 = Op(q(m)m−1/4), as m → ∞, uniformly in a, b

such that max1≤j≤d(|aj| + |bj|) < C for some constant C > 0.
Sinceεi,j(s) = εi,j(s)−α∗

jm/
√
m −β∗

jmriM(s)/
√
m andα∗

jm = OP(1),β∗

jm = OP(1), for all j = 1, . . . , d (see (4.6) and (4.7),
respectively), we obtain, due to the monotonicity of the ψj’s, that S1 + S2 + S3 = Op(q(m)m−1/4). Combining this with the
corresponding estimates for −q < k < 0, we get6m −6m = OP


q(m)m−1/4 (m → ∞),

i.e. (4.10).
It remains to estimate6m − 6m.
First, notice that, for k ≥ 0,

0k − 0k =
1
m

m−k
i=1

[(zi − zi)(zi+k − zi+k)
T

+ (zi − zi)zTi+k + zi(zi+k − zi+k)
T
].

Further, for i ∈ Z, n ∈ N,

zi − zi =
1
n

n
ν=1

riM(sν)ψ(εi(sν))−

n
ν=1

 sν

sν−1

riM(s)ψ(εi(s))ds

=

n
ν=1

 sν

sν−1

[riM(sν)ψ(εi(sν))− riM(s)ψ(εi(s))]ds

=

n
ν=1

 sν

sν−1

[riM(sν)− riM(s)]ψ(εi(sν))ds +

n
ν=1

 sν

sν−1

riM(s)[ψ(εi(sν))− riM(s)ψ(εi(s))]ds

= ui + vi.
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Thus, 
0≤k<q

ωq(k)(0k − 0k) = A1 + A2 + A3,

where

A1 =


0≤k<q

ωq(k)
1
m

m−k
i=1

[uiuT
i+k + uivT

i+k + viuT
i+k + vivT

i+k], (4.11)

A2 =


0≤k<q

ωq(k)
1
m

m−k
i=1

(ui + vi)zTi+k, (4.12)

A3 =


0≤k<q

ωq(k)
1
m

m−k
i=1

zi(ui+k + vi+k)
T . (4.13)

Since all the matrices appearing on the right-hand side of (4.11) are of the same type, we shall only treat one of them.
Consider, for example, the (j, ℓ)th element of the matrix uivT

i+k. We have

ui,jvi+k,ℓ =

n
µ=1

n
ν=1

 sµ

sµ−1

 sν

sν−1


[riM(sµ)− riM(s)]ψj(εi,j(sµ))ri+k,M(t)[ψℓ(εi+k,ℓ(sν))− ψℓ(εi+k,ℓ(t))]


dsdt,

and from here, using the independence of {riM(·)} and {ψ(εi(·))}, the Cauchy–Schwarz inequality and stationarity,

E
ui,jvi+k,ℓ

 ≤

n
µ=1

n
ν=1

 sµ

sµ−1

 sν

sν−1


∥riM(sµ)− riM(s)∥2 · ∥ri+k,M(t)∥2

× ∥ψj(εi,j(sµ))∥2 · ∥ψℓ(εi+k,ℓ(sν))− ψℓ(εi+k,ℓ(t))∥2


dsdt

≤

n
µ=1

n
ν=1

 sµ

sµ−1

 sν

sν−1


sup

s∈[0,1]
∥ψj(εi,j(s))∥2 · sup

h∈[0,1/n]
∥riM(sµ)− riM(sµ − h)∥2

× sup
t∈[0,1]

∥ri+k,M(t)∥2 · sup
h∈[0,1/n]

∥ψℓ(εi+k,ℓ(sν))− ψℓ(εi+k,ℓ(sν − h))∥2


dsdt

= sup
s∈[0,1]

∥ψj(ε0,j(s))∥2 · sup
t∈[0,1]

∥r0M(t)∥2 ·
1
n

n
µ=1

sup
h∈[0,1/n]

∥r0M(sµ)− r0M(sµ − h)∥2

×
1
n

n
ν=1

sup
h∈[0,1/n]

∥ψℓ(ε0,ℓ(sν))− ψℓ(ε0,ℓ(sν − h))∥2.

Now, using Assumptions (A.3), (B.1) and (B.7a)–(B.7b), together with the fact that ωq is bounded and q(m) = O(logm), we
can easily deduce that

0≤k<q

ωq(k)
1
m

m−k
i=1

ui,jvi+k,ℓ = op(1) (m → ∞).

The same result holds for all elements of thematrix A1. Concerning thematrices A2 and A3, we can proceed in the sameway.
It suffices to write zi =

n
ν=1

 sν
sν−1

riM(s)ψ(εi(s))ds and make use of Assumptions (A.3) and (B.1) again together with either
(B.7a) or (B.7b). Combining all the asymptotics above with the corresponding estimates for −q < k < 0, we get6m − 6m = op(1) (m → ∞), (4.14)

which together with (4.9) and (4.10) concludes the proof. �

5. Some auxiliary results

In the sequel, C and D denote generic positive constants, which may vary from case to case.
For the sake of brevity, we let {xi(·)} denote any of the sequences {riM(·)− EriM(·)}, {ψj(εi,j(·))} or {riM(·)ψj(εi,j(·))} and

write {x(L)i (·)} for the corresponding counterparts of {r (L)iM (·)− Er (L)iM (·)}, {ψj(ε
(L)
i,j (·))} or {r (L)iM (·)ψj(ε

(L)
i,j (·))}, respectively.
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Lemma 5.1. Under the assumptions of Theorem 2.1, possibly extended to an L2+∆-approximability condition in (B.4) and (B.5)
(cf. Remark 2.5),

(i) there is a constant C > 0 such that, for every ℓ ∈ Z, K ∈ N, and s ∈ [0, 1],

E
 ℓ+K
i=ℓ+1

xi(s)
p ≤ C sup

s∈[0,1]
∥x0(s)∥p

p K
p/2, 2 ≤ p ≤ 2 +∆,

and, for b1 ≥ b2 ≥ · · · ≥ bK > 0,

E max
1≤k≤K

bk ℓ+k
i=ℓ+1

xi(s)
2 ≤ C sup

s∈[0,1]
∥x0(s)∥2

2 (log K)
2

K
k=1

b2k, (5.1)

E max
1≤k≤K

bk ℓ+k
i=ℓ+1

xi(s)
p ≤ C sup

s∈[0,1]
∥x0(s)∥p

p

K
k=1

bpk k
p/2−1, 2 < p ≤ 2 +∆; (5.2)

(ii) for some D > 0 and all m ∈ N, s ∈ [0, 1],

E


max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

xi(s)
 2

≤ D sup
s∈[0,1]

∥x0(s)∥2
2 (logm)

2, (5.3)

E


max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

xi(s)
 p

≤ D sup
s∈[0,1]

∥x0(s)∥p
p, 2 < p ≤ 2 +∆; (5.4)

For the proof of (5.2) and (5.4), however, it is necessary to replace the L2-approximability conditions in Assumptions (B.4)
and (B.5) by a corresponding L2+∆-approximability assumption, with some∆ > 0.

(iii) uniformly in s ∈ [0, 1] and for any qm → ∞,

max
1≤i≤⌊m(T+1)⌋

|riM(s)| = OP(m1/3), (5.5)

sup
s∈[0,1]

P


max
1≤i≤⌊m(T+1)⌋

|riM(s)| ≥ qmm1/3
→ 0. (5.6)

Proof. (i) Making use of the L2+∆-approximability from Assumption B.4 (with ∆ ≥ 0, cf. Remarks 2.1 and 2.3), the first
bound has been obtained in Berkes et al. [4], Proposition 4. Observe that, in our case,

∥xi(s)∥p = ∥x(L)i (s)∥p ≤ sup
s∈[0,1]

∥x0(s)∥p, for 2 ≤ p ≤ 2 +∆, s ∈ [0, 1].

Similarly, for the two other bounds confer, e.g., Kirch [13], Theorems B.1 and B.3, which are based on earlier results of
Móricz [16] and Móricz et al. [17] in combination with Fazekas and Klesov [8].

Note that the sequence {riM(s)ψj(εi,j(s))} also satisfies the L2+∆-approximability condition, uniformly in s ∈ [0, 1], since

∥riM(s)ψj(εi,j(s))− r (L)iM (s)ψj(ε
(L)
i,j (s))∥2+∆

≤ ∥(riM(s)− r (L)iM (s))ψj(εi,j(s))∥2+∆ + ∥r (L)iM (s)(ψj(εi,j(s))− ψj(ε
(L)
i,j (s)))∥2+∆

≤ sup
s∈[0,1]

∥riM(s)− r (L)iM (s)∥2+∆ sup
s∈[0,1]

∥ψj(εi,j(s))∥2+∆ + sup
s∈[0,1]

∥r (L)iM (s)∥2+∆ sup
s∈[0,1]

∥ψj(εi,j(s))− ψj(ε
(L)
i,j (s))∥2+∆,

where, for the second inequality, we have used the independence of the sequences {riM(s)} and {ψj(εi,j(s))}.
(ii) It follows immediately from the fact that the sequence {xi(s)}, s ∈ [0, 1] fixed, satisfies Assumptions (B.1) and (B.4)

together with the estimates in (5.1) and (5.2).
(iii) By (i),

E
 ℓ+K
i=ℓ+1

(riM(s)− EriM(s))
3 ≤ C sup

s∈[0,1]
∥r0M(s)− Er0M(s)∥3

3 K 3/2, s ∈ [0, 1].

We also have, for s ∈ [0, 1],

max
1≤i≤⌊m(T+1)⌋

|riM(s)| ≤ max
1≤i≤⌊m(T+1)⌋

|riM(s)− EriM(s)| + max
1≤i≤⌊m(T+1)⌋

|EriM(s)|, and

max
1≤i≤⌊m(T+1)⌋

|riM(s)− EriM(s)| ≤ D
 1

⌊m(T + 1)⌋

⌊m(T+1)⌋
i=1

|riM(s)− EriM(s)|3
1/3

⌊m(T + 1)⌋1/3.
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Since, by our assumptions, for fixed s ∈ [0, 1], {riM(s)−EriM(s)} is a stationary and ergodic sequence and sups∈[0,1] E|riM(s)−
EriM(s)|3 < ∞, the ergodic theorem implies, asm → ∞,

1
⌊m(T + 1)⌋

⌊m(T+1)⌋
i=1

|(riM(s)− EriM(s))|3 → E|(r0M(s)− Er0M(s))|3 ≤ sup
s∈[0,1]

E|r0M(s)− Er0M(s)|3 < ∞.

Combining all these we get (5.5), which immediately implies (5.6). �

In the following E∗ and var∗ denote the conditional expectation and conditional variance given riM(·), i = 1, . . . ,m;m+

1, . . . , ⌊mT⌋. We omit the index j, i.e., we write εi(s), ψ, . . . instead of εi,j(s), ψj(s), . . ..

Lemma 5.2. Let the assumptions of Theorem 2.1 be satisfied. Then, as m → ∞,

sup
|a|+|b|≤C

|Zm(a, b)− E∗Zm(a, b)| = OP

m−η


,

E∗Zm(a, b) =
1
n

n
ν=1

λ′(0, sν)
2

1
m

m
i=1


a + briM(sν)

2
+ OP


m−η(|a|3 + |b|3)


,

and

sup
|a|+|b|≤C

Zm(a, b)−
1
n

n
ν=1

λ′(0, sν)
2

1
m

m
i=1


a + briM(sν)

2 = OP(m−η),

for some η > 0, where

Zm(a, b) =
1
n

n
ν=1

m
i=1


ρ(εi(sν)− a/

√
m − briM(sν)/

√
m)− ρ(εi(sν))+ (a/

√
m + briM(sν)/

√
m)ψ(εi(sν))


.

Proof. The lines of the proof are quite standard. We just need to derive a proper approximation for the conditional expec-
tation and variance of Zm(a, b).

Whenever convenient we use the short-hand notations

di(sν) = a + briM(sν) and
g(εi(sν), x, di(sν)) = sign di(sν)


−ψ(εi(sν)− x sign di(sν))+ ψ(εi(sν))


, i ∈ Z.

Note that, for any d,

ρ(εi − d)− ρ(εi)+ dψ(εi) = sign d


|d|

0


−ψ(εi − x sign d)+ ψ(εi)


dx ≥ 0, i ∈ Z.

Direct calculations in combination with Lemma 5.1 result in

E∗Zm(a, b) =
1
n

n
ν=1

E∗

m
i=1


|di(sν )|/

√
m

0
g(εi(sν), x, di(sν))dx

=
1
n

n
ν=1

m
i=1

λ′(0, sν)d2i (sν)
1
2m

+ OP

1
n

n
ν=1

m
i=1

|di(sν)|3
1

m3/2



=

n
ν=1

1
2
λ′(0, sν)


a + 2ab

1
m

m
i=1

riM(sν)+ b2
1
m

m
i=1

r2iM(sν)


+ OP


m−η(|a|3 + |b|3)


,

for some η > 0 and uniformly in |a| + |b| ≤ C .
For the conditional variance we obtain

var∗

Zm(a, b)


= E∗

1
n

n
ν=1

m
i=1


|di(sν )|/

√
m

0


g(εi(sν), x, di(sν))− E∗g(εi(sν), x, di(sν))


dx
2

=

m
i1=1

E∗

1
n

n
ν=1


|di1 (sν )|/

√
m

0


g(εi1(sν), x, di1(sν))− E∗g(εi1(sν), x, di1(sν))


dx
2

+ 2E∗


1≤i1<i2≤m

1
n

n
ν1=1

 |di1 (sν1 |/
√
m)

0


g(εi1(sν1), x, di1(sν1))− E∗g(εi1(sν1), x, di1(sν1))


dx

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×

1
n

n
ν2=1


|di2 (sν2 )|/

√
m

0


g(εi2(sν2), y, di2(sν2))− E∗g(εi2(sν2), y, di2(sν2))


dy


= I1 + I2 (say).

Using Assumption (A.3) together with the Cauchy–Schwarz inequality, we get

I1 =

m
i1=1

E∗

1
n

n
ν=1


|di1 (sν )|/

√
m

0


g(εi1(sν), x, di1(sν))− E∗g(εi1(sν), x, di1(sν))


dx
2

≤ D
m

i1=1

E∗

1
n

n
ν=1


|di1 (sν )|/

√
m

0
g(εi1(sν), x, di1(sν))dx

2
≤ D

m
i1=1

1
n

n
ν1=1

1
n

n
ν2=1

E∗

  |di1 (sν1 )|/
√
m

0
g(εi1(sν1), x, di1(sν1)dx)


×

  |di1 (sν2 )|/
√
m

0
g(εi1(sν2), z, di1(sν2))dz


≤ D

m
i1=1

1
n

n
ν1=1

1
n

n
ν2=1


|di1(sν1)|/

√
m
3

|di1(sν2)|/
√
m
31/2

= D


1
m

3/2 
|a|3m + |b|3

m
i1=1

1
n

n
ν1=1

|ri1M(sν1)|
3/2
2

OP((|a|3 + |b|3)m−η)

,

uniformly in |a| + |b| ≤ C .
Concerning I2 we have, due to the independence of {riM(s)} and {εi(s)},

I2 ≤ 2
m−1
i1=1

m−i1
i2=1

1
n

n
r2=1

1
n

n
r1=1


|di1 (sr1 )|/

√
m

0


|di1+i2 (sr2 )|/

√
m

0
E∗(g(εi1(sr1), x, di1(sr1)))

2E∗(−ψ(εi1+i2(sr2)− y)+ ψ(ε
(i2)
i1+i2

(sr2)− y))2

+ E∗(−ψ(εi1+i2(sr2))+ ψ(ε
(i2)
i1+i2

(sr2)))
21/2dxdy

≤ D
m−1
i1=1

1
n

n
r2=1

1
n

n
r1=1

|di1(sr1)/
√
m|

1/2+1

×

m−i1
i2=1

|di1+i2(sr2)/
√
m| sup

|a|≤a0


E∗

ψ(εi1+i2(sr2)− a)− ψ(ε

(i2)
i1+i2

(sr2)− a)
21/2

≤ D
1
n

n
r2=1

1
n

n
r1=1

1
m3/2

m−1
i1=1

|di1(sr1)|
3/2 sup

|a|≤a0

m−i1
i2=1

|di1+i2(sr2)|

E

ψ(ε0(sr2)− a)− ψ(ε0(sr2)

(i2) − a)
21/2

= OP(m−η),

where we used the fact

E|di1+i2(sr1)|
3/2

· |di1(sr2)| ≤


E|d1(sr1)|

3Ed21(sr2)
1/2

.

On combining the above estimates for E∗Zm(a, b), I1, I2, we conclude that Lemma 5.2 holds true. �

Lemma 5.3. Let the assumptions of Theorem 2.1 be satisfied. Then, as m → ∞,

sup
|a|+|b|≤C

|Mm(a, b)− E∗Mm(a, b)| = OP(m−η),

E∗Mm(a, b) = −
1
n

n
ν=1

λ′(0, sν)

a + b

1
m

m
i=1

riM(sν), a
1
m

m
i=1

riM(sν)+ b
1
m

m
i=1

r2iM(sν)
T

+ OP

m−η


,

and

sup
|a|+|b|≤C

Mm(a, b)+
1
n

n
ν=1

1
m
λ′(0, sν)


am + b

m
i=1

riM(sν), a
m
i=1

riM(sν)+ b
m
i=1

r2iM(sν)
T  = OP


m−η


,
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with some η > 0, where

Mm(a, b) =
1
n

n
ν=1

1
√
m

m
i=1


1, riM(sν)

T 
ψ(εi(sν)− (a + briM(sν))/

√
m)− ψ(εi(sν))


.

Proof. Again one has to get suitable approximations for the conditional expectation Mm(a, b) and the conditional (2 × 2)-
variance matrix

var∗
{Mn(a, b)} = E∗


Mn(a, b)− E∗Mn(a, b)


Mn(a, b)− E∗Mn(a, b)

T
.

We start with the conditional expectation

E∗MT
m(a, b) =

1
n

n
ν=1

1
√
m

m
i=1


1, riM(sν)


−λ(di(sν)/

√
m, sν)


= −

1
n

n
ν=1

1
m
λ′(0, sν)

m
i=1


1, riM(sν)


di(sν)+ OP

1
n

n
ν=1

1
m3/2

m
i=1


1, |riM(sν)|


|d2i (sν)|


= −

1
n

n
ν=1

1
m
λ′(0, sν)

m
i=1


a + briM(sν), ariM(sν)+ br2iM(sν)


+OP


a2m−1/2

+ b2
1
n

n
ν=1

1
m3/2

m
i=1

|riM(sν)|3


= OP

(a2 + b2)m−η


,

uniformly in |a| + |b| ≤ C , where the rates above are to be understood componentwise.
For the conditional variance matrix we only calculate one term. The calculation of the others is similar and will therefore

be omitted. We have

var∗

1
n

n
ν=1

1
√
m

m
i=1

riM(sν)

ψj(εi,j(sν)− di(sν)/

√
m)− ψj(εi,j(sν))


=

1
m

m
i=1

E∗

1
n

n
ν=1

riM(sν)

ψ(εi(sν)− di(sν)/

√
m)− ψ(εi(sν))+ λj(di(sν)/

√
m, sν)

2
+ 2

1
n

n
r1=1

1
n

n
r2=1

1
m

m
i=1

m−i
j=1

riM(sr1)ri+j,M(sr2)

× E∗

ψj(εi,j(sr1)− di(sr1)/

√
m)− ψj(εi,j(sr1))+ λj(di(sr1)/

√
m, sr1)


×

ψ(εi+j(sr2)− di+j(sr2)/

√
m)− ψj(εi+j(sr2))+ λj(di+j(sr2)/

√
m, sr2)


= J1 + 2J2 (say).

In view of Assumption (A.2), a similar estimate as that for I1 in the proof of Lemma 5.2 gives

J1 =
1
m

m
i=1

1
n

n
ν=1

1
n

n
r=1

riM(sν)riM(sr)

× E∗

ψ(εi(sν)− di(sν)/

√
m)− ψ(εi(sν))+ λ(di(sν)/

√
m, sν)


×

ψ(εi(sr)− di(sr)/

√
m)− ψ(εi(sr))+ λ(di(sr)/

√
m, sr)


≤ D

1
m

m
i=1

1
n

n
ν=1

1
n

n
r=1

|riM(sν)||riM(sr)|

× E∗

ψ(εi(sν)− di(sν)/

√
m)− ψ(εi(sν))2E∗


ψ(εi(sr)− di(sr)/

√
m)− ψ(εi(sr))2

1/2
≤ D

1
m

m
i=1

1
n

n
ν=1

|riM(sν)||di(sν)/
√
m|

1/2
2

≤ D
1
n

n
ν=1

1
m

m
i=1

|riM(sν)|2|di(sν)/
√
m)| = OP(m−η).
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Concerning J2 we obtain

J2 =
1
n

n
r1=1

1
n

n
r2=1

1
m

m
i=1

m−i
j=1

riM(sr1)ri+j,M(sr2)

× E∗

ψ(εi(sr1)− di(sr1)/

√
m)− ψ(εi(sr1))+ λ(di(sr1)/

√
m, sr1)


×

ψ(εi+j(sr2)− di+j(sr2)/

√
m)− ψ(εi+j(sr2))− (ψ(ε

(j)
i+j(sr2)− di+j(sr2)/

√
m)− ψ(ε

(j)
i+j(sr2)))


,

and, uniformly in |a| + |b| ≤ C ,

|J2| ≤ D
1
n

n
r1=1

1
n

n
r2=1

1
m

m
i=1

m−i
j=1

|riM(sr1)ri+j,M(sr2)|(|di(sr1)|/
√
m)1/2

×

E∗

ψ(εi+j(sr2)− di+j(sr2)/

√
m)− ψ(εi+j(sr2))− (ψ(ε

(j)
i+j(sr2)− di+j(sr2)/

√
m)− ψ(ε

(j)
i+j(sr2)))

21/2
≤ D

1
n

n
r1=1

1
n

n
r2=1

1
m3/2

m
i=1

m−i
j=1


a1/2 + b1/2|riM(sr1 |)


|riM(sr1)ri+j,M(sr2)|

× sup
|a|≤a0


E(ψ(ε0(sr2)− a)− ψ(ε

(j)
0 (sr2)− a))2

1/2
= OP


(a1/2 + b1/2)m−η


.

Now, a similar estimate as that for I2 in the proof of Lemma 5.2 gives

sup
|a|+|b|≤C

|J2| = OP

m−η


,

with some η > 0, so that altogether we have

sup
|a|+|b|≤C

var∗

1
n

n
i=1

1
√
m

m
i=1

riM(sr)

ψ(εi(sr)− di(sr)/

√
m)− ψ(εi(sr))


= OP


m−η


,

for some η > 0. �

Remark 5.1. Insertingα∗

j,m andβ∗

j,m (as defined in (4.3)) for a, b into the assertion of Lemma 5.3 and omitting the index j for
the sake of simplicity, we receive

1
n

n
ν=1

1
√
m

m
i=1


1, riM(sν)

T 
ψ(εi(sν)− (α∗

m +β∗

mriM(sν))/
√
m)− ψ(εi(sν))


+

1
n

n
ν=1

λ′(0, sν)
αm +β∗

m
1
m

m
i=1

riM(sν),α∗

m
1
m

m
i=1

riM(sν)+βm
1
m

m
i=1

r2iM(sν)
T

= OP

m−η


.

Due to the definition ofα∗
m andβ∗

m and by our assumptions, we have the following asymptotic representation:

α∗

m =
1 1

0 λ
′(0, z)dz

1
√
m

m
i=1

 1

0
ψ(εi(s))ds −β∗

m

 1
0 λ

′(0, z)Er20M(z)dz 1
0 λ

′(0, z)dz
+ oP(m−η),

β∗

m =

1
√
m

m
i=1

 1
0 ψ(εi(s))


riM(s)−

 1
0 λ

′(0,z)Er0M (z)dz 1
0 λ

′(0,z)dz


ds

 1
0 λ

′(0, z)Er20M(z)dz −

 1
0 λ

′(0,z)Er0M (z)dz
2

 1
0 λ

′(0,z)dz

+ oP(m−η).

The last two relations are important for getting the limit distribution of our test procedure.

The next lemma follows along the arguments of Lemma 5.4 in Chochola et al. [7], modified along the lines of the proofs
of the previous lemmas. So the proof will only be sketched and not be given in detail.

Lemma 5.4. Let the assumptions of Theorem 2.1 be satisfied. Then, for any T > 0, as m → ∞,

max
1≤k≤⌊mT⌋


|{Nk,m(a, b)− E∗Nkm(a, b)}a=α∗

m,b=β∗
m
|

(k/m)γ


= OP(m−η),
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for some η > 0, whereα∗
m,
β∗

m are as in (4.3), and

Nk,m(a, b) =
1
n

n
ν=1

1
√
m

m+k
i=m+1

riM(sν)

ψ(εi(sν)− a/

√
m − briM(sν)/

√
m)− ψ(εi(sν))


.

Proof. Lemma 5.4 is related to Lemma 5.3, but it is somewhat more complicated.
Direct calculations give

E∗Nk,m(a, b) = −
1
n

n
ν=1

1
√
m

m+k
i=m+1

riM(sν)λ

(a + briM(sν), sν)/

√
m


= −
1
n

n
ν=1

λ′(0, sν)
1
m


a

m+k
i=m+1

riM + b
m+k

i=m+1

r2iM(sν)


+OP

1
n

n
ν=1

1
√
m

m+k
i=m+1

|riM(sν)||(a + briM(sν))/
√
m|

2

,

uniformly for |a| + |b| ≤ C , with some η > 0. In fact we need to study more carefully the properly standardized remainder

max
1≤k≤⌊mT⌋

1
(k/m)γ

1
n

n
ν=1

1
m3/2

m+k
i=m+1

|riM(sν)|


+ max
1≤k≤⌊mT⌋

1
(k/m)γ

1
n

n
ν=1

1
m3/2

m+k
i=m+1

|riM(sν)|3

.

Both terms above are OP(m−η) for some η > 0.
Next, we try to get an upper bound for var∗

{Nk,m(a, b)}. We have

var∗
{Nk,m(a, b)} =

1
m

m+k
i=m+1

E∗

1
n

n
ν=1

riM(sν)× (ψ(εi(sν)− di(sν)/
√
m)

−ψ(εi(sν))− E∗ψ(εi(sν)− di(sν)/
√
m))

2
+ 2

1
m

m+k
i=m+1

1
n

n
r1=1

riM(sr1) E
∗


ψ(εi(sr1)− di(sr1)/

√
m)

−ψ(εi(sr1))− E∗ψ(εi(sr1)− di(sr1)/
√
m)


×

m+k−i
ν=1

1
n

n
r2=1

ri+ν,M(sr2)

×

ψ(ε

(ν)
i+ν(sr2)− di+ν(sr2)/

√
m)− ψ(ε

(ν)
i+ν(sr2))− E∗ψ(ε

(ν)
i+ν(sr2)− di+ν(sr2)/

√
m)


= L1,k + 2L2,k (say),

and, along the lines of the proof of Lemma 5.3 (see the estimation of the terms J1, J2 there), we get

L1,k =
k
m

m−1/2
|a| + |b|


OP(1),

|L2,k| =
1

m1+1/2
(|a|1/2k + |b|1/2k)OP(1),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋. So, altogether we have

var∗
{Nk,m(a, b)} =

k
m

m−η(|a| + |b|)OP(1),

uniformly in |a| + |b| ≤ C and in 1 ≤ k ≤ ⌊mT⌋, with some η > 0.
Quite similarly we get, for ℓ = 1, 2, . . . ,

var∗
{Nk+ℓ,m(a, b)− Nk,m(a, b)} =

ℓ

m
m−η(|a| + |b|)OP(1).

Then, on applying Theorem B.4 of Kirch [13],

m−1+2γ E∗ max
1≤k≤⌊mT⌋

 1
kγ

|Nm,k(a, b)− E∗Nm,k(a, b)|
2

= m−1+2γ (logm)2
⌊mT⌋
k=1

1
k2γ

m−η(|a| + |b|)OP(1) = (logm)2m−η(|a| + |b|)OP(1).
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We need to replace a, b by the estimatorsα∗
m,
β∗

m. However our Nk,m(a, b) depends on ε1(·), . . . , εm(·). Therefore we try to
replace Nk,m(a, b) by something that is asymptotically equivalent, but does not depend on ε1(·), . . . , εm(·).

Toward this note that

N (m)k,m(a, b) =
1

√
m

k
i=1

1
n

n
ν=1

ri+m,M(sν)

ψ(ε

(i)
i+m(sν)− di(sν)/

√
m)− ψ(ε

(i)
m+i(sν))


has all the properties of Nk,m(a, b) above, but it is independent of ε1(·), . . . , εm(·). This together with the consistency ofα∗

m
andβ∗

m implies

m−1+2γ max
1≤k≤⌊mT⌋

 1
kγ

{N (m)m,k(a, b)− E∗N (m)m,k(a, b)}a=α∗
m,b=β∗

m

2
= OP


(logm)2m−η max(|α∗

m| + |β∗

m|, |α∗

m|
1/2

+ |β∗

m|
1/2)


= OP


(logm)2m−η


.

It is still necessary to show the closeness of Nk,m(a, b) and N (m)k,m(a, b). Clearly, N
(m)
k,m(a, b) is independent of ε1(·), . . . , εm(·)

and

E∗

Nk,m(a, b)− N (m)k,m(a, b)


= 0,

Nk,m(a, b)− N (m)k,m(a, b) =
1

√
m

1
n

n
ν=1

k
i=1

(ri+m,M(sν))

×


ψ


εi+m(sν)−

di+m(sν)
√
m


− ψ


ε
(i)
i+m(sν)−

di+m(sν)
√
m


−


ψ(εi+m(sν))− ψ(ε

(i)
i+m(sν))


,

E∗
|Nk,m(a, b)− N (m)k,m(a, b)| ≤

D
√
m

1
n

n
ν=1

k
i=1

|ri+m,M(sν)|

× sup
|a|≤a0

E

|ψ(ε0(sν)− a)− ψ(ε

(i)
0 (sν)− a)| + |ψ(ε0)(sν)− ψ(ε

(i)
0 (sν))|


≤

D
√
m

1
n

n
ν=1

⌊mT⌋
i=1

|ri+m,M(sν)| sup
|a|≤a0

E|ψ(ε0(sν)− a)− ψ(ε
(i)
0 (sν)− a)|,

which holds for any 1 ≤ k ≤ ⌊mT⌋. So, in view of our assumptions,

sup
|a|+|b|≤C

E∗
|Nk,m(a, b)− N (m)k,m(a, b, j)| = OP(m−1/2),

whence

sup
1≤k≤⌊mT⌋

 sup
|a|+|b|≤C

E∗
|Nk,m(a, b)− N (m)k,m(a, b)|

(k/m)γ


= OP(m−η),

for some η > 0. A combination of the above estimates completes the proof of Lemma 5.4. �

Remark 5.2. From Lemma 5.4 we get the following approximations:

1
√
m

m+k
i=m+1

n
ν=1

1
n
riM(sν)ψ(εi(sν)−α∗

m/
√
m −β∗

mriM(sν)/
√
m)

=
1

√
m

m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν))−

αm
1
m

m+k
i=m+1

n
ν=1

λ′(0, sν)riM(sν)

+β∗

m
1
m

m+k
i=m+1

1
n

n
ν=1

λ′(0, sν)r2iM(sν)


+ OP(m−η).

In view of Remark 5.1, we similarly get

1
√
m

m
i=1

1
n

n
ν=1

riM(sν)ψ(εi(sν))

=α∗

m
1
m

m
i=1

1
n

n
ν=1

λ′(0, sν)riM(sν)+β∗

m
1
m

m
i=1

1
n

n
ν=1

λ′(0, sν)r2iM(sν)+ OP

m−η


.
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After some standard steps this results in

1
√
m

m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν)−α∗

m/
√
m −β∗

mriM(sν)/
√
m)

=
1

√
m

 m+k
i=m+1

1
n

n
ν=1

riM(sν)ψ(εi(sν))−
k
m

m
i=1

1
n

n
ν=1

riM(sν)ψ(εi(sν))+ OP

m−η


.

Here we also used that

max
1≤k≤⌊mT⌋

1
m(k/m)γ

1
n

n
ν=1

λ′(0, sν)
 k
m

m
i=1

riM(sν)−

m+k
i=m+1

riM(sν)


+
1
n

n
ν=1

λ′(0, sν)
 k
m

m
i=1

r2iM(sν)−

m+k
i=m+1

r2iM(sν)
 = oP(1)

asm → ∞ (cf. Lemma 5.5 (iii)).

Lemma 5.5. Let Assumptions (B.1), (B.4), and (B.6)–(B.7) be satisfied. Then,
(i) there is a constant C > 0 such that

E max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

n
ν=1

 sν

sν−1


riM(sν)− riM(s)


ψj(εi,j(s))ds


≤ C (logm)

1
n

n
ν=1

sup
h∈[0,1/n]

∥r0M(sν)− r0M(sν − h)∥2; (5.7)

(ii) for j = 1, . . . , d, as m → ∞,

max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

zi,j − zi,j
 

= max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1


1
n

n
ν=1

riM(sν)ψj(εi,j(sν))−

 1

0
riM(s)ψj(εi,j(s))ds

 = oP(1). (5.8)

Moreover, due to strict stationarity, the above relations also hold with max1≤k≤⌊mT⌋
1

√
m (k/m)γ

m+k
i=m+1 being replaced by

1
√
m

m
i=1.

(iii) for j = 1, . . . , d, as m → ∞,

max
1≤k≤⌊mT⌋

1
m (k/m)γ

 m+k
i=m+1

1
n

n
ν=1

λ′(0, sν)

riM(sν)− Er0M(sν)

 = oP(1); (5.9)

max
1≤k≤⌊mT⌋

1
m (k/m)γ

 m+k
i=m+1

1
n

n
ν=1

λ′(0, sν)

r2iM(sν)− Er20M(sν)

 = oP(1). (5.10)

Moreover, the above relations also hold withmax1≤k≤⌊mT⌋
1

m (k/m)γ
m+k

i=m+1 being replaced by 1
m

m
i=1.

Proof. Again, for the sake of simplicity, we omit the index j in the sequel.
(i) On interchanging summation, expectation and integration, a similar argument as in the proof of (5.3) gives

E max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

n
ν=1

 sν

sν−1


riM(sν)− riM(s)


ψ(εi(s))ds


≤

n
ν=1

 sν

sν−1


E


max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1


riM(sν)− riM(s)


ψ(εi(s))

21/2

ds

≤ D (logm) sup
s∈[0,1]

∥ψ(ε0(s))∥2
1
n

n
ν=1

sup
h∈[0,1/n]

∥r0M(sν)− r0M(sν − h)∥2,

with some D > 0, where in the last inequality we made use of the independence of the sequences {riM(·)} and {εi(·)}. Since
sups∈[0,1] ∥ψ(ε0(s))∥2 < ∞, this proves (i).
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(ii) Consider

max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1


1
n

n
ν=1

riM(sν)ψ(εi(sν))−

 1

0
riM(s)ψ(εi(s))ds


= max

1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

n
ν=1

 sν

sν−1


riM(sν)ψ(εi(sν))− riM(s)ψ(εi(s))


ds


≤ C
 n
ν=1

 sν

sν−1

max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1


riM(sν)− riM(s)


ψ(εi(s))

ds
+

n
ν=1

 sν

sν−1

max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

riM(sν)

ψ(εi(sν))− ψ(εi(s))

ds

=

n
ν=1

 sν

sν−1


I1,m(sν, s)+ I2,m(sν, s)


ds. (5.11)

According to (5.7) and Assumption (B.7a), asm → ∞,

E
 n
ν=1

 sν

sν−1

I1,m(sν, s)ds


≤ C (logm)
1
n

n
ν=1

sup
h∈[0,1/n]

∥r0M(sν)− r0M(sν − h)∥2 = o(1). (5.12)

By an analogous argument,

E
 n
ν=1

 sν

sν−1

I2,m(sν, s)ds


≤

n
ν=1

 sν

sν−1

E max
1≤k≤⌊mT⌋

1
√
m (k/m)γ

 m+k
i=m+1

riM(sν)

ψ(εi(sν))− ψ(εi(s))

ds
≤ C (logm) sup

s∈[0,1]
∥r0M(s)∥2

1
n

n
ν=1

sup
h∈[0,1/n]

∥ψ(εi(sν))− ψ(εi(sν − h))∥2 = o(1), (5.13)

where we have used the independence of the sequences {riM(·)} and {εi(·)} once again in combination with Assumptions
(B.1) and (B.7b).

(iii) In a first step, we replace 1
n

n
ν=1 λ

′(0, sν)

rqiM(sν)− Erq0M(sν)


in (5.9)–(5.10) with

xi =

 1

0
λ′(0, s)


rqiM(s)− Erq0M(s)


ds, i = 1, 2, . . . ; q = 1, 2.

This can be done in a similar way as in the proof of (5.8). We even have an additional multiplication by 1/
√
m here. Note

that the sequence {xi}i=1,2... is again strictly stationary and ergodic with Ex0 = 0.
Now, it suffices to prove (5.9) and (5.10) withmaxK<k≤⌊mT⌋ instead ofmax1≤k≤⌊mT⌋ and

m+k
i=K+1 replacing

m+k
i=m+1, where

K = Km is such that K → ∞, but K/m1−γ
→ 0, e.g., for K = logm.

In view of the strict stationarity and Ex0 = 0, the ergodic theorem gives, asm → ∞,

max
K<k≤⌊mT⌋

1
k

 m+k
i=m+1

xi

 = oP(1).

On observing that

max
K<k≤⌊mT⌋

1
m (k/m)γ

 m+k
i=m+1

xi

 ≤ T 1−γ max
K<k≤⌊mT⌋

1
k

 m+k
i=m+1

xi

,
this completes the proof of (5.9) and (5.10), respectively. �
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