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Abstract: We will investigate an alternative way how to construct a confidence
interval based on M -estimator for a single parameter in a linear model. We will
compare this confidence interval with a traditional (Wald type) confidence interval
theoretically as well as by the means of a Monte-Carlo experiment.
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1 Introduction

Suppose that our observations Y = (Y1, . . . , Yn)T follow the linear model

Yi = β1 xi1 + . . .+ βp xip + ei = βTxi + ei, i = 1, . . . , n, (1)

where β = (β1, . . . , βp)T is a vector of unknown parameters, xi = (xi1, . . . , xip)T,
for i = 1, . . . , n are known constants and e1, . . . , en are independent, identically
distributed random variables with a cumulative distribution function (cdf) F . In
the following we will assume that the model includes intercept, that is xi1 = 1 for
i = 1, . . . , n. The studentized M -estimator β̂M is usually defined as a solution of
the system of equations

n∑
i=1

xi ψ(Yi−b
Txi

Sn
) = 0 (2)

where ψ : R 7→ R is a (bounded) monotone or redescending function and Sn is an
appropriate estimate of scale.

If we omit resampling procedures, there are generally two main ways how to
construct a confidence interval (CI) for βl (1 ≤ l ≤ p) with the help of the knowledge
of asymptotic distribution or

√
n(β̂M − β). The first (and the most common) way

directly exploits first order asymptotic linearity of the M -estimator (see Jurečková
and Sen [4])

√
n(β̂M − β) =

V−1
n

γ1
√
n

n∑
i=1

xi ψ( eiS ) + γ1e
γ1

√
n(SnS − 1)u1 + op(1), (3)

where Vn = 1
n

∑n
i=1 xixT

i , u1 = (1, 0, . . . , 0)T, γ1 = E 1
Sψ

′( e1S ) , γ1e = E e1
S ψ

′( e1S )
and by S = S(F ) we understand the theoretical value of the scale estimator Sn.
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Let us denote {ωij}j=1,...,p
i=1,...,p the elements of the matrix V−1

n . Then we immediately
see from (3) that the random variable

√
n(b̂l − βl) has asymptotically zero mean

normal distribution with variance σ2
ψωll
γ2
1

, where σ2
ψ = Eψ( e1S )2. The (Wald type)

confidence interval for the component βl can be constructed as

DI
n =

[
b̂l − zα√

n

σ̂ψ
√
ωll

γ̂1
, b̂l + zα√

n

σ̂ψ
√
ωll

γ̂1

]
, (4)

where σ̂ψ and γ̂1 are estimates of the unknown quantities σψ and γ1, and zα =
Φ−1(1 − α

2 ), with Φ−1 being the inverse cdf of the standard normal distribution.

We will call this type I confidence interval. If we put ri = Yi − β̂
T

Mxi for the
residuals of the fit with the M -estimator β̂M , the most simple estimates of σψ and
γ1 are

σ̂2
ψ =

1
n− p

n∑
i=1

ψ2( riSn ), γ̂1 =
1
n

n∑
i=1

1
Sn
ψ′( riSn ). (5)

Sometimes we may find the confidence interval (4) inconvenient especially for
two reasons. Firstly, we need to estimate two unknown quantities (σψ and γ1).
Secondly, we may be doubtful whether the symmetry of the confidence interval (4)
does not affect the good coverage properties, especially in the case of asymmetric
errors in the model (1).

Boss in [1] proposed another method for the construction of confidence intervals
from M -estimates. He considered the case of location parameter and suggested the
confidence interval [θ̂−n , θ̂

+
n ], where

θ̂−n = sup

{
t : 1√

n

n∑
i=1

ψ(Xi−tSn
) ≥ σ̂ψ zα

}
(6)

θ̂+n = inf

{
t : 1√

n

n∑
i=1

ψ(Xi−tSn
) ≤ −σ̂ψ zα

}
. (7)

We will call it type II confidence interval. It is apparent from the definition
that this method can work only for monotone ψ in general. Although, at the cost
of some further difficulties, the method can be generalized to include redescending
ψ-functions as well, we will assume that ψ is monotone in the following. On the
other hand, the advantage of this approach is that we do not need to estimate the
functional γ1. Boss in [1] showed that this method is asymptotically correct and
that the length of the confidence interval multiplied by

√
n converges in probability

to the same constant as for the type I confidence interval. By the means of sim-
ulation he also demonstrated that his proposed method has sometimes a slightly
better coverage properties then the type I method. Some partial explanation of
this phenomenon can be found in Lloyd [5].

In the following we will modify the type II method for the multiple linear re-
gression. Similarly as in [1] we will show that the length of the confidence interval
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for a single component (multiplied by
√
n) has the same probability limit as for the

type I method, but the asymptotic distribution of this length (properly standard-
ized) is generally different. The proofs and some further discussion will be included
in Omelka [6].

2 Type II confidence interval

2.1 Construction

For the simplicity of notation we will construct the confidence interval for the
last component of vector β – parameter βp. The general case would follow by
relabeling of the indices. To simplify the subsequent formulas we will make use of
the following notations. Let zi stands for the vector xi without the last component,
that is zi = (xip, . . . , xi p−1)T and similarly b̂z = (b̂1, . . . , b̂p−1)T. Finally put
T 2
np = 1

n

∑n
i=1 x

2
ip.

Now define the function Mn(t) = 1√
n

∑n
i=1 xip ψ(Yi−b̂T

zzi−t xip
u ). The (type II)

confidence interval for the parameter βp is DII
n = [b̂−p , b̂

+
p ], where

b̂−p = sup
{
t : Mn(t) ≥ T 2

np
√
ωpp σ̂ψ zα

}
(8)

b̂+p = inf
{
t : Mn(t) ≤ −T 2

np
√
ωpp σ̂ψ zα

}
. (9)

2.2 Assumptions

Before we proceed, we need to formulate some assumptions about the function ψ,
the distribution function of the errors F , the scale estimator Sn and the design
points x1, . . . ,xn.

S.1 The function h(t) = E ρ( e1−tS ) has the unique minimum at t = 0, where
ρ′ = ψ.

S.2 ψ is absolutely continuous with a derivative ψ′ such that Eψ′
(
e1
S

)2
<∞.

S.3 The function ψ′
(
e1+t
Seu

)
is continuous in the quadratic mean, that is

lim
(t,u)→(0,0)

E [ψ′
(
e1+t
Seu

)
− ψ′

(
e1
S

)
]2 = 0.

S.4 The function λ(t, u) = Eψ( e1+tSeu ) is twice differentiable and the partial deriva-
tives are continuous and bounded in a neighborhood of the point (0, 0)

S.5 Eψ4( e1S ) <∞

S.6 The function λ(2)(t, u) = Eψ2( e1+tSeu ) is continuously differentiable in a neigh-
borhood of the point (0, 0). Let us denote

γ01 = E 1
S ψ

(
e1
S

)
ψ′

(
e1
S

)
, γ01e = E e1

S ψ
(
e1
S

)
ψ′

(
e1
S

)
. (10)
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Scale The scale estimator Sn is
√
n-consistent, that is
√
n(SnS − 1) = Op(1) (11)

The following conditions are for the fixed design. When we have the model with
random covariates, all these assumptions are needed to hold in probability.

X.1 There exists a positive definite matrix V such that

V = lim
n→∞

Vn = lim
n→∞

1
n

n∑
i=1

xi xT
i .

X.2

lim
n→∞

max
1≤i≤n

|xi|22√
n

= 0, where | · |2 stands for Euclidean norm

X.3
1
n

n∑
i=1

|xi|42 = O(1)

With the help of the assumptions S.1-2, Scale and X.1 we can show (see [4]) that
there exists a root β̂M of the system (2) such that

√
n(β̂M − β) = Op(1). (12)

This fact can be further used to find the asymptotic representation (3) of the M -
estimator β̂M .

With the help of the
√
n-root consistency of β̂M and Sn and the assumption X.2

it is not difficult to justify the usage of σ̂2
ψ from (5) as the estimator of σ2

ψ and to
show that

σ̂2
ψ = σ2

ψ + op(1).

Finally, as many of our further expressions simplifies considerably in a symmetric
setup, we will state this assumption explicitly for the sake of future reference.

Sym The function ψ is antisymmetric and the distribution function of the errors F
is symmetric, that is

ψ(−x) = −ψ(x), and F (x) = 1− F (−x), x ∈ R.

2.3 Asymptotic properties of type II conf. interval

Next, to simplify the notation put

aF =
√
ωpp σψ zα

γ1
. (13)

Now, it is quite straightforward to prove the following theorem.
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Theorem 2.1. If the conditions S.1-2, Scale and X.1-2 then the confidence
interval DII

n defined by (8) and (9) satisfies:

1.
P (DII

n 3 βp) −−−−→
n→∞

1− α

2. √
n(b̂+p − b̂−p ) = 2 aF + op(1)

Before we will proceed with a finer analysis of the length of the confidence
interval, we need to find the asymptotic distribution of the random variable

√
n(σ̂ψ−

σψ). With the help of the assumption S.6 we can derive the representation

√
n(σ̂ψ − σψ) = 1

2σψ
√
n

n∑
i=1

[
ψ2( eiS )− σ2

ψ

]
− 2γ01

2σψγ1
√
n

n∑
i=1

ψ( eiS )− γ01e
σψ

√
n(SnS − 1) + op(1). (14)

Notice that if the distribution of the errors satisfies the symmetry condition Sym,
then γ01 = 0 and the second term on the right hand side of (14) vanishes.

Now we are ready to formulate the main result about the asymptotic distribution
of the standardized length of the type II confidence interval, which is defined as

LIIn =

√
n

[√
n(b̂+p − b̂−p )− 2 aF

]
2 aF

.

Theorem 2.2. If the conditions X.1-3, S.1-6 and Scale are satisfied, then the
random variable LIIn admits the first order asymptotic representation

LIIn = − 1
γ1
√
n

n∑
i=1

x2
ip

T 2
np

[ψ′( eiS )− γ1] + γ1+γ2e
γ1

√
n

(
Sn
S − 1

)
+
√
n(σ̂ψ − σψ)

σψ
+ γ2

γ1

√
n(β̂M − β)T

n∑
i=1

x2
ip xi
nT 2

np
+ op(1), (15)

where γ2 is the derivative of the function d(t) = E 1
S ψ

′( e1+tS ) at the point zero.

The proof of this theorem is rather technical. The crucial point is the investi-
gation of the centered process {Mn(t, u)− EMn(t, u), |t|2 ≤ C, |u| ≤ C}, where C
is an arbitrarily large but fixed constant and

Mn(t, u) =
n∑
i=1

xip

[
ψ

(
e−n

−1/2u(ei − tTxi√
n

)/S
)
− ψ(ei/S)

]
.
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It turns out that this process may be approximated with a simple process linear
in its parameters t, u. These results are sometimes called as the second order
asymptotic linearity.

From the expansion (15) we see that the variance of the standardized length Ln
is rather complicated. But if the symmetry condition Sym is met then both of the
functionals γ2 and γ01 are zero and using the representation (14) we get

LIIn = − 1
γ1
√
n

n∑
i=1

x2
ip

T 2
np

[ψ′( eiS )− γ1] +
(
γ1+γ2e
γ1

− γ01e
σ2
ψ

) √
n

(
Sn
S − 1

)
+

1
2σ2

ψ

√
n

n∑
i=1

[
ψ( eiS )2 − σ2

ψ

]
+ op(1).

3 Comparison with the type I confidence interval

Recall that the confidence interval of type I for βp is

DI
n = [b̂′

−
p , b̂

′+

p ] =
[
b̂p − zα√

n

σ̂ψ
√
ωpp

γ̂1
, b̂p + zα√

n

σ̂ψ
√
ωpp

γ̂1

]
.

If the estimators γ̂1 and σ̂ψ are (weakly) consistent estimators of γ1 and σψ, we

can easily see that P (DI
n 3 βp) → 1 − α and

√
n[b̂′

+

p − b̂′
−
p ] = 2zασψ

√
ωpp

γ1
+ op(1).

Moreover it is not difficult to show that the standardized length of the type I CI
satisfies

LIn =

√
n

[√
n(b̂′

+

p − b̂′
−
p )− 2 aF

]
2 aF

= − 1
γ1
√
n

n∑
i=1

[ψ′( eiS )− γ1]

+ γ1+γ2e
γ1

√
n

(
Sn
S − 1

)
+
√
n(σ̂ψ − σψ)

σψ
+ γ2

γ2
1
√
n

n∑
i=1

ψ( eiS ) + op(1). (16)

In comparison with the type II CI (15) we see that for the symmetric situation
(γ2 = 0), the main difference is in the first term – 1

γ1
√
n

∑n
i=1 [ψ′( eiS ) − γ1] for the

type I CI vs. 1
γ1
√
n

∑n
i=1

x2
ip

T 2
np

[ψ′( eiS )−γ1] for the type II CI. As the Cauchy-Schwartz

inequality tells us that
∑n
i=1

x4
ip

n ≥
[∑n

i=1

x2
ip

n

]2

we can deduce, that the type I CI
will be usually more stable (the length has a smaller asymptotic variance). The
reason for this is that the type II CI implicitly uses γ̂′1 = 1

nSn T 2
np

∑n
i=1 x

2
ip ψ

′( riS )

as the estimator of γ1. This can be seen from the formal expansion of Mn(b̂+p ) or
Mn(b̂−p ) around the point b̂p. But the estimator γ̂′1 is generally (if the errors are iid)
more variable then the simple estimator γ̂1 = 1

n

∑n
i=1 ψ

′(ri). On the other hand,
our experience is that the estimator γ̂′1 is usually able to prevent the total failure of
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the CI in the case of heteroskedasticity. Some partial numerical evidence for these
findings are to be found in the last section.

Finally note that if we use γ̂′1 as the estimator of γ1 for the type I CI, then
both LIn and LIIn have the same asymptotic expansion and we get that n(b̂+p −
b̂−p ) = n(b̂′

+

p − b̂′
−
p ) + op(1). But even in this case it does not generally hold that

n(b̂+p − b̂′
+

p ) = op(1) or n(b̂−p − b̂′
−
p ) = op(1). This can be seen from a further more

delicate analysis which shows that

b̂−p = b̂p −
√
ωpp σ̂ψ zα
γ̂1
√
n

+ 1
n

γ2 ωpp σ
2
ψ z

2
α

γ3
1 T

2
np

n∑
i=1

x3
ip

n + op( 1
n ). (17)

If we compare (17) with the lower bound of the type I confidence interval

b̂′
−
p = b̂p −

√
ωpp σ̂ψ zα
γ̂1
√
n

,

we see that
√
n(b̂′

−
p − b̂−p ) = oP (1) but not n(b̂′

−
p − b̂−p ) = oP (1) unless γ2 = 0 or∑n

i=1

x3
ip

n = 0. As an analogy of (17) holds for b̂+p as well, we see that the confidence
interval DII

n is asymptotically shifted a little bit to the right or left according to
the sign of the quantity γ2

γ3
1n

∑n
i=1 x

3
ip.

4 Monte Carlo Experiment

In our small simulation, we considered the simple linear model with one covariate
and an intercept, that is Yi = β1 + β2 xi. We compared the confidence intervals
for β2 based based on the three different methods of estimation of γ1, and σψ. For
simplicity of notation, we assumed that the covariate is centered, that is

∑n
i=1 xi =

0.

1. (hom) Estimates for homoskedasticity

γ̂1 =
1
n

n∑
i=1

ψ′( riSn ), σ̂2
ψ =

1 + κ

n− p

n∑
i=1

ψ2( riSn ),

where κ = 2
γ̂2
1n

2

∑n
i=1[ψ

′( riSn )− γ̂1]2 is the finite sample correction suggested
by Huber [3]

2. (het) Estimates more robust against heteroskedasticity (T 2
n =

∑n
i=1

x2
i

n )

γ̂1 =
1
nT 2

n

n∑
i=1

x2
iψ
′( riSn ), σ̂2

ψ =
1

(n− p)T 2
n

n∑
i=1

x2
iψ

2( riSn ),
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3. (het2) It is well known (e. g. in Hansen [2]) that if we can neglect the influ-
ence of the estimation of scale then in the presence of heteroskedasticity, the
variance matrix of

√
n(β̂M−β) is consistently estimated by S2

n

(
Γ−1
n Σn Γ−1

n

)
,

where

Γn =
[ 1

n

∑n
i=1 ψ

′( riSn ) 1
n

∑n
i=1 xi ψ

′( riSn )
1
n

∑n
i=1 xi ψ

′( riSn ) 1
n

∑n
i=1 x

2
i ψ

′( riSn )

]
and

Σn =
[ 1

n

∑n
i=1 ψ( riSn ) 1

n

∑n
i=1 xi ψ( riSn )

1
n

∑n
i=1 xi ψ( riSn ) 1

n

∑n
i=1 x

2
i ψ( riSn )

]
.

Let us denote the standard deviation of
√
n(b̂2 − β2) based on this estimates

by sb. Then the type I CI is simply [b̂2∓sb u1−α/2] and the type II confidence
interval is defined by (8) and (9) with the quantity T 2

np
√
ωpp σ̂ψ zα replaced

by g22 sb u1−α/2, where g22 is the ‘last’ element of the matrix Γn.

In the following, we took the sample size n = 20 and prescribed α = 0.05.
As the distribution of the errors we chose the contaminated normal model given
by the distribution function Fkont(y) = 0.85 Φ(y) + 0.15 Φ(y − 3), where Φ(y) is
a distribution function of a standard normal random variable. But we got very
similar results for errors following other type of distributions including the standard
normal distribution, t-distribution, logistic and cauchy distribution. Because we do
not want our results to be dependent on the particular design, we decided to work
with a random covariate (correlation model). The covariate was always centered
before a calculation of a M -estimator.

As the M -estimator we chose the Huber estimate with the psi function ψ(x) =
min{max{x,−k}, k}, where the tuning constant k was set to 1.345. For estimation
of scale we use the MAD (mean absolute deviation) computed from the residuals
from the preliminary l1 (least absolute deviation) fit. As l1-regression has the exact
fit property, that is p points are fitted exactly with zero residuals, these residuals
were left out before computation of MAD.

To be more conservative we also replaced the quantiles of standard normal
distribution with the quantiles of t-distribution with (n− 1) degrees of freedom in
the formulas of CI’s . By `n we denote the length of a particular CI. The number
of random samples in all situations is 250 000.

Table 1 contains the result for the covariate X with uniform distribution
on [−1, 1]. In the first line we see the actual coverage of the confidence inter-
val, in the second line the median of the length of the CI (multiplied by

√
n) and

finally the interquantile range of the lengths of conf. intervals (multiplied by n).
Table 1 tells us that all the proposed methods work in this situation satisfactorily.
The winner is the type I-hom CI. The coverage is OK, the length is shorter then
the type II-hom CI and the stability (in terms of the variability of the length) is
the best.

Table 2 contains the result for the similar situation as Table 1, but we have
changed the distribution of the covariate X to exponential (with the density f(x) =
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I-hom II-hom I-het II-het I-het2 II-het2

Coverage 0.947 0.953 0.930 0.937 0.936 0.943√
nmed(`n) 10.38 10.62 9.79 10.09 10.00 10.33

n IQR(`n) 12.03 12.74 13.78 14.64 14.24 15.19

Table 1: n = 20, X ∼ U[−1, 1] and e ∼ Fkont

e−xI(x > 0)), which is strongly asymmetric. We have also added two rows concern-
ing the one-sided coverage properties. By Covarage Lower (or Coverage Upper) we
mean P(β̂−2 < β2) (or P(β̂+

2 < β2)). At first we notice that the confidence inter-
vals designed for heteroskedasticity are not doing a very good job. Some further
simulations show that the actual coverage for this method does not approach 0.94
for the sample less than 200. The second view at Table 2 tells us that the actual
coverage for the type I-hom CI is a little bit under 0.95. It is interesting that this
is caused by the poor lower coverage.

I-hom II-hom I-het II-het I-het2 II-het2

Coverage 0.943 0.956 0.884 0.898 0.892 0.906
Coverage Lower 0.961 0.974 0.942 0.952 0.944 0.955
Coverage Upper 0.982 0.982 0.942 0.946 0.948 0.951√
nmed(`n) 6.40 6.87 5.36 5.79 5.47 5.93

n IQR(`n) 10.88 11.88 12.31 14.27 12.51 14.55

Table 2: n = 20, X ∼ Exp(1) and e ∼ Fkont

Now we turn our attention to the models where heteroskedasticity is present.
The covariate X will be once more uniformly distributed on [−1, 1] and the errors
of the i-th observation will be ei multiplied by the absolute value of Xi. The results
are to be found in Table 3. We see that if we are not aware of heteroskedasticity,
the resulting conf. interval is too short with poor actual coverage. It is worth
noting that for the type II-hom CI the situation is not so catastrophic. Notice that
type II-het2 CI almost achieves prescribed size. With increasing the sample size
the actual coverage of the type I-hom CI is about 0.8, for the type I-hom CI about
0.9 and the coverage for all the other confidence intervals converges quite rapidly
to 0.95.

Summary of the results

Let us summarize our empirical findings for the linear model with one explanatory
variable.

CI’s of type II are generally larger, more variable but with higher coverage than
the type I conf. intervals. The higher coverage property is worth considering espe-
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I-hom II-hom I-het II-het I-het2 II-het2

Coverage 0.829 0.900 0.911 0.931 0.924 0.944√
nmed(`n) 4.84 5.86 6.30 6.83 6.60 7.23

n IQR(`n) 6.29 8.20 10.17 11.14 10.86 12.11

Table 3: n = 20, X ∼ U[−1, 1] and e/|X| ∼ Fkont

cially in models in which errors or a covariate is heavily asymmetric. In such models
type II methods are preferable for the construction of one-sided conf. intervals. At
the same time the type II-hom CI usually prevents the total failure of the CI in
the case of heteroskedasticity.

The CI’s which take possible heteroskedasticity into considerations need in
asymmetric models more than one hundred observations to be trustworthy.

If the number of observations is sufficiently large (> 200) and we would like to
be robust against heteroskedasticity, the simple type II-het CI is worth considering.

It is behind the scope of this paper, but it would be desirable to verify to which
extent these empirical findings hold for a multiple regression with two or more
explanatory variables.
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