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2 Glivenko-Cantelli theorems with the help of
bracketing numbers

The problem we need to tackle is that as the set F is typically uncountable there is in general
no guarantee that supf∈F |Pn(f) − P (f)| is a measurable random variable. To overcome this
difficulty we generalize the convergence in probability and almost sure convergence.

Let (Ω,A,P) be the probability space. Then for B ⊂ Ω we define the outer probability as

P∗(B) = inf
{
P(A) : B ⊂ A, A ∈ A

}
. (2.1)

In what follows let D be a metric space with a metric d.

Definition 1. Let X1, X2, . . . , X be (random) maps from Ω to D.

(i) We say that Xn converges in outer probability to X if P∗ (d(Xn, X) > η
)
−−−→
n→∞

0 for

each η > 0. This convergence is denoted as Xn
P ∗

−−−→
n→∞

X.

(ii) We say that Xn converges outer almost surely to X if there exists a sequence of mea-

surable random variable {∆n} such that d(Xn, X) ≤ ∆n and ∆n
alm. surely−−−−−−−→

n→∞
0. This

convergence is denoted as Xn
alm. surely∗−−−−−−−→

n→∞
X.

Bracketing numbers

Let F be the set of real functions defined on the (sample) space X that is equipped with the
norm ∥ · ∥. The first concept how to measure the size of F is based on the bracketing numbers.
The second concept based on covering numbers will be introduced in Chapter 5.
Given two functions l and u, the bracket [l, u] is the set of all functions f that are between l

and u, i.e.
[l, u] =

{
f : X → R : l(x) ≤ f(x) ≤ u(x), ∀x ∈ X

}
.

Further an ϵ-bracket is a bracket [l, u] such that ∥u− l∥ < ϵ.

Definition 2. The bracketing number N[ ](ϵ,F , ∥·∥) is the minimal number of ϵ-brackets
needed to cover the set F . The upper and lower bounds u and l of these brackets do not have
to belong to F but are assumed to be measurable and to have finite norms.

In what follows we will be interested in the norms that posses the (Riesz) property, i.e. if
|f(x)| ≤ |g(x)| for all x ∈ X then ∥f∥ ≤ ∥g∥.

Theorem 1. (Glivenko-Cantelli)
Let F be a class measurable functions, such that N[ ](ϵ,F , L1(P )) < ∞ for each ϵ > 0. Then F
is P -Glivenko-Cantelli, i.e.

sup
f∈F

∣∣Pn(f)− P (f)
∣∣ alm. surely∗−−−−−−−→

n→∞
0.
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Proof. Let ϵ > 0 be given. Then there exists a finite bracketing number Kε and brackets
[l1, u1], . . . , [lKε , uKε ] such that

F ⊂
Kϵ⋃
j=1

[lj , uj ] and ∥uj − lj∥L1(P ) < ϵ ∀j ∈ {1, . . . ,Kϵ}.

Thus for f ∈ F there exists j ∈ {1, . . . ,Kϵ} such that f ∈ [lj , uj ] and so one can bound

Pn(f)− P (f) ≤ Pn(uj)− P (lj) = Pn(uj)− P (uj) + P (uj)− P (lj) ≤ Pn(uj)− P (uj) + ϵ.

Thus
sup
f∈F

(
Pn(f)− P (f)

)
≤ max

j∈{1,...,Kϵ}

∣∣Pn(uj)− P (uj)
∣∣+ ϵ. (2.2)

Analogously
inf
f∈F

(
Pn(f)− P (f)

)
≥ − max

j∈{1,...,Kϵ}

∣∣Pn(lj)− P (lj)
∣∣− ϵ,

which together with (2.2) implies that

sup
f∈F

∣∣Pn(f)− P (f)
∣∣ ≤ ∆n(ϵ) + ϵ,

where
∆n(ϵ) = max

g∈Gε

{
|Pn(g)− P (g)|}, where Gε =

{
lj , uj : j ∈ {1, . . . ,Kϵ}

}
.

As ϵ > 0 is arbitrary one gets that for each m ∈ N there exists a finite set of functions G 1
m

such

that
sup
f∈F

∣∣Pn(f)− P (f)
∣∣ ≤ ∆n(

1
m) + 1

m

and thus also

sup
f∈F

∣∣Pn(f)− P (f)
∣∣ ≤ ∆n, where ∆n = inf

m∈N

(
∆n(

1
m) + 1

m

)
.

Note that ∆n is a measurable random variable thus from the definition of outer almost sure

convergence (see Definition 1(ii)) it remains to show that ∆n
alm. surely−−−−−−−→

n→∞
0. This will be verified

provided that one can show that

P

( ∞⋃
k=1

[
lim sup
n→∞

∆n >
1
k

])
= 0. (2.3)

Note that

P

( ∞⋃
k=1

[
lim sup
n→∞

∆n >
1
k

])
≤

∞∑
k=1

P
(
lim sup
n→∞

∆n >
1
k

)
(2.4)

and that for each k ∈ N

P
(
lim sup
n→∞

∆n >
1
k

)
≤ P

(
lim sup
n→∞

∆n

(
1
2k

)
+ 1

2k >
1
k

)
= P

(
lim sup
n→∞

∆n

(
1
2k

)
> 1

2k

)
= 0, (2.5)

as ∆n

(
1
2k

) alm. surely−−−−−−−→
n→∞

0. Combining (2.4) and (2.5) verifies (2.3) which further implies that

∆n
alm. surely−−−−−−−→

n→∞
0 and finishes the proof of the theorem.
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The approach using bracketing numbers gives a very strict control of the size of F . The
advantage is that the above theorem can be easily generalized to not i.i.d. situation. The only
thing that is needed is that the strong law of large numbers is available.
On the other hand the disadvantage of this approach is that requiring N[ ](ϵ,F , L1(P )) < ∞

may be rather strict in i.i.d. settings. Sometimes it is advantageous to use a different approach
how to control the size of F (see Chapter 5).

Remark 1. The assumption N[ ](ϵ,F , L1(P )) < ∞ is sufficient but not necessary. Consider the
class of constant functions.

Example 1. Consider the class of real functions

F =
{
x→ ρ(x; θ) : θ ∈ Θ

}
,

where the space (Θ, d) is compact and ρ(x; θ) is continuous in θ for each x ∈ X . Further there
exists a dominating function R such that

sup
θ∈Θ

|ρ(x; θ)| ≤ R(x), ∀x ∈ X and E R(Xi) <∞.

Show that F is P -Glivenko-Cantelli.

Application to consistency of M-estimators

Let ρ(x; θ) : X ×Θ → R be a ‘loss function’ such that the parameter of interest can be identified
as

θX = argmin
θ∈Θ

E ρ(Xi; θ).

Then the M -estimator of θX is defined as

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

ρ(Xi; θ).

Suppose that the parameter of interest is ‘well-separated’, i.e. for each η > 0 there exists
δ > 0 such that

inf
θ∈Θc

η

E ρ(Xi; θ) ≥ E ρ(Xi; θX) + δ, (2.6)

where
Θc

η =
{
θ ∈ Θ : d(θ, θX) ≥ η

}
with d being a metric on the parameter space Θ.

The following theorem illustrates how the uniform law of large numbers can be used to show
the consistency of M -estimator.

Theorem 2. Suppose that the above identifiability assumption (2.6) holds and that the class of
functions

F =
{
x→ ρ(x; θ) : θ ∈ Θ

}
is P -Glivenko-Cantelli. Then

d(θ̂n, θX)
P−−−→

n→∞
0.
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Proof. For simplicity of notation introduce

Mn(θ) =
1

n

n∑
i=1

ρ(Xi; θ) and M(θ) = E ρ(Xi; θ).

Let η > 0 be fixed. Then there exists δ > 0 such that (2.6) holds. Now one can bound

P
(
d(θ̂n, θ) > η

)
≤ P∗

(
inf
θ∈Θc

η

Mn(θ) ≤Mn(θX)
)

≤ P∗
(

inf
θ∈Θc

η

[
Mn(θ)−M(θ)

]
+ inf

θ∈Θc
η

M(θ) ≤M(θX) +Mn(θX)−M(θX)
)

≤ P∗
(

inf
θ∈Θc

η

[
Mn(θ)−M(θ)

]
≤M(θX)− inf

θ∈Θc
η

M(θ) +Mn(θX)−M(θX)
)

≤ P∗
(
inf
θ∈Θ

[
Mn(θ)−M(θ)

]
≤ −δ +Mn(θX)−M(θX)

)
−−−→
n→∞

0,

as

inf
θ∈Θ

[
Mn(θ)−M(θ)

]
≥ − sup

θ∈Θ

∣∣Mn(θ)−M(θ)
∣∣ alm. surely∗−−−−−−−→

n→∞
0

and also Mn(θX)−M(θX)
alm. surely−−−−−−−→

n→∞
0.

Unfortunately in applications it is typically not at all straightforward to use this theorem.
The problem is that using of the result derived in Example 1 requires that the parameter space
is compact which is usually not the case. Thus the first step of the proof of the consistency of
the M -estimator is showing that P(θ̂n ∈ ΘK) −−−→

n→∞
1, where ΘK is a compact subset of Θ that

contains the true value of the parameter. The other problem that may be rather difficult is to
show that the identifiability assumption (2.6) holds.
Consistency of M -estimators is in more detail discussed in Chapter 5.2 of van der Vaart

(2000). In particular consistency of maximum likelihood estimators and least squares estimators
are discussed in Chapter 4 of van de Geer (2000).

Exercise 1. Let X1, . . . , Xn be a random sample from the uniform distribution on [0, 2π]. For
a ∈ [0, 10] define

Yn(a) =
1

n

n∑
i=1

cos(aXi).

Show that supa∈[0,1]
∣∣Yn(a)− sin(2aπ)

2aπ

∣∣ alm. surely∗−−−−−−−→
n→∞

0.

Now, consider that ân = π
Xn

. Show that Yn(ân)
P ∗

−−−→
n→∞

0.

Hint. Denote Y (a) = E cos(aXi). Note that with probability going to one one can bound∣∣Yn(ân)− Y (1)
∣∣ ≤ ∣∣Yn(ân)− Y (ân)

∣∣+ ∣∣Y (ân)− Y (1)
∣∣

≤ sup
a∈[0,2π]

∣∣Yn(a)− Y (a)
∣∣+ ∣∣Y (ân)− Y (1)

∣∣.
Exercise 2. Let X1, . . . , Xn be a random sample such that Xi has an exponential distribution
with the mean equal to 1. Consider the process

Zn(a) =
1

n

n∑
i=1

|Xi − a|, a ∈ [0, 2].
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Show that supa∈[0,2]
∣∣Zn(a)− E Zn(a)

∣∣ alm. surely∗−−−−−−−→
n→∞

0.

With the help of the previous result show that

1

n

n∑
i=1

|Xi −Xn|
P ∗

−−−→
n→∞

E |Xi − E Xi|.

The end of the
self study for the
week (1.10.-7.10.)
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3 Convergence in distribution in metric spaces

Let D be a metric space with a metric d.

Definition 3. Let (Ω,A,P) be a probability space and Y : Ω → R̄ = R ∪ {−∞,∞} be a
(possible non-measurable) mapping. Then the outer expectation of Y is defined as

E∗ [Y ] = inf
{
E [U ] | U ≥ Y, U : Ω → R̄ (A, B̄1)-measurable, E [U ] exists

}
.

Analogously the inner expectation is defined as

E∗ [Y ] = sup
{
E [U ] | U ≤ Y, U : Ω → R̄ (A, B̄1)-measurable, E [U ] exists

}
.

Remark 2. (a) The inner expectation can be also defined as

E∗ [Y ] = −E∗ [−Y ].

(b) If the function Y is measurable then

E∗ [Y ] = E∗ [Y ] = E [Y ].

(c) One has to be careful that in general for the outer expectation the Fubini theorem does
not hold. Be also careful that in general the outer expectation is only subadditive, i.e.
E∗ [Y + Z] ≤ E∗ [Y ] + E∗ [Z].

(d) It can be proved (see e.g. Lemma 1.2.1 of van der Vaart and Wellner, 1996) that the
infimum in the definition of the outer function is attained provided that the outer expec-
tation exists. That is there exists ‘a minimal measurable cover function’ Y ∗ such that
Y ∗(ω) ≥ Y (ω) for each ω ∈ Ω and E∗ [Y ] = E [Y ∗]. Further for any other Ỹ such that
Ỹ ≥ Y almost surely it holds that Y ∗ ≤ Ỹ almost surely.

(e) For each B ⊂ Ω it holds that E∗ [IB] = P∗(B). Similarly for each B ⊂ Ω it holds that
E∗ [IB] = P∗(B), where P∗(B) is the inner probability defined as

P∗(B) = sup{P(A) | A ⊂ B, A ∈ A}.

For a formal proof see see e.g. Lemma 1.2.3.(i) of van der Vaart and Wellner (1996). Note
also that the inner probability can be defined as

P∗(B) = 1− P∗(Ω \B).

Definition 4. Let D be a metric space with the metric d and Borel-σ-algebra D, (Ω,A,P)
be a probability space, Xn : Ω → D be a (possible non-measurable random) mapping and
X : (Ω,A,P) → (D,D) be a measurable mapping. Then we say that Xn converges weakly
(in distribution) to X (notation: Xn ⇝ X), provided that

E∗ [f(Xn)] −−−→
n→∞

E [f(X)]

for every bounded continuous function f : D 7→ R.
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The following theorem is an analogy of the standard Portmanteau-Theorem (see e.g. Lemma 2.2
in van der Vaart, 2000).

Theorem 3. (Portmanteau-Theorem)
The following statements are equivalent.

(i) Xn ⇝ X.

(ii) E∗ [f(Xn)] −−−→
n→∞

E [f(X)] for all bounded and Lipschitz functions f : D → R.

(iii) lim supn→∞ P∗(Xn ∈ F ) ≤ P(X ∈ F ) ∀F ⊂ D closed.

(iv) lim infn→∞ P∗(Xn ∈ G) ≥ P(X ∈ G) ∀G ⊂ D open.

(v) P∗(Xn ∈ B) −−−→
n→∞

P(X ∈ B) ∀B ∈ D with P(X ∈ ∂B) = 0.

Proof.

(i) ⇒ (ii) ✓

(ii) ⇒ (iii) Let F ⊂ D be closed, d be the metric in D and d(x, F ) := inf{d(x, y) | y ∈ F}. We
approximate IF with the help of the function f : D → R given by

f(x) =
(
1− d(x,F )

ϵ

)
+
.

Note that f is bounded and Lipschitz-continuous. Further let F ϵ := {x ∈ D | d(x, F ) < ϵ}.
Then it holds that IF (x) ≤ f(x) ≤ IF ϵ(x) and thus for each ϵ > 0

lim sup
n→∞

P∗(Xn ∈ F ) = lim sup
n→∞

E∗ [IF (Xn)] ≤ lim sup
n→∞

E∗ [f(Xn)]

= E [f(X)] ≤ P(X ∈ F ϵ).

Now the statement follows from the fact that P(X ∈ F ϵ) → P(X ∈ F ) as ϵ ↘ 0 (by the
continuity of the probability measure).

(iii) ⇔ (iv) Homework exercise.

(iii)+(iv) ⇒ (v) Let B ∈ D with P(X ∈ ∂B) = 0. Then it holds that

P(X ∈ B) = P(X ∈ int(B)) ≤ lim inf
n→∞

P∗
(
Xn ∈ int(B)

)
≤ lim inf

n→∞
P∗(Xn ∈ B)

and at the same time also

P(X ∈ B) = P(X ∈ B̄) ≥ lim sup
n→∞

P∗(Xn ∈ B̄) ≥ lim sup
n→∞

P∗(Xn ∈ B).

Thus limn→∞ P∗(Xn ∈ B) = P(X ∈ B).

(v) ⇒ (i) Without loss of generality it sufficient to consider only functions such that 0 < f < 1.
Then it can be shown that

E∗ [f(Xn)]
Exerc.
=

∫ 1

0
P∗(f(Xn) > t) dt, E [f(X)] =

∫ 1

0
P(f(X) > t) dt.

Denote Bt := {x ∈ D | f(x) > t}. Then by the continuity of f it holds that ∂Bt ⊂ {x ∈
D | f(x) = t}. Further the probability P(f(X) > t) is a complement of a distribution
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function of the random variable Y = f(X). Thus for all except for countable many t it
holds that

0 = P(f(X) = t) = P(X ∈ ∂Bt).

For such t it holds (by (v)) that

P∗(f(Xn) > t) = P∗(Xn ∈ Bt) −−−→
n→∞

P(X ∈ Bt) = P(f(X) > t).

Now wit the help of Lebesgue (dominated convergence) theorem it holds that

E∗ [f(Xn)] =

∫ 1

0
P∗(f(Xn) > t) dt −−−→

n→∞

∫ 1

0
P(f(X) > t) dt = E [f(X)],

which was to be proved.

Exercise 3. Suppose that X is measurable. Show that

Xn
P ∗

−−−→
n→∞

X =⇒ Xn ⇝ X.

In applications we are often not interested in the empirical process itself but rather in a
function of this process. The following theorem guarantees that if this function is continuous
then the function of the empirical process also converges in distribution.

Theorem 4. (Continuous-Mapping-Theorem, CMT)
Let X be measurable and Xn ⇝ X. Further let D′ be a metric space with Borel-σ-algebra D′ and
ψ : D → D′ be a mapping that is continuous on the set C(ψ) ⊂ D and P

(
X ∈ C(ψ)

)
= 1. Then

ψ(Xn)⇝ ψ(X).

Proof. Let F ′ ∈ D′ be closed. Then it holds

lim sup
n→∞

P∗ (ψ(Xn) ∈ F ′) = lim sup
n→∞

P∗ (Xn ∈ ψ−1(F ′)
)
≤ lim sup

n→∞
P∗ (Xn ∈ ψ−1(F ′)

)
Th. 3(iii)

≤ P
(
X ∈ ψ−1(F ′)

)
= P

(
X ∈ ψ−1(F ′) ∩ C(ψ)

)
.

Now show that (homework exercise)

P
(
X ∈ ψ−1(F ′) ∩ C(ψ)

)
≤ P

(
X ∈ ψ−1(F ′)

)
= P

(
ψ(X) ∈ F ′).

Now the statement follows by Theorem 3(iii).

Similarly as in the standard definition of weak convergence, also the generalized weak conver-
gence introduced in Definition 4 is closely connected with tightness.

Definition 5. (a) Let (Ω,A,P) be a probability space, D a metric space, D Borel-σ-algebra.
We say that a (A,D)-measurable random variable X is tight, when for all ϵ > 0 there
exist a compact set K ⊂ D such that P(X /∈ K) < ϵ.
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(b) Let Xn : Ω → D (n ∈ N) be a sequence of possible non-measurable random elements.
Then we say that a sequence of maps {Xn}∞n=1 is asymptotically tight if ∀ϵ > 0 there
exists a compact set K ⊂ D such that for ∀δ > 0

lim sup
n→∞

P∗(Xn /∈ Kδ) < ϵ,

where Kδ = {x ∈ D | d(x,K) < δ} is a δ-enlargement of K.

Remark 3. Note that if D is separable and complete then the random variable is (always) tight
(Theorem 1.3 Billingsley, 1999).

To formulate the (generalized) Prohorov’s theorem we need to guarantee the ‘measurability’ in
the limit. More precisely we say that a sequence of maps {Xn}∞n=1 is asymptotically measurable
if for each bounded continuous (real) function

E∗ f(Xn)− E∗ f(Xn) −−−→
n→∞

0.

Theorem 5. (Prohorov’s theorem) Let Xn : Ωn → D be a sequence of (possibly non-
measurable) random elements. Then

• If Xn ⇝ X for some tight random element X, then {Xn}∞n=1 is asymptotically tight and
measurable.

• If {Xn}∞n=1 is asymptotically tight and measurable, then there exists a subsequence which
converges in distribution to a tight random element X (in the sense of Definition 4).

For the proof of (i) see Lemma 1.3.8 of van der Vaart and Wellner (1996). The proof of (ii)
corresponds to the proof of Theorem 1.3.9(ii) of van der Vaart and Wellner (1996).

Bounded stochastic processes

Let X1, . . . , Xn be independent identically distributed random variables with values in space X
(think for instance of R or Rk). Recall that the empirical process Gn indexed by the set of (real
measurable) functions F (on X ) is a collection of the random variables

Gn(f) =
√
n
(
Pn(f)− P (f)

)
, f ∈ F , (3.1)

where

Pn(f) =
1

n

n∑
i=1

f(Xi) and P (f) = E f(Xi).

Thus Gn can be viewed as a stochastic process X = {X(t) | t ∈ T} where the role of t and the
index set T is played by the function f and the set of functions F .
Further in the subsequent chapter we will consider the sets of functions F such that

sup
f∈F

∣∣f(x)− P (f)
∣∣ <∞, for every x ∈ X . (3.2)

Thus for a given ω ∈ Ω the empirical process has a sample path f 7→ Gn(ω, f) which is a
bounded function. Thus, more generally consider the stochastic processes {Xn} and X indexed
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by T whose values (sample paths) are in the space of bounded functions ℓ∞(T ). This space is
formally defined as

ℓ∞(T ) =
{
f : T → R | ∥f∥T <∞

}
, where ∥f∥T = sup

t∈T
|f(t)|.

The advantage of considering ℓ∞(T ) is that it covers all the commonly considered spaces. On
the other hand one often knows that the empirical process lives in a smaller space. For instance
the trajectories of the classical empirical process {

√
n(Fn(t)−F (t)), t ∈ R} are contained in the

space of right-continuous functions with left limits (i.e. D(−∞,∞)). This raises the following
question. Is it possible that the empirical process does not converge in distribution in the space
(ℓ∞(T ), ∥ · ∥T ) but at the same time it converges in a subset of ℓ∞(T ) (e.g. in D(−∞,∞))? The
following lemma says that this cannot happen provided that the supremum metric ∥ · ∥T is also
used in the smaller space.

Lemma 1. Let (D, ρ) be a metric space and D0 ⊂ D. Let Xn(ω) ∈ D0 for all sufficiently large
n ∈ N and also X(ω) ∈ D0 for each ω ∈ Ω. Then Xn ⇝ X in (D, ρ) if and only if Xn ⇝ X in
(D0, ρ).

Proof. The proof follows from the fact that the set G0 is open in D0 if and only if G0 = G∩D0,
where G is an open set in D.

By Prohorov’s theorem (Theorem 5) the convergence in distribution implies the asymptotic
tightness and asymptotic measurability. The question of interest is whether one can be more
specific for processes with values in ℓ∞(T ). The one of the possible answers is given in the
following theorem. Roughly speaking this theorem says that convergence in distribution in
ℓ∞(T ) can be characterized by finite approximation. More precisely for each ϵ > 0 the index
set T can be partitioned into finitely many T1, . . . , Tk such that on each Tj with high probability
the process Xn asymptotically oscillates less than ϵ uniformly in j. When this holds, then the
behaviour of the process can be approximated by the marginal vectors (Xn(t1), . . . , Xn(tk))

T

where t1, . . . , tk are fixed points from T1, . . . , Tk respectively. If these marginal vectors converge
then the process converges.

Theorem 6. Let Xn = {Xn(t) | t ∈ T} be a sequence of stochastic processes in ℓ∞(T ). Then
Xn ⇝ X, where X is a tight random variable if and only if both of the following assumptions
hold:

(i) For each k ∈ N and each t1, . . . , tk ∈ T the random vector (Xn(t1), . . . , Xn(tk))
T converges

in distribution in Rk;

(ii) ∀ϵ > 0, ∀η > 0 there exists a partition T1, . . . , Tk of T , such that

lim sup
n→∞

P∗

(
sup

j∈{1,...,k}
sup
s,t∈Tj

|Xn(s)−Xn(t)| ≥ ϵ

)
≤ η. (3.3)

Remark 4. It can be proved (see Theorem 1.5.6 of van der Vaart and Wellner, 1996) that the
assumption (ii) together with the asymptotic tightness of the sequence {Xn(t)} for each t ∈ T
is in fact equivalent to the asymptotic tightness (Definition 5(ii)).

Proof. We give only a sketch of the proof of the sufficiency of the assumptions (i) and (ii). This
part of the proof can be divided into four steps. More details can be found in the proof of
Theorem 18.14 of van der Vaart (2000).
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Step 1: With the help of assumption (ii) we find a semimetric1 ρ on T such that (T, ρ) is totally
bounded.
For m ∈ N denote Tm

1 , . . . , T
m
km

the partition of T as in assumption (ii) with ϵ = η = 2−m.
Then without loss of generality one can assume that the partitions are successive refinements as
m increases. For m ∈ N define the semimetric ρm as

ρm(s, t) =

{
0, ∃j ∈ {1, . . . , km} : s, t ∈ Tm

j ,

1, otherwise.

Note that (T, ρm) is totally bounded (exercise). As the partitions are successive refinements it
holds that ρ1 ≤ ρ2 ≤ . . . . Now define

ρ(s, t) :=
∞∑

m=1

2−mρm(s, t).

Then ρ is a semimetric. Further for each ϵ > 0 one can find m such that 2−m ≤ ϵ. But then Tm
j

is contained in a ball of diameter less than ϵ as for ∀s, t ∈ Tm
j

ρ(s, t) ≤
∞∑

l=m+1

1

2l
=

1

2m
.

Thus (T, ρ) is totally bounded (which is crucial to guarantee that the limiting process is tight,
see Step 4).

Step 2: The construction of the limit process.
First, for each j ∈ {1, . . . , km} and m ∈ N choose an arbitrary point tmj ∈ Tm

j . Then the set

T0 := {tmj , j ∈ {1, . . . , km}, m ∈ N}

is countable and dense in (T, ρ).
Now with the help of Daniel-Kolmogorov theorem there exists a process

{
X(t), t ∈ T0} so that

assumption (i) holds. Next, it can be shown that for almost all ω ∈ Ω the sample paths X(ω, t)
of the limiting process are uniformly continuous in (T0, ρ). Thus the process can be extended
to T so that almost all paths are uniformly continuous in (T, ρ).

Step 3: We show that Xn ⇝ X.
To do that we make use of Theorem 3(ii). Let f : ℓ∞(T ) → R be bounded and Lipschitz.
For each m ∈ N define a mapping πm : T → T such that πm(t) = tmj when t ∈ Tm

j . Then one
can bound

lim sup
n→∞

|E∗ [f(Xn)]− E [f(X)]| ≤ lim sup
n→∞

|E∗ [f(Xn)]− E∗ [(f(Xn ◦ πm))]|

+ lim sup
n→∞

|E∗ [f(Xn ◦ πm)]− E [f(X ◦ πm)]|

+ |E [f(X ◦ πm)]− E [f(X)]|

Now by the assumption (ii) of the theorem and the fact that f is bounded and Lipschitz the
first term term on the right-hand side of the inequality above can be made arbitrarily small by
taking m large enough.

1In the context of empirical processes the semimetric is symmetric in its arguments and satisfies a triangular
inequality. But compared to the metric the ‘zero distance’ (i.e. ρ(x, y) = 0) does not imply that x = y. Note
that some authors would call ρ rather a pseudometric.
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The second term is zero for each m ∈ N from the convergence of the finite-dimensional
distributions (assumption (i) of the theorem).
Finally the third term can be made arbitrarily small by taking m large enough as by the

uniform continuity of the sample paths of X one has X ◦ πm
alm. surely−−−−−−−→

m→∞
X.

Step 4: It remains to show that the limit process X is a tight random variable in ℓ∞(T ). This
can be seen as follows. Recall that almost all sample paths of X are uniformly ρ-continuous in T .
Thus thanks to the fact that the semimetric space (T, ρ) is totally bounded one can deduce that
X has (almost all) sample paths in ℓ∞(T ). Further each ρ-continuous function has a unique
continuous extension to the ρ-completion of T , say T . As T is totally bounded then (T , ρ) is a
compact semimetric space. Thus the unique extension of X to T has almost all sample paths
in the set ρ-continuous functions on T . But the space of continuous function on the compact
semimetric space is a separable and complete subspace of ℓ∞(T ) (see Example 1.5.1 van der
Vaart and Wellner, 1996). Thus a measure on this space is tight.

Remark 5. Step 4 of the proof can be also deduced from Remark 4 and Prohorov’s Theorem
(i.e. Theorem 5(ii)).

It is worth noting that during the proof of Theorem 6 a semimetric ρ is constructed in such
a way that the limiting process X has uniformly ρ-continuous sample paths and the semimetric
space (T, ρ) is totally bounded. This shows that if the processes {Xn} converge in distribution
in the space of bounded functions ℓ∞(T ) (which is rather large), then the processes have to
become more and more ‘well-behaved’ so that the limiting process is concentrated on a space of
uniformly ρ-continuous (which is a much smaller space than ℓ∞(T )).

The above ideas are formalized by the concept of asymptotic equicontinuity.

Definition 6. Let Xn : Ωn → ℓ∞(T ) and ρ be a semimetric on T . We say that the sequence of
processes {Xn} is asymptotically uniformly ρ-equicontinuous in probability if for every
ϵ > 0 and η > 0 there exists δ > 0 such that

lim sup
n→∞

P∗
(

sup
s,t∈T :ρ(s,t)<δ

|Xn(s)−Xn(t)| > ϵ

)
< η.

Theorem 7. The sequence of stochastic processes satisfies assumption (ii) of Theorem 6 if and
only if there exists a semimetric ρ such that (T, ρ) is totally bounded and {Xn} is asymptotically
uniformly ρ-equicontinuous in probability.

Proof. ‘⇒’ Assume that assumption (ii) of Theorem 6 is satisfied. Then the statement follows
from Step 1 of the proof of that theorem.

‘⇐’ Assume that there exists a semimetric ρ such that (T, ρ) is totally bounded and {Xn} is
asymptotically uniformly ρ-equicontinuous in probability. Then T can be covered with finitely
many balls of radius δ (details left as an exercise).

Note that so far we only know that if the {Xn} converges in distribution in ℓ∞(T ), then there
exists a semimetric ρ for which the sequence {Xn} is asymptotically uniformly ρ-equicontinuous
in probability. Further, for the same semimetric ρ the limiting process X has uniformly contin-
uous almost all trajectories. But the construction of the semimetric ρ in the proof of Theorem 6
is rather implicit as it depends on the existence of an appropriate partion of the set T .
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Nevertheless, recall that we have in mind the application to the empirical process Gn based
on the i.i.d. random variables. In this case by the central limit theorem we know that the finite-
dimensional distributions of the limiting process are Gaussian with zero expectations. Thus
the limiting process is zero-mean Gaussian. And for Gaussian processes it is known that the
continuity of the sample paths is tied with the continuity of the covariance function. That is
why probably the following theorem may be not so surprising.

Theorem 8. Suppose that the assumptions of Theorem 6 hold and that the limiting process X
is zero-mean Gaussian. Then {Xn} is asymptotically uniformly ρ-equicontinuous in probability
for the semimetric ρ defined as

ρ(t, s) =
√
E [X(t)−X(s)]2 =

√
var(X(t)−X(s)).

Proof. See the proof of Lemma 18.15 of van der Vaart (2000).
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4 Donsker-Theorem with the help of bracketing
numbers

Recall the empirical process given in (3.1) and assume that the assumption for bounded sample
paths (3.2) holds.
Our aim is to show the weak convergence of the process Gn. By the central limit theorem for

i.i.d. random vectors for each k ∈ N and each f1, . . . , fk ∈ F(
Gn(f1), . . . ,Gn(fk)

)T d−−−→
n→∞

Nk

(
0k,V

)
,

where the (j, l) element of the variance matrix V is given by

vjl = cov
(
fj(Xi), fl(Xi)

)
, j, l ∈ {1, . . . , k} = P (fj fl)− P (fj)P (fl).

Thus provided that also the assumption (ii) of Theorem 6 (i.e. asymptotic tightness) is satisfied,
then one gets that

Gn ⇝ G in ℓ∞(F), (4.1)

where G is a zero mean Gaussian process with the covariance function given by

cov
(
G(f1),G(f2)

)
= cov

(
f1(Xi), f2(Xi)

)
= P (f1 f2)− P (f1)P (f2).

If the weak convergence (4.1) holds, then we say that the class of functions F is P -Donsker.

Theoretical results

The following lemma will be helpful when proving assumption (ii) of Theorem 6. It states that
the bracketing numbers can be used to bound the expectation of the supremum of the empir-
ical process supf∈F |Gn(f)|. To formulate this lemma it convenient to introduce an envelope
(function). We say that a function F is an envelope for the set (class) of functions F when it
satisfies

sup
f∈F

|f(x)| ≤ F (x), ∀x ∈ X .

I.e. the envelop function is a dominating function for absolute values of functions in F .

Lemma 2. Let F be a class measurable functions f : X → R, such that P (f2) < δ2 for each
f ∈ F and F be a measurable envelope of F . Then there exists a constant C, such that

E∗

[
sup
f∈F

|Gn(f)|

]
≤ C

(∫ 2δ

0

√
LogN[ ](ϵ,F , L2(P )) dϵ+

√
nP
(
F I{F >

√
n a(δ)}

))
, (4.2)

where a(δ) = δ√
LogN[ ](δ,F ,L2(P )))

and Log x = max{1, log x}.
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The proof of this lemma is rather technical and it is based on Bernstein inequality and chaining
technique (see e.g. Lemma 19.34 of van der Vaart, 2000).
In what follows we will use the lemma for δ ‘small’. Thus note that there is an impor-

tant assumption that the F is class of functions that are ‘small’ in L2(P )-norm, i.e. P (f2) =
E f2(Xi) < δ2.

Before we proceed let us introduce the bracketing integral, i.e.

J[ ]

(
δ,F , L2(P )

)
=

∫ δ

0

√
logN[ ]

(
ϵ,F , L2(P )

)
dϵ. (4.3)

The bracketing integral can be viewed as a measure of the size of the class F and it plays an
important role in the inequality (4.2)1

Remark 6. Note that the bracketing number N[ ](ϵ,F , L2(P )) increases (typically to ∞) for ϵ
approaching zero. Thus the bracketing integral is finite, if N[ ](ϵ,F , L2(P )) does not increase
too quickly when ϵ→ 0+. The nice thing is that the rate of bracketing number is ‘slowed down’
first by the logarithm and then by the square root. Thus a sufficient condition for the finitiness
of the bracketing integral is that for some θ > 0√

logN[ ](ϵ,F , L2(P )) = O( 1
ε1−θ ), as ϵ→ 0+.

This happens for instance when N[ ](ϵ,F , L2(P )) is bounded by a polynomial in 1
ϵ or when

N[ ](ϵ,F , L2(P )) ≤ C exp{ 1
ϵ2−θ }, for some C <∞ and θ > 0.

The following theorem says that the finiteness of the bracketing integral is a sufficient condition
for F to be P -Donsker.

Theorem 9. Suppose that J[ ](1,F , L2(P )) < ∞. Then the class of measurable functions F is
P -Donsker.

Proof. As noted before, it is sufficient to show (3.3). That is it remains to show that for each
ϵ > 0, η > 0 there exists a finite partition F1, . . . ,Fk of F such that

lim sup
n→∞

P∗

(
sup

j∈{1,...,k}
sup

f,g∈Fj

|Gn(f)−Gn(g)| ≥ ϵ

)
≤ η. (4.4)

Let δ > 0 (later on δ will be taken sufficiently small). Then one can cover F with δ-brackets
(with respect to L2(P ) norm) [l1, u1],. . . ,[lk, uk], where k = N[ ](δ,F , L2(P )) < ∞. These
brackets create partition F1, . . . ,Fk of F and it holds that

∥f − g∥L2(P ) < δ ∀f, g ∈ Fj , ∀j ∈ {1, . . . , k}.

Now denote pn = P∗
(
supj∈{1,...,k} supf,g∈Fj

|Gn(f)−Gn(g)| ≥ ϵ
)
. Then with the help of Markov’s

inequality one can bound

pn
Markov
≤ 1

ϵ
E∗
[

max
j∈{1,...,k}

sup
f,g∈Fj

|Gn(f)−Gn(g)︸ ︷︷ ︸
=Gn(f−g)

|
]

≤ 1

ϵ
E∗
[
sup
h∈H

|Gn(h)|
]
, where H =

{
f − g | f, g ∈ F , P (f − g)2 ≤ δ2

}
. (4.5)

1In fact there is Log instead of log in (4.2), but note that the difference typically disappears as N[ ](ϵ,F , L2(P )) ≥
3 for sufficiently small ϵ.

18



Now show that (homework exercise)

N[ ](δ,H, L2(P )) ≤
[
N[ ]

(
δ/2,F , L2(P )

)]2
and thus

logN[ ](δ,H, L2(P )) ≤ 2 logN[ ](δ/2,F , L2(P )).

Now we are almost ready to use Lemma 2. But to that we need to have a measurable envelope.
For this reason put

F (x) = max
j∈{1,...,k}

max{|uj(x)|, |lj(x)|}

and note that 2F is an envelope for H.
Now with the help of Lemma 2 there exists a finite constant C such that

E∗
[
sup
h∈H

|Gn(h)|
]
≤ C

( 2δ∫
0

√
2LogN[ ](ϵ/2,F , L2(P )) dϵ+

√
nP
(
2F I{2F >

√
na(δ)}

))
, (4.6)

where a(δ) = δ√
2LogN[ ](δ/2,F ,L2(P )))

.

Now note that the envelope F has a finite second moment, as

P (F 2) ≤
k∑

j=1

[
P (u2j ) + P (l2j )

]
<∞.

Thus the second term on the right-hand side of inequality (4.6) for each δ > 0 satisfies

√
nP
(
2F I

{
F >

√
na(δ)
2

})
≤ 4

a(δ)
P
(
F 2 I

{
F >

√
na(δ)
2

})
−−−→
n→∞

0. (4.7)

Further the first term on the right-hand side of inequality (4.6) for δ sufficiently small satisfies

2δ∫
0

√
2LogN[ ](ϵ/2,F , L2(P )) dϵ = 2

√
2

δ∫
0

√
LogN[ ](ϵ,F , L2(P )) dϵ

= 2
√
2J[ ](δ,F , L2(P )), (4.8)

which goes to zero for δ → 0+.
Now combining (4.5), (4.6), (4.7) and (4.8) implies (4.4), which was to be proved.

Remark 7. Note that in comparison with Theorem 1, it is not straightforward to generalize
this theorem to not i.i.d. settings. The problem is that it is rather complicated to generalize
Lemma 2 to not i.i.d. settings.

Applications

Theorem 9 can be very useful when showing that a class of functions F is P -Donsker. One only
needs to check that the bracketing integral is finite. Some sufficient conditions to guarantee this
are discussed in Remark 6. The nice thing is that the bracketing numbers for the commonly
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used classes of functions are already known. These include for instance classes smooth func-
tions, monotone functions, convex functions and functions Lipschitz in a parameter. See e.g.
Chapter 2.7 of van der Vaart and Wellner (1996) or Chapter 2 of van de Geer (2000).
In what follows we concentrate on the classical empirical process and then on the empirical

copula estimation. In this second example it is worth noting how the asymptotic uniform ρ-
equicontinuity (see Definition 6) is utilised. This technique is often useful when one wants derive
asymptotic properties of the estimators that are based on estimated quantities (for instance in
regression problems the diagnostic statistics are often based on estimated residuals as the true
regression errors are not observed).

Classical empirical process

Let X1, . . . , Xn be a random sample of univariate observations. Then the classical empirical
process Fn is given by

Fn(t) =
√
n
(
Fn(t)− F (t)

)
, t ∈ R,

where Fn(t) =
1
n

∑n
i=1 I{Xi ≤ t} is the empirical cumulative distribution function.

Note that Fn can be viewed as the empirical process Gn introduced in (3.1) with

F =
{
x 7→ I{x ≤ t}, t ∈ R

}
.

Now it is easy to check that

N[ ](ϵ,F , L2(P )) ≤
2

ϵ2
.

Thus by Remark 6 the bracketing integral is finite and the class F is P-Donsker and so

Fn ⇝ G in ℓ∞(R), (4.9)

where G is a zero mean Gaussian process with the covariance function given by

cov
(
G(t1),G(t2)

)
= E I{Xi ≤ t1, Xi ≤ t2} − E I{Xi ≤ t1} E I{Xi ≤ t2}
= F (min{t1, t2})− F (t1)F (t2).

Application to the Kolmogorov-Smirnov test
Let F0 be a given cdf and suppose that one is interested in testing the hypotheses

H0 : F (t) = F0(t), ∀t ∈ R, H1 : ∃t∗ ∈ R F (t∗) ̸= F0(t
∗).

Then with the help of (4.9) and Theorem 4 (CMT) one gets that under the null hypothesis

√
n sup

t∈R
|Fn(t)− F0(t)|⇝ sup

t∈R
|G(t)|, (4.10)

as supt∈R | · | is a continuous functional in the space of bounded functions ℓ∞(R) equipped with
the supremal norm.
Note that although Kolmogorov-Smirnov statistic is usually considered when F0 is continuous,

the above result (4.10) does not require the continuity of F0. Nevertheless, if F0 is continuous
(and H0 holds) then it is known that for y > 0:

P
(
sup
t∈R

|G(t)| ≤ y
)
= 1− 2

∞∑
k=1

(−1)k+1e−2 k2y2 .
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Exercise 4. Consider i.i.d. d-variate random vectors X1, . . . ,Xn. Show that then the corre-
sponding classical empirical process

Fn(t) =
√
n
(
Fn(t)− F (t)

)
, t ∈ Rd,

is P -Donsker. Note that it is not at all clear how the methods of the standard weak convergence
theory presented in Billingsley (1999) (or in the course NMTP434 Invariance Principles) would
be generalized to prove the weak convergence of the process Fn.

Empirical copula process

Vaguely speaking a copula is a function that links univariate distributions together to create a
multivariate distribution.
More precisely, let X = (X1, . . . , Xd)

T be a random vector with the cumulative distribution
function (cdf) FX . Further for j ∈ {1, . . . , d} denote Fj the corresponding marginal cdf of Xj

(the j-th coordinate of X). Then by Sklar’s theorem (see e.g. Theorem 2.10.9. of Nelsen, 2006)
there exists a function C defined on [0, 1]d such that

FX(x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
, ∀(x1, . . . , xd) ∈ Rd. (4.11)

Further if the cdfs F1, . . . , Fd are continuous (which will be assumed in the sequel), then C is
unique.
It can be shown that the copula function is a cdf on [0, 1]d of the random vector(

U1, . . . , Ud

)T
=
(
F1(X1), . . . , Fd(Xd)

)T
.

Thus the univariate margins of the copula function C are uniform on [0, 1].
Copula is sometimes called also a dependence function as it abstracts from the (univariate)

marginal cdfs F1, . . . , Fd and concentrates only on the dependence structure. Separating the
margins from the dependence structure is also the reason why copulas became so popular in
particular in financial applications.

Empirical estimation of C
Let X1, . . . ,Xn be a random sample of from the distribution given by the generic random

vector X.
Estimation of the copula is not completely straightforward as the marginal cdfs F1, . . . , Fd are

typically unknown. Nevertheless with the help of (4.11) one can express the copula function C
as

C(u) = FX

(
F−1
1 (u1), . . . , F

−1
d (ud)

)
, where u = (u1, . . . , ud) ∈ [0, 1]d.

Thus it is straightforward to estimate C as

Cn(u) = Fn

(
F−1
1n (u1), . . . , F

−1
dn (ud)

)
,

where

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x} and Fjn(x) =
1

n

n∑
i=1

I{Xji ≤ x}.

In what follows we would like to show that the empirical copula process

Cn(u) =
√
n
(
Cn(u)− C(u)

)
, u ∈ [0, 1]d.

converges weakly as a function in [0, 1]d.
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For this reason introduce the set of functions on Rd

F =
{
x 7→ I{x1 ≤ F−1

1 (u1), . . . , xd ≤ F−1
d (ud)}, u ∈ [0, 1]d

}
and note that each of the functions from this can be identified with a unique u ∈ [0, 1]d. Thus
for simplicity of notation we will write fu to distinguish functions from F . Further denote

fnu(x) = I{x1 ≤ F−1
1n (u1), . . . , xd ≤ F−1

dn (ud)}.

Note that fnu is random but P (fnu ∈ F) = 1. Using the empirical process notation one can
write

Cn(u) =
1

n

n∑
i=1

I
{
X1i ≤ F−1

1n (u1), . . . , Xdi ≤ F−1
dn (ud)

}
= Pn(fnu).

As for large n one can expect that fnu is ‘close’ to fu it seems to rewrite the process Cn as

Cn(u) =
√
n
(
Pn(fnu))− P (fu)

)
=

√
n
[
Pn(fnu)− Pn(fu)

]
+
√
n
[
Pn(fu)− Pn(fu)

]
Say
= An(u) + En(u) +

√
n
[
Pn(fu))− P (fu)

]
, (4.12)

where
An(u) =

√
n
[
Pn(fnu)− Pn(fu)]−

√
n
[
P (fnu)− P (fu)] (4.13)

and
En(u) =

√
n
[
P (fnu)− P (fu)]. (4.14)

Note that in the expectation P (fnu) the function fnu is considered as fixed, i.e.

P (fnu) = EX I{X1 ≤ F−1
1n (u1), . . . , Xd ≤ F−1

dn (ud)} = FX

(
F−1
1n (u1), . . . , F

−1
dn (ud)

)
.

Dealing with An

Note that with the help of (4.13) the process An can be rewritten as

An(u) = Gn(fnu − fu). (4.15)

Now with the help of Exercise 4 one knows that that the class F is P -Donsker. Thus with the
help of Theorem 8 one knows that the process Gn is asymptotically uniformly ρ-equicontinuous
for the semimetric ρ defined as

ρ(fu1 , fu2) =

√
E
[
I{X ≤ F−1(u1)} − I{X ≤ F−1(u2)}

]2
,

where for simplicity of notation we put F−1(u) = (F−1
1 (u1), . . . , F

−1
d (ud))

T. Note that one can
bound

sup
u∈[0,1]d

ρ2(fnu, fu) ≤ sup
u∈[0,1]d

d∑
j=1

∣∣Fj

(
F−1
jn (uj)

)
− uj

∣∣
≤ sup

u∈[0,1]

d∑
j=1

[∣∣Fj(u)− Fjn(u)
∣∣+ 1

n

] P−−−→
n→∞

0.
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Now with the help of (4.15) and from Definition 6 (of asymptotic ρ-equicontinuity) one can
conclude that

sup
u∈[0,1]d

|An(u)|
P ∗

−−−→
n→∞

0. (4.16)

Dealing with En
2

With the help of (4.14) the process En can be rewritten as

En(u) =
√
n
[
FX

(
F−1
1n (u1), . . . , F

−1
dn (ud)

)
− FX

(
F−1
1 (u1), . . . , F

−1
d (ud)

)]
=

√
n
[
C
(
F1

(
F−1
1n (u1)

)
, . . . , Fd

(
F−1
dn (ud)

))
− C(u1, . . . , ud)

]
. (4.17)

Now the idea is to use the first order Taylor expansion. Provided that one can assume that for
each j ∈ {1, . . . , d} the first order partial derivative of the copula function C(j)(u) = ∂C(u)

∂uj
is

continuous on the set Vj =
{
u ∈ [0, 1]d : 0 < uj < 1

}
, then using (4.17) one can show

sup
u∈[0,1]d

∣∣∣∣En(u)−
d∑

j=1

C(j)(u)
√
n
[
Fj

(
F−1
jn (uj)

)
− uj

]∣∣∣∣ P ∗
−−−→
n→∞

0.

Now one needs

sup
u∈[0,1]

∣∣∣∣√n[Fj

(
F−1
jn (u)

)
− u
]
+

1√
n

n∑
i=1

[
I{Fj(Xji) ≤ u} − u

]∣∣∣∣ P ∗
−−−→
n→∞

0

to show that

sup
u∈[0,1]d

∣∣∣∣En(u) +
1√
n

d∑
j=1

C(j)(u)
[
I{Uji ≤ uj} − uj

]∣∣∣∣ P ∗
−−−→
n→∞

0 where Uji = Fj(Xji). (4.18)

Dealing with Cn
Now combining (4.12), (4.16) and (4.18) gives us the following i.i.d. representation of the

copula process

sup
u∈[0,1]d

∣∣∣∣Cn(u)− 1√
n

n∑
i=1

[
I{U1i ≤ u1, . . . , Udi ≤ ud} − C(u)

]
+

1√
n

d∑
j=1

C(j)(u)
[
I{Uji ≤ uj} − uj

]∣∣∣∣ P ∗
−−−→
n→∞

0.

This can be further rewritten with the help of the empirical process as

sup
u∈[0,1]d

∣∣∣∣Cn(u)−Gn(fu) +
d∑

j=1

C(j)(u)Gn(fu(j))

∣∣∣∣ P ∗
−−−→
n→∞

0,

where u(j) denotes the vector whose jth entry is uj and the d − 1 others are 1. From this one
can conclude that

Cn ⇝ G(fu)−
d∑

j=1

C(j)(u)G(fu(j)),

2This step is only briefly sketched with missing derivations of some of the equations. It is included in the text
just to give the idea how the proof proceeds.
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where G is a Brownian bridge on [0, 1]d whose covariance function is given, for all u,v ∈ [0, 1]d,
by

cov
(
G(fu),G(fv)

)
= E

[
I{U1i ≤ u1, . . . , Udi ≤ ud} I{U1i ≤ v1, . . . , Udi ≤ vd}

]
− E

[
I{U1i ≤ u1, . . . , Udi ≤ ud}

]
E
[
I{U1i ≤ v1, . . . , Udi ≤ vd}

]
= C

(
u1 ∧ v1, . . . , ud ∧ vd

)
− C(u)C(v).

Exercise 5. Let X1, . . . , Xn be a random sample from the uniform distribution on [0, 2π]. For
a ∈ [0, 10] define

Yn(a) =
1

n

n∑
i=1

cos(aXi).

Show that the the appropriately standardized process {Yn(a), a ∈ [0, 10]} converges in distribu-
tion. Describe the limiting process.
∗ Now, consider that ân = π

Xn
. Show how one can derive the asymptotic distribution of

√
nYn(ân).
Hint. Denote Y (a) = E cos(aXi). Note that

√
n
[
Yn(ân)− Yn(1)

]
=

√
n
[
Yn(ân)− Y (ân)− Yn(1) + Y (1)

]
+
√
n
[
Y (ân)− Y (1)

]
.

Now with the help of uniform asymptotic ρ-equicontinuity of the process Gn(a) =
√
n
[
Yn(a) −

Y (a)
]
one can show that the first term on the right-hand side of the previous equation converges

to zero in (outer) probability. Thus one gets

√
nYn(ân) =

√
nYn(1) +

√
n
[
Y (ân)− Y (1)

]
+ oP ∗(1).

Exercise 6. Let X1, . . . , Xn be a random sample such that Xi has an exponential distribution
with the mean equal to 1. Consider the process

Zn(a) =
1

n

n∑
i=1

|Xi − a|, a ∈ [0, 2].

Show that the appropriately standardized process {Zn(a), a ∈ [0, 2]} converges in distribution.
Describe the limiting process.
∗ With the help of the previous result derive the asymptotic distribution of

√
n

(
1

n

n∑
i=1

|Xi −Xn| − E |Xi − E Xi|
)
.
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5 Covering numbers and VC-classes

Let F be a class of real functions (f : X → R) that is equipped with the norm ∥ · ∥. As in
Chapter 2 we are interested in the norms that posses the (Riesz) property, i.e. if |f(x)| ≤ |g(x)|
for all x ∈ X then ∥f∥ ≤ ∥g∥.
Sometimes the approach using bracketing numbers is not useful, as the bracketing numbers

are too big and do not satisfy assumptions of Theorem 1 or Theorem 9. Or simply the bounds
on the bracketing numbers are not available and one does not know how to derive appropriate
bounds. In such situations it may be useful to use an alternative approach how to measure the
‘size’ of a class of functions.
Let g : X → R be a given function. Denote Bϵ(g) = {f ∈ F | ∥f − g∥ < ϵ} the ball of radius ϵ

(of functions in F) with the center g.

Definition 7. The covering number N(ϵ,F , ∥·∥) is the minimal number of balls Bϵ(g) of
radius ϵ needed to cover the set F . The centres of the balls need not belong to F , but they
should have finite norms.

Note that if N(ϵ,F , ∥ · ∥) <∞ for each ϵ > 0, then (F , ∥ · ∥) is totally bounded. Further note
that (exercise)

N(ϵ,F , ∥·∥) ≤ N[ ](2ϵ,F , ∥·∥). (5.1)

But in general there si no converse inequality. Thus the bracketing numbers can in general be
much bigger than the covering numbers.
On the other hand the nice thing about the bracketing numbers is that the sufficient conditions

for the theorems of interests are stated in terms of only one norm. Note that only L1(P ) is used
for Glivenko-Cantelli property stated in Theorem 1 and L2(P ) for Donsker property stated in
Theorem 9. As we will see later, the sufficient conditions in terms of the covering numbers will
involve a bound on the covering numbers with respect to ‘many norms’.1

Remark 8. The only general exception when the converse inequality to (5.1) holds is the case of
supremum norm, i.e.

∥f∥∞ = sup
x∈X

|f(x)|.

Then the the pair of functions g(x)− ϵ and g(x) + ϵ forms a 2ϵ-bracket and thus

N[ ](2ϵ,F , ∥·∥∞) ≤ N(ϵ,F , ∥·∥∞),

which together with the general inequality (5.1) yields that

N[ ](2ϵ,F , ∥·∥∞) = N(ϵ,F , ∥·∥∞),

1To be more specific, later we will see that we need a bound on the random covering numbers N(ϵ,F , L1(Pn))
for GC-property and on N(ϵ,F , L2(Pn)) for Donsker property, where Pn is the empirical measure.
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Example 2. (Classes of smooth functions)
Let X be an open, bounded and convex subset of R. For α > 0 put α = sup{n ∈ N | n < α}.
Further let Cα

M (X ) be the class of functions f : X → R such that

max
k≤α

sup
x∈X

|f (k)(x)|+ sup
x ̸=y

|f (α)(x)− f (α)(y)|
|x− y|α−α

≤M

where f (k) denote the k-th derivative of f with f (0) = f .
For instance for α = 1 (α = 0) the set of functions C1

M (X ) contain the functions whose absolute
values are bounded byM and that are Lipschitz-continuous with the Lipschitz-constant bounded
also by M .

Then (see e.g. Theorem 2.7.1 van der Vaart and Wellner, 1996) there exists a constant K
such that

N(ϵ, Cα
M (X ), ∥·∥∞) = N[ ](2ϵ, C

α
M (X ), ∥·∥∞) ≤ K exp

{
ϵ−

1
α

}
.

Note that a bigger α requires smoother functions which results in a smaller bracketing number.

VC-classes of sets

Very important classes of sets whose covering numbers are well controlled for our purposes (i.e.
for stating the analogies of Theorems 1 and 9) are Vapnik-Červonenkis classes of functions,
or simply VC-classes.2 We start with VC-classes of sets and then we move to VC-classes of
functions.

Let C be a class of subsets of X and {x1, . . . , xn} be a finite subset of X . We say that C
picks out a certain subset of {x1, . . . , xn} (e.g. the subset {x2, x5}), if it can be written as
{x1, . . . , xn}∩C for some C ∈ C (e.g. there exists C ∈ C such that {x2, x5} = {x1, . . . , xn}∩C).
Further, the class C is said to shatter the set {x1, . . . , xn}, if C picks out out each of its 2n

subsets.

Example 3. The class of sets C = {(−∞, t] | t ∈ R} (when X = R) shatters one-point sets, but
it does not shatter two-point sets. To see this let {x1, x2} be such that x1 < x2. Then C fails to
pick out the set {x2}.

The VC-index V (C) of the class of sets C is the the smallest n for which no set of size n is
shattered by C. More formally, let ∆n(C, x1, . . . , xn) be the the number of subsets of {x1, . . . , xn}
that can be chosen by C, i.e.

∆n(C, x1, . . . , xn) = #
{
C ∩ {x1, . . . , xn} : C ∈ C

}
.

Then the VC-index is given by

V (C) = inf
{
n ∈ N : max

x1,...,xn

∆n(C, x1, . . . , xn) < 2n
}
.

Definition 8. A collection of measurable sets C is called VC-class if V (C) <∞.

Example 4. (a) Let X = R and C = {(−∞, t] | t ∈ R}. Then from Example 3 we know that
V (C) = 2.

(b) Let X = R and C = {(a, b] | a, b ∈ R}. Then V (C) = 3 (exercise).

2These sets were introduced in theoretical problems related to pattern recognition and later also in other machine
learning problems.
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(c) Let X = Rd and C = {(−∞, t] | t ∈ Rd}. Then V (C) = d+ 1 (exercise).

(d) Let X = R2, C = {C ⊂ R2 | C is closed and convex}. Then V (C) = ∞ and thus this class
of sets is not a VC-class.
To see this let the points x1, . . . , xn be on the border of the unit circle. Then C shatters
{x1, . . . , xn} for each n ∈ N.

The crucial property of VC-classes of sets is that from a set of size n it can pick out at most
O(nV (C)−1) subsets. This combinatorial result is known as Sauer’s Lemma (see Corollary 2.6.3
of van der Vaart and Wellner, 1996).

Lemma 3. (Sauer’s Lemma)
Let C be a VC-class. Then

max
x1,...,xn

∆n(C, x1, . . . , xn) ≤
V (C)−1∑
j=0

(
n

j

)
= O

(
nV (C)−1

)
.

Consider now the class of functions FC given by the indicators of the sets C, i.e.

FC =
{
x→ I{x ∈ C} : C ∈ C

}
. (5.2)

The proof of the following theorem can be found in van der Vaart and Wellner (1996), Theo-
rem 2.6.4.

Theorem 10. Let C be a VC-class of sets and FC be given by (5.2). Then there exists a
universal constant K such that for any probability measure Q, any r ≥ 1 and 0 < ϵ < 1

N(ϵ,FC , Lr(Q)) ≤ K

(
1

ϵ

)r(V (C)−1)

.

There are several things worth noting. First, the covering numbers of indicators of VC-classes
are bounded by a polynomial in

(
1
ϵ

)
. Further the important thing is that the polynomial bound

is uniform in the probability measure Q. Thus the result can be also restated in the form that
there exist finite constants K and W such that

sup
Q
N
(
ϵ,FC , Lr(Q)

)
≤ K

(
1

ϵ

)W

,

where the supremum is taken with respect to all probability measures Q on the sample space X .
The other nice properties of the VC-classes of sets is that it is closed with respect to standard

operations. See Lemma 2.6.18 of van der Vaart and Wellner (1996) for a more general result.

Lemma 4. Let C and D be VC-classes. Then also {Cc | C ∈ C}, {C ∩D | C ∈ C, D ∈ D} and
{C ∪D | C ∈ C, D ∈ D} are VC-classes.

Proof. We will show the lemma only for C ∩ D = {C ∩ D | C ∈ C, D ∈ D}. The remaining
statements can be proved analogously (see Lemma 2.6.17 of van der Vaart and Wellner, 1996).
By Lemma 3 from each n points set {x1, . . . , xn} the class C picks out at most O(nV (C)−1)

subsets. From each of this subsets the class D picks out at most O(nV (D)−1) further subsets.
Thus C ∩D picks out at most O(nV (C)+V (D)−2) subsets which is less than 2n for n large enough.
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VC-classes of functions

Consider a function f : X → R. Note that this function can be characterised by the subset{
(x, t) ∈ X × R : t < f(x)

}
. (5.3)

The set of the form (5.3) is called the subgraph of the function f .

Definition 9. A collection F of measurable real functions on X is called a VC-class of func-
tions, if the collections of all subgraphs of the functions in F form a VC-class of sets (in X ×R).

Let V (F) be the VC-index of the set of subgraphs of functions in F . Further for simplicity
of notation denote for a measure Q on X the Lr norm of a function f : X → R as ∥f∥Q,r, i.e.

∥f∥Q,r = ∥f∥Lr(Q) =

[ ∫
X
|f(x)|r dQ(x)

]1/r
=
[
Q(|f |r)

]1/r
.

The following theorem says, that similarly as in Theorem 10, also for the VC-classes of functions
the covering numbers grow only at a polynomial rate a as ϵ→ 0+.

Theorem 11. Let F be a VC-class of functions with measurable envelope function F . Then
there exists K < ∞ such that for each r ≥ 1, any probability measure Q on X such that
∥F∥Q,r > 0 and for each ϵ ∈ (0, 1)

N
(
ϵ∥F∥Q,r,F , Lr(Q)

)
≤ K

(
1

ϵ

)r(V (F)−1)

.

Proof. For f ∈ F let Cf be the corresponding subgraph. Now let C = {Cf : f ∈ F} be the set
of all subgraphs.
Consider first r = 1. Let λ be a Lebesgue measure on R. Note that by the Fubini’s theorem

for any measurable functions f and g (exercise)

∥f − g∥Q,1 = Q(|f − g|) =
∫
X
|f(x)− g(x)| dQ(x)

=

∫
X×R

I{0 < t < |f(x)− g(x)|} d(Q⊗ λ)(x, t) = (Q⊗ λ) (Cf△Cg), (5.4)

where Cf△Cg = (Cf ∪Cg)\ (Cf ∩Cg) stands for the symmetric difference of the sets Cf and Cg.
Define now the measure Pλ = (Q⊗ λ)/(2Q(F )), where F is the envelope function. Note that

Pλ is a probability measure on the set
{
(x, t) ∈ X × R : |t| ≤ F (x)}.

Let ICf
(·) stands for the indicator function (x, t) → I{(x, t) ∈ Cf}. Now with the help of (5.4)

Pλ(Cf△Cg) = ∥ICf
− ICg∥Pλ,1 < ϵ implies that ∥f − g∥Q,1 < 2Q(F ) ϵ = ϵ 2 ∥F∥Q,1.

Let FC be the set of indicator functions defined of the form ICf
, where f ∈ F . Then with the

help of Theorem 10 one gets

N
(
ϵ 2 ∥F∥Q,1,F , L1(Q)) = N

(
ϵ, C, L1(Pλ)

)
≤ K̃

(
1
ϵ

)V (F)−1
, (5.5)

for a universal finite constant K̃.
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Now consider r > 1. Note that for each f, g ∈ F

Q(|f − g|r) ≤ Q
(
|f − g| (2F )r−1

)
= 2r−1

∫
X
|f(x)− g(x)|F r−1(x) dQ(x)

= 2r−1

∫
X

|f(x)−g(x)|F r−1(x)
Q(F r−1)

dQ(x)Q(F r−1)

= 2r−1Q̃(|f − g|)Q(F r−1),

where the measure Q̃ has a density F r−1(x)/Q(F r−1) with respect to the measure Q. Thus

∥f − g∥Q,r =
[
Q(|f − g|r)

]1/r ≤ 2
[
Q(F r−1)

]1/r ∥f − g∥1/r
Q̃,1
.

Suppose now that ∥f − g∥
Q̃,1

≤ ϵr ∥F∥
Q̃,1

= ϵr Q̃(F ). Then with help of the previous inequality

∥f − g∥Q,r ≤ 2
[
Q(F r−1)

]1/r
ϵ
[
Q̃(F )

]1/r ≤ 2 ϵ
[
Q(F r−1)

]1/r [Q(F r)]1/r

[Q(F r−1)]1/r
= ϵ 2 ∥F∥Q,r,

which together with (5.5) implies that

N
(
ϵ 2∥F∥Q,r,F , Lr(Q)

)
≤ N

(
ϵr ∥F∥

Q̃,1
,F , L1(Q̃)

)
≤ K̃

(
2
ϵr

)V (F)−1

and concludes the proof of the theorem (with K = K̃ 2V (F)−1).

Similarly as in Lemma 4 one can show that the VC-classes of functions are closed under many
standard operations/transformations. For a more general result see Lemma 2.6.18 of van der
Vaart and Wellner (1996).

Lemma 5. Let F and G be VC-classes of functions and g : X → R a given function. Then also
the following classes are VC-classes of functions.

(i) F ∨ G = {f ∨ g | f ∈ F , g ∈ G};

(ii) F ∧ G = {f ∧ g | f ∈ F , g ∈ G};

(iii) F + g = {f + g | f ∈ F}.

Proof. (i) and (ii). Let Cf be a subgraph of the function f . Then Cf∨g = Cf ∪ Cg and Cf∧g =
Cf ∩ Cg. Thus with the help of Lemma 4 also F ∨ G and F ∧ G are VC-classes.
(iii). Note that the subgraphs of F + g shatter a given set of points {(x1, t1), . . . , (xn, tn)} if

and only if the subgraphs of F shatter the set
{(
x1, t1 − g(x1)

)
, . . . ,

(
xn, tn − g(xn)

)}
.

Some concluding comments on bounding covering numbers

VC-classes are a very useful starting point for controlling covering numbers (uniformly in the
measures on the sample space). In many applications the sets of functions of interest are
already VC-classes or can be derived from the VC-classes (by an appropriate transformation
or combination). It is for instance worth noting that there exist useful bounds (in terms of
Glivenko-Cantelli and Donsker properties) for the convex hulls of VC-classes of functions. For
further results and details see for instance Chapter 2.6 of van der Vaart and Wellner (1996).
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6 Glivenko-Cantelli theorems with the help of
covering numbers

The goal of this chapter to find an analogy of Theorem 1, where the sufficient assumptions on
the size of the class F is given in terms of covering numbers.

Preliminary results

In what follows we make use of Hoeffding’s inequality. This is a useful inequality for independent
(but not necessarily identically distributed) random variables that are bounded.

Lemma 6. (Hoeffding’s inequality)
Let Y1, . . . , Yn be independent random variables such that E [Yi] = 0 and ai ≤ Yi ≤ bi, i =
1, . . . , n. Then for each η > 0 it holds that

P

(∣∣∣∣ n∑
i=1

Yi

∣∣∣∣ > η

)
≤ 2 exp

(
−2 η2∑n

i=1(bi − ai)2

)
.

The important and useful trick that is used in the proofs of Theorems 12 and 13 is the
symmetrization (below). This trick says that instead of of the empirical process

f 7→
(
Pn − P

)
(f) =

1

n

n∑
i=1

[
f(Xi)− E f(Xi)

]
one can consider the symmetrized process

f 7→ P 0
n(f) =

1

n

n∑
i=1

εi f(Xi),

where ε1, . . . , εn are independent and identically distributed random variables such that

P(εi = 1) = P(εi = −1) = 1
2

that are independent of (X1, . . . , Xn). Random variables ε1, . . . , εn are often also called Rademacher
random variables.1

Let Pε stand for the probability calculated with respect to Rademacher random variables
(conditionally on X1, . . . , Xn). Then with the help of Hoeffding’s lemma one gets the following
exponential bound for the symmetrized empirical process

Pε

(∣∣P 0
n(f)

∣∣ > η
)
= Pε

(∣∣∣∣ 1n
n∑

i=1

εi f(Xi)

∣∣∣∣ > η

)
≤ 2 exp

(
−2n2 η2

4
∑n

i=1 f
2(Xi)

)
= 2 exp

(
−n η2

2Pn(f2)

)
. (6.1)

1Note that the cumulative sum of Rademacher random variables gives a standard symmetric random walk.
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The important thing is that (for fixed η > 0) the right-hand side of the above inequality converges
to zero at an exponential rate provided that the random variable Pn(f

2) is bounded. This will
be very helpful later.
The following lemma justifies the symmetrization (for large sample sizes).

Lemma 7. (Symmetrization)
Let Pn be the empirical measure of i.i.d. random variables X1, . . . , Xn and F be a class of
functions bounded by a finite constant M . Then for n ≥ 8M2

η2
it holds that

P∗ ( ∥Pn − P∥F > η
)

≤ 4P∗ ( ∥∥P 0
n

∥∥
F > η

4

)
,

where the notation ∥Q∥F = supf∈F |Q(f)| is used.

Note that while the probability on the left-hand side in the statement of the lemma is cal-
culated with respect to X1, . . . , Xn, the probability on the right-hand side is calculated with
respect to the joint distribution of X1, . . . , Xn and ε1, . . . , εn.

Proof of Lemma 7. Let X ′
1, . . . , X

′
n be independent copies of X1, . . . , Xn. Denote the corre-

sponding empirical measure ofX ′
1, . . . , X

′
n by P ′

n. Then for each f ∈ F by Chebyshev’s inequality
it holds that

P
(
|P ′

n(f)− P (f))| > η
2

)
≤

var
(
f(X ′

i)
)

n (η/2)2
≤ 4M2

n η2
≤ 1

2
(6.2)

for n ≥ 8M2

η2
.

Suppose that {∥Pn−P∥F > η} holds. Then there exists f ∈ F such that |Pn(f)−P (f))| ≥ η.

Fix this function f for a moment. Then with the help of (6.2) for n ≥ 8M2

η2
:

1
2 I{∥Pn − P∥F > η} ≤ P

(
|P ′

n(f)− P (f))| ≤ η
2

)
I{∥Pn − P∥F > η}. (6.3)

Note that on the intersection of the events
{
|P ′

n(f)−P (f)| ≤
η
2

}
and

{
∥Pn−P∥F > η

}
it holds

that
|P ′

n(f)− Pn(f)| ≥ |Pn(f)− P (f)| − |P ′
n(f)− P (f)| > η

2 . (6.4)

Combining (6.3) and (6.4) one gets

1
2 I{∥Pn − P∥F > η} ≤ PX′

(
|P ′

n(f)− Pn(f)| > η
2

)
I{∥Pn − P∥F > η}

≤ P∗
X′
(
∥P ′

n − Pn∥F > η
2

)
, (6.5)

where PX′ stands for the probability calculated (only) with respect toX ′
1, . . . , X

′
n (withX1, . . . , Xn

in the event
{
∥Pn − P∥F > η

}
being fixed). Now with the help of (6.5) one gets

P∗ (∥Pn − P∥F > η
)
≤ 2 E ∗

X

[
P∗
X′
(
∥P ′

n − Pn∥F > η
2

)]
≤ 2 P∗ (∥P ′

n − Pn∥F > η
2

)
, (6.6)

where justifying the last inequality is technical and it will be postponed to the end of the proof.
Now suppose that Rademacher random variables ε1, . . . , εn are independent of X1, . . . , Xn

as well as X ′
1, . . . , X

′
n. The important thing is that due to symmetry for each measurable
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function f the distribution of the difference f(X ′
i) − f(Xi) is the same as the distribution of

εi
(
f(X ′

i)− f(Xi)
)
. Thus one can bound

P∗ (∥P ′
n − Pn∥F > η

2

)
= P∗

(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi
(
f(X ′

i)− f(Xi)
)∣∣∣ > η

2

)

≤ P∗
(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi f(X
′
i)
∣∣∣+ sup

f∈F

∣∣∣ 1
n

n∑
i=1

εi f(Xi)
∣∣∣ > η

2

)
≤ 2 P∗ (∥P 0

n∥F > η
4

)
,

which together with (6.6) verifies the statement of the lemma.
Finally, the inequality in (6.6) can be justified as follows. For simplicity of notation denote

A =
{
∥Pn − P ′

n∥F > η
2

}
. Then

P∗(A) = inf
{
P(B) | A ⊂ B where B is a measurable set

}
= inf

{
EX

[
EX′ [IB]

]
| IA ≤ IB where B is a measurable set

}
≥ inf

{
EX

[
EX′ [V ]

]
| IA ≤ V where V is a measurable random variable

}
≥ E ∗

X

[
inf
{
EX′ [V ] | IA ≤ V where V is a measurable random variable

}]
≥ E ∗

X

[
E ∗

X′ [IA]
]
,

where we use the fact that for each V (jointly measurable in X1, . . . , Xn and X ′
1, . . . , X

′
n) by

the Fubini Theorem one has that EX′ [V ] is a measurable majorant for inf
{
EX′ [V ] | IA ≤

V where V is a measurable random variable
}
.

Unfortunately, one cannot in general proceed without any measurability assumptions. The
reason is that in the proof of Theorems12 and 13 (below) we need to write the joint outer
probability P∗(A) of an event A on the probability space where X1, . . . , Xn and ε1, . . . , εn are
defined as E ∗

X Pε(A). But Fubini’s theorem is not valid for outer expectations.
To overcome this difficulty we will assume that the supremum ∥P 0

n∥F is a measurable random
variable. Since the Rademacher variables are discrete this is the case if and only if the random
elements

∥∥∑n
i=1 ei f(Xi)

∥∥
F are measurable for every n-tuple (e1, . . . , en) ∈ {−1, 1}n. For the

intended application of Fubini’s theorem it sufficies that this is the case for the completion of the
probability space (as the subsets with the zero outer measure are irrelevant for the expectation).

Definition 10. Let X1, . . . , Xn be independent random variables with values in X defined on
the product probability space (Ω,A,P). A class of measurable function F (from X to R) is
called a P -measurable class if for each n ∈ N and each (e1, . . . , en) ∈ {−1, 1}n the random
element

∥∥∑n
i=1 ei f(Xi)

∥∥
F is measurable on the completion of the probability space (Ω,A,P).

In fact the restriction to P -measurable classes of functions is not necessary, but it is suggested
by the method of the proof. The thing is that some kind of measurability is necessary, otherwise
the following general theorems are not valid from the mathematical point of view.
On the other hand it is pretty tricky to create counter-examples for which either the Glivenko-

Cantelli or Donsker theorem does not hold because of measurability issues. That is why in
applications researchers usually do not bother with measurability.
Further, in many applications the measurability is justified as follows. Suppose there exists a

countable subset G of F such that for each f ∈ F there existence a sequence of functions {gm}
in G so that gm(x) → f(x) as m→ ∞ for each x ∈ X . Then∥∥∥∥ n∑

i=1

ei f(Xi)

∥∥∥∥
F
=

∥∥∥∥ n∑
i=1

ei g(Xi)

∥∥∥∥
G
.
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Such classes F are called pointwise measurable classes.

Example 5. Suppose that X = Rd. For y ∈ Rd and r > 0 denote the open ball with the center y
and diameter r as Br(y) = {x ∈ Rd : ∥x − y∥E < r}, where ∥ · ∥E stands for the Euclidean
norm. Show that the set of indicator functions

F =
{
x→ I{x ∈ Br(y)} : y ∈ Rd, r > 0

}
is a pointwise measurable class (and it is also a VC class of functions).

Glivenko-Cantelli theorem and its applications

Let X1, . . . , Xn be independent and identically distributed random variables with values in X
and F be a class of measurable functions from X to R.

Theorem 12. Let the class of functions F be P -measurable with the envelope F , such that
P ∗(F ) := E ∗[F (Xi)] <∞. Finally assume that for each ϵ > 0 and each M <∞

logN
(
ϵ,FM , L1(Pn)

)
= oP ∗(n). (6.7)

Then F is P -Glivenko-Cantelli, i.e.

sup
f∈F

∣∣Pn(f)− P (f)
∣∣ alm. surely∗−−−−−−−→

n→∞
0.

Note that in comparison with Theorem 1 the covering numbers are allowed even to grow with
the increasing sample size n, but at a lower than exponential rate. Further note that while for
the bracketing numbers L1(P ) norm is used, here we use (the empirical) L1(Pn) norm.
It can be proved that the condition (6.7) is not only sufficient but also necessary, (see e.g.

Theorem 6.2 Wellner, 2005).

Proof of Theorem 12. We will show only that supf∈F
∣∣Pn(f)−P (f))

∣∣ P ∗
−−−→
n→∞

0. The almost sure

convergence follows from the fact that the minimal measurable cover function of supf∈F
∣∣Pn(f)−

P (f))
∣∣ (see Remark 2(f)) is a reverse martingale with respect to a suitable filtration (see

Lemma 2.4.5 van der Vaart and Wellner, 1996).
Let η > 0 be given and for a given M denote

FM =
{
x→ f(x) I{F (x) ≤M}

}
.

Then one can bound

∥Pn − P∥F = sup
f∈F

|Pn(f)− P (f)|

≤ sup
f∈FM

|Pn(f)− P (f)|+ sup
f∈F

Pn

(
|f I{F > M}|

)
+ sup

f∈F
P ∗(|f I{F > M}|

)
≤ sup

f∈FM

|Pn(f)− P (f)|+ Pn

(
F I{F > M}

)
+ P ∗(F I{F > M}

)
.

Now one can take M sufficiently large so that P ∗(F I{F > M}
)
< η/2. Further with the help

of the law of large numbers one can show that Pn

(
F I{F > M}

)
< η/2 with probability going

to one as n→ ∞. Thus one needs to concentrate only on supf∈FM
|Pn(f)− P (f)|.
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To do that use Lemma 7 to bound (for n ≥ 2M2

η2
)

P∗ (∥Pn − P∥FM
> η

)
≤ 4P∗ (∥P 0

n∥FM
> η/4

)
. (6.8)

Now one has to be carefull. Although by the assumption of the theorem the class F is P -
measurable we do not know whether this holds also true for the class FM . That is why we need
to proceed (not intuitively) as follows.

P∗ (∥P 0
n∥FM

> η/4
)
≤ P∗ (∥P 0

n∥F > η/4
) Fubini

= EX Pε

(
∥P 0

n∥F > η/4
)

≤ E ∗
X Pε

(
∥P 0

n∥FM
> η/8

)
+ P ∗(Pn(F{F > M}) > η/8

)
. (6.9)

Now the second term on the right hand of (6.9) can be handled analogously as above. Thus it
is sufficient to concentrate only on E ∗

X Pε

(
∥P 0

n∥FM
> η/8

)
.

To proceed note that givenX1, . . . , Xn one can find g1, . . . , gNη , whereNη = N
(
η/8,FM , L1(Pn)

)
,

such that for each f ∈ FM there exists gj so that Pn(|f − gj |) ≤ η/8. Without loss of generality
one can assume that also the absolute values of the functions g1, . . . , gN are bounded by M .
Now using the Hoeffding’s inequality as in (6.1) one can bound

Pε

(
∥P 0

n∥FM
> η

4

)
≤ Pϵ

(
max

j∈{1,...,Nη}
|P 0

n(gj)|+
η
8 >

η
4

)
≤ Nη max

j∈{1,...,Nη}
Pϵ

(
|P 0

n(gj)| >
η
8

)
= Nη max

j∈{1,...,Nη}
Pε

(∣∣∣ 1
n

n∑
i=1

ϵigj(Xi)
∣∣∣ > η

8

)
Hoeff.
≤ Nη max

j∈{1,...,Nη}
2 exp

(
−

n (η8 )
2

2Pn(g2j )

)
≤ 2Nη exp

(
− nη2

128M2

) P ∗
−−−→
n→∞

0,

(6.10)

as by the assumptions of the theorem Nη = exp
(
oP∗(n)

)
. Thus we have proved that for each

X1, X2, . . . it holds that the conditionally probability Pε

(
∥P 0

n∥FM
> η

4

) P ∗
−−−→
n→∞

0. Further we

know that this probability is bounded by one. Thus by the dominated convergence theorem one
gets

E ∗
X Pε

(
∥P 0

n∥FM
> η/8

)
−−−→
n→∞

0.

This combined with (6.8) and (6.9) yields

P∗ (∥Pn − P∥FM
> η

)
−−−→
n→∞

0,

which finishes the proof.

Suppose that F is a P -measurable VC-class of functions with a measurable envelope function F
such that P (F ) <∞. Then with the help of Theorem 11 there exist universal constants K and
W such that for each n ∈ N

N
(
ϵ,F , L1(Pn)

)
≤ K

(
∥F∥Pn,1

ϵ

)W

,

which with the help of the law of large numbers verifies the assumption (6.7) of Theorem 12.
This implies than any VC class with a L1(P ) integrable envelope is P -Glivenko-Cantelli.
Sometimes it is also possible to check assumption (6.7) even for classes that are not VC-classes.

Consider for instance the class of closed convex subsets of the unit square [0, 1]2. Then from
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Example 4(d) we know that this class of sets is not a VC-class and thus also the corresponding
class of indicator functions is not a VC-class. In spite of that one can show that if the distribution
of Xi is uniform on [0, 1]2 then the assumption (6.7) is satisfied (see Example 22 in Chapter II.4
of Pollard, 1984).

Remark 9. The question of interest is if this approach can be used also for not i.i.d. random
variables, provided that one has an appropriate law of large numbers. The answer is hidden
in the symmetrization Lemma 7. Let (X ′

1, . . . , X
′
n) be an independent copy of (X1, . . . , Xn).

Further let ε1, . . . , εn be Rademacher variables independent of (X1, . . . , Xn, X
′
1, . . . , X

′
n). Then

it is needed that the distribution of
∑n

i=1

(
f(Xi) − f(X ′

i)
)
is the same as the distribution of∑n

i=1 εi
(
f(Xi) − f(X ′

i)
)
. This is true for independent (not necessarily identically distributed)

random variables X1, . . . , Xn. But this fails to be generally true when X1, . . . , Xn are not
independent.

Rates of convergence for bounded VC-classes of functions

Let F be a P -measurable VC-class of functions with the envelope function bounded by a finite
constant M . Then the covering number satisfies

N
(
ϵ,F , L1(Pn)

)
≤ K

(
M

ϵ

)W

,

from which one can conclude that F is P -Glivenko-Cantelli. Note that this bound on the
covering number is much more than it is required by Theorem 12.
In fact for bounded VC-classes one can show that the rate of convergence in the uniform law

of large numbers is at least rn =
√

n
qn logn , where qn → ∞ (consider for instance qn = logδ n for

some δ > 0).

To prove that take ηn = q
−1/3
n (and note that ηn −−−→

n→∞
0). Then for each fixed f ∈ F for all

sufficiently large n

P
(
rn|Pn(f)− P (f)| > ηn

2

)
≤
r2n var

(
f(X ′

i)
)

n (ηn/2)2
≤ 4M2

q
1/3
n log n

≤ 1

2
.

Thus similarly as in Lemma 7 one can show that for these sufficiently large sample sizes

P∗ (rn ∥Pn − P∥F > ηn
)
≤ 4 P∗ (rn ∥P 0

n∥F > ηn
4

)
. (6.11)

Further one can proceed completely analogously as in (6.10) to show that

Pε

(
rn ∥P 0

n∥F > ηn
4

)
≤ 2N

(ηn
rn
,F , L1(Pn)

)
exp

(
− nη2n

r2n128M
2

)
≤ 2K

( M
√
n

q
1/6
n

√
logn

)W
exp

(
− q

1/3
n logn
128M2

)
. (6.12)

Now combining (6.11) and (6.12) one gets that for all sufficiently large n one has

P∗ (rn ∥Pn − P∥F > ηn
)
≤ 8K

( M
√
n

q
1/6
n

√
logn

)W
exp

(
− q

1/3
n logn
128M2

)
, (6.13)

which goes to zero as n → ∞. Note that so far we have proved that rn ∥Pn − P∥F
P ∗

−−−→
n→∞

0

(see Definition 1(i)). Now we strengthen this convergence to outer almost sure convergence. By
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Definition 1(ii) we need to find a dominating sequence {∆n} of measurable random variables
that converges almost surely to zero.
Note that from (6.13) and the definition of the outer probability P∗ given in (2.1) there exists

a sequence of measurable events An ∈ A such that[
rn ∥Pn − P∥F > ηn

]
⊂ An

and at the same time
∑∞

n=1 P(An) <∞. Thus by the Cantelli theorem for almost all ω ∈ Ω one
has limn→∞ IAn(ω) = 0. Now consider the (measurable) random variable defined for ω ∈ Ω as

∆n(ω) = ηnIAc
n
(ω) + 2 rnM IAn(ω).

Then rn ∥Pn − P∥F ≤ ∆n and at the same time ∆n
alm. surely−−−−−−−→

n→∞
0, which finally implies that

rn ∥Pn − P∥F
alm. surely∗−−−−−−−→

n→∞
0.

Exercise 7. Show that

∥Pn − P∥F = OP ∗

(√
logn
n

)
.

Application to halfspace depth

Suppose that X1, . . . ,Xn are independent and identically distributed random vectors with val-
ues in Rd. Data depth is an attempt to characterize how much a given observation (or more
generally a given point) is central with respect to the sample (or more generally with respect to
a given probability measure on Rd). Roughly speaking, high depth values indicate centrality of
the given observations and low depth values indicate potential outlyingness.
The most widely used and famous depth is Tukey’s halfspace depth. Let H be the class of all

closed halfspaces in Rd, i.e.

H =
{
{x ∈ Rd : bTx ≥ a}, b ∈ Rd, a ∈ R

}
.

Let P be a probability measure on Rd given by the distribution of Xi and x be a given point
in Rd. Then the halfspace depth is defined as the minimal probability of the halfspace that
contains the point x, i.e.

hD(x) = inf
H∈H:x∈H

P(Xi ∈ H) = inf
H∈H:x∈H

P (IH).

The sample version of the halfspace depth is then given by

hDn(x) = inf
H∈H:x∈H

{
1

n

n∑
i=1

I{Xi ∈ H}
}

= inf
H∈H:x∈H

Pn(IH).

Note that H does not shatter a set of d + 2 points and thus it is a VC-class of sets. So by
Theorem 10 the covering numbers of the corresponding set of indicator functions FH satisfy
the assumption of Theorem 12. Further similarly as in Example 5 one can argue that FH is a
pointwise measurable set and so also a P -measurable class. Thus one gets

sup
x∈Rd

∣∣hDn(x)− hD(x)
∣∣ = sup

x∈Rd

∣∣∣∣ inf
H∈H:x∈H

Pn(IH)− inf
H∈H:x∈H

P (IH)

∣∣∣∣
≤ sup

x∈Rd

sup
H∈H:x∈H

∣∣Pn(IH)− P (IH)
∣∣

= sup
H∈H

∣∣Pn(IH)− P (IH)
∣∣ alm. surely∗−−−−−−−→

n→∞
0, (6.14)
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which implies that the sample halfspace depth hDn is uniformly (in x ∈ Rd) consistent estimate
of the population halfspace depth hD. Note also that similarly as in the Glivenko-Cantelli
theorem for the empirical distribution function in Exercise 4, there is no assumption on the
distribution of Xi in Rd. Finally note that by the results of the previous section the rate of

convergence is in fact
√

n
qn logn for qn −−−→

n→∞
∞.

Exercise 8. LetX1, . . . ,Xn be a random sample from the uniform distribution on the square [−2, 2]2.
Consider the following process

Zn(x) =
1

n

n∑
i=1

I{Xi ∈ B(x)}, where x ∈ R2

and B(x) is a unit ball, i.e. B(x) = {y ∈ R2 : ∥x−y∥E ≤ 1} with ∥ · ∥E denoting the Euclidean
norm.
Show that

sup
x∈[−2,2]2

∣∣∣Zn(x)−
λ
(
B(x) ∩ [−2, 2]2

)
16

∣∣∣ alm. surely∗−−−−−−−→
n→∞

0,

where λ is a Lebesgue measure (on R2).

Now, consider Xn = 1
n

∑n
i=1Xi. Show that

Zn(Xn)
alm. surely∗−−−−−−−→

n→∞

π

16
.

Exercise 9. Let
(
Y1

X1

)
, . . . ,

(
Yn

Xn

)
be a random sample such that Xi has a uniform distribution on

[−1, 1] and
Yi = β Xi + εi,

where β ∈ R, εi is independent of Xi and E εi = 0. Consider the process

Zn(a, b) =
1

n

n∑
i=1

I{Yi − bXi ≤ a}

Show that

sup
a,b

∣∣∣Zn(a, b)− 1
2

∫ 1

−1
Fε

(
a+ (b− β)x

)
dx
∣∣∣ alm. surely∗−−−−−−−→

n→∞
0,

where Fε is the distribution function of εi.

Further consider β̂n =
∑n

i=1 Yi Xi∑n
i=1 X

2
i

and the empirical distribution function of the residuals

ε̂i = Yi − β̂nXi given by

F̂ε(a) =
1

n

n∑
i=1

I
{
ε̂i ≤ a

}
Show that supa∈R

∣∣F̂ε(a)− Fε(a)
∣∣ alm. surely∗−−−−−−−→

n→∞
0.

Hint. Note that F̂ε(a) = Zn(a, β̂n) and Fε(a) = E Zn(a, β).
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7 Donsker-Theorem with the help of covering
numbers

The goal of this chapter to find an analogy of Theorem 9, where the sufficient assumptions on
the size of the class F is given in terms of covering numbers.

Preliminary results

Similarly as in Chapter 6 denote P 0
n the symmetrized empirical measure. The following lemma

is an analogy of Lemma 7 for the expectations.

Lemma 8. (Symmetrization II)
Let F be a class of measurable functions. Then it holds that

E ∗ [∥Pn − P∥F ] ≤ 2E ∗ [ ∥∥P 0
n

∥∥
F
]
.

Proof. Let X ′
1, . . . , X

′
n be independent copies of X1, . . . , Xn and P ′

n be the corresponding em-
pirical measure of X ′

1, . . . , X
′
n. Then (conditionally on X1, . . . , Xn):

∥Pn − P∥F = sup
f∈F

∣∣∣ 1
n

n∑
i=1

(f(Xi)− EX′ [f(X ′
i)])
∣∣∣ ≤ sup

f∈F
EX′

[∣∣∣ 1
n

n∑
i=1

(f(Xi)− f(X ′
i))
∣∣∣]

≤ E ∗
X′

[
∥Pn − P ′

n∥F
]
.

Now similarly as in the proof of Lemma 7

E ∗ [∥Pn − P∥F
]
≤ E ∗

X E ∗
X′
[
∥Pn − P ′

n∥F
]
≤ E ∗ [∥Pn − P ′

n∥F
]
≤ 2E ∗ [∥P 0

n∥F
]
.

Let {X(t), t ∈ T} be a stochastic process. We say that this process is sub-Gaussian with
respect to a semi-metric d if for each ϵ > 0 and s, t ∈ T

P
(
|X(s)−X(t)| > ϵ

)
≤ 2 exp

(
− ϵ2

2d2(s, t)

)
.

Let us now consider the symmetrized empirical process

G0
n(f) =

√
nP 0

n(f) =
1√
n

n∑
i=1

εi f(Xi),

where ε1, . . . , εn are Rademacher variables independent of X1, . . . , Xn. Note that similarly as
in (6.1) with the help of Hoeffding’s inequality (Lemma 6) one gets

Pε

(
|G0

n(f)−G0
n(g)| > ϵ

)
≤ 2 exp

(
− ϵ2

2Pn((f−g)2)

)
. (7.1)

Thus (for fixed X1, . . . , Xn) the process G0
n is sub-Gaussian in with respect to the empirical

L2(Pn)-norm. The nice thing about sub-Gaussian processes is that one can bound the expecta-
tions of their supremums with the help of covering numbers as stated in the following lemma.
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Lemma 9. (Maximal inequality) Let {X(t), t ∈ T} be a stochastic process and the index set
T is countable. Further suppose that for each ϵ > 0 and s, t ∈ T

P
(
|X(s)−X(t)| > ϵ

)
≤ 2 exp

(
− ϵ2

2d2(s, t)

)
,

where d is a semi-metric on T . Then there exists a finite constant K such that for each δ > 0

E

[
sup

d(s,t)≤δ
|X(s)−X(t)|

]
≤ K

∫ δ
2

0

√
logN(ϵ, T, d) dϵ.

In particular for each t0 ∈ T

E

[
sup
t∈T

|X(t)|
]
≤ E [|X(t0)|] +K

∫ ∞

0

√
logN(ϵ, T, d) dϵ.

Remark 10. The proof of this lemma can be found as the proof of Corollary 2.2.8 in van der
Vaart and Wellner (1996). In this book the index set T is not assumed to be countable but the
lemma is formulated for a separable sub-Gaussian process. This is equivalent as the separability
means that the supd(s,t)≤δ |X(s)−X(t)| and supt∈T |X(t)| remain almost surely the same if the
index set is replaced by a suitable countable subset.

Donsker theorem and its applications

Similarly as we introduced the bracketing integral J[ ](δ,F , L2(P )) in (4.3) in Chapter 4 we now
define the covering integral

J(δ,F , L2) :=

∫ δ

0

√
log sup

Q
N
(
ϵ ∥F∥Q,2,F , L2(Q)

)
dϵ,

where the supremum is taken with respect to all finitely discrete probability measures Q on X
for which ∥F∥Q,2 =

∫
X F

2(x) dQ(x) > 0.

Theorem 13. Let F be a class of measurable functions with the envelope F , such that P ∗(F 2) <
∞ and J(1,F , L2) < ∞. Further assume that the classes of functions Hδ =

{
f1 − f2 : f1, f2 ∈

F , ∥f1 − f2∥P,2 < δ
}
and G =

{
(f1 − f2)

2 : f1, f2 ∈ F
}
are P -measurable for every δ. Then F

is P -Donsker.

Proof. By Theorem 7 it is sufficient to find a semimetric ρ such that (F , ρ) is totally bounded
and the empirical process Gn =

√
n (Pn − P ) is asymptotically uniformly ρ-equicontinuous in

probability (see Definition 6). As suggested by Theorem 8 take ρ as L2(P )-norm.
Let ϵ > 0 be given. Then we need to show that for each sequence of positive constants {δn}

going to zero

lim sup
n→∞

P∗
(

sup
h∈Hδn

|Gn(h)| > ϵ

)
= 0. (7.2)

By Markov’s inequality and the symmetrization Lemma 8 for each ϵ > 0

P∗
(

sup
h∈Hδn

|Gn(h)| > ϵ

)
≤ 1

ϵ
E∗
[

sup
h∈Hδn

|Gn(h)|
]
≤ 2

ϵ
E∗
[

sup
h∈Hδn

√
n
∣∣P 0

n(h)
∣∣] (7.3)

Now by the assumption of the theorem the supremum on the right-hand side of the above
inequality is measurable. Thus by Fubini’s theorem the outer expectation can be calculated as
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EX E ε, where E ε is the expectation taken with respect to ε1, . . . , εn (while X1, . . . , Xn being
fixed). In the same way as in (7.1) one can use Hoeffding’s inequality to deduce that the process{√

nP 0
n(h), h ∈ Hδn} is sub-Gaussian for L2(Pn)-seminorm. Furthermore (exercise)

N(η,Hδn , L2(Pn)) ≤ N(η,H∞, L2(Pn)) ≤ N2(η2 ,F , L2(Pn)), (7.4)

which implies that the process
{√

nP 0
n(h), h ∈ Hδn

}
is separable. Now using Remark 10 and

the second part of Lemma 9 there exists a finite constant K such that

E ε

[
sup

h∈Hδn

√
n
∣∣P 0

n(h)
∣∣] ≤ K

∞∫
0

√
logN

(
η,Hδn , L2(Pn)

)
dη. (7.5)

Now introduce νn := suph∈Hδn
∥h∥Pn,2. Note that for η ≥ νn it holds N

(
η,Hδn , L2(Pn)

)
= 1.

Combining this with (7.4) one can bound∫ ∞

0

√
logN(η,Hδn , L2(Pn)) dη =

∫ νn

0

√
logN(η,Hδn , L2(Pn)) dη

≤
∫ νn

0

√
2 logN(η2 ,F , L2(Pn)) dη

≤ 2 ∥F∥Pn,2

∫ νn/(2∥F∥Pn,2)

0

√
2 logN(η∥F∥Pn,2,F , L2(Pn)) dη

≤ 4 ∥F∥Pn,2

∫ νn/(∥F∥Pn,2)

0

√
sup
Q

logN(η∥F∥Q,2,F , L2(Q)) dη, (7.6)

where the integral exists by the assumptions of the theorem. Further by the law of large
numbers ∥F∥Pn,2 = ( 1n

∑n
i=1 F

2(Xi))
1/2 is bounded in probability. Thus with the help of (7.3),

(7.5) and (7.6) the convergence in (7.2) is verified provided that

νn/(∥F∥Pn,2)
P ∗

−−−→
n→∞

0. (7.7)

Note that without loss of generality one can assume that there exists f ∈ F such that E |f(Xi)|2 >
0. From this conclude that

lim inf
n→∞

∥F∥Pn,2 > 0 almost surely.

Thus it sufficient to show that νn
P ∗

−−−→
n→∞

0. As limn→∞ suph∈Hδn
∥h∥P,2 → 0, it remains to prove

sup
h∈H∞

∣∣Pn(h
2)− P (h2)

∣∣ = sup
g∈G

∣∣Pn(g)− P (g)
∣∣ P ∗
−−−→
n→∞

0. (7.8)

To prove that we use Theorem 12 for the class G. First note that G has the integrable envelope
(2F )2 and is P -measurable by the assumption. Further for each h1, h2 ∈ H∞ one can with the
help of Cauchy-Schwarz inequality bound

Pn

(
|h21 − h22|

)
≤ Pn

(
|h1 − h2| 4F

)
≤ ∥h1 − h2∥Pn,2 ∥4F∥Pn,2.

With the help of this inequality and the equality ∥4F∥Pn,2 ∥F∥Pn,2 = ∥(2F )2∥Pn,1 one can deduce
that

N
(
ϵ∥(2F )2∥Pn,1,G, L1(Pn)

)
≤ N

(
ϵ∥F∥Pn,2,H∞, L2(Pn)

)
.
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Now the term on the right-hand side of the above inequality is bounded by the assumptions of
the theorem and thus the assumptions of Theorem 12 are satisfied. This finishes the proof of
(7.7) and thus also of (7.2).

It remains to show that (F , ρ) is totally bounded. Let ϵ > 0 be given. For ω ∈ Ω denote {Pω
n }

the sequence of the corresponding empirical measures. As we have shown that G is P -Glivenko-
Canteli one has that for almost all ω ∈ Ω

sup
g∈G

|Pω
n (g)− P (g)| = sup

h∈H∞

|Pω
n (h

2)− P (h2)| −−−→
n→∞

0.

Consider ω ∈ Ω such that the above convergence holds. Further take n so large so that
suph∈H∞ |Pω

n (h
2)− P (h2)| < ϵ2

2 and fix the measure Pω
n . Then for each f1, f2 ∈ F

ρ2(f1, f2) = P
(
(f1 − f2)

2
)
≤
∣∣P ((f1 − f2)

2
)
− Pω

n

(
(f1 − f2)

2
)∣∣+ Pω

n

(
(f1 − f2)

2
)

≤ ϵ2

2 + Pω
n

(
(f1 − f2)

2
)
,

which implies that
N(ϵ,F , ρ) ≤ N

(
ϵ√
2
,F , L2(P

ω
n )
)
.

Now the right-hand side of the last inequality is finite by the assumption of the theorem which
finally implies that (F , ρ) is totally bounded.

Let F be a VC-class of functions with a measurable envelope function F . Then by Theorem 11
there exist finite constants K and W such that the covering integral is bounded as

J(1,F , L2) ≤
∫ 1

0

√
log
[
K
(
1
ϵ

)W ]
dϵ =

∫ 1

0

√
logK −W log ϵ dϵ <∞.

If moreover the envelope function F is squared integrable (i.e. P (F 2) < ∞), then F is P -
Donsker.
Some further classes of functions that have a finite covering integral can be found for instance

in Chapter 2.6 of van der Vaart and Wellner (1996) and Chapter 9.1.2 of Kosorok (2007).

Example 6. Recall the halfspace depth introduced on page 6. Then the class of the indicator
functions FH of halfspaces is P -Donsker class. Further with the help of (6.14) one can deduce
that √

n sup
x∈Rd

∣∣hDn(x)− hD(x)
∣∣ ≤ sup

H∈H

∣∣√n (Pn(IH)− P (IH)
)∣∣⇝ sup

H∈H
|G(IH)|,

where G is a centered Gaussian process with the covariance function

cov
(
G(IH1),G(IH2)

)
= P

(
IH1 , IH2

)
− P

(
IH1

)
P
(
IH2

)
= P

(
Xi ∈ H1 ∩H2

)
− P

(
Xi ∈ H1

)
P
(
Xi ∈ H2

)
.

Thus we have shown that the sample halfspace depths hDn(x) are uniformly (in x ∈ Rd) weakly√
n-consistent estimators of the theoretical halfspace depths hD(x), i.e.

sup
x∈Rd

∣∣hDn(x)− hD(x)
∣∣ = OP

(
1√
n

)
.

This strengthen the result of Exercise 7, which implies ‘only’

sup
x∈Rd

∣∣hDn(x)− hD(x)
∣∣ = OP

(√
logn
n

)
.
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It is worth noting that the rate OP

(
1√
n

)
cannot be further improved as for a given halfspace H ∈

H with pH = P(Xi ∈ H) > 0 one has

√
n
(
Pn(IH)− pH

) d−−−→
n→∞

N
(
0, pH(1− pH)

)
.

Exercise 10. LetX1, . . . ,Xn be a random sample from the uniform distribution on the square [−2, 2]2.
Consider the following process

Zn(x) =
1

n

n∑
i=1

I{Xi ∈ B(x)}, where x ∈ R2

and B(x) is a unit ball, i.e. B(x) = {y ∈ R2 : ∥x−y∥E ≤ 1} with ∥ · ∥E denoting the Euclidean
norm.
Show that the appropriately standardized process {Zn(x),x ∈ [−2, 2]} converges in distribu-

tion. Describe the limiting process.
∗ Now, considerXn = 1

n

∑n
i=1Xi. Derive the asymptotic distribution of

√
n
(
Zn(Xn)−Z(0)

)
,

where Z(x) = P
(
Xi ∈ B(x)

)
.

Hint. See the hint for Exercise 5.
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