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1 Clippings from the asymptotic theory

1.1 The convergence of random vectors

Let X be a k-dimensional random vector (with the cumulative distribution function FX) and

{Xn}∞n=1 be a sequence of k-dimensional random vectors (with the cumulative distribution

functions FXn).

Definition. We say that Xn
d−−−→

n→∞
X (i.e. Xn converges in distribution to X), if

lim
n→∞

FXn(x) = FX(x)

for each point x of the continuity of FX .

Example 1. Let U be a random variable with a uniform distribution on the interval (0, 1).

Put Xn = U/n. Show that Xn
d−−−→

n→∞
0. But at the same time FXn(0) does not converge

to FX(0), where FX is the cumulative distribution corresponding to the random variable that

is equal to zero almost surely.

Let d be a metric in Rk, e.g. the Euclidean metric d(x,y) =
√∑k

j=1(xj − yj)2 .

Definition. We say that

� Xn
P−−−→

n→∞
X (i.e. Xn converges in probability to X), if

∀ε > 0 lim
n→∞

P
[
ω : d

(
Xn(ω),X(ω)

)
> ε
]

= 0;

� Xn
a.s.−−−→
n→∞

X (i.e. Xn converges almost surely to X), if

P
[
ω : lim

n→∞
d
(
Xn(ω),X(ω)

)
= 0
]

= 1.

Remark 1. For random vectors the convergence in probability and almost surely can be defined

also component-wise. That is let Xn = (Xn1, . . . , Xnk)
T and X = (X1, . . . , Xk)

T. Then

Xn
P−−−→

n→∞
X (Xn

a.s.−−−→
n→∞

X) if Xnj
P−−−→

n→∞
Xj (Xnj

a.s.−−−→
n→∞

Xj), ∀j = 1, . . . , k.

But this is not true for the convergence in distribution for which we have the Cramér-Wold

theorem that states

Xn
d−−−→

n→∞
X ⇐⇒ λTXn

d−−−→
n→∞

λTX, ∀λ ∈ Rk.
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Theorem 1. (Continuous Mapping Theorem, CMT) Let g : Rk → Rm be continuous

in each point of an open set C ⊂ Rk such that P(X ∈ C) = 1. Then

(i) Xn
a.s.−−−→
n→∞

X ⇒ g(Xn)
a.s.−−−→
n→∞

g(X);

(ii) Xn
P−−−→

n→∞
X ⇒ g(Xn)

P−−−→
n→∞

g(X);

(iii) Xn
d−−−→

n→∞
X ⇒ g(Xn)

d−−−→
n→∞

g(X).

Proof. (i) Almost sure convergence.

P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0
]

≥ P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0,X(ω) ∈ C

]
≥ P

[
ω : lim

n→∞
d
(
Xn(ω),X(ω)

)
= 0,X(ω) ∈ C

]
= 1,

as C is an open set and P(X ∈ C) = 1.

(ii) Convergence in probability. Let ε > 0. Then for each δ > 0

P
[
ω : d

(
g(Xn(ω)),g(X(ω))

)
> ε
]

≤ P
[
d
(
g(Xn),g(X)

)
> ε, d(Xn,X) ≤ δ

]
+ P

[
d(Xn,X) > δ

]
≤ P

[
X ∈ Bδ

]
+ P

[
d(Xn,X) > δ

]
︸ ︷︷ ︸

→0,∀δ>0

,

where Bδ =
{
x ∈ Rk; ∃y ∈ Rk : d(x,y) ≤ δ, d

(
g(x),g(y)

)
> ε
}

. Further

P
[
X ∈ Bδ

]
= P

[
X ∈ Bδ,X ∈ C

]
+ P

[
X ∈ Bδ,X /∈ C

]
= P

[
X ∈ Bδ ∩ C

]
+ 0

and P
[
X ∈ Bδ ∩ C

]
can be made arbitrarily small as Bδ ∩ C → ∅ for δ ↘ 0.

(iii) See for instance the proof of Theorem 13.6 in Lachout [2004].

Theorem 2. (Cramér-Slutsky, CS) Let Xn
d−−−→

n→∞
X, Yn

P−−−→
n→∞

c, then

(i) Xn + Yn
d−−−→

n→∞
X + c;

(ii) YnXn
d−−−→

n→∞
cX,
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where Yn can be a sequence of random variables or vectors or matrices of appropriate dimen-

sions (R or Rk or Rm×k) and analogously c can be either a number or a vector or a matrix

of an appropriate dimension.

Proof. Note that it is sufficient to prove

(Xn,Yn)
d−−−→

n→∞
(X, c). (1)

Then the statement of the theorem follows from Continuous Mapping Theorem (Theorem 1).

To prove (1) note that

d
(
(Xn,Yn), (Xn, c)

)
= d
(
Yn, c

) P−−−→
n→∞

0.

Thus by Theorem 13.7 in Lachout [2004] or Theorem 2.7 (iv) of van der Vaart [2000] it is

sufficient to show that (Xn, c)
d−−−→

n→∞
(X, c). But this follows immediately with the help of

the Cramér-Wold theorem.

Definition 1. Let
{
Xn

}∞
n=1

be a sequence of random vectors and
{
rn
}∞
n=1

a sequence of

positive constants. We write that

(i) Xn = oP
(

1
rn

)
, if (rnXn)

P−−−→
n→∞

0k, where 0k = (0, . . . , 0)T is a zero point in Rk;

(ii) Xn = OP
(

1
rn

)
, if

∀ε > 0 ∃K <∞ ∃n0 ∈ N sup
n≥n0

P
(
rn ‖Xn‖ > K

)
< ε,

where ‖ · ‖ stands for instance for the Euclidean norm.

When Xn = OP (1) then some authors say that {Xn} is (asymptotically) bounded in

probability1. When Xn = oP (1) then it is often said that {Xn} is (asymptotically) negligible

in probability.

Remark 2. Note that

(i) Xn
d−−−→

n→∞
X implies Xn = OP (1) (Prohorov’s theorem, Portmanteau theorem, see e.g.

Chapters 2.1 van der Vaart [2000]);

(ii) Xn
P−−−→

n→∞
0 implies Xn = oP (1);

(iii) (rnXn)
P−−−→

n→∞
X or (rnXn)

d−−−→
n→∞

X implies Xn = OP
(

1
rn

)
.

(iv) If rn →∞ and Xn = OP
(

1
rn

)
, then Xn = oP (1).

1omezená v pravděpodobnosti
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Proof of (iv). Note that it is sufficient to prove that for each ε > 0 and each η > 0 for all

sufficiently large n it holds that P
(
‖Xn‖ > ε

)
< η.

Note that Xn = OP
(

1
rn

)
implies there exists a finite constant K and n0 ∈ N such that

sup
n≥n0

P
(
rn ‖Xn‖ > K

)
< η.

The statement now follows from the fact that

P
(
‖Xn‖ > ε

)
= P

(
rn ‖Xn‖ > ε rn

)
< η

for all n such that ε rn > K.

Suppose that X1,X2, . . . are independent and identically distributed random vectors with

a finite variance matrix. Then the law of large numbers implies

Xn = E X1 + oP (1).

With the help of the central limit theorem one can be even more specific about the remainder

term and show that

Xn = E X1 +OP
(

1√
n

)
.

Remark 3. Further note that the calculus with the random quantities oP (1) and OP (1) is

analogous to the calculus with the (deterministic) quantities o(1) and O(1) in mathematical

analysis. Thus, among others it holds that

(i) oP (1) + oP (1) = oP (1);

(ii) oP (1)OP (1) = oP (1);

(iii) OP (1)OP (1) = OP (1);

(iv) oP (1) +OP (1) = OP (1);

Proof of (ii). Let {Xn} , {Yn} be such thatXn = OP (1),Yn = oP (1) and YnXn makes sense.

Let ε > 0 be given and consider for instance the Euclidean norm (for other norms the proof

would go through up to a multiplicative constant in some of the arguments). Then one can

find K <∞ and n0 ∈ N such that supn∈N0
P
(
‖Xn‖ > K

)
< ε

2 . Thus for all sufficiently large

n ∈ N

P
(
‖YnXn‖ > ε

)
≤ P

(
‖YnXn‖ > ε, ‖Xn‖ ≤ K

)
+ P

(
‖Xn‖ > K

)
≤ P

(
‖Yn‖ > ε

K

)
+ ε

2 ≤ ε,

as Yn = oP (1).

We recommend the reader to prove the remaining statements as an exercise.
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For more details about the calculus with oP (1) and OP (1) see for instance Chapter 3.4 of

Jiang [2010].

1.2 ∆-theorem

Let Tn = (Tn1, . . . , Tnp)
T be a p-dimensional random vector that converges to the con-

stant µ = (µ1, . . . , µp)
T and g = (g1, . . . , gm)T be a function from (a subset of) Rp to Rm.

Denote the Jacobi matrix of the function g at the point x as Dg(x), i.e.

Dg(x) =


∇g1(x)

...

∇gm(x)

 =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xp

...
. . .

...
∂gm(x)
∂x1

. . . ∂gm(x)
∂xp

 .

Theorem 3. (∆-theorem) Let
√
n (Tn −µ) = OP (1). Further g : A→ Rm, where A ⊂ Rp,

µ is an interior point of A and the first-order partial derivatives of g are continuous in a

neighbourhood of µ. Then

(i)
√
n
(
g(Tn)− g(µ)

)
− Dg(µ)

√
n (Tn − µ) = oP (1)2;

(ii) moreover if
√
n (Tn − µ)

d−−−→
n→∞

Np
(
0p,�

)
, then

√
n
(
g(Tn)− g(µ)

) d−−−→
n→∞

Nm
(
0m,Dg(µ)�D

T

g(µ)
)
. (2)

Proof. Statement (i) - the proof done at the lecture: For j ∈ {1, . . . ,m} consider gj : A → R

(the j-th coordinate of the function g). From the assumptions of the theorem there exists a

neighbourhood Uδ(µ) of the point µ such that the function gj has continuous partial deriva-

tives in this neighbourhood. Further
√
n (Tn − µ) = OP (1) implies Tn

P−−−→
n→∞

µ (see for

instance Remark 2(iv)), which yields that P
(
Tn ∈ Uδ(µ)

)
−−−→
n→∞

1. Thus without loss of gen-

erality one can assume that Tn ∈ Uδ(µ). Using this together with the mean value theorem

there exists µj∗n which lies between Tn and µ such that

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µj∗n )

√
n (Tn − µ)

= ∇gj(µ)
√
n (Tn − µ) +

[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ). (3)

Further Tn
P−−−→

n→∞
µ implies that µj∗n

P−−−→
n→∞

µ. Now the continuity of the partial derivatives

of gj in Uδ(µ) and CMT (Theorem 1) imply that

∇gj(µj∗n )−∇gj(µ) = oP (1),

2Dg(µ)
√
n (Tn − µ) is sometimes called also the asymptotic linear approximation of

√
n
(
g(Tn)− g(µ)

)
.
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which together with
√
n (Tn − µ) = OP (1) gives[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ) = oP (1). (4)

Now combining (3) and (4) yields that for each j = 1, . . . ,m

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µ)

√
n (Tn − µ) + oP (1),

which implies the first statement of the theorem.

Statement (i) - a more general version of the proof: For j ∈ {1, . . . ,m} consider gj : A→ R

(the j-th coordinate of the function g). Define the following function hj : A→ R as

hj(x) =


gj(x)−gj(µ)−∇gj(µ)(x−µ)

‖x−µ‖ , x 6= µ,

0, x = µ.

Note that hj is continuous in µ.

Further
√
n (Tn − µ) = OP (1) implies Tn

P−−−→
n→∞

µ (see for instance Remark 2(iv)). Now

using CMT (Theorem 1) implies hj(Tn) = oP (1). Thus

gj(Tn)− gj(µ)−∇gj(µ)(Tn − µ) = oP (1) ‖Tn − µ‖,

which together with
√
n (Tn − µ) = OP (1) and Remark 3(ii) gives

√
n
(
gj(Tn)− gj(µ)

)
−∇gj(µ)(Tn − µ) = oP (1)

∥∥√n (Tn − µ)
∥∥ = oP (1).

Thus one can conclude that

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µ)

√
n (Tn − µ) + oP (1),

which implies the first statement of the theorem.

Statement (ii): By the first statement of the theorem one gets

√
n
(
g(Xn)− g(µ)

)
= Dg(µ)

√
n (Xn − µ) + oP (1)

Now for the term Dg(µ)
√
n (Tn − µ) one can use the second statement of CS (Theorem 2)

with Yn = Dg(µ) and Xn =
√
n (Tn−µ). Further, using now the first statement of CS with

c = 0m one can see that adding the term oP (1) does not alter the asymptotic distribution of

Dg(µ)
√
n (Tn − µ).

In the most common applications of ∆-theorem one often takes Tn = 1
n

∑n
i=1Xi, where

X1, . . . ,Xn are independent and identically distributed. Then µ = E X1 and the standard

central limit theorem gives the asymptotic normality

√
n
(
Tn − µ

)
=
√
n
(
Xn − E X1

) d−−−→
n→∞

Np
(
0p,�

)
,
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where � = var(Xi).

Note that then Theorem 3(i) implies that

√
n
(
g(Xn)− g(µ)

)
= Dg(µ)

√
n (Xn − µ) + oP (1) =

1√
n

n∑
i=1

Zi + oP (1),

where

Zi = Dg(µ) (Xi − µ), i ∈ {1, . . . , n}

are independently distributed random vectors. Note that then the central limit theorem

together with the Cramér-Slutsky theorem (Theorem 2(i)) implies that

√
n
(
g(Xn)− g(µ)

) d−−−→
n→∞

N
(
0, var(Z1)

)
.

Thus the asymptotic variance

avar
(
g(Xn)

)
=

1

n
var
(
Z1

)
can be easily estimated as

̂avar
(
g(Xn)

)
=

1

n
S2
Z ,

where

S2
Z =

1

n− 1

n∑
i=1

ẐiẐ
T
i

is the sample variance matrice of the ‘estimated’ Zi given by

Ẑi = Dg(Xn) (Xi −Xn),

as
∑n

i=1 Ẑi = 0.

Remark 4. Instead of the continuity of the partial derivatives in a neighbourhood of µ, it

would be sufficient to assume the existence of the total differential of the function g at the

point µ (see the alternative proof of statement (i)).

Sometimes instead of (2) we write shortly g(Tn)
as
≈ Nm

(
g(µ), 1

nDg(µ)�D
T

g(µ)
)
. The quan-

tity 1
nDg(µ)�D

T

g(µ) is then called the asymptotic variance matrix of g(Tn) and it is

denoted as avar
(
g(Tn)

)
. Note that the asymptotic variance has to be understood as the

variance of the asymptotic distribution, but not as a limiting variance. The end of

class 1

(19. 2. 2025)As the following three examples show for a sequence of random variables {Yn} the asymp-

totic variance avar(Yn) may exist even if var(Yn) does not exist for any n ∈ N. Further even

if var(Yn) exists, then it does not hold that var(Yn)/ avar(Yn)→ 1 as n→∞.
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Example 2. Let X ∼ N(0, 1) and {εn} be a sequence of random variables independent with

X such that

P(εn = −
√
n) = 1

2n , P(εn = 0) = 1− 1
n , P(εn =

√
n) = 1

2n .

Define Yn = X + εn and show that Yn
d−−−→

n→∞
N(0, 1). Thus avar(Yn) = 1. On the other hand

var(Yn) = 2 for each n ∈ N.

Example 3. A random sample X1, . . . , Xn from a zero-mean distribution with finite and

positive variance. Find the asymptotic distribution of Yn = Xn exp{X3
n}. Further compare

var(Yn) and avar(Yn) when X1 is distributed as N(0, 1).

Example 4. Suppose you have a random sample X1, . . . , Xn from a Bernoulli distribution

with parameter pX and you are interested in estimating the logarithm of the odd, i.e. θX =

log
( pX

1−pX

)
. Compare the variance and the asymptotic variance of θ̂X = log

(
Xn

1−Xn

)
.

Example 5. Suppose we observe independent identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
and denote ρ = cov(X1,Y1)√

var(X1) var(Y1)
the (Pearson’s) correlation coefficient. Consider the sample

correlation coefficient given by

ρ̂n =

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2
∑n

i=1(Yi − Y n)2
.

With the help of Theorem 3(i) derive (the asymptotic representation)

√
n
(
ρ̂n − ρ

)
=

1√
n

n∑
i=1

[
X∗i Y

∗
i −

ρ
2 (X∗2i − 1)− ρ

2 (Y ∗2i − 1)
]

+ oP (1),

where X∗i = Xi−E Xi√
var(Xi)

and Y ∗i = Yi−E Yi√
var(Yi)

are standardized versions of Xi and Yi. Conclude

that
√
n
(
ρ̂n − ρ

) d−−−→
n→∞

N
(
0, var(Zi)

)
,

where Zi = X∗i Y
∗
i −

ρ
2 X

∗2
i −

ρ
2 Y
∗2
i . Derive the asymptotic distribution under the independence

of Xi and Yi and suggest a test of independence.

Further show that if (Xi, Yi)
T follows the bivariate normal distribution then

√
n
(
ρ̂n − ρ

) d−−−→
n→∞

N
(
0, (1− ρ2)2

)
.

Find the (asymptotic) variance stabilising transformation for ρ̂n (see Chapter 1.4) and derive

the confidence interval for ρ.

8



Example 6. Observe independent and identically distributed positive random variables

X1, . . . , Xn and we are interested in the coefficient of skewness, i.e.

θX =
E (X1 − E X1)3

[var(X1)]3/2
.

Suggest an estimator θ̂n of the parameter θX . Use the ∆-theorem to derive the asymptotic

linear approximation for θ̂n. Derive the (asymptotic) confidence interval for θX .

Hint. Justify that for asymptotic derivations one can assume that work with the standardized

variables X∗i = Xi−E Xi√
var(Xi)

so that E X∗i = 0 and var(X∗i ) = 1.

Example 7. Consider a random sample from the Bernoulli distribution with the parame-

ter pX . Derive the asymptotic distribution of the estimator of θX = pX(1− pX) (variance of

the Bernoulli distribution) given by θ̂n = n
n−1Xn(1−Xn).

Example 8. Suppose that we observe X1, . . . , Xn of a moving average sequence of order 1

given by

Xt = Yt + θ Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise sequence such that E Yt = 0 and var(Yt) = σ2. Suppose

that |θ| < 1 so that the process invertible.

Using the fact that the autocorrelation function at lag 1 satisfies

r(1) =
θ

1 + θ2

derive the estimator of θ and find its asymptotic distribution.

Hint. Note that by Bartlett’s formula

√
n
(
r̂n(1)− r(1)

) d−−−→
n→∞

N
(
0, σ2(θ)

)
,

where

σ2(θ) = 1− 3
(

θ
1+θ2

)2
+ 4
(

θ
1+θ2

)4
.

The end of

class 2

(27. 2. 2025)

1.3 Moment estimators

Suppose that the random vector X has a density f(x;θ) with respect to a σ-finite measure µ

and that the density is known up to unknown p-dimensional parameter θ = (θ1, . . . , θp)
T ∈ Θ.

Let θX be the true value3 of this unknown parameter. Let X1, . . . ,Xn be a random sample

from this distribution and t1, . . . , tp be given real functions. For instance if the observations

3skutečná hodnota

9



are one-dimensional one can take tj(x) = xj , j ∈ {1, . . . , p}. For j ∈ {1, . . . , p} define the

function τj : Θ→ R as

τj(θ) = Eθ tj(X1) =

∫
tj(x)f(x;θ) dµ(x), j ∈ {1, . . . , p}.

Then the moment estimator4 θ̂n of the parameter θ is a solution to the estimating equations

1

n

n∑
i=1

t1(Xi) = τ1

(
θ̂n
)
, . . . ,

1

n

n∑
i=1

tp(Xi) = τp
(
θ̂n
)
.

Example 9. Let X1, . . . , Xn be a random sample from the Beta distribution with the density

f(x;α, β) = xα−1(1−x)β−1

B(α,β) I{x ∈ (0, 1)}. Consider t1(x) = x and t2(x) = x2. Then

E X1 =
α

α+ β
, E X2

1 =
α(α+ 1)

(α+ β)(α+ β + 1)
.

Thus the estimating equations are

1

n

n∑
i=1

Xi =
α̂

α̂+ β̂
,

1

n

n∑
i=1

X2
i =

α̂(α̂+ 1)

(α̂+ β̂)(α̂+ β̂ + 1)
.

Now denote τ (α, β) = (τ1(α, β), τ2(α, β))T, where

τ1(α, β) =
α

α+ β
, τ2(α, β) =

α(α+ 1)

(α+ β)(α+ β + 1)
.

Thus one can rewrite the estimating equations as

τ (α̂, β̂) =
( 1

n

n∑
i=1

Xi,
1

n

n∑
i=1

X2
i

)T
.

Now provided that the inverse function τ−1 exists one can write(
α̂

β̂

)
= τ−1

( 1

n

n∑
i=1

Xi,
1

n

n∑
i=1

X2
i

)T
.

and use ∆-theorem to derive the asymptotic distribution of the estimator
(α̂
β̂

)
.

Now in the general situation put

Tn =
( 1

n

n∑
i=1

t1(Xi), . . . ,
1

n

n∑
i=1

tp(Xi)
)T

(5)

and define the mapping τ : Θ 7→ Rp as τ (θ) =
(
τ1(θ), . . . , τp(θ)

)T
. Note that provided there

exists an inverse mapping τ−1 one can write

√
n
(
θ̂n − θX

)
=
√
n
(
τ−1(Tn)− τ−1

(
τ (θX)

))
. (6)

Thus the asymptotic normality of the moment estimator θ̂n would follow by the ∆-theorem

(Theorem 3) with g = τ−1. This is formalized in the following theorem.

4momentový odhad

10



Theorem 4. Let θX be an interior point of Θ and maxj∈{1,...,p} varθX (tj(X1)) < ∞. Fur-

ther let the function τ be one-to-one and have continuous first-order partial derivatives in a

neighbourhood of θX . Finally let the Jacobi matrix Dτ (θX) be regular. Then

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,D

−1
τ (θX)�(θX) [D−1

τ (θX)]T
)
,

where �(θX) = varθX
(
t1(X1), . . . , tp(X1)

)
.

Proof. By the assumptions of the theorem and the inverse function theorem (Theorem A13)

there exists an open neighbourhood U containing θX and an open neighbourhood V con-

taining τ (θX) such that τ : U → V is a differentiable bijection with a differentiable inverse

τ−1 : V → U . Further note that Tn defined in (5) satisfies P
(
Tn ∈ V

)
−−−→
n→∞

1. Thus one

can use (6) and apply the ∆-theorem (Theorem 3) with g = τ−1, µ = τ (θX) and A = V to

get
√
n
(
θ̂n − θX

)
d−−−→

n→∞
Np
(
0,Dτ−1

(
τ (θX)

)
�(θX)

[
Dτ−1

(
τ (θX)

)]T)
.

The statement of the theorem now follows from the identity

Dτ−1

(
τ (θX)

)
= D−1

τ (θX).

The asymptotic variance of θ̂n is usually estimated as

1
n D
−1
τ

(
θ̂n
)
�̂n [D−1

τ

(
θ̂n
)
]T,

where as �̂n one can take either �(θ̂n) or the empirical variance matrix

�̂n =
1

n− 1

n∑
i=1

(
Zi − Zn

)(
Zi − Zn

)T
,

with Zi =
(
t1(Xi), . . . , tp(Xi)

)T
.

Confidence intervals for θXj

Let θXj stand for the j-th component of the true value of the parameter θX = (θX1, . . . , θXp)
T.

Put θ̂n =
(
θ̂n1, . . . , θ̂np

)T
and θX = (θX1, . . . , θXp)

T. By Theorem 4 we know that

√
n
(
θ̂nj − θXj

) d−−−→
n→∞

N
(
0, vjj(θX)

)
, j ∈ {1, . . . , p},

where vjj(θX) is the j-th diagonal element of the asymptotic variance matrix

V = D−1
τ (θX)�(θX) [D−1

τ (θX)]T. (7)

11



Thus the (asymptotic two-sided) confidence interval for θXj is given by(
θ̂nj − u1−α

2

√
v̂jj
n , θ̂nj + u1−α

2

√
v̂jj
n

)
,

where v̂jj is the j-th diagonal element of the estimated variance matrix

V̂n = D−1
τ

(
θ̂n
)
�̂n [D−1

τ

(
θ̂n
)
]T.

Applications of moment estimators

As maximum likelihood estimators are preferred over moment estimators, the use of moment

estimators is limited. Nevertheless the moment estimators can be of interest in the following

situations:

� the calculation of the maximum likelihood estimate is computationally too prohibitive

due to a very complex model or a huge amount of data;

� moment estimates can be used as the starting values for the numerical algorithms that

search for maximum likelihood estimates.

The choice of the functions t1, . . . , tp

The most common choice tj(x) = xj , where j ∈ {1, . . . , p} for the univariate observations is

not necessary the most appropriate one. The idea is to choose the functions t1, . . . , tp so that

the asymptotic variance matrix (7) is in some sense ‘minimized’. But this is usually a too

difficult problem. Nevertheless one should at least check that the vector function τ : Θ→ Rp

is one-to-one, otherwise the parameter θX might not be identifiable with the given t1, . . . , tp.

Now the continuity of τ guarantees the consistency of the estimator θ̂n. To guarantee also

the asymptotic normality one needs that the Jacobi matrix Dτ (θ) is regular for each θ ∈ Θ.

To be more specific, consider the one-dimensional parameter θ and for a given function t

introduce

τ(θ) = Eθ t(X1).

Then we need that τ : Θ→ R is a one-to-one function. Otherwise it might happen that with

probability going to one the estimating function

τ(θ̂n) =
1

n

n∑
i=1

t(Xi).

has more roots (whose values are in the parameter space Θ) and we do not know which of

the root is the appropriate (consistent) one.

12



Example 10. Let X1, . . . , Xn be independent identically distributed random variables from

the discrete distribution given as

P(X1 = −1) = p, P(X1 = 0) = 1− p− p2, P(X1 = 2) = p2,

where p ∈ Θ = (0, −1+
√

5
2 ).

Now the standard choice t(x) = x yields that τ(p) = EpX1 = 2p2 − p. Note that the

estimating equation given by

2p̂2
n − p̂n = Xn

has two roots

p̂(1,2)
n = 1

4 ±
√

Xn
2 + 1

16 .

Show that if the true value of the parameter pX ∈ (0, 1
2), then

p̂(1)
n

P−−−→
n→∞

1
4 − |pX −

1
4 |, p̂(2)

n
P−−−→

n→∞
1
4 + |pX − 1

4 |.

Thus except for the pX = 1
4 the roots p̂

(1)
n and p̂

(2)
n converge in distribution to different limits

and only one of these limits is the true value of the parameter pX . Note also pX = 1
4 , then

both the roots are consistent, but as τ ′(1
4) = 0 neither of the roots is asymptotically normal.

Show that taking t(x) = x2 or simply t(x) = I{x = −1} does not introduce such problematic

issues.

1.4 Confidence intervals and asymptotic variance-stabilising transformation

In this section5 we are interested in constructing a confidence interval for (one-dimensional)

parameter θX . Suppose we have an estimator θ̂n of parameter θX such that

√
n
(
θ̂n − θX

) d−−−→
n→∞

N
(
0, σ2(θX)

)
, (8)

where σ2(·) is a function continuous in the true value of the parameter (θX).

Standard asymptotic confidence interval of ‘Wald’ type

This interval is based on the fact that

√
n
(
θ̂n − θX

)
σ(θ̂n)

d−−−→
n→∞

N
(
0, 1
)

and thus (
θ̂n −

u1−α/2 σ(θ̂n)√
n

, θ̂n +
u1−α/2 σ(θ̂n)√

n

)
(9)

5Not presented at the lecture. It is assumed that this is known from the bachelor degree.
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is a confidence interval for parameter θX with the asymptotic coverage 1− α.

The advantage of the confidence interval (9) is that it is easy to calculate. On the other

hand the simulations show that for small sample size and/or if |σ′(θ)| is large then the actual

coverage of this confidence interval can be much smaller than 1− α.

Implicit (asymptotic) confidence interval of ‘Wilson’ type

This interval is based directly on (8) and it is given implicitly by{
θ :

∣∣∣∣√n
(
θ̂n − θ

)
σ(θ)

∣∣∣∣ < u1−α/2

}
. (10)

Note that (10) can be viewed as the set of θ for which we do not reject the null hypothesis

H0 : θX = θ against the alternative H1 : θX 6= θ

with the critical region ∣∣∣∣√n
(
θ̂n − θ

)
σ(θ)

∣∣∣∣ ≥ u1−α/2.

In fact the set given by (10) does not have to be necessarily an interval. But usually the

function θ 7→
√
n (θ̂n−θ)
σ(θ) is not increasing which guarantees that the set (10) is indeed an

interval.

It was observed that usually the actual coverage of this implicit confidence interval is closer

to 1 − α than for the standard asymptotic confidence interval (9). In particular if one is

interested in two-sided intervals then the implicit confidence interval (10) works surprisingly

well even for very small samples. Its disadvantage is that in general one does not have an

explicit formula for this interval and often it has to be found with the help of methods of

numerical mathematics.

Confidence interval based on the transformation stabilizing the asymptotic variance

Put g(θ) =
∫

1
σ(θ) dθ. Then with the help of (8) and ∆-theorem it holds

√
n
(
g(θ̂n)− g(θX)

) d−−−→
n→∞

N
(
0, 1
)
.

Thus the set
(
g
(
θ̂n
)
− u1−α/2√

n
, g
(
θ̂n
)

+
u1−α/2√

n

)
is a confidence set for g(θX). Now as g is an

increasing function (note that g′(θ) > 0) one can conclude that(
g−1
(
g
(
θ̂n
)
− u1−α/2√

n

)
, g−1

(
g
(
θ̂n
)

+
u1−α/2√

n

))
(11)

is a confidence interval for the parameter θX with the asymptotic coverage 1− α.
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The actual coverage of this confidence interval is also usually closer to 1 − α than for the

standard confidence interval (9). On the other hand when one is interested in two-sided

confidence interval then the implicit confidence interval (10) usually works better. But the

advantage of (11) is that one usually has an explicit formula for the confidence interval

(provided that g and g−1 can be explicitly calculated). The confidence interval (11) is also

usually a better choice than the the implicit confidence interval when one is interested in

one-sided confidence intervals.

Example 11. A random sample from Poisson distribution. Find the transformation that sta-

bilises the asymptotic variance of Xn and based on this transformation derive the asymptotic

confidence intervals for λ.

Example 12. Fisher’s Z-transformation and various confidence intervals for the correlation

coefficient.

Example 13. Consider a random sample from Bernoulli distribution. Find the asymptotic

variance-stabilizing transformation for Xn and construct the confidence interval based on this

transformation.

Literature: van der Vaart [2000] – Chapters 2.1, 2.2, 3.1, 3.2 and 4.1. In particular Theo-

rems 2.3, 2.4, 2.8 and 3.1. The end of

class 3

(28. 2. 2025)
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2 Maximum likelihood methods

Suppose we have a random sample of random vectors X1, . . . ,Xn being distributed as

the generic vector X = (X1, . . . , Xk)
T that has a density f(x;θ) with respect to a σ-

finite measure µ and that the density is known up to an unknown p-dimensional parameter

θ = (θ1, . . . , θp)
T ∈ Θ. Let θX = (θX1, . . . , θXp)

T be the true value of the parameter.

Define the likelihood function as

Ln(θ) =

n∏
i=1

f(Xi;θ)

and the log-likelihood function as

`n(θ) = logLn(θ) =
n∑
i=1

log f(Xi;θ).

The maximum likelihood estimator of parameter θX is defined as

θ̂n = arg max
θ∈Θ

Ln(θ) or alternatively as θ̂n = arg max
θ∈Θ

`n(θ). (12)

The (exact) distribution of θ̂n is usually too difficult or even impossible to calculate. Thus

to make the inference about θX we need to derive the asymptotic distribution of θ̂n.

2.1 Asymptotic normality of maximum likelihood estimator

Regularity assumptions

Let I(θ) = E θ

[
∂ log f(X1;θ)

∂θ
∂ log f(X1;θ)

∂θT

]
be the Fisher information matrix.

[R0] For any θ1, θ2 ∈ Θ it holds that f(x;θ1) = f(x;θ2) µ-almost everywhere if and only if

θ1 = θ2. (Identifiability)

[R1] The number of parameters p in the model is constant.

[R2] The support set S =
{
x ∈ Rk : f(x;θ) > 0

}
does not depend on the value of the

parameter θ.

[R3] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[R4] The density f(x;θ) is three-times differentiable with respect to θ on an open neigh-

bourhood U of θX (for µ-almost all x ). Further there exists a function M(x) such that

for each j, k, l ∈ {1, . . . , p}

sup
θ∈U

∣∣∣∣∂3 log f(x;θ)

∂θj ∂θk ∂θl

∣∣∣∣ ≤M(x),
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for µ-almost all x and

E θX M(X1) <∞.

[R5] The Fisher information matrix I(θX) is finite and positive definite.

[R6] The order of differentiation and integration can be interchanged in expressions such as

∂

∂θj

∫
h(x;θ) dµ(x) =

∫
∂

∂θj
h(x;θ) dµ(x),

where h(x;θ) is either f(x;θ) or ∂f(x;θ)/∂θk and j, k ∈ {1, . . . , p}.

Note that thanks to assumption [R6] one can calculate the Fisher information matrix as

I(θ) = −E θ

[
∂2 log f(X1;θ)

∂θ ∂θT

]
,

see for instance Lemma 5.3 of Lehmann and Casella [1998] or Theorem 7.27 of Anděl [2007].

Example 14. Let X1, . . . , Xn be a random sample from the normal distribution N(µ1 +

µ2, 1). Then the identifiability assumption [R0] is not satisfied for the vector parameter

θ = (µ1, µ2)T.

Example 15. Let X1, . . . , Xn be a random sample from the uniform distribution U(0, θ).

Note that assumption [R2] is not satisfied.

Show that the maximum likelihood estimator of θ is θ̂n = max1≤i≤n{Xi}. Derive the

asymptotic distribution of n (θ̂n − θ).

Remark 5. Note that in particular assumption [R4] is rather strict. There are ways how

to derive the asymptotic normality of the maximum likelihood estimator under less strict

assumptions but that would require concepts that are out of the scope of this course.

The score function of the i-th observation Xi for the parameter θ is defined as

U(Xi;θ) =
∂ log f(Xi;θ)

∂θ
.

The random vector

Un(θ) =
n∑
i=1

U(Xi;θ) =
n∑
i=1

∂ log f(Xi;θ)

∂θ

is called the score statistic.

We search for the maximum likelihood estimator θ̂n as a solution of the system of the

likelihood equations

Un

(
θ̂n
) !

= 0p. (13)

17



Further define the observed (empirical) information matrix as

In(θ) = − 1

n

∂Un(θ)

∂θT
=

1

n

n∑
i=1

I(Xi;θ),

where

I(Xi;θ) = −∂U(Xi;θ)

∂θT
= −∂

2 log f(Xi;θ)

∂θ ∂θT

is the contribution of the i-th observation to the information matrix.

In what follows it will be useful to prove that In
(
θ̂n
) P−−−→
n→∞

I(θX) = E I(X1;θ) (provided

that θ̂n
P−−−→

n→∞
θX). The following technical lemma is a generalization of this result that will

be convenient in the proofs of the several theorems that will follow.

Lemma 1. Suppose that assumptions [R0]-[R6] hold. Let εn be a sequence of positive num-

bers going to zero. Then

max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(In(θ)− I(θX)
)
jk

∣∣∣ = oP (1),

where

Uεn =
{
θ ∈ Θ : ‖θ − θX‖ ≤ εn

}
and

(
In(θ)− I(θX)

)
jk

stands for the (j, k)-element of the difference of the matrices In(θ)−
I(θX).

Proof. Using assumption [R4] and the law of large numbers one can bound

sup
θ∈Uεn

∣∣∣(In(θ)− I(θX)
)
jk

∣∣∣ ≤ sup
θ∈Uεn

∣∣∣(In(θ)− In(θX)
)
jk

∣∣∣+
∣∣∣(In(θX)− I(θX)

)
jk

∣∣∣
≤ 1

n

n∑
i=1

p∑
l=1

M(Xi) εn + oP (1) = OP (1) o(1) + oP (1) = oP (1),

which implies the statement of the lemma.

Corollary 1. Let the assumptions of Lemma 1 be satisfied. Further let t̂n
P−−−→

n→∞
θX . Then

for each j, k ∈ {1, . . . , p} ∣∣∣(In(t̂n)− I(θX)
)
jk

∣∣∣ = oP (1).

Proof. Note that t̂n
P−−−→

n→∞
θX implies that there exists a sequence of positive constants {εn}

going to zero such that

P
(
t̂n ∈ Uεn

)
−−−→
n→∞

1.
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The corollary now follows from Lemma 1 and from the fact that one can bound∣∣∣(In(t̂n)− I(θX)
)
jk

∣∣∣ =
∣∣∣(In(t̂n)− I(θX)

)
jk

∣∣∣I{t̂n ∈ Uεn}+
∣∣∣(In(t̂n)− I(θX)

)
jk

∣∣∣I{t̂n 6∈ Uεn}
≤ sup
θ∈Uεn

∣∣∣(In(θ)− I(θX)
)
jk

∣∣∣+
∣∣∣(In(t̂n)− I(θX)

)
jk

∣∣∣I{t̂n 6∈ Uεn}.
The end of

class 4

(6. 3. 2025)

Theorem 5. Suppose that assumptions [R0]-[R6] hold.

(i) Then with probability tending to one as n→∞ there exists a consistent solution θ̂n of

the likelihood equations (13).6

(ii) Any consistent solution θ̂n of the likelihood equations (13) satisfies,

√
n
(
θ̂n − θX

)
=
[
I(θX)

]−1 1√
n

n∑
i=1

U(Xi;θX) + oP (1), (14)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
. (15)

Proof of (i). First, we need to prove the existence of the consistent root θ̂n of the likelihood

equations. This can be deduced from a more general Theorem 11. An alternative approach

can be found in the proof of Theorem 5.1 of Lehmann and Casella [1998, Chapter 6].

Proof of (ii). Suppose that θ̂n is a consistent solution of the likelihood equations. Then by

the mean value theorem (applied to each component of Un(θ)) one gets that

0p = Un

(
θ̂n
)

= Un(θX)− n I∗n
(
θ̂n − θX

)
,

where I∗n is a matrix with the elements

i∗n,jk =
1

n

n∑
i=1

−∂2 log f(Xi;θ)

∂θj ∂θk

∣∣∣
θ=t̂

(j)
n

, j, k ∈ {1, . . . , p},

with t̂
(j)
n being between θ̂n and θX . Thus the consistency of θ̂n implies that t̂

(j)
n

P−−−→
n→∞

θX

and one can use Corollary 1 to show that

I∗n
P−−−→

n→∞
I(θX). (16)

6Thus defining the estimator as an appropriately chosen root of the likelihood equations (provided that the

likelihood equations has at least one root) and zero otherwise yields a consistent estimator of θX .
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Thus with probability going to one there exists [I∗n]−1 and one can write

n
(
θ̂n − θX

)
= [I∗n]−1 Un(θX).

Now the central limit theorem for independent identically distributed random vectors implies

that
1√
n

n∑
i=1

U(Xi;θX)
d−−−→

n→∞
Np
(
0p, I(θX)

)
. (17)

Note that (17) yields that 1√
n

∑n
i=1 U(Xi;θX) = OP (1). Thus using (16) and CMT (Theo-

rem 1) implies that

√
n
(
θ̂n − θX

)
= [I∗n]−1 1√

n

n∑
i=1

U(Xi;θX)

=
[
I−1(θX) + oP (1)

] 1√
n

n∑
i=1

U(Xi;θX)

= I−1(θX)
1√
n

n∑
i=1

U(Xi;θX) + oP (1).

Now (15) follows by CS (Theorem 2) and (17).

Remark 6. While the proof of consistency is for p = 1 relatively simple [see e.g. Theorem 22

of Nagy], for p > 1 it is much more involved. The reason is that while the border of the

neighbourbood in R is a two-point set, in Rp (p > 1) it is an uncountable set.

Remark 7. Note that strictly speaking Theorem 5 does not guarantee the asymptotic normal-

ity of the maximum likelihood estimator but of an appropriately chosen root of the likelihood

equations (13). As illustrated in Example 19 it may happen that the maximum likelihood esti-

mator defined by (12) is not a consistent estimator of θX even if all the regularity assumptions

[R0]-[R6] are satisfied. It may also happen that the maximum likelihood estimator does not

exist (see the example on page 21). That is why some authors define the maximum likelihood

estimator in regular families as an appropriately chosen root of the likelihood equations.

Fortunately for many models commonly used in applications the log-likelihood function

`n(θ) is (almost surely) convex. Then the maximum likelihood estimator is the only solution

to the likelihood equations and Theorem 5 guarantees that this estimator is asymptotically

normal. If `n(θ) is not convex, there might be more roots to the likelihood equations and

the choice of an appropriate (consistent) root of the estimating equations is more delicate

both from the theoretical as well as the numerical point of view. Other available consistent

estimators (e.g. moment estimators) can be very useful as for instance the starting points of

the numerical algorithms that search for the root of the likelihood equations.
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Example 16. Let X1, . . . , Xn be a random sample from Bernoulli distribution7 Be(p). Note

that if either
∑n

i=1Xi = 0 or
∑n

i=1Xi = n then there is no root of the likelihood equation.

Nevertheless the probability of both events converges to zero as n→∞ whenever pX ∈ (0, 1).

Example 17. Let X1, . . . , Xn be a random sample from the Pareto distribution with the

density

f(x) =
β αβ

xβ+1
I{x ≥ α}, β > 0, α > 0,

where both parameters are unknown.

(i) Find the maximum likelihood estimator of θ̂n =
(
α̂n, β̂n

)T
of the parameter θ = (α, β)T.

(ii) Derive the asymptotic distribution of n
(
α̂n − α

)
.

(iii) Derive the asymptotic distribution of
√
n
(
β̂n − β).

Example 18. Let X1, . . . , Xn be a random sample from N(µ, 1) where the parameter space

for the parameter µ is restricted to [0,∞). Find the maximum likelihood estimator of µ and

derive its asymptotic distribution. Do not forget to consider the special case µ = 0.

Example 19. Let X1, . . . , Xn be a random sample from the mixture of distributions N(0, 1)

and N
(
θ, exp{−2/θ2}

)
with equal weights and the parameter space given by Θ = (0,∞).

Define the estimator of the parameter θ as θ̂
(ML)
n = arg maxθ∈Θ `n(θ). Then it can be shown

that θ̂
(ML)
n

P−−−→
n→∞

0, thus θ̂
(ML)
n is not consistent estimator.

Nevertheless note that the assumptions [R0]-[R6] are met. Thus by Theorem 5 there exists

a different root (θ̂n) of the likelihood equation such that this estimator satisfies (14) and (15).

Example 20. Let X1, . . . , Xn be a random sample from the mixture of distributions N(0, 1)

and N(µ, σ2) with equal weights and the parameter space for the parameter θ = (µ, σ)T is

given by Θ = R× (0,∞). Show that

sup
(µ,σ2)T∈Θ

`n(µ, σ2) =∞

and that the maximum likelihood estimator does not exist. But similarly as in Example 19

Theorem 5 still holds.

2.2 Asymptotic efficiency of maximum likelihood estimators

Recall the Rao-Cramér inequality. Let X1, . . . ,Xn be a random sample from the regular

family of densities F =
{
f(x;θ);θ ∈ Θ

}
, and Tn be an unbiased estimator of θX (based on

X1, . . . ,Xn). Then

var
(
Tn

)
− 1

n
I−1(θX) ≥ 0.

7Alternativńıho rozděleńı
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By Theorem 5 we have that (under appropriate regularity assumptions)

avar
(
θ̂n
)

=
1

n
I−1(θX).

Thus the asymptotic variance of θ̂n attains the lower bound in Rao-Cramér inequality.

Remark 8. Note that strictly speaking comparing with the Rao-Cramér bound is not fair.

Generally, the maximum likelihood estimator θ̂n is not unbiased. Further, Rao-Cramér in-

equality speaks about the bound on the variance, but we compare the asymptotic variance

of θ̂n with this bound. Nevertheless it can be shown that in regular models there exists a lower

bound for the asymptotic variances of the estimators that are asymptotically normal with zero

mean and in some (natural) sense regular (see Example 21 below). And this bound is indeed

given by 1
n I
−1(θX). See also Serfling [1980, Chapter 4.1.3] and the references therein.

Example 21. Let X1, . . . , Xn be a random sample from N(θ, 1), where θ ∈ R. Define the

estimator of θ as

θ̂(S)
n =

{
0, if |Xn| ≤ n−1/4,

Xn, if |Xn| > n−1/4.

This estimator is called also Hodges or shrinkage estimator. Show that if θX 6= 0 then
√
n (θ̂

(S)
n − θX)

d−−−→
n→∞

N(0, 1) and if θX = 0 then even nr(θ̂
(S)
n − θX)

P−−−→
n→∞

0 for each r ∈ N.

Thus from the point-wise asymptotic point of view, the estimator θ̂
(S)
n is better than the

standard maximum likelihood estimator that is given by the sample mean Xn.

But on the other hand consider the following sequence of the true values of the parameter

θ
(n)
X = n−1/4. Then show that for an arbitrarily large value of K

lim inf
n→∞

P
(√

n
(
θ̂(S)
n − θ(n)

X

)
≥ K

)
≥ 1

2
.

Thus the sequence
√
n
(
θ̂

(S)
n − θ(n)

X

)
is not tight and so it does not converge in distribution.

Such a non-uniform behaviour of the estimator θ̂
(S)
n is usually considered as undesirable. Thus

the aim of the regularity assumptions on the estimators is to avoid such estimators that from

the point-wise view can be considered as superior (superefficient) to the maximum likelihood

estimators.8
The end of

class 5

(6. 3. 2025)

2.3 Estimation of the asymptotic variance matrix

To do the inference about the parameter θX we need to have a consistent estimator of I(θX).

Usually, we use one of the following estimators

I
(
θ̂n
)

or In
(
θ̂n
)

or
1

n

n∑
i=1

U
(
Xi; θ̂n

)
UT(Xi; θ̂n).

8Note that the issue of superefficiency is behind the claimed ‘oracle’-properties of some regularized estimators

(e.g. adaptive LASSO), see Leeb and Pötscher [2008] and the references therein.
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The consistency of I
(
θ̂n
)

follows by CMT (Theorem 1), provided (the matrix function)

I(θ) is continuous in θX , which follows by assumption [R4].

The consistency of In
(
θ̂n
) P−−−→
n→∞

I(θX) follows from Corollary 1 and Theorem 5.

On the other hand the consistency of 1
n

∑n
i=1 U

(
Xi; θ̂n

)
UT(Xi; θ̂n) does not automatically

follow from assumptions [R0]-[R6]. It can be proved analogously as Corollary 1 provided

the following assumption holds.

[R7] There exists an open neighbourhood U of θX such that for each j, k in {1, . . . , p} there

exists a function M2(x) such that

sup
θ∈U

∣∣∣∣∂2 log f(x;θ)

∂θj ∂θk

∣∣∣∣ ≤M2(x)

for µ-almost all x and

E θX M
2
2 (Xi) <∞.

Literature: Anděl [2007] Chapter 7.6.5, Lehmann and Casella [1998] Chapter 6.5, Kulich

[2014].

2.4 Asymptotic tests (without nuisance parameters)

Suppose we are interested in testing the null hypothesis

H0 : θX = θ0 against the alternative H1 : θX 6= θ0.

Let În be an estimate of the Fisher information matrix I(θX) or I(θ0). Basically there are

three tests that can be considered.

Likelihood ratio test is based on the test statistic

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
.

Wald test is based on the test statistic

Wn = n
(
θ̂n − θ0

)T
În
(
θ̂n − θ0

)
.

Rao score test is based on the test statistic

Rn =
1

n
UT
n(θ0) Î−1

n Un(θ0). (18)

Note that the advantage of the likelihood ratio test (LRn) is that one does not need to

estimate the Fisher information matrix. On the other hand the advantage of Rao score test

(Rn) is that you do not need to calculate the maximal likelihood estimator θ̂n. That is why
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in Rao score statistic (Rn) one uses usually either I(θ0) or In(θ0) as În. On the other hand

usually (for historical reasons) I(θ̂n) or In(θ̂n) is used for Wald statistic (Wn).

The next theorem says that all the test statistics have the same asymptotic distribution

under the null hypothesis.

Theorem 6. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied,

În
P−−−→

n→∞
I(θ0) and θ̂n is a consistent solution of the likelihood equations. Then each of the

test statistics LRn, Wn and Rn converges in distribution to χ2-distribution with p degrees of

freedom.

Proof. Rn: Note that Rn can be rewritten as

Rn =
([
În
]− 1

2 1√
n

Un(θ0)
)T([

În
]− 1

2 1√
n

Un(θ0)
)
.

Now by the asymptotic normality of the score statistic (17), consistency of În and CS (The-

orem 2) one gets that [
În
]− 1

2 1√
n

Un(θ0)
d−−−→

n→∞
Np(0p, Ip),

where Ip is an identity matrix of dimension p × p. Now the statement follows by using

CMT (Theorem 1) with g(x1, . . . , xp) =
∑p

j=1 x
2
j .

Wn: One can rewrite Wn as

Wn =
([
În
] 1
2
√
n
(
θ̂n − θ0

))T ([
În
] 1
2
√
n
(
θ̂n − θ0

))
.

Now the statement follows by analogous reasoning as for Rn, as by Theorem 5 and CS (The-

orem 2) one gets [
În
] 1
2
√
n
(
θ̂n − θ0

) d−−−→
n→∞

Np(0p, Ip).

LRn: With the help of the second order Taylor expansion around θ̂n one gets:

`n(θ0) = `n
(
θ̂n
)

+ UT
n

(
θ̂n
)︸ ︷︷ ︸

=0T
p

(
θ0 − θ̂n

)
− n

2

(
θ0 − θ̂n

)T
In(θ∗n)

(
θ0 − θ̂n

)
,

where θ∗n lies between θ0 and θ̂n. Applying Corollary 1 yields In(θ∗n)
P−−−→

n→∞
I(θ0). Thus

analogously as above one gets

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
=
√
n
(
θ̂n − θ0

)T
In(θ∗n)

√
n
(
θ̂n − θ0

) d−−−→
n→∞

χ2
p.
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Remark 9. Note that using the asymptotic representation (14) of the maximum likelihood

estimator θ̂n and the derivations done in the proof of Theorem 6 one can show that the

difference of each of the two test statistics (LRn, Wn and Rn) converges under the null

hypothesis to zero in probability.

Nevertheless, in simulations it is observed that the actual level (the probability of type one

error) of the test for the Wald test (Wn) can be substantially different from the prescribed

level α. Unfortunately, usually the test is anti-conservative, i.e. the actual level is higher

than the prescribed level α. This happens in particular for small samples and/or when the

curvature of the log-likelihood `n(θ) is relatively high (as measured for instance by I(θ)).

The latter happens often if θ0 is close to the border of the parameter space Θ. That is why

some authors recommend either the score test Rn or likelihood ratio test LRn whose actual

levels are usually very close to the prescribed level α even in small samples.

Example 22. Let X1, . . . ,Xn be a random sample of K-variate random vectors from the

multinomial distribution MultK(1,p), where Xi = (Xi1, . . . , XiK)T and p = (p1, . . . , pK)T.

Suppose we are interested in testing the null hypothesis

H0 : pX = p0, H1 : pX 6= p0,

where p0 = (p0
1, . . . , p

0
K)T is a given value of the parameter p. For k ∈ {1, . . . ,K} put

nk =
∑n

i=1Xik. Derive that

LRn = 2

K∑
k=1

nk log
(
nk
np0k

)
.

Further if one uses I(θ̂n) in the Wald test and I(θ0) in the Rao score test, then

Wn =
K∑
k=1

(nk − np0
k)

2

nk
, Rn =

K∑
k=1

(nk − np0
k)

2

np0
k

.

Show that each of the test statistics converges to χ2-distribution with K − 1 degrees of

freedom.

Note that Rao score test (Rn) corresponds to the standard χ2-test of goodness-of-fit in

multinomial distribution.

Hint. One has to be careful as it is not possible to take θ = (p1, . . . , pK)T, as pK = 1−
∑K−1

k=1 pk

(which violates assumption [R3], as the corresponding parameter space would not have any

interior points). To avoid this problem one has to take for instance θ = (p1, . . . , pK−1)T.
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2.5 Asymptotic confidence sets

Sometimes we are interested in the confidence set for the whole vector parameter θX . Then

we usually use the following confidence set{
θ ∈ Θ : n (θ̂n − θ)TÎn(θ̂n − θ) ≤ χ2

p(1− α)
}
,

where În is a consistent estimator of I(θX). Usually In
(
θ̂n
)

or I
(
θ̂n
)

are used as În. Then

the resulting confidence set is an ellipsoid.

Confidence intervals for θXj

In most of the applications we are interested in confidence intervals for components θXj of

the parameter θX = (θX1, . . . , θXp)
T.

Put θ̂n =
(
θ̂n1, . . . , θ̂np

)T
and θX = (θX1, . . . , θXp)

T. By Theorem 5 we know that

√
n
(
θ̂nj − θXj

) d−−−→
n→∞

N
(
0, ijj(θX)

)
, j ∈ {1, . . . , p},

where ijj(θX) is the j-th diagonal element of I−1(θX). Thus the asymptotic variance of θ̂jn

is given by avar
(
θ̂nj
)

= ijj(θX)
n , which can be estimated by

̂
avar

(
θ̂nj
)

= ijjn
n , where ijjn is the

j-th diagonal element of Î−1
n . Thus the two-sided (asymptotic) confidence interval for θXj is

given by (
θ̂nj − u1−α

2

√
ijjn
n , θ̂nj + u1−α

2

√
ijjn
n

)
. (19)

Remark 10. The approaches presented in this section are based on the Wald test statistic.

The approaches based on the other test statistics are also possible. For instance one can

construct the confidence set for θX as{
θ ∈ Θ : 2

(
`n
(
θ̂n
)
− `n(θ)

)
< χ2

p(1− α)
}
.

But such a confidence set is for p > 1 very difficult to calculate. Nevertheless, as we will see

later there exists an approach to calculate the confidence interval for θXj with the help of the

profile likelihood.

2.6 Asymptotic tests with nuisance parameters

Denote τ the first q (1 ≤ q < p) components of the vector θ and ψ the remaining p − q
components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

We want to test the null hypothesis that

H0 : τX = τ 0, H1 : τX 6= τ 0
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and the remaining parameters ψ are considered as nuisance9. In regression problems this

corresponds to situation when one wants to test that a given regressor (interaction) has an

effect on the response. Then one is testing that all the parameters corresponding to this

regressor (interaction) are zero.

In what follows all the vectors and matrices appearing in the notation of maximum like-

lihood estimation theory are decomposed into the first q (part 1) and the remaining p − q
components (part 2), i.e.

θ̂n =

(
τ̂n

ψ̂n

)
, Un(θ) =

(
U1n(θ)

U2n(θ)

)
,

and

I(θ) =

(
I11(θ) I12(θ)

I21(θ) I22(θ)

)
, In(θ) =

(
I11n(θ) I12n(θ)

I21n(θ) I22n(θ)

)
. (20)

Lemma 2. Let J be a symmetric non-singular matrix of order p × p that can be written in

the block form as

J =

(
J11 J12

J21 J22

)
.

Denote

J11·2 = J11 − J12J
−1
22 J21, J22·1 = J22 − J21J

−1
11 J12.

Then

J−1 =

(
J11 J12

J21 J22

)
,

where

J11 = J−1
11·2, J22 = J−1

22·1, J12 = −J−1
11·2 J12 J

−1
22 , J21 = −J−1

22·1 J21 J
−1
11 .

Proof. Calculate J−1 J.

Suppose that the parametric space can be written as Θ = Θτ × Θψ, where Θτ ⊂ Rq and

Θψ ⊂ Rp−q.

Denote θ̃n the estimator of θ under the null hypothesis, i.e.

θ̃n =

(
τ 0

ψ̃n

)
, where ψ̃n solves U2n(τ 0, ψ̃n)

!
= 0p−q.

Let Î11
n be an estimate of the corresponding block I11(θX) in the inverse of Fisher infor-

mation matrix I−1(θX). The three asymptotic tests of the null hypothesis H0 : τX = τ 0 are

as follows.
9rušivé
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Likelihood ratio test is based on the test statistic

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))
. (21)

Wald test is based on the test statistic

W ∗n = n
(
τ̂n − τ 0

)T [
Î11
n

]−1 (
τ̂n − τ 0

)
.

Rao score test is based on the test statistic

R∗n =
1

n
UT

1n

(
θ̃n
)
Î11
n U1n

(
θ̃n
)
. (22)

Remark 11. As U2n

(
θ̃n
)

= 0p−q, the test statistic of the Rao score test can be also written

in a form

R∗n =
1

n
UT
n

(
θ̃n
)
Î−1
n Un

(
θ̃n
)
,

which is a straightforward analogy of the test statistic (18) of the Rao score test in case of

no nuisance parameters.

Similarly as in the previous section the advantage of the likelihood ratio test (LR∗n) is that

one does not need to estimate I−1(θX). On the other hand the advantage of Rao score test

(R∗n) is that it is sufficient to calculate the maximal likelihood estimator only under the null

hypothesis.

The next theorem is an analogy to Theorem 6. It says that all the test statistics have the

same asymptotic distribution under the null hypothesis.

Theorem 7. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied

and Î11
n

P−−−→
n→∞

I11(θX). Further assume that both θ̂n and θ̃n are consistent estimators of θX .

Then each of the test statistics LR∗n, W ∗n and R∗n converges in distribution to χ2-distribution

with q degrees of freedom.

Proof. First note if the null hypothesis holds then θX =
(
τT

0 ,ψ
T
X

)T
, where ψX stands for the

true value of ψ.

W ∗n : Note that by Theorem 5
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
, which yields

√
n
(
τ̂n − τ 0

) d−−−→
n→∞

Nq
(
0q, I

11(θX)
)
.

Thus analogously as in the proof of Theorem 6 one can show that[
Î11
n

]− 1
2 √

n
(
τ̂n − τ 0

) d−−−→
n→∞

Nq(0q, Iq),
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which further with the CMT (Theorem 1) implies

W ∗n =

{[
Î11
n

]− 1
2 √

n
(
τ̂n − τ 0

)}T{[
Î11
n

]− 1
2 √

n
(
τ̂n − τ 0

)} d−−−→
n→∞

χ2
q .

The end of

class 6

(13. 3. 2025)
R∗n: By the mean value theorem (applied to each component of U1n(θ)) one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I∗12n

√
n
(
ψ̃n −ψX

)
, (23)

where I∗12n is the (1, 2)-block of the observed Fisher matrix whose j-th row (j ∈ {1, . . . , q}) is

evaluated at some θj∗n that is between θ̃n and θX . As θj∗n
P−−−→

n→∞
θX , Corollary 1 implies that

I∗12n
P−−−→

n→∞
I12(θX). (24)

Further note that ψ̃n is a maximum likelihood estimator in the model

F0 =
{
f(x; τ 0,ψ);ψ ∈ Θψ

}
.

As the null hypothesis holds, using Theorem 5 one gets

√
n
(
ψ̃n −ψX

)
= I−1

22 (θX)
1√
n

U2n(θX) + oP (1). (25)

Combining (23), (24) and (25) yields

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1). (26)

Now using (26) and the central limit theorem (for i.i.d. vectors), which implies that (written

in a block form)

1√
n

Un(θX) =

 1√
n

U1n(θX)

1√
n

U2n(θX)

 d−−−→
n→∞

Np

(
0p,

(
I11(θX) I12(θX)

I21(θX) I22(θX)

))
,

one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1)

=
(
Iq,−I12(θX) I−1

22 (θX)
)  1√

n
U1n(θX)

1√
n

U2n(θX)

+ oP (1)
d−−−→

n→∞
Nq
(
0,K(θX)

)
,

where

K(θX) =
(
Iq,−I12(θX) I−1

22 (θX)
) ( I11(θX) I12(θX)

I21(θX) I22(θX)

)(
Iq

−I−1
22 (θX) I21(θX)

)
= I11(θX)− 2I12(θX)I−1

22 (θX)I21(θX) + I12(θX)I−1
22 (θX)I22(θX)I−1

22 (θX)I21(θX)

= I11(θX)− I12(θX) I−1
22 (θX) I21(θX) = I11·2(θX)

Lemma 2
=

[
I11(θX)

]−1
.
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Thus 1√
n

U1n

(
θ̃n
) d−−−→

n→∞
Nq
(
0q,
[
I11(θX)

]−1
)

, which further with the help of CS (Theo-

rem 2) and CMT (Theorem 1) implies the statement of the theorem for R∗n.

LR∗n: By the second-order Taylor expansion around the point θ̂n one gets

`n
(
θ̃n
)

= `n
(
θ̂n
)

+ UT
n

(
θ̂n
)︸ ︷︷ ︸

=0T
p

(
θ̃n − θ̂n

)
− n

2

(
θ̃n − θ̂n

)T
In(θ∗n)

(
θ̃n − θ̂n

)
, (27)

where θ∗n is between θ̃n and θ̂n. Thus θ∗n
P−−−→

n→∞
θX and Corollary 1 implies In(θ∗n)

P−−−→
n→∞

I(θX).

Further by Theorem 5

√
n
(
θ̂n − θX

)
= I−1(θX)

1√
n

Un(θX) + oP (1),

which together with (25) implies

√
n
(
θ̂n − θ̃n

)
=
√
n
(
θ̂n − θX

)
+
√
n (θX − θ̃n)

= I−1(θX)
1√
n

Un(θX)−

(
0q

I−1
22 (θX) 1√

n
U2n(θX)

)
+ oP (1)

= A(θX)
1√
n

Un(θX) + oP (1),

where

A(θX) = I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

)
.

By the central limit theorem (for i.i.d. vectors) and the symmetry of matrix A(θX)

√
n
(
θ̂n − θ̃n

) d−−−→
n→∞

Np
(
0p,A(θX) I(θX)A(θX)

)
. (28)

Now we will use Lemma A6 about the distribution of a quadratic form from Appendix.

Put

B = I(θX) and V = A(θX) I(θX)A(θX).

Now BV = I(θX)A(θX) I(θX)A(θX), where

I(θX)A(θX) =

(
I11(θX) I12(θX)

I21(θX) I22(θX)

)(
I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

))

= Ip −

(
0q×q I12(θX)I−1

22 (θX)

0(p−q)×q Ip−q

)
︸ ︷︷ ︸

=:D

.
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Note that matrix D is idempotent, thus also Ip−D and BV = (Ip−D)(Ip−D) are idempotent.

Now using (27), (28), CS (Theorem 2), Lemma A6 and CMT (Theorem 1) one gets

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))

=
√
n
(
θ̃n − θ̂n

)T
I(θX)

√
n
(
θ̃n − θ̂n

)
+ oP (1)

d−−−→
n→∞

χ2
tr(BV),

where tr(BV) = tr(Ip)− tr(D) = p− (p− q) = q.

Suppose that both θ̂n = arg maxθ∈Θ `n(θ) and θ̃n = arg maxθ∈Θ0
`n(θ) (where Θ0 stands

for the parameter space under the null hypothesis) are consistent estimator under the null

hypothesis. Then the likelihood ratio test can be rewritten as

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))

= 2
(

sup
θ∈Θ

`n(θ)− sup
θ∈Θ0

`n(θ)
)
. (29)

So with the likelihood ratio test one does not need to bother with the parametrization of

the parametric spaces Θ and Θ0 so that it fits into the framework of testing H0 : τX = τ 0.

The degrees of freedom of the asymptotic distribution are determined as the difference of the

dimensions of the parametric spaces Θ and Θ0.

Example 23. The following data gives the number of male children among the first 12

children of family size 13 in 6115 families taken from hospital records in the 19th century

Saxony. The 13th child is ignored to assuage the effect of families non-randomly stopping

when a desired gender is reached. Test the null hypothesis that the gender of the babies can

Nr. of boys 0 1 2 3 4 5 6 7 8 9 10 11 12

Nr. of families 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

be viewed as realisations of independent random variables having the same probability of a

baby boy for each family.

Hint. Let Xi stand for the number of boys in the i-th family (i ∈ {1, . . . , n}, where n stands

for the sample size). Then the counts in the table can be represented by

nk =
n∑
i=1

I{Xi = k}, k ∈ {0, 1, . . . , 12}

and the table can be viewed as a realisation of a random vector (n0, n1, . . . , n12)T that follows

multinomial distribution Mult13(n,π).

Note that under the null hypothesis Xi follows the binomial distribution, thus

πk = P(Xi = k) =

(
12

k

)
pk(1− p)12−k, k ∈ {0, 1, . . . , 12},

where p ∈ (0, 1) is the probability of baby boy.

31



Thus to parametrize the problem (so that it fits into the framework of this section) put

ψ = p and get

π0 = (1− ψ)12, πk =

(
12

k

)
ψk(1− ψ)12−k + τk, k ∈ {1, . . . , 11},

and π12 = 1−
∑11

k=0 πk. The hypotheses can now be written as

H0 : (τ1, . . . , τ11)T = 011, H1 : (τ1, . . . , τ11)T 6= 011.

Nevertheless it would be rather tedious to derive either the Wald statistic (W ∗n) or Rao score

statistic (R∗n) as one needs to calculate the score statistic and (empirical) Fisher information

matrix.

On the other hand using (29) it is straightforward to calculate the likelihood ratio test LR∗n

as

sup
θ∈Θ

`n(θ) =
12∑
k=0

nk log
(
nk
n

)
and

sup
θ∈Θ0

`n(θ) =
12∑
k=0

nk log π̃k, where π̃k =

(
12

k

)(
ψ̃n
)k(

1− ψ̃n
)12−k

, with ψ̃n =
12∑
k=1

k nk
12n .

By Theorem 7 under the null hypothesis the test statistic LR∗n converges in distribution to

χ2-distribution with 11 degrees of freedom.

Another approach to test the hypothesis of interest would be (to forget about the test

statistics LR∗n, W ∗n , R∗n and) to use the standard χ2-test of goodness-of-fit in multinomial

distribution with estimated parameters. The test statistics would be

X2 =
12∑
k=0

(nk − n π̃k)2

n π̃k
(30)

and under the null hypothesis it has also asymptotically χ2-distribution with 11 degrees of

freedom. In fact it can be proved10 that the test statistic X2 given by (30) corresponds to

the test statistic of the Rao score test (R∗n) with I11(θ̃n) taken as Î 11
n .

Example 24. Breusch-Pagan test of heteroscedasticity.

Example 25. Suppose that you observe independent identically distributed random vectors(
Y1
X1

)
, . . . ,

(
Yn
Xn

)
such that

P
(
Y1 = 1 |X1

)
=

exp{α+XT
1β}

1 + exp{α+XT
1β}

, P
(
Y1 = 0 |X1

)
=

1

1 + exp{α+XT
1β}

,

10More precisely, it is said so in the textbooks but I have not managed to find the derivation.
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where the distribution of X1 = (X11, . . . , X1p)
T does not depend on the unknown parameters

α a β.

(i) Derive a test for the null hypothesis H0 : β = 0p against the alternative that H1 : β 6=
0p.

(ii) Find the confidence set for the parameter β.

Literature: Anděl [2007] Chapter 8.6, Kulich [2014], Zvára [2008] pp. 122–128.

2.7 Profile likelihood11

Let θ be divided into τ containing the first q components (1 ≤ q < p) and ψ containing the

remaining p− q components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

Write the likelihood of the parameter θ as Ln(θ) = Ln(τ ,ψ) and analogously for log-

likelihood, score function, Fisher information matrix, . . .

In this subsection we will assume that there exists θ̂n which is a unique max-

imum of the funciton `n(θ) and also a consistent estimator of θX . Similarly for

τX = τ let ψ̃n(τ ) be a unique maximum of `n(τ ,ψ) and a consistent estimator

of ψX .

The profile likelihood and the profile log-likelihood for the parameter τ are defined subse-

quently as

L(p)
n (τ ) = max

ψ∈Θψ
Ln(τ ,ψ), `(p)n (τ ) = logL(p)

n (τ ) = max
ψ∈Θψ

`n(τ ,ψ).

In the following we will show that one can work with the profile likelihood as with the

‘standard’ likelihood.

First of all put

τ̂ (p)
n = arg max

τ∈Θτ

`(p)n (τ ).

Note that

`(p)n

(
τ̂ (p)
n

)
= max
τ∈Θτ

`(p)n (τ ) = max
τ∈Θτ

max
ψ∈Θψ

`n(τ ,ψ) = max
θ∈Θ

`n(θ) = `n(θ̂n).

As we assume that θ̂n is a unique maximizer of `n(θ), this implies that

τ̂ (p)
n = τ̂n,

where τ̂n stands for the first q-coordinates of the maximum likelihood estimator θ̂n. The end of

class 7

(13. 3. 2025)11Profilová věrohodnost.
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Further denote

ψ̃n(τ ) = arg max
ψ∈Θψ

`n(τ ,ψ), θ̃n(τ ) =
(
τT, ψ̃

T

n(τ )
)T
,

and define the profile score statistic and profile (empirical) information matrix as

U(p)
n (τ ) =

∂`
(p)
n (τ )

∂τ
, I(p)

n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
.

The following lemma shows how the quantities U
(p)
n (τ ) and I

(p)
n (τ ) are related with Un(θ)

and In(θ).

Lemma 3. Suppose that assumptions [R0]-[R6] are satisfied. Then (with probability tending

to one) on a neighbourbood of τX

U(p)
n (τ ) = U1n

(
θ̃n(τ )

)
, I(p)

n (τ ) = I11n

(
θ̃n(τ )

)
− I12n

(
θ̃n(τ )

)
I−1

22n

(
θ̃n(τ )

)
I21n

(
θ̃n(τ )

)
,

where Ijkn(θ) (for j, k ∈ {1, 2}) were introduced in (20).

Proof. U
(p)
n (τ ): Let us calculate

[
U(p)
n (τ )

]T
=
∂`

(p)
n (τ )

∂τT
=
∂`n
(
τ , ψ̃n(τ )

)
∂τT

= UT
1n

(
τ , ψ̃n(τ )

)
+ UT

2n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= UT

1n

(
τ , ψ̃n(τ )

)
, (31)

where the last equality follows from the fact that ψ̃n(τ ) = arg maxψ∈Θψ
`
(p)
n (τ ,ψ), which

implies that U2n

(
τ , ψ̃n(τ )

)
= 0p−q.

I
(p)
n (τ ): Note that with the help of (31)

I(p)
n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
= − 1

n

∂U1n

(
τ , ψ̃n(τ )

)
∂τT

= I11,n

(
τ , ψ̃n(τ )

)
+ I12,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
. (32)

Further by differentiating both sides of the identity

U2n

(
τ , ψ̃n(τ )

)
= 0p−q

with respect to τT one gets

I21,n

(
τ , ψ̃n(τ )

)
+ I22,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= 0(p−q)×q,

which implies that

∂ψ̃n(τ )

∂τT
= −I−1

22,n

(
τ , ψ̃n(τ )

)
I21,n

(
τ , ψ̃n(τ )

)
. (33)

Now combining (32) and (33) implies the statement of the theorem for I
(p)
n (τ ).
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Tests based on profile likelihood

Define the (profile) test statistics of the null hypothesis H0 : τX = τ 0 as

LR(p)
n = 2

(
`(p)n

(
τ̂n
)
− `(p)n (τ 0)

)
,

W (p)
n = n

(
τ̂n − τ 0

)T
Î(p)
n

(
τ̂n − τ 0

)
,

R(p)
n =

1

n

[
U(p)
n (τ 0)

]T [
Î(p)
n

]−1
U(p)
n (τ 0),

where one can use for instance I
(p)
n (τ 0) or I

(p)
n (τ̂n) as Î

(p)
n .

Theorem 8. Suppose that the null hypothesis holds and assumptions [R0]-[R6] are sat-

isfied. Then each of the test statistics LR
(p)
n , W

(p)
n and R

(p)
n converges in distribution to

χ2-distribution with q degrees of freedom.

Proof. LR
(p)
n : Note that

`(p)n (τ̂n) = `n(τ̂n, ψ̂n) = `n
(
θ̂n
)

and further

`(p)n (τ 0) = max
ψ∈Θψ

`n(τ 0,ψ) = `n(τ 0, ψ̃n) = `n(θ̃n).

Thus LR
(p)
n = LR∗n, where LR∗n is the test statistic of the likelihood ratio test in the presence of

nuisance parameters given by (21). Thus the statement of the theorem follows by Theorem 7.

W
(p)
n : Follows from Theorem 7 and the fact that by Lemmas 1, 2 and 3

Î(p)
n

P−−−→
n→∞

I11(θX)− I12(θX) I−1
22 (θX) I21(θX) =

[
I11(θX)

]−1
. (34)

R
(p)
n : By Lemma 3 one has U

(p)
n (τ ) = U1n

(
θ̃n(τ )

)
. Thus R

(p)
n = R∗n with Î11

n =
[
Î

(p)
n

]−1
,

where R∗n is Rao score test statistic in the presence of nuisance parameters defined in (22).

The statement of the theorem now follows by (34) and Theorem 7.

Confidence interval for θXj

One of the applications of the profile likelihood is to construct a confidence interval for θXj .

Let τ = θj and ψ contains the remaining coordinates of the parameter θ. Then the set{
θj : 2

(
`(p)n (θ̂nj)− `(p)n (θj)

)
< χ2

1(1− α)
}

is the asymptotic confidence interval for θXj . Although this confidence interval is more

difficult to calculate than the Wald-type confidence interval given by (19), the simulations

show that it has better finite sample properties. In R-software these intervals for GLM models

are calculated by the function confint.
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Example 26. Let X1, . . . , Xn be a random sample from a gamma distribution with density

f(x) =
1

Γ(β)
λβ xβ−1 exp{−λx} I{x > 0}.

Suppose we are interested in parameter β and parameter λ is nuisance. Derive the profile

likelihood for parameter β and the Rao score test of the null hypothesis H0 : βX = β0 against

H1 : βX 6= β0 that is based on the profile likelihood.

Solution: The likelihood and log-likelihood are given by

Ln(β, λ) =
n∏
i=1

1

Γ(β)
λβXβ−1

i e−λXi ,

`n(β, λ) = −n log Γ(β) + nβ log λ+ (β − 1)
n∑
i=1

logXi − λ
n∑
i=1

Xi.

For a given β we can find λ̃n(β) by

∂`n(β, λ)

∂λ
=
nβ

λ
−

n∑
i=1

Xi
!

= 0

λ̃n(β) =
β

Xn

.

Thus the profile log-likelihood is

`(p)n (β) = −n log Γ(β) + nβ log
( β

Xn

)
+ (β − 1)

n∑
i=1

logXi − nβ

and its corresponding score function

U (p)
n (β) = −nΓ′(β)

Γ(β)
+ n log

( β

Xn

)
+ n+

n∑
i=1

logXi − n.

Statistic of Rao score test of the null hypothesis H0 : βX = β0 against H1 : βX 6= β0 is now

given by

R(p)
n =

[
U

(p)
n (β0)

]2
n I

(p)
n (β0)

,

where

I(p)
n (β) = − 1

n

∂U
(p)
n (β)

∂β
=

[
Γ′′(β)

Γ(β)
−
(

Γ′(β)

Γ(β)

)2

− 1

β

]
.

Example 27. Box-Cox transformation. See Zvára [2008] pp. 149–151.

Remark 12. Although we have shown that one can work with the profile likelihood as with

the standard likelihood not all the properties are shared. For instance for standard score
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statistic one has E Un(θX) = 0p. But this is not guaranteed for profile score statistic as by

Lemma 3

E U(p)
n (τX) = E U1n(τX , ψ̃n(τX))

and the expectation on the right-hand side of the previous equation is typically not zero

due to the random argument ψ̃n(τX) (for illustration think of E U
(p)
n (βX) in Example 26).

From the proof of Theorem 7 we only know that 1√
n
U

(p)
n (τX) converges in distribution to a

zero-mean Gaussian distribution.

Note also that we have avoided defining the profile Fisher information matrix. The thing is

that the only definition that makes sense would be I(p)(τX) =
[
I11(τX ,ψX)

]−1
. But this is

not nice as it depends on the nuisance parameter ψX . Further, it does not hold that I(p)(τX)

is the expectation of I
(p)
n (τX). It only holds that

I(p)
n (τX)

P−−−→
n→∞

I(p)(τX).

2.8 Some notes on maximum likelihood in case of not i.i.d. random vectors

Let observations X = (X1, . . . ,Xn) have a joint density fn(x1, . . . ,xn;θ) that is known up

to the unknown parameter θ from the parametric space Θ. Analogously as in ‘i.i.d case’ one

can define the likelihood function as

Ln(θ) = fn(X1, . . . ,Xn;θ),

the log-likelihood function as

`n(θ) = logLn(θ),

and the score statistic as

Un(θ) =
∂`n(θ)

∂θ
.

The maximum likelihood estimator (of parameter θX) is then defined as

θ̂n = arg max
θ∈Θ

Ln(θ) or more generally as Un(θ̂n)
!

= 0p.

Finally the observed (empirical) Fisher information matrix as

In(θ) = − 1

n

∂2`n(θ)

∂θ ∂θT
.

The role of the theoretical Fisher information matrix I(θ) in ‘i.i.d’ settings is now taken by

the limit ‘average’ Fisher information matrix

Ī(θ) = lim
n→∞

1

n
E

[
−∂2`n(θ)

∂θ ∂θT

]
.
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In ‘nice (regular) models’ (see also Remark 13 below) it holds that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0, Ī−1(θX)

)
.

The most straightforward estimator of Ī(θX) is In
(
θ̂n
)

and thus the estimator of the asymp-

totic variance matrix of θ̂n is

̂
avar

(
θ̂n
)

=
1

n
I−1
n

(
θ̂n
)

=

[
−∂2`n(θ)

∂θ ∂θT

∣∣∣
θ=θ̂n

]−1

.

That is why some authors prefer to define the empirical Fisher information without 1
n simply

as

Ĩn(θ) =
−∂2`n(θ)

∂θ ∂θT

and they speak about it as the Fisher information of all observations.

Remark 13. An inspection of the proof of Theorem 11 (for Z-estimators) reveals that we need

to show the analogy of Lemma 1 with I(θX) replaced with Ī(θX) and that

1√
n

Un(θX)
d−−−→

n→∞
Np
(
0p, Ī(θX)

)
.

Example 28. Suppose we have K independent samples, that is for each k ∈ {1, . . . ,K}
the random variables Xki, i ∈ {1, . . . , nk} are independent and identically distributed with

density fk(x;θ) (with respect to a σ-finite measure µ). Further let all the random variables

be independent and let limn→∞
nk
n = wk, where n = n1 + . . .+ nK . Then

Ln(θ) =
K∏
k=1

nk∏
i=1

fk(Xki;θ),

`n(θ) =
K∑
k=1

nk∑
i=1

log fk(Xki;θ),

Un(θ) =
∂`n(θ)

∂θ
=

K∑
k=1

nk∑
i=1

∂ log fk(Xki;θ)

∂θ
,

In(θ) = − 1

n

∂Un(θ)

∂θT
= − 1

n

K∑
k=1

nk∑
i=1

∂2 log fk(Xki;θ)

∂θ ∂θT
,

I(θ) = lim
n→∞

E In(θ) = lim
n→∞

K∑
k=1

nk
n︸︷︷︸
→wk

I(k)(θ) =

K∑
k=1

wk I
(k)(θ),

where I(k)(θ) is Fisher information matrix of Xki (i.e. for the density fk(x;θ)).

In standard applications θ =
(
θT1 , . . . ,θ

T
K

)T
, and the density fk(x;θ) depends only on θk,

i.e. fk(x;θ) = f(x;θk). And we are usually interested in testing the null hypothesis that all
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the distributions are the same, that is

H0 : θ1 = θ2 = . . . = θK H1 : ∃k,j∈{1,...,K}θk 6= θj .

See also Example 32.
The expected

end of class 8

(20. 3. 2025)

Random vs. fixed design

Sometimes in regression it is useful do distinguish random design and fixed design.

In random design we assume that the values of the covariates are realisations of random

vectors. Thus (in the most simple situation) we assume that we observe independent and

identically distributed random vectors(
Y1

X1

)
, . . . ,

(
Yn
Xn

)
, (35)

where the conditional distribution of Yi|Xi is known up to the unknown parameter θ and

the distribution of Xi does not depend on θ. Put f(yi|xi;θ) for the conditional density of

Yi|Xi = xi and fX(x) for the density of Xi. Then the likelihood and the log-likelihood (for

the parameter θ) are given by

Ln(θ) =

n∏
i=1

fY,X(Yi,Xi;θ) =

n∏
i=1

f(Yi|Xi;θ)fX(Xi)

`n(θ) =

n∑
i=1

log f(Yi|Xi;θ) +

n∑
i=1

log fX(Xi). (36)

In fixed design it is assumed that the values of the covariates x1, . . . ,xn are fixed when

planning the experiment (before measuring the response). Now we observe Y1, . . . , Yn inde-

pendent (but not identically distributed) random variables with the densities f(y1|x1;θ), . . . ,

f(yn|xn;θ). Then the log-likelihood is given by

`n(θ) =

n∑
i=1

log f(Yi|xi;θ). (37)

Comparing the log-likelihoods in (36) and (37) one can see that (once the data are observed)

they differ only by
∑n

i=1 log fX(Xi) which does not depend on θ. Thus in terms of (likelihood

based) inference for a given dataset both approaches are equivalent. The only difference is

that the theory for the fixed design is more difficult.

Example 29. Poisson regression.
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Random design approach: We assume that we observe independent identically distributed

random vectors (35) and that Yi|Xi ∼ Po
(
λ(Xi)

)
, where λ(x) = exp{xTβ} and Xi =

(Xi1, . . . , Xip)
T. Then (provided assumptions [R0]-[R6] are satisfied)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, I

−1(βX)
)
, where I(βX) = E

[
X1X

T
1 exp

{
XT

1βX
}]
.

Fixed design approach: We assume that we observe independent random variables Y1, . . . , Yn

and we have the known constants x1, . . . ,xn such that Yi ∼ Po
(
λ(xi)

)
, where λ(x) =

exp{xTβ}. Then it can be shown (that under mild assumptions on x1, . . . ,xn)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, Ī

−1(βX)
)
, where Ī(βX) = lim

n→∞

1

n

n∑
i=1

xi x
T
i exp

{
xT
i βX

}
.

Note that in practice both I(βX) and Ī(βX) would be estimated by

În =
1

n

n∑
i=1

XiX
T
i exp

{
XT

i β̂n
}

or ̂̄In =
1

n

n∑
i=1

xi x
T
i exp

{
xT
i β̂n

}
.

Thus for observed data the estimators coincide. The only difference is in notation in which

you distinguish whether you think of the observed values of the covariates as the realizations

of the random vectors or as fixed constants.

Example 30. Note that alternatively one can view the K-sample problem described in Ex-

ample 28 also within i.i.d framework. Consider the data as a realization of the random sample(
Z1

J1

)
, . . . ,

(
Zn
Jn

)
, where Ji takes values in {1, . . . ,K} and the conditional distribution of Zi given

Ji = j is given by the density fj(x;θ).

Example 31. Maximum likelihood estimation in AR(1) process.

Example 32. Suppose that Xki, k ∈ {1, . . . ,K}, i = 1, . . . , nK be independent random

variables such that Xki follows Bernoulli distribution with parameter pk. We are interested

in testing the hypothesis

H0 : p1 = p2 = . . . = pK H1 : ∃k,j∈{1,...,K} pk 6= pj .

Note that one can easily construct a likelihood ratio test.

Alternatively one can view the data as K × 2 contingency table and use the χ2-test of

independence. It can be proved that this test is in fact the Rao-score test for this problem.

Literature: Hoadley [1971].

40



2.9 Conditional and marginal likelihood12

In some models the number of parameters is increasing as the sample size increases. Formally

let θ(n) = (θ1, . . . , θpn)T, where pn is a non-decreasing function of n. Let θ(n) be divided into

τ containing the first q components (with q being fixed) and ψ(n) containing the remaining

(pn − q) components.

Example 33. Strongly stratified sample. Let Yij , i ∈ {1, . . . , N}, j ∈ {1, 2} be independent

random variables such that Yij ∼ N(µi, σ
2). Derive the maximum likelihood estimator of σ2.

Is this estimator consistent as N →∞?

Solution. The joint density of all the observations Y =
(
Yij , i ∈ {1, . . . , N}, j ∈ {1, 2}

)
is

f(y;σ2, µ1, . . . , µN ) =
N∏
i=1

2∏
j=1

1√
2πσ2

exp
{
− (Yij−µi)2

2σ2

}
(38)

and thus the log-likelihood is given by

`n(σ2, µ1, . . . , µN ) = −N log σ2 − 1

2σ2

N∑
i=1

2∑
j=1

(Yij − µi)2 −N log(2π).

Differentiating with respect to µ1, . . . , µN and σ2 one easily finds that

µ̂i =
Yi1 + Yi2

2
, i ∈ {1, . . . , N}

and

σ̂2
N =

1

2N

N∑
i=1

2∑
j=1

(Yij − µ̂i)2 =
1

2N

N∑
i=1

[(
Yi1 − Yi1+Yi2

2

)2
+
(
Yi2 − Yi1+Yi2

2

)2]

=
1

2N

N∑
i=1

[(
Yi1−Yi2

2

)2
+
(
Yi2−Yi1

2

)2]
=

1

4N

N∑
i=1

(Yi1 − Yi2)2.

Thus

σ̂2
N

P−−−−→
N→∞

1
4 E (Yi1 − Yi2)2 = 1

4 var(Yi1 − Yi2) = 2σ2

4 = σ2

2 6= σ2.

Note that in Example 33 each observation carries information on σ2, but the maximum

likelihood estimator of σ2 is not even consistent. The problem is that the dimension of

nuisance parameters ψ(N) = (µ1, . . . , µN )T is increasing to infinity (too quickly). Marginal

and conditional likelihoods are two attempts to modify the likelihood so that it yields a

consistent (and hopefully also asymptotically normal) estimator of the parameter τ .
The end of

class 9

(20. 3. 2025)
12Podmı́něná a marginálńı věrohodnost.
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Suppose that one can use data X to calculate V whose distribution depends only on pa-

rameter τ (and not on ψ(n)). Then the marginal (log-)likelihood of parameter τ is defined

as

L(M)
n (τ ) = f(V; τ ), `(M)

n (τ ) = log
(
L(M)
n (τ )

)
,

where f(v; τ ) is the joint density of V with respect to a σ-finite measure µ.

Suppose that one can use data X to calculate V and W such that the conditional distri-

bution of V given W depends only on parameter τ (and not on ψ(n)). Then the conditional

(log-)likelihood of parameter τ is defined as

L(C)
n (τ ) = f(V |W; τ ), `(C)

n (τ ) = log
(
L(C)
n (τ )

)
,

where f(v|w; τ ) is the conditional density of V given W = w with respect to a σ-finite

measure µ.

Remark 14. (i) If V is independent of W, then f(V|W; τ ) = f(V; τ ) and thus L
(M)
n (τ ) =

L
(C)
n (τ ).

(ii) ‘Automatic calculation of `
(C)
n (τ )’:

`(C)
n (τ ) = log

(
f(V,W; τ ,ψ(n))

f(W; τ ,ψ(n))

)
= `n,V,W(τ ,ψ(n))− `n,W(τ ,ψ(n)),

where `n,V,W(τ ,ψ(n)) is the log-likelihod of (V,W) and `n,W(τ ,ψ(n)) is the log-

likelihod of W. Note that using this approach we do not need to derive the conditional

distribution of V given W.

(iii) It can be shown that (under certain regularity assumptions) one can work with L
(M)
n (τ )

and L
(C)
n (τ ) as with ‘standard’ likelihoods.

The question of interest is how to find V and W so that we do not loose too many

information about τ . To the best of my knowledge for marginal likelihood there are only

ad-hoc approaches.

For conditional likelihood one can use the theory of sufficient statistics. Suppose that

for each fixed value of τ the statistic Sn(X) is sufficient for ψ(n). Thus the conditional

distribution of X given Sn(X) does not depend on ψ(n). This implies that when constructing

the conditional likelihood L
(C)
n (τ ) one can take Sn(X) as W and X as V.

Exponential family

Let the dataset X have the density (with respect to a σ-finite measure µ) of the form

f(x; τ ,ψ(n)) = exp


q∑
j=1

Qj(τ )Tj(x) +

pn−q∑
j=1

Rj(τ ,ψ
(n))Sj(x)

 a
(
τ ,ψ(n)

)
h(x), (39)
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where τ = (τ1, . . . , τq)
T and ψ(n) =

(
ψ

(n)
1 , . . . , ψ

(n)
pn−q

)T
. Put Sn(X) =

(
S1(X), . . . , Spn−q(X)

)T
and note that for a fixed value of τ the statistic Sn(X) is sufficient for ψ(n). Thus one can

put W = Sn(X) and V = X.

Example 33. Strongly stratified sample (cont.). Derive the marginal and conditional likeli-

hood.

Marginal likelihood. For i ∈ {1, . . . , N} consider Vi = Yi1−Yi2√
2

. Then Vi ∼ N(0, σ2). Thus the

marginal likehood is the likelihood of V1, . . . , Vn and is given by

L(M)
n (σ2) =

N∏
i=1

1√
2πσ2

exp
{
− V 2

i
2σ2

}
.

Further the marginal log-likehood is given by

`(M)
n (σ2) = −N

2 log σ2− 1

2σ2

N∑
i=1

V 2
i − N

2 log 2π = −N
2 log σ2− 1

4σ2

N∑
i=1

(Yi1−Yi2)2− N
2 log 2π.

With this marginal log-likelihood one can work in the ‘standard’ way. That is one can for

instance derive the maximum (marginal) likelihood estimator

σ̂
2(M)
N =

1

2N

N∑
i=1

(Yi1 − Yi2)2.

It is straightforward to show that this estimator is consistent and that

√
n
(
σ̂

2(M)
N − σ2

) d−−−−→
N→∞

N
(
0, 2σ4

)
,

where the asymptotic variance 2σ2 can be calculated as var
(
(Yi1 − Yi2)2

)
or as one over the

Fisher information that corresponds to `
(M)
N (σ2).

Conditional likelihood. Note that the joint density (38) of Y =
(
Yij , i ∈ {1, . . . , N}, j ∈

{1, 2}
)

can be written as

f(y;σ2, . . .) = exp

{
− 1

2σ2

N∑
i=1

2∑
j=1

y2
ij +

N∑
i=1

µi
σ2

(yi1 + yi2)−
N∑
i=1

µ2
i

σ2

}
1

(2πσ2)N
. (40)

Now the above density can be written in the form (39) with τ = − 1
σ2 , ψi = µi, T (y) =∑N

i=1

∑2
j=1 y

2
ij and Si(y) = yi1 + yi2. Thus by Remark 14(ii) the conditional log-likelihood

of Y given S(Y ) =
(
S1(Y ), . . . , SN (Y )

)T
can be calculated as

`(C)
n (σ2) = `n(σ2, µ1, . . . , µN )− `n,S(Y )(σ

2, µ1, . . . , µN ).
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Here `n(σ2, µ1, . . . , µN ) is the (standard) log-likehood of Y which can be with the help of (40)

rewritten as

`n(σ2, . . .) = −N log σ2 − 1

2σ2

N∑
i=1

(Y 2
i1 + Y 2

i2) +
N∑
i=1

µi
σ2

(Yi1 + Yi2)−
N∑
i=1

µ2
i

σ2
−N log 2π (41)

and `n,S(Y )(σ
2, µ1, . . . , µN ) is the log-likelihood of S(Y ) = (Y11 + Y12, . . . , YN1 + YN2)T. As

the components of S(Y ) are independent random variables with the distribution N(2µi, 2σ
2)

(i ∈ {1, . . . , N}), the log-likelihood `n,S(Y )(σ
2, . . .) is given by

`n,S(Y )(σ
2, . . .) = log

( N∏
i=1

1√
2π2σ2

exp
{
− (Yi1+Yi2−2µi)

2

2·2σ2

})

= −N
2

log σ2 − 1

4σ2

N∑
i=1

(Y 2
i1 + Y 2

i2 + 2Yi1Yi2) (42)

+

N∑
i=1

4µi
4σ2

(Yi1 + Yi2)−
N∑
i=1

4µ2
i

4σ2
+ N

2 log(4π).

Thus comparing (41) and (42) one gets

`(C)
n (σ2) = `n(σ2, . . .)− `n,S(Y )(σ

2, . . .) = −N
2 log σ2 − 1

4σ2

N∑
i=1

(Y 2
i1 + Y 2

i2 − 2Yi1Yi2)− N
4 log π

= −N
2 log σ2 − 1

4σ2

N∑
i=1

(Yi1 − Yi2)2 − N
4 log π = `

(M)
N (σ2) + N

4 log π,

where the (irrelevant) difference between the `
(C)
n (σ2) and `

(M)
N (σ2) comes from the fact that

for the conditional likelihood we use the conditional distribution of Y giwen W = S(Y )

instead of the conditional distribution of (V,W) given W = S(Y ). Note also that in the

latter case one would get directly the marginal likelhood of V, as V is independent of W.

Example 34. Let Yij , i ∈ {1, . . . , N}, j ∈ {1, 2} be independent random variables such that

Yi1 ∼ Exp(ψi) and Yi2 ∼ Exp(τ ψi) where τ > 0 and ψi are unknown parameters. Show

that the distribution of Vi = Yi2
Yi1

depends only on parameter τ (and not on ψi). Derive the

marginal likelihood of τ that is based on V = (V1, . . . , VN )T.
The end of

class 10

(27. 3. 2025)
Example 35. Let Yij , i ∈ {1, . . . , I}, j ∈ {0, 1} be independent, Yij ∼ Bi(nij , pij), where

log
( pij

1−pij

)
= ψi + τ I{j = 1}.

Suppose we are interested in testing the null hypothesis H0 : τ = 0 against the alternative

H1 : τ 6= 0.
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Note that the standard tests based on the maximum likelihood as described in Chapter 2.6

require that I is fixed and all the sample sizes nij tend to infinity. This implies that using

conditional likelihood is reasonable in situations when (some) nij are small.

The Rao score test based on the conditional likelihood in this situation coincides with

Cochran-Mantel-Haenszel test and its test statistic is given by

R(C)
n =

(∑I
i=1 Yi1 − EH0 [Yi1 |Yi+]

)2

∑I
i=1 varH0 [Yi1 |Yi+]

=

(∑I
i=1 Yi1 − Yi+

ni1
ni+

)2

∑I
i=1 Yi+

ni1ni0
n2
i+

ni+−Yi+
ni+−1

, (43)

where Yi+ = Yi0 + Yi1 and ni+ = ni0 + ni1. Under the null hypothesis R
(C)
n

d−−−→
n→∞

χ2
1, where

n =
∑I

i=1

∑1
j=0 nij .

Example 36. Consider in Example 35 the special case I = 1. Thus the model simplifies to

comparing two binomial distributions. Let Y0 ∼ Bi(n0, p0) and Y1 ∼ Bi(n1, p1). Note that

the standard approaches of testing the null hypothesis H0 : p0 = p1 against the alternative

H1 : p0 6= p1 are asymptotic.

Conditional approach offers an exact inference. Analogously as in Example 35 introduce

the parametrization

log
( pj

1−pj

)
= ψ + τ I{j = 1}, j = 0, 1.

Note that in this parametrization τ is the logarithm of odds-ratio.

Put Y+ = Y0 + Y1 and y+ = y0 + y1. Then

Pτ
(
Y1 = k |Y+ = y+

)
=

(
n1

k

)(
n0

y+−k
)
eτ k∑

l∈K
(
n1

l

)(
n0

y+−l
)
eτ l

, k ∈ K, (44)

where K =
{

max{0, y+ − n0}, . . . ,min{y+, n1}
}

.

Thus the p-value of the ‘exact’ test of the null hypothesis H0 : τ = τ0 against H1 : τ 6= τ0

would be

p(τ0) = 2 min
{
Pτ0(Y1 ≤ y1 |Y+ = y1 + y2),Pτ0(Y1 ≥ y1 |Y+ = y1 + y2)

}
, (45)

where y0 and y1 are the observed values of Y0 and Y1 respectively.

By the inversion of the test one can define the ‘exact’ confidence interval for τ as the set

of those values for which we do not reject the null hypothesis, i.e.

CI = (τ̂L, τ̂U ) = {τ ∈ R : p(τ) > α}.

The confidence interval for odds-ratio calculated by the function fisher.test() is now given

by
(
eτ̂L , eτ̂U

)
.
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The special case presents testing the null hypothesis H0 : τ = 0 against H1 : τ 6= 0. Then

(44) simplifies to

P0(Y1 = k |Y+ = y+) =

(
n1

k

)(
n0

y+−k
)∑

l∈K
(
n1

l

)(
n0

y+−l
) =

(
n1

k

)(
n0

y+−k
)(

n1+n0

y+

) , k ∈ K.

This corresponds to Fisher’s exact test sometimes known also as Fisher’s factorial test. Be

careful that the p-value of the test as implemented in fisher.test() is not calculated by

(45) but as

p̃ =
∑
k∈K−

P0(Y1 = k |Y+ = y+),

where

K− =
{
k ∈ K : P0(Y1 = k |Y+ = y+) ≤ P0(Y1 = y1 |Y+ = y+)

}
,

which sometimes slightly differs from p(0) as defined in (45).

Note that Fisher’s exact test presents an alternative to the χ2-square test of independence

in the 2× 2 contingency table

Sample 1 Sample 2

Success y0 y1

Failure n0 − y0 n1 − y1

,

which is an asymptotic test.

Example 37. Consider in Example 35 the special case ni0 = ni1 = 1 for each i ∈ {1, . . . , I}.
Introduce

Njk =

I∑
i=1

I{Yi0 = j, Yi1 = k}, j, k ∈ {0, 1}.

Then the test statistic (43) simplifies to

R(C)
n =

(N01 −N10)2

N01 +N10
,

which is known as McNemar’s test.

Example 38. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the

Poisson distributions. Let λX be the true value of the parameter for the first sample and λY

for the second sample. Note that S = (S1, S2)T =
(∑n1

i=1Xi,
∑n2

i=1 Yi
)T

is a sufficient statistic

for the parameter θ = (λX , λY )T. Derive the conditional distribution of S1 given S1 + S2.

Use this result to find an exact test of

H0 : λX = λY , H1 : λX 6= λY .

Further derive an ‘exact’ confidence interval for the ratio λX
λY

.

Literature: Pawitan [2001] Chapters 10.1–10.5. The end of

class 11

(27. 3. 2025)
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3 EM-algorithm

It is an iterative algorithm to find the maximum likelihood estimator θ̂n in situations with

missing data. It is also often used in situations when the model can be specified with the help

of some unobserved variables and finding θ̂n would be (relatively) simple with the knowledge

of those unobserved variables.

Example 39. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x;π) =

G∑
j=1

πj fj(x),

where f1, . . . , fG are known densities and π = (π1, . . . , πG)T is a vector of unknown non-

negative mixing proportions such that
∑G

j=1 πj = 1. Find the maximum likelihood estimator

of the parameter π, i.e.

π̂n = arg max
π∈Θ

(
n∏
i=1

f(Xi;π)

)
,

where Θ =
{

(π1, . . . , πG)T : πj ∈ [0, 1],
∑G

j=1 πj = 1
}

.

Solution. A straightforward approach would be to maximize the log-likelihood

`n(π) =
n∑
i=1

log f(Xi;π) =
n∑
i=1

log

 G∑
j=1

πjfj(Xi)

 .

Using for instance the parametrization πG = 1 −
∑G−1

j=1 πj , the system of score equations is

given by

Ujn(π) =
∂`n(π)

∂πj
=

n∑
i=1

[
fj(Xi)∑G

l=1 πlfl(Xi)
− fG(Xi)∑G

l=1 πl fl(Xi)

]
!

= 0, j = 1, . . . , G− 1,

which requires some numerical routines.

Alternatively one can use the EM-algorithm, which runs as follows. Introduce Zi =

(Zi1, . . . , ZiG)T ∼ MultG(1;π), where

Zij =

{
1, Xi is generated from fj(x),

0, otherwise.

Note that one can think of our data as the realizations of the independent and identically

distributed random vectors
(
X1

Z1

)
, . . . ,

(
Xn
Zn

)
, where Z1, . . . ,Zn are missing.

Put X = (X1, . . . , Xn)T. The joint density of a random vector
(
Xi
Zi

)
is given by

fX,Z(x, z;π) = fX|Z(x|z;π) fZ(z;π) =

 G∑
j=1

zjfj(x)

 ·
 G∏
j=1

π
zj
j

 .
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In the context of EM algorithm the random sample
(
X1

Z1

)
, . . . ,

(
Xn
Zn

)
is called complete data.

The corresponding log-likehood is called complete log-likehood and it is given by

`Cn (π) = log


n∏
i=1

 G∑
j=1

Zijfj(Xi)

 G∏
j=1

π
Zij
j


=

n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

+
n∑
i=1

 G∑
j=1

Zij log πj

 .
If we knew Z1, . . . ,Zn, then we would estimate simply π̂j = 1

n

∑n
i=1 Zij , j = 1, . . . , G. The

EM algorithm runs in the following two steps:

(i) E-step (Expectation step): Let π̂(k) be the current estimate of π. In this step we

calculate

Q
(
π, π̂(k)) = E

π̂(k) [`Cn (π) |X],

where the expectation is taken with respect to the unobserved random vectors Z1, . . . ,Zn.

More precisely one has to take the expectation with respect to the conditional distri-

bution of Z1, . . . ,Zn given X1, . . . , Xn. As this distribution depends on the unknown

parameter π, this parameter is replaced with the current version of the estimate π̂(k).

This is indicated by E
π̂(k) . Note that in this step one gets rid of the unobserved random

vectors Z1, . . . ,Zn.

(ii) M-step (Maximization step): The updated value of the estimate of π is calculated as

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)).

E-step in a detail:

Q
(
π, π̂(k)) = E

π̂(k)

 n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

∣∣∣∣∣∣ X
+ E

π̂(k)

 n∑
i=1

G∑
j=1

Zij log πj

∣∣∣∣∣∣ X
 . (46)

Note that the first term on the right-hand side of the above equation does not depend on π.

Thus we do not need to calculate this term for M-step. To calculate the second term it is

sufficient to calculate E
π̂(k)

[
Zij |X

]
. To do that denote ej = (0, . . . , 0, 1, 0, . . . , 0)T for the

j-th canonical vector. Now with the help of Bayes theorem for densities (Theorem A15) one

can calculate

E
π̂(k)

[
Zij |X

]
= E

π̂(k)

[
Zij |Xi

]
= P

π̂(k)(Zij = 1 |Xi) = fZ|X(ej |Xi; π̂
(k))

=
fX|Z(Xi|ej ; π̂(k))fZ(ej ; π̂

(k))

fX(Xi; π̂
(k))

=
fj(Xi) π̂

(k)
j∑G

l=1 fl(Xi) π̂
(k)
l

=: z
(k)
ij .
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M-step in a detail: Note that with the help of the previous step and (46)

Q
(
π, π̂(k)) = const+

n∑
i=1

G∑
j=1

z
(k)
ij log πj .

Analogously as when calculating the maximum likelihood estimator in a multinomial distri-

bution one can show that the updated value of the estimate of π is given by

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)) =

1

n

n∑
i=1

z
(k)
i ,

where z
(k)
i =

(
z

(k)
i1 , . . . , z

(k)
iG

)T
and so π̂

(k+1)
j = 1

n

∑n
i=1 z

(k)
ij for j ∈ {1, . . . , G}.

3.1 General description of the EM-algorithm

Denote the observed random variables as Yobs and the unobserved (missing) random variables

Ymis. Let f(y;θ) be the joint density (with respect to a σ-finite measure µ) of Y = (Yobs,Ymis)

and denote `Cn (θ) the complete log-likelihood of Y. Our task is to maximize the observed log-

likelihood `obs(θ) = log f(Yobs;θ), where f(yobs;θ) is the density of Yobs. Note that

`Cn (θ) = log f(Yobs,Ymis;θ) = log
(
f(Ymis|Yobs;θ) f(Yobs;θ)

)
= log f(Ymis|Yobs;θ) + log f(Yobs;θ) = log f(Ymis|Yobs;θ) + `obs(θ),

where f(ymis|yobs;θ) stands for the conditional density of Ymis given Yobs = yobs. Thus one

can express the observed log-likelihood with the help of the complete log-likelihood as

`obs(θ) = `Cn (θ)− log f(Ymis|Yobs;θ). (47)

Finally denote

Q(θ, θ̃) = E
θ̃

[
`Cn (θ) |Yobs

]
. (48)

EM-algorithm runs as follows:

Let θ̂
(k)

be the result of the k-th iteration of the EM-algorithm. The next iteration θ̂
(k+1)

is computed in two steps:

E-step: Calculate Q
(
θ, θ̂

(k))
.

M-step: Find θ̂
(k+1)

= arg maxθ∈ΘQ
(
θ, θ̂

(k))
. The end of

class 12

(3. 4. 2025)

Note that at this moment it is not at all clear, if the EM-algorithm is a good idea. Remember

that our task is to maximize the observed likelihood `obs(θ). The following theorem is the

first answer in this aspect.
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Theorem 9. Let the set {ymiss : f(ymiss|Yobs;θ) > 0} does not depend on θ. Further `obs(θ)

be the observed likelihood and θ̂
(k)

be the result of the k-th iteration of the EM-algorithm.

Then

`obs

(
θ̂

(k+1)
)
≥ `obs

(
θ̂

(k)
)
.

Proof. Note that the left-hand side of (47) does not depend on Ymis. Thus applying E
θ̂
(k) [ · |Yobs]

on both sides of (47) yields that

`obs(θ) = E
θ̂
(k) [`Cn (θ) |Yobs]− E

θ̂
(k)

[
log f(Ymis|Yobs;θ)

∣∣Yobs]
=: Q

(
θ, θ̂

(k)
)
−H

(
θ, θ̂

(k)
)
. (49)

Now note that

`obs

(
θ̂

(k+1)
)

= Q
(
θ̂

(k+1)
, θ̂

(k)
)
−H

(
θ̂

(k+1)
, θ̂

(k)
)
,

`obs

(
θ̂

(k)
)

= Q
(
θ̂

(k)
, θ̂

(k)
)
−H

(
θ̂

(k)
, θ̂

(k)
)
.

Thus to verify `obs

(
θ̂

(k+1)
)
≥ `obs

(
θ̂

(k)
)

it is sufficient to show that

Q
(
θ̂

(k+1)
, θ̂

(k)
)
≥ Q

(
θ̂

(k)
, θ̂

(k)
)

and also H
(
θ̂

(k+1)
, θ̂

(k)
)
≤ H

(
θ̂

(k)
, θ̂

(k)
)
. (50)

Showing the first inequality in (50) is easy as from the M-step

θ̂
(k+1)

= arg max
θ∈Θ

Q
(
θ, θ̂

(k)
)
,

which implies that Q
(
θ̂

(k+1)
, θ̂

(k)
)
≥ Q

(
θ, θ̂

(k)
)

for each θ ∈ Θ.

To show the second inequality in (50) one gets with the help of Jensen’s inequality that for

each θ ∈ Θ:

H
(
θ, θ̂

(k)
)

= E
θ̂
(k)

[
log f(Ymis|Yobs;θ)

∣∣Yobs]
= E

θ̂
(k)

 log

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+ E
θ̂
(k)

[
log f

(
Ymis|Yobs; θ̂

(k))
|Yobs

]
Jensen
≤ log

E
θ̂
(k)

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+H
(
θ̂

(k)
, θ̂

(k)
)

= log

∫ f(ymis|Yobs;θ)

f
(
ymis|Yobs; θ̂

(k)) · f(ymis|Yobs; θ̂(k))
dµ(ymis)

+H
(
θ̂

(k)
, θ̂

(k)
)

= log(1) +H
(
θ̂

(k)
, θ̂

(k)
)

= H
(
θ̂

(k)
, θ̂

(k)
)
. (51)

50



3.2 Convergence of the EM-algorithm

Although from Theorem 9 we know that EM algorithm increases (more precisely does not

decrease) the observed log-likelihood, it is still not clear whether the sequence {θ̂
(k)
}∞k=1

converges. And if it converges what is the limit.

To answer this question we need to introduce the following regularity assumptions.

� The parameter space Θ is a subset of Rp.

� The set Θ0 =
{
θ ∈ Θ : `obs(θ) ≥ `obs(θ0)

}
is compact for any θ0 ∈ Θ such that

`obs(θ0) > −∞.

� `obs(θ) is continuous in Θ and differentiable in the interior of Θ.

� The function Q(θ, θ̃) defined in (48) is continuous both in θ and θ̃.

Theorem 10. Let the above assumptions be satisfied. Then all the limit points of any instance{
θ̂

(k)}
are stationary points of `obs(θ). Further

{
`obs
(
θ̂

(k))}
converges monotonically to some

value `∗ = `obs(θ
∗), where θ∗ is a stationary point of `obs(θ).

Proof. See Wu [1983].

Note that if θ∗ is a stationary point of `obs(θ), then

∂`obs(θ)

∂θ

∣∣∣∣
θ=θ∗

= 0p.

Thus by Theorem 10 the EM-algorithm finds a solution of the system of log-likelihood equa-

tions but in generally there is no guarantee that this is a global maximum of `obs(θ).

Corollary 2. Let the assumptions of Theorem 10 be satisfied. Further suppose that the

function `obs(θ) has a unique maximum θ̂n that is the only stationary point. Then θ̂
(k)
→ θ̂n

as k →∞.

3.3 Rate of convergence of EM-algorithm

Note that in the M-step of the algorithm there might not be a unique value that maximizes

Q
(
θ, θ̂

(k)
)

. Thus denote the set of maximizing points as M
(
θ̂

(k)
)

, i.e.

M
(
θ̂

(k)
)

= arg max
θ∈Θ

Q
(
θ, θ̂

(k)
)

=
{
θ̃ ∈ Ω : Q

(
θ̃, θ̂

(k)
)

= max
θ∈Θ

Q
(
θ, θ̂

(k)
)}

.

Then one needs to choose θ̂
(k+1)

as an element of the set M
(
θ̂

(k)
)

. Thus let M : Θ→ Θ be

a mapping such that

θ̂
(k+1)

= M
(
θ̂

(k)
)
.
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Let θ̂
(k)
→ θ∗ as k → ∞. Note that then θ∗ = M(θ∗). Assuming that M is sufficiently

smooth one gets by the one term Taylor expansion around the point θ∗ the following approx-

imation

θ̂
(k+1)

= M
(
θ̂

(k)
)

= M(θ∗)︸ ︷︷ ︸
=θ∗

+
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) .
Thus

θ̂
(k+1)

− θ∗ =
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) (52)

and the Jacobi matrix ∂M(θ)

∂θT

∣∣∣
θ=θ∗

measures approximately the rate of convergence. It can

be shown that
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

= [ICn (θ∗)]−1Imisn (θ∗), (53)

where

ICn (θ) = −E θ

[∂2`Cn (θ)

∂θ ∂θT

∣∣∣Yobs]
can be considered as the part of the empirical Fisher information matrix from the complete

data explained by the observed data and

Imisn (θ) = −E θ

[∂2 log f(Ymis|Yobs;θ)

∂θ ∂θT

∣∣∣Yobs],
can be considered as the empirical Fisher information matrix of the contribution of the missing

data not explained by the observed data.

Note that by (52) and (53) the convergence of the algorithm is only linear (in the presence

of missing data). Further the bigger proportion of missing data the ‘bigger’ Imisn (θ) the slower

is the convergence.

3.4 The EM algorithm in exponential families

Let the complete data Y have a density with respect to a σ-finite measure µ given by

f(y;θ) = exp

{ p∑
j=1

aj(θ)Tj(y)

}
b(θ) c(y) (54)

and the standard choice of the parametric space is

Θ =

{
θ ∈ Rp :

∫
exp

{ p∑
j=1

aj(θ)Tj(y)

}
c(y) dµ(y) <∞

}
.

Note that T(Y) =
(
T1(Y), . . . , Tp(Y)

)T
is a sufficient statistic for θ.
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The log-likelihood of the complete data is now given by

`Cn (θ) =

p∑
j=1

aj(θ)Tj(Y) + log b(θ) + const.,

which yields that the function Q from the EM-algorithm is given by

Q
(
θ, θ̂

(k)
)

= E
θ̂
(k)

[
`Cn (θ)|Yobs

]
=

p∑
j=1

aj(θ) E
θ̂
(k)

[
Tj(Y)

∣∣Yobs]+ log b(θ) + const.

=

p∑
j=1

aj(θ) T̂
(k)
j + log b(θ) + const.,

where we put T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs].
The nice thing about exponential families is that in the E-step of the algorithm we do not

need to calculate Q
(
θ, θ̂

(k)
)

for each θ separately but it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs], j = 1, . . . , p,

and in the M-step we maximize

θ̂
(k+1)

= arg max
θ∈Θ

{ p∑
j=1

aj(θ) T̂
(k)
j + log b(θ)

}
. (55)

Interval censoring

Let −∞ = d0 < d1 < . . . < dM =∞ be a division of R. Further let Y1, . . . , Yn be independent

and identically distributed random variables whose exact values are not observed. Instead

of each Yi we only know that Yi ∈ (dqi−1, dqi ], for some qi ∈ {1, . . . ,M}. Thus we observed

independent and identically distributed random variables X1, . . . , Xn such that Xi = qi if

Yi ∈ (dqi−1, dqi ].

Suppose now that Yi has a density f(y;θ) of the form

f(y;θ) = exp

{ p∑
j=1

aj(θ) tj(y)

}
b1(θ) c1(y).

Thus the joint density of the random sample Y1, . . . , Yn is of the form (54) where

Tj(Y) =

n∑
i=1

tj(Yi), j = 1, . . . , p.

Thus in the E-step of the EM-algorithm it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣X1, . . . , Xn

]
=

n∑
i=1

E
θ̂
(k)

[
tj(Yi) |Xi

]
, j = 1, . . . , p,

and the M-step is given by (55) where b(θ) = bn1 (θ). The end of

class 13

(3. 4. 2025)
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Example 40. Suppose that Yi ∼ Exp(λ), i.e. f(y;λ) = λ e−λy I{y > 0}. Thus p = 1,

t1(y) = y, a1(λ) = −λ and b1(λ) = λ.

In the E-step one needs to calculate E λ̂(k) [Yi |Xi]. Note that the conditional distribution

of Yi given that Yi ∈ (a, b] has a density λe−λy

e−λa−e−λb
I{y ∈ (a, b]}. Thus with the help of the

integration by parts

Ŷ
(k)
i := E λ̂(k) [Yi |Xi = qi] =

1

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

∫ dqi

dqi−1

x λ̂(k)e−λ̂
(k)x dx

=
dqi−1 e−λ̂

(k)dqi−1 − dqie−λ̂
(k)dqi

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

+
1

λ̂(k)

and with the help of (55) one gets that

λ̂(k+1) = arg max
λ>0

{
Q
(
λ, λ̂(k)

)}
= arg max

λ>0

{
− λ

n∑
i=1

Ŷ
(k)
i + n log λ

}
=

1
1
n

∑
Ŷ

(k)
i

.

Note that the observed likelihood is given by

`obs(λ) =

M∑
l=1

nl log
(
e−λdql−1 − e−λdql

)
,

where

nl =

n∑
i=1

I{Yi ∈ (dql−1
, dql ]}.

3.5 Some further examples of the usage of the EM algorithm

Example 41. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = w 1
σ1
ϕ
(x−µ1

σ1

)
+ (1− w) 1

σ2
ϕ
(x−µ2

σ2

)
,

where w ∈ [0, 1], µ1, µ2 ∈ R, σ2
1, σ

2
2 ∈ (0,∞) are unknown parameters and

ϕ(x) = 1√
2π

exp{−x2/2}

is the density of the standard normal distribution. Describe the EM algorithm to find the

maximum likelihood estimates of the unknown parameters.

Literature: McLachlan and Krishnan [2008] Chapters 1.4.3, 1.5.1, 1.5.3, 2.4, 2.7, 3.2, 3.4.4,

3.5.3, 3.9 and 5.9. The expected

end of class 14

(10. 4. 2025)
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4 Missing data13

For i = 1, . . . , I let Y i = (Yi1, . . . , Yini)
T represent the data of the i-th subject that could be

ideally observed. Let Ri = (Ri1, . . . , Rini)
T, where

Rij =

{
1, if Yij is observed,

0, otherwise.

Let Yobs represent Yij such that Rij = 1 and Ymis represent Yij such that Rij = 0. Thus the

available data are given by

(Yobs,R1, . . . ,RI) = (Yobs,R),

where R = (R1, . . . ,RI). Note that the complete data can be represented as

(Y 1, . . . ,Y I ,R) = (Yobs,YmisR) =: (Y,R).

Suppose that the distribution of Y depends on a parameter θ (which we are interested in)

and the conditional distribution of R given Y depends on ψ. Then the joint density of the

complete data can be written as

f(y, r;θ,ψ) = f(r|y;ψ) f(y;θ).

Now integrating the above density with respect to ymis yields the density of the available

data

f(yobs, r;θ,ψ) =

∫
f(yobs,ymis;θ) f(r|yobs,ymis;ψ) dµ(ymis). (56)

In what follows we will say that the parameters θ and ψ are separable if θ ∈ Ωθ, ψ ∈ Ωψ

and (θ,ψ)T ∈ Ωθ × Ωψ.

4.1 Basic concepts for the mechanism of missing

Depending on what can be assumed about the conditional distribution of R given Y we

distinguish three situations.

Missing completely at random (MCAR). Suppose that R is independent of Y, thus one can

write f(r|y;ψ) = f(r;ψ) and with the help of (56) one gets

f(yobs, r;θ,ψ) = f(yobs;θ)f(r;ψ),

which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R;ψ).

13Chyběj́ıćı data
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Note that if the parameters θ and ψ are separable then the second term on the right-hand

side of the above equation does not depend on θ and can be ignored when one is interested

only in θ.

Example 42. Let Y1, . . . , Yn be a random sample from the exponential distribution Exp(λ).

Let R1, . . . , Rn be a random sample independent with Y1, . . . , Yn and Ri follows a Bernoulli

distribution with a parameter pi (e.g. pi = 1
1+i).

Missing at random (MAR). Suppose that the conditional distribution ofR given Y is the same

as the conditional distribution of R given Yobs. Thus one can write f(r|y;ψ) = f(r|yobs;ψ)

and with the help of (56)

f(yobs, r;θ,ψ) = f(yobs;θ)f(r|yobs;ψ),

which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R|Yobs;ψ).

Note that although MAR is not so strict in assumptions as MCAR, also here the second term

on the right-hand side of the above equation does not depend on θ provided that θ and ψ

are separable.

Example 43. Let (XT
1 , Y1, R1)T, . . . , (XT

n , Yn, Rn)T be independent and identically distri-

buted random vectors, where the covariates X1, . . . ,Xn are always completely observed. Let

Ri stand for the indicator of missing of Yi and

P(Ri = 1 |Xi, Yi) = r(Xi),

where r(x) is a given (but possibly unknown) function.

Missing not at random (MNAR). In this concept neither the distribution of R is independent

of Y nor the conditional distribution of R given Yobs is independent of Ymis. Thus the

density of the observed data is generally given by (56). To proceed one has to make some

other assumptions about the conditional distribution of R given Y (i.e. about the density

f(r|yobs,ymis;ψ)).

Example 44. Maximum likelihood estimator for the right-censored data from an exponential

distribution. Suppose that Y1, . . . , Yn is a random sample from the exponential distribution

with the density f(x;λ) = λe−λxI{x > 0}. Nevertheless we observe Yi only if Yi ≤ C, where

C is a known constant (e.g. duration of the study). If Yi > C then we do not observe the

value of Yi (we only now that Yi is greater than C).
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Note that

f(yobs,ymis;λ) =
n∏
i=1

λe−λyi

and

f(r|yobs,ymis) =
n∏
i=1

[
I{yi ≤ C}

]ri[I{yi > C}
]1−ri .

Although this conditionally density depends on ymis (thus we are in a situation of MNAR),

we can proceed because this conditionally density is completely known.

Let n0 be the number of fully observed Yi (i.e. n0 =
∑n

i=1 I{Yi ≤ C}). For simplicity of

notation assume that Y1, . . . , Yn are ordered in such a way that Y1, . . . , Yn0 are fully observed

and Yn0+1, . . . , Yn are censored (i.e. Yi > C for i ∈ {n0 + 1, . . . , n}). Thus the corresponding

components of R are given by Ri = 1 for i ∈ {1, . . . , n0} and zero otherwise.

Now with the help of (56) one can calculate

f(Y obs,R;λ) =

n0∏
i=1

λe−λYi
∫ ∞
C
· · ·
∫ ∞
C

n∏
i=n0+1

λ e−λyidyn0+1, . . . ,dyn

= λn0e−λ
∑n0
i=1 Yi

[
e−λC

]n−n0 .

The corresponding log-likelihood of the observed data is

`obs(λ) = n0 log λ− λ
n0∑
i=1

Yi − (n− n0)Cλ,

which is maximised at

λ̂n =
1

1
n0

∑n0
i=1 Yi + (n−n0)C

n0

.

Note that the above example is in fact rather exceptional as the missing mechanism is given

by the design of the study and thus known.

The general problem of all the concepts is that if missing is not a part of the

design of the study then no assumptions about the relationship of Ymis and R can

be verified as we do not observe Ymis. The end of

class 15

(10. 4. 2025)

4.2 Methods for dealing with missing data

Complete case analysis (CCA)

In the analysis we use only the subjects with the full record, i.e. only subjects for which no

information is missing.

Advantages and disadvantages:
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+ simplicity;

− the inference about θ is ‘biased’ (i.e. the parameter θ is generally not identified), if

MCAR does not hold;

− even if MCAR holds, then this method may not provide an effective use of data.

Example 45. Suppose that we have five observations on each subject. Each observation is

missing with probability 0.1 and the observations are missing independently on each other.

Thus on average only 59 % (0.95 .
= 0.59) of the records will be complete.

Available case analysis (ACA)

In each of the analyses one uses all the data that are available for this particular analysis.

Example 46. Let X1, . . . ,Xn be a random sample from N((µ1, µ2, µ3)T,�3×3). Then the

covariance σij = cov(X1i, X1j) is estimated from all the vectors X1, . . . ,Xn for which both

the i-th and the j-th coordinate is observed.

Advantages and disadvantages:

+ simplicity;

+ more data can be used than with CCA;

− the inference about θ is biased, if MCAR does not hold;

− it can result in estimates with strange features (e.g. there is no guarantee that the

estimate of the variance matrix �̂ in Example 46 is positive semidefinite).

Direct (ignorable) observed likelihood

The inference is based on log f(Yobs;θ), that is the distribution of R is ‘ignored’.

Advantages and disadvantages:

+ If the parameters θ and ψ are separable then this method is not biased provided that

MAR holds.

+ More efficient than CCA and ACA (the whole available information in data is used).

− A parametric model assumption is needed.

− The observed log-likelihood `obs(θ) might be difficult to calculate. Nevertheless, some-

times the EM algorithm can be helpful.
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Imputation

In this method the missing observations are estimated (‘imputed’) and then one works with

the data as if there were no missing values.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimates of

the unknown parameters;

+ One can use the completed dataset also for other analyses;

− The standard estimates of the (asymptotic) variances of the estimates of the parameters

computed from the completed dataset are too optimistic (too low). The reason is that an

appropriate estimate of variance should reflect that part of the data has been imputed.
The end of

class 16

(16. 4. 2025)
Example 47. Suppose that X1, . . . , Xn is a random sample. Further suppose that we observe

only X1, . . . , Xn0 for some n0 < n and the remaining observations Xn0+1, . . . , Xn are missing.

For i = n0 + 1, . . . , n let the missing observations be estimated as X̂i = 1
n0

∑n0
j=1Xj . Then

the standard estimate of µ = E X1 is given by

µ̂n =
1

n

(
n0∑
i=1

Xi +

n∑
i=n0+1

X̂i

)
=

1

n0

n0∑
j=1

Xj

and seems to be reasonable.

But the standard estimate of the variance of µ̂n computed from the completed dataset

̂var(µ̂n) =
S2
n

n
, where S2

n =
1

n− 1

( n0∑
i=1

(Xi − µ̂n)2 +
n∑

i=n0+1

(X̂i − µ̂n)2

)

is too small. The first reason is that S2
n as the estimate of var(X1) is

S2
n =

1

n− 1

n0∑
i=1

(Xi − µ̂n)2 =
n0 − 1

n− 1
S2
n0
< S2

n0
.

The second reason is that the factor 1
n assumes that there are n independent observations,

but in fact there are only n0 independent observations.

Multiple imputation

In this method the missing observations are imputed several times. Formally, for j = 1, . . . ,M

let Ŷ(j)
mis be the imputed values in the j-th round. Further let θ̂j be the estimate of the
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parameter θ from the completed data
(
Yobs, Ŷ

(j)
mis

)
. Then the final estimate of the parameter θ

is given by

θ̂MI =
1

M

M∑
j=1

θ̂j .

The advantage of this method is that one can also estimate the (asymptotic) variance of this

estimator by
̂

var(θ̂MI) = VM +
(
1 + 1

M

)
BM , (57)

where

VM =
1

M

M∑
j=1

V̂j and BM =
1

M − 1

M∑
j=1

(
θ̂j − θ̂MI

) (
θ̂j − θ̂MI

)T
,

with V̂j being a standard estimate of the asymptotic variance calculated from the completed

data Ŷ(j) = (Yobs, Ŷ
(j)
mis).

The rationale of the formula (57) is as follows. Note that

var
(
θ̂MI

)
= E

(
var(θ̂MI | Ŷ(j))

)
+ var

(
E (θ̂MI | Ŷ(j))

)
.

Now the first term on right-hand side of the above equation is estimated by VM and the

second term is estimated by BM .

Example 48. In Example 47 one can for instance impute the values Xn0+1, . . . , Xn by a

random sample from N(µ̂, σ̂2), where µ̂ = Xn0 and σ̂2 = S2
n0

are the sample mean and

variance calculated from the observed data. Put V̂j = S
2(j)
n
n , where S

2(j)
n is the sample variance

calculated from the j-th completed sample. Then one can show that

VM
a.s.−−−−→

M→∞

S2
n0

n
. (58)

Further let θ̂j = Y
(j)
n be the sample mean calculated from the j-th completed sample. Then

it can be shown that

BM
a.s.−−−−→

M→∞

S2
n0

(n− n0)

n2
. (59)

Now combining (58) and (59) yields that

VM +BM
a.s.−−−−→

M→∞
S2
n0

(
2
n −

n0
n2

)
.

Further it is straightforward to prove that for n0 < n

S2
n0

(
2
n −

n0
n2

)
<
S2
n0

n0
,

where the right-hand side of the above inequality represents the standard estimate of the

variance of Xn0 (that assumes MCAR). This indicates that when doing multiple imputation,
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one needs to take into consideration also the variability that comes from the fact that one

uses the estimates µ̂, σ̂2 instead of the true values of µ and σ. This can be done very naturally

within the framework of Bayesian statistics.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimate of

the unknown parameter as well as of the variance of this estimate.

− To be done properly it requires the knowledge of Bayesian approach to statistics.

Re-weighting

Roughly speaking in this method each observation is given a weight (wi) that is proportional

to the inverse probability of being observed (πi), i.e.

wi =
1
πi∑

j:Rj=1
1
πj

, i ∈ {j : Rj = 1}.

All the procedures are now weighted with respect to these weights, e.g. the maximum likeli-

hood estimator of a parameter θ is calculated as

θ̂n = arg max
θ∈Θ

∑
i:Ri=1

wi log f(Xi;θ), or
∑
i:Ri=1

wi
∂ log f(Xi; θ̂n)

∂θ
= 0p.

Example 49. Suppose we have a study where for a large number of patients some basic and

cheap measurements have been done resulting in Z1, . . . ,ZN . Now a random subsample S of

size n from these patients has been done for some more expensive measurements. Note that

then S =
{
j ∈ {1, . . . , N} : Rj = 1

}
.

This method can be also used where one has some auxiliary variables Z1, . . . ,Zn that can

be used to estimate the probabilities πi with the help of for instance a logistic regression.

5 M- and Z-estimators

M - and Z-estimators present a very general class of estimators that include most of the

commonly used estimators.14

Let X1, . . . ,Xn be a random sample from a distribution F from the model F and one is in-

terested in estimating some quantity (p-dimensional parameter) of this distribution, say θ(F ).

14One should be careful as the terminology may vary. Note that also e.g. minimum contrast estimators,

pseudo-likelihood estimators, quasi-likelihood estimators and estimating equations can be usually viewed as

either M-estimators or Z-estimators.
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M-estimator

Let ρ be a function defined on SX ×Θ, where SX is the support of F . Futher denote Θ the

parameter space, i.e. Θ = {θ(F ), F ∈ F}. The M-estimator15 is defined as

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

Examples of M -estimators

Note that in parametric models
{
f(x;θ),θ ∈ Θ

}
the maximum likelihood (ML) estimator

θ̂n = arg max
θ∈Θ

`n(θ) = arg max
θ∈Θ

n∑
i=1

log f(Xi;θ)

can be viewed as the M -estimator with

ρML(x;θ) = − log f(x;θ).

In regression problems one observes Z1 =
(
Y1
X1

)
, . . . ,Zn =

(
Yn
Xn

)
. Then the least squares (LS)

estimator of regression parameters

β̂
(LS)

n = arg min
b∈Rp

n∑
i=1

(Yi −XT
i b)2

can be viewed as the M -estimator with

ρLS(z;β) = ρLS(x, y;β) =
(
y − xTβ

)2
.

Similarly the least absolute deviation (LAD) estimator

β̂
(LAD)

n = arg min
b∈Rp

n∑
i=1

|Yi −XT
i b|

can be viewed as the M -estimator with

ρLAD(z;β) = ρ(x, y;β) =
∣∣y − xTβ

∣∣.
The end of

class 17

(24. 4. 2025)

15M-odhad

62



Z-estimator

Often the maximizing value in the definition of M -estimator is sought by setting a derivative

(or the set of partial derivatives if θ is multidimensional) equal to zero. Thus we search for θ̂n

as the point that solves the set of estimating equations

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
= 0p, where ψ(x;θ) =

∂ρ(x;θ)

∂θ
. (60)

Note that

ψ(x;θ) =
(
ψ1(x;θ), . . . , ψp(x;θ)

)T
=
(∂ρ(x;θ)

∂θ1
, . . . ,

∂ρ(x;θ)

∂θp

)T
.

Generally let ψ be a p-dimensional vector function (not necessarily a derivative of the

function ρ) defined on SX × Θ. Then we define the Z-estimator16 as the solution of the

system of equations (60).

Note that the maximum likelihood (ML) and the least squares (LS) estimators can be also

viewed as Z-estimators with

ψML(x;θ) =
∂ log f(x;θ)

∂θ
, ψLS(x, y;β) =

(
y − xTβ

)
x.

Literature: van der Vaart [2000] – Chapter 5.1.

5.1 Identifiability of parameters17 via M- and/or Z-estimators

When using M - or Z-estimators one should check the potential of these estimators to identify

the parameters of interest. Note that by the law of large numbers

1

n

n∑
i=1

ρ(Xi;θ) = E ρ(X1;θ) + oP (1),
1

n

n∑
i=1

ψ(Xi;θ) = E ψ(X1;θ) + oP (1).

Thus the M -estimator θ̂n identifies (at the population level) the quantity

θX = arg min
θ∈Θ

E ρ(X1;θ)

and analogously Z-estimator identifies θX such that

E ψ(X1;θX) = 0p.

16Z-odhad
17Identifikovatelnost parametr̊u.
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Example 50. Let X1, . . . ,Xn be i.i.d. observations from a distribution with a density f(x)

(with respect to a σ-finite measure µ). By assuming that f belongs to a parametric family of

densities F =
{
f(x;θ), θ ∈ Θ

}
we are estimating (identifying) θX such that

θX = arg max
θ∈Θ

E log f(X1;θ)

Provided that the true density f(x) has the support SX that is the same as the support of

f(x;θ) for each θ ∈ Θ, this can be further rewritten as

θX = arg max
θ∈Θ

E log
[f(X1;θ)
f(X1)

]
.

Now by Jensen’s inequality

E log
[f(X1;θ)
f(X1)

]
≤ log

{
E
[f(X1;θ)
f(X1)

]}
= log

{∫
SX

f(x;θ)
f(x) f(x) dµ(x)

}
= log{1} = 0.

Suppose that our (parametric) assumption is right and there exists θ0 ∈ Θ such that

f(x) = f(x;θ0). Then E log
[ f(X1;θ)
f(X1;θ0)

]
is maximised for θ = θ0 and thus θX = θ0 (i.e. the

maximum likelihood method identifies the true value of the parameter).

Suppose that our (parametric) assumption is not right and that f 6∈ F . Then

θX = arg max
θ∈Θ

E log
[
f(X1;θ)
f(X1)

]
= arg max

θ∈Θ

∫
SX

log
[f(x;θ)
f(x)

]
f(x) dµ(x)

= arg min
θ∈Θ

∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x).

The integral
∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x) is called the Kullback–Leibler divergence from f(x;θ)

to f(x) (it measures how f(x;θ) diverges from f(x)). Thus θX is the point of parameter

space Θ for which the Kullback–Leibler divergence from F to f is minimised18.

5.2 Asymptotic distribution of Z-estimators

Analogously as for the maximum likelihood estimator the basic asymptotic results will be

formulated for Z-estimators. In order to do that put Z(θ) = E ψ(X1;θ) and Dψ(x;θ) =
∂ψ(x;θ)

∂θT
(the Jacobi matrix of ψ(x;θ) with respect to θ).

To state the theorem about asymptotic normality we will need the following regularity

assumptions. These assumptions are analogous to assumptions [R0]-[R6] for the maximum

likelihood estimators.

[Z0] Identifiability. θX satisfies Z(θX) = 0p.

18θX is also sometimes called the least false (best approximating) value of the parameter, see e.g. Claeskens

and Hjort [2008].
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[Z1] The number of parameters p in the model is constant.

[Z2] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[Z3] For µ-almost all x each component of the function ψ(x;θ) is differentiable with respect

to θ.

[Z4] There exists α > 0, an open neighbourhood U of θX and a function M(x) so that for

each j, k ∈ {1, . . . , p} and for each θ ∈ U∣∣∣∣∂ψj(x;θ)

∂θk
− ∂ψj(x;θX)

∂θk

∣∣∣∣ ≤M(x) ‖θ − θX‖α

for µ-almost all x and E M(X1) <∞.

[Z5] The matrix

�(θX) = E Dψ(X1;θX) (61)

is finite and regular.

[Z6] The variance matrix

�(θX) = var
(
ψ(X1;θX)

)
= E

[
ψ(X1;θX)ψT(X1;θX)

]
(62)

is finite.

Introduce

�n(θ) =
1

n

n∑
i=1

Dψ(Xi;θ).

The following technical lemma says that if θ is ‘close’ to θX , then �n(θ) is close to �(θX). This

result will be useful for the proof of the consistency and asymptotic normality of Z-estimators.

Note that it is an analogy of Lemma 1. The end of

class 18

(24. 4. 2025)

Lemma 4. Suppose that assumptions [Z1]-[Z5] are satisfied. Let {εn} be a sequence of

positive numbers going to zero. Then

max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(�n(θ)− �(θX)
)
jk

∣∣∣ = oP (1),

where

Uεn =
{
θ ∈ Θ : ‖θ − θX‖ ≤ εn

}
and

(
�n(θ)−�(θX)

)
jk

stands for the (j, k)-element of the difference of the matrices �n(θ)−
�(θX).
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Proof. Using assumption [Z4] and the law of large numbers one can bound

sup
θ∈Uεn

∣∣∣(�n(θ)− �(θX)
)
jk

∣∣∣ ≤ sup
θ∈Uεn

∣∣∣(�n(θ)− �n(θX)
)
jk

∣∣∣+
∣∣∣(�n(θX)− �(θX)

)
jk

∣∣∣
≤ 1

n

n∑
i=1

M(Xi) ε
α
n + oP (1) = OP (1) o(1) + oP (1) = oP (1),

which implies the statement of the lemma.

Suppose now that t̂n
P−−−→

n→∞
θX . Note that the above lemma (together with the reasoning

of Corollary 1) one gets that for each j, k ∈ {1, . . . , p}:∣∣∣(�n(t̂n)− �(θX)
)
jk

∣∣∣ = oP (1). (63)

Theorem 11. Suppose that assumptions [Z0]-[Z6] are satisfied.

(i) Then with probability going to one there exists a consistent solution θ̂n to the estimating

equations (60).

(ii) Further, if θ̂n is a consistent root of the estimating equations (60), then

√
n
(
θ̂n − θX

)
= −�−1(θX)

1√
n

n∑
i=1

ψ(Xi;θX) + oP (1), (64)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,�

−1(θX)�(θX)
[
�−1(θX)

]T)
, (65)

where the matrices �(θX) and �(θX) are defined in (61) and (62) respectively.

Proof. Consistency: Introduce the vector function

hn(θ) = θ −
[
�(θX)

]−1
Zn(θ),

where

Zn(θ) =
1

n

n∑
i=1

ψ(Xi;θ).

In what follows we will show that with probability going to one (as n→∞) the mapping hn

is a contraction on Uεn =
{
θ ∈ Θ : ‖θ − θX‖ ≤ εn

}
, where {εn} is a sequence of positive

numbers going to zero such that εn
√
n −−−→

n→∞
∞. Having proved that then by the Banach

fixed point theorem (Theorem A14) there exists a unique fixed point θ̂n ∈ Uεn such that

hn(θ̂n) = θ̂n and thus also Zn(θ̂n) = 0p. This implies the existence of a consistent root of

the estimating equations (60).
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Showing that hn is a contraction on Uεn . Let θ1,θ2 ∈ Uεn then∥∥hn(θ1)− hn(θ2)
∥∥ =

∥∥(θ1 − θ2

)
−
[
�(θX)

]−1(
Zn(θ1)− Zn(θ2)

)∥∥
=
∥∥(Ip − [�(θX)

]−1
�∗n
)(
θ1 − θ2

)∥∥, (66)

where �∗n is (p× p)-matrix whose j-th row is the j-th row of the matrix

�n(θ) =
1

n

n∑
i=1

Dψ(Xi;θ)

evaluated at some θj∗n that is between θ1 a θ2. Note that θj∗n ∈ Uεn . Now by Lemma 4 and

assumption [Z5]

an = max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(Ip − [�(θX)
]−1

�n(θ)
)
jk

∣∣∣ = oP (1). (67)

So with the help of (66) and (67) it holds that uniformly in θ1,θ2 ∈ Uεn∥∥hn(θ1)− hn(θ2)
∥∥ ≤ oP (1)

∥∥θ1 − θ2

∥∥, (68)

which implies that there exists q ∈ (0, 1) such that

P
(
∀θ1,θ2∈Uεn

∥∥hn(θ1)− hn(θ2)
∥∥ ≤ q∥∥θ1 − θ2

∥∥) −−−→
n→∞

1.

Thus to show that hn is a contraction on Uεn it remains to prove that (with probability

going to one) hn : Uεn → Uεn . Note that for each θ ∈ Uεn the inequality (68) implies

hn(θ)− hn(θX) = oP (1) εn, (69)

where the oP (1) term does not depend on θ. Further

hn(θX) = θX −
[
�(θX)

]−1
Zn(θX) = θX +OP

(
1√
n

)
, (70)

where we have used that by the central limit theorem Zn(θX) = OP
(

1√
n

)
. Now combining

(69) and (70) yields that

hn(θ) = oP (1) εn + hn(θX) = oP (1) εn + θX +OP
(

1√
n

)
,

which further together with the assumption εn
√
n −−−→

n→∞
∞ gives

hn(θ)− θX = εn

(
oP (1) +OP

(
1

εn
√
n

))
= εnoP (1).

This finally implies that P
(
∀θ ∈ Uεn : hn(θ) ∈ Uεn

)
−−−→
n→∞

1, which was to be proved.
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Asymptotic normality: This is proved analogously as in Theorem 5. Let θ̂n be a consistent

root of the estimating equations. Then by the mean value theorem applied to each component

of Zn
(
θ̂n
)

one gets

0p = Zn
(
θ̂n
)

= Zn(θX) + �∗n
(
θ̂n − θX

)
,

where similarly as in the proof of consistency �∗n is (p× p)-matrix whose j-th row is the j-th

row of the matrix �n(θ) evaluated at some θj∗n that is between θ̂n a θX . Thus θj∗n
P−−−→

n→∞
θX

as θ̂n is a consistent estimator of θX . So one can use (63) to conclude that �∗n
P−−−→

n→∞
�(θX).

Now with the help of CS (Theorem 2) one can write

√
n
(
θ̂n − θX

)
= −[�∗n]−1√nZn(θX) = −�−1(θX)

1√
n

n∑
i=1

ψ(Xi;θX) + oP (1),

which with the help of the central limit theorem (for i.i.d. random vectors) and CS (Theo-

rem 2) implies the second statement of the theorem.

Remark 15. If there exists a real function ρ(x;θ) such that ψ(x;θ) = ∂ρ(x;θ)
∂θ , then the matrix

�(θX) is symmetric and one can simply write �(θX)−1 instead of [�(θX)−1]T in (65).

Asymptotic variance estimations

Note that by Theorem 11 one has

θ̂n
as
≈ Np

(
θX ,

1
n�
−1(θX)�(θX)

[
�−1(θX)

]T)
.

Thus the most straightforward estimate of the asymptotic variance of θ̂n is the ‘sandwich

estimator’ given by
̂

avar
(
θ̂n
)

=
1

n
�̂−1
n �̂n

[
�̂−1
n

]T
, (71)

where

�̂n =
1

n

n∑
i=1

Dψ
(
Xi; θ̂n

)
and �̂n =

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
ψT
(
Xi; θ̂n

)
.

Note that Lemma 4 together with the consistency of θ̂n implies that

�̂n
P−−−→

n→∞
�(θX).

It is more tedious to give some general assumptions so that it also holds

�̂n
P−−−→

n→∞
�(θX).
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To derive such assumptions rewrite

�̂n =
1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

] [
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
+

1

n

n∑
i=1

ψ(Xi;θX)
[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
+

1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]
ψT(Xi;θX)

+
1

n

n∑
i=1

ψ(Xi;θX)ψT(Xi;θX). (72)

Now by the law of large numbers the last summand in (72) converges in probability to �(θX),

thus it is sufficient to show that the remaining terms are of order oP (1). With the help of

assumption [Z4] this can be done for instance by assuming that for each j, k ∈ {1, . . . , p}

E M2
jk(X1) <∞ and E

∣∣∣∂ψj(X1;θX)
∂θk

∣∣∣2 <∞.
Confidence sets and confidence intervals

Suppose that V̂n is a consistent estimator of V = �−1(θX)�(θX) [�−1(θX)]T.

Then by the Cramér-Slutsky theorem the confidence set (ellipsoid) for the parameter θX

is given by {
θ ∈ Θ : n

(
θ̂n − θ

)T
V̂−1
n

(
θ̂n − θ

)
< χ2

p(1− α)
}
.

The ‘Wald-type’ (asymptotic) confidence interval for θXj (the j-th coordinate of θX) is

given by [
θ̂nj −

u1−α/2
√
v̂n,jj√

n
, θ̂nj +

u1−α/2
√
v̂n,jj√

n

]
,

where θ̂nj is the j-th coordinate of θ̂n and v̂n,jj is the j-th diagonal element of the matrix V̂n.

Literature: Sen et al. [2010] Chapter 8.2. The expected

end of class 19

(30. 4. 2025)

5.3 Likelihood under model misspecification

Let X1, . . . ,Xn be a random sample with a density f (with respect to a σ-finite measure µ).

Then the maximum likelihood estimator can be viewed as the M -estimator with ρ(x;θ) =

− log f(x;θ) or Z-estimator with ψ(x;θ) = −∂ log f(x;θ)
∂θ . From Example 50 we know that

when assuming f ∈ F = {f(x;θ);θ ∈ Θ}, the method of the maximum likelihood identifies

the parameter

θX = arg min
θ∈Θ

∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x).
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Further by Theorem 11 we also know that (with probability going to one there exists a

consistent solution θ̂n of (60) which satisfies)

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,�

−1(θX)�(θX)
[
�−1(θX)

]T)
.

Suppose that our parametric assumption is right and f ∈ F , i.e. there exists θ0 ∈ Θ such

that f(x) = f(x;θ0). Then the identified parameter is equal to θ0, i.e. θX = θ0. Further it

is easy to see that �(θX) = I(θX) = �(θX), where I(θX) is the Fisher information matrix.

Thus

�−1(θX)�(θX)�−1(θX) = I−1(θX).

So one can view Theorem 5 as a special case of Theorem 11. Further, when doing the inference

about θX it is sufficient to estimate the Fisher information matrix.

Often in practice we are not completely sure that f ∈ F . If we are not sure about the

parametric assumption then it is safer to view the estimator θ̂n as an Z-estimator with

ψ(x;θ) = −∂ log f(x;θ)
∂θ . The asymptotic variance of θ̂n can now be estimated with the help of

‘sandwich estimator’ (71) where

�̂n =
1

n

n∑
i=1

U(Xi; θ̂n) UT(Xi; θ̂n), where U(x;θ) = −∂ log f(x;θ)

∂θ
,

�̂n =
1

n

n∑
i=1

I(Xi; θ̂n), where I(x;θ) = −∂
2 log f(x;θ)

∂θ∂θT
.

This type of variance estimator is calculated for GLM models by the function sandwich (from

the package with the same name).

Example 51. Misspecified normal linear model. Let
(
Y1
X1

)
, . . . ,

(
Yn
Xn

)
be independent and

identically distributed random vectors, where Xi = (Xi1, . . . , Xip)
T. Note that if one assumes

that L
(
Yi|Xi

)
∼ N(XT

i β, σ
2) for some β ∈ Rp, then the maximum likelihood estimation of β

corresponds to the method of the least squares given by ρLS(x, y;β) =
(
y − xTβ

)2
.

Show that without the assumption L
(
Yi|Xi

)
∼ N(XT

i β, σ
2) the method of the least squares

identifies the parameter

βX =
[
E X1X

T
1

]−1
E Y1X1

and it holds that
√
n
(
β̂n − βX

) d−−−→
n→∞

Np(0p,V), where

V =
[
E X1X

T
1

]−1 [
E σ2(X1)X1X

T
1

] [
E X1X

T
1

]−1
,

with σ2(X1) = E
[
(Y1 −XT

1βX)2|X1

]
.

Note that provided E
[
Y1|X1

]
= XT

1β0 for some β0 ∈ Rp, then βX = β0 and σ2(X1) =

var(Y1|X1).
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Example 52. Misspecified Poisson regression. Let
(
Y1
X1

)
, . . . ,

(
Yn
Xn

)
be independent and iden-

tically distributed random vectors, where Xi = (Xi1, . . . , Xip)
T. Assume that the conditional

distribution of Yi given Xi is Poisson, i.e. L
(
Yi|Xi

)
∼ Po

(
λ(Xi)

)
, where λ(x) = ex

Tβ and

β = (β1, . . . , βp)
T. The score statistic for the maximum likelihood estimation is given by

Un(β) =
n∑
i=1

Xi

(
Yi − eX

T
i β
)
.

Thus one can view the maximum likelihood estimator β̂n as the Z-estimator with

ψ(x, y;β) = x
(
y − ex

Tβ
)

(73)

and βX solves the system of equations

E X1

(
Y1 − eX

T
1βX

)
= 0p.

Suppose now that L
(
Yi|Xi

)
6∼ Po

(
λ(Xi)

)
, but one can still assume that there exists β0 such

that E [Y1|X1] = eX
T
1β0 . Then

E X1

(
Y1 − eX

T
1β0
)

= E
{
E
[
X1

(
Y1 − eX

T
1β0
)∣∣X1

]}
= E

[
X1

(
eX

T
1β0 − eX

T
1β0
)]

= 0p.

Thus βX identifies β0 which describes the effect of the covariates on the expected mean value.

The above calculation implies that when we are not sure that the conditional distribution

L
(
Yi|Xi

)
is Po

(
λ(Xi)

)
, but we are willing to assume that E [Yi|Xi] = eX

T
i β0 for some β0 ∈ Rp,

then we can still use the score function (73) which identifies the parameter β0. By Theorem 11

we know that the estimator β̂n is asymptotically normal with the matrices �(βX) and �(βX)

given by

�(βX) = E X1X
T
1

(
Y1 − eX

T
1βX

)2
and �(βX) = E X1X

T
1 eX

T
1βX .

Thus the asymptotic variance of the estimator β̂n can be estimated by

̂
avar

(
β̂n
)

=
1

n
�̂−1
n �̂n �̂

−1
n ,

where

�̂n =
1

n

n∑
i=1

XiX
T
i

(
Yi − eX

T
i β̂n
)2

and �̂n =
1

n

n∑
i=1

XiX
T
i eX

T
i β̂n .

Literature: White [1980], White [1982].
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5.4 Asymptotic normality of M-estimators defined by convex minimization

Let X1, . . . ,Xn be a random sample from a distribution F and one is interested in estimating

some quantity θX (p-dimensional parameter) of this distribution such that this parameter can

be identified as

θX = arg min
θ∈Θ

E ρ(X1;θ),

where for each fixed x the function ρ(x;θ) is convex in θ. Further suppose that the parameter

space Θ is a subset of Rp.

A straightforward estimator of the parameter θX is given by

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

As we see later we do not need to assume that the function ρ(x;θ) is differentiable in θ for

all (x,θ) ∈ SX × Θ. Nevertheless we need a function that plays the role of the function

ψ(x;θ) in the definition of Z-estimators (60). Note that the convexity in θ guarantees that

for each x the function ρ(x,θ) is differentiable in θ for almost all θ ∈ Θ. So suppose that

there exists a function ψ(x;θ) such that ψ(x;θ) = ∂ρ(x;θ)
∂θ whenever this derivative exists.

Moreover suppose that similarly as for Z-estimators it holds that

E ψ(X1;θX) = 0p. (74)

For formulating the main result it is useful to introduce the ‘remainder function’

R(x; t) = ρ(x;θX + t)− ρ(x;θX)− tTψ(x;θX) (75)

and the asymptotic (expected) objective function

M(θ) = E ρ(X1;θ). (76)

Theorem 12. Assume that the function ψ(x;θ) satisfies (74) and the functions R(x; t) and

M(θ) are defined by (75) and (76) respectively. Further suppose that

(i) there exists a positive definitive matrix J(θX) such that

M(θX + t) = M(θX) + 1
2 tTJ(θX) t + o(‖t‖2), as t→ 0p;

(ii) var
(
R(X1; t)

)
= o(‖t‖2) as t→ 0p;

(iii) there exists a finite variance matrix �(θX) = var
(
ψ(X1;θX)

)
.
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Then
√
n
(
θ̂n − θX

)
= −

[
J(θX)

]−1 1√
n

n∑
i=1

ψ(Xi;θX) + oP (1), (77)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,
[
J(θX)

]−1
�(θX)

[
J(θX)

]−1
)
.

Proof. See the proof of Theorem 2.1 of Hjort and Pollard [2011].

Comparison of Theorems 11 and 12

First of all note that Theorem 12 yields the asymptotic normality of the argument of the min-

imum of 1
n

∑n
i=1 ρ(Xi;θ). On the other hand Theorem 11 guarantees asymptotic normality

only for a consistent (i.e. an appropriately chosen) root of the estimating equations (60). But

in case that there are more roots to the estimating equations (60) it is generally impossible

to decide which of the roots is the consistent one.

Further it is worth noting that Theorem 12 allows for ρ(x;θ) that are ‘less differentiable’.

Note that to calculate the matrix �(θX) one needs the differentiability of the function ψ.

On the other hand the matrix J(θX) can be computed as the Hessian matrix of the function

M(θ) = E ρ(X1;θ) at the point θX . Thus the assumption about the smoothness of ψ (i.e.

[Z3] and [Z4]) can be replaced with the assumption that function M(θ) is twice continuously

differentiable on a neighbourhood of θX . So the lack of smoothness of ψ can be compensated

with the assumptions on the distribution of X1 so that the function M(θ) is sufficiently

smooth in θ. See also the application of Theorem 12 to derive the asymptotic normality of

the sample median given below.

Vaguely speaking the assumptions of Theorems 12 are milder than assumptions of Theo-

rem 11. More formally if assumptions [Z3]-[Z6] hold then also assumptions (i) and (iii) are

satisfied. Further a closer inspection of the proof of Theorem 2.1 of Hjort and Pollard [2011]

shows that the remainder term rn(s) there can be handled with the help of assumptions [Z3]

and [Z4] instead of assumption (ii) of Theorem 12.

On the other hand note that if the function ψ does not meet at least assumption [Z3] then

it is not any straightforward method how to estimate the matrix J(θX) which is needed to

estimate the asymptotic variance of θ̂n.

Sample median

Let X1, . . . , Xn be independent identically distributed random variables with density f(y)

that is positive and continuous in a neighbourhood of median F−1(0.5).
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It is well known (see also Lemma 5 and Remark 16 in Chapter 6) that the sample median m̃n

can be written as

m̃n = arg min
θ∈R

1

n

n∑
i=1

|Xi − θ|.

Thus one can view m̃n as an M -estimator with ρ(x; θ) = |x− θ|. For theoretical reasons it is

advantageous to consider

ρ(x; θ) = |x− θ| − |x|,

which does not require that E |X1| <∞ in order to define M(θ) = E ρ(X; θ). Note that then

(see also Lemma 5 in Chapter 6)

F−1(0.5) = arg min
θ∈R

E ρ(X; θ).

Now one can use Theorem 12 to derive the asymptotic distribution of m̃n. Introduce

ψ(x; θ) = − sign(x− θ)

and note that ψ(x; θ) = ∂ρ(x; θ)/∂θ for θ 6= x. Further it is easy to check that

E ψ(X1;F−1(0.5)) = 0.

Provided that also the other assumptions of Theorem 12 are satisfied it remains to calculate

�(θX) and �(θX). As θ ∈ R the matrix �(θX) reduces to

σ2
ψ = var

(
ψ(X1;F−1(0.5))

)
= 1.

Further as M(θ) = −E
∫ θ

0 sign(X1− t) dt one can interchange the derivative and the integral

to get

∂M(θ)

∂θ
= −E

[
sign(X1 − θ)

]
= −P(X1 > θ) + P(X1 < θ) = 2F (θ)− 1.

This further implies that (the matrix) J(θX) reduces to

γ =
∂2M(θ)

∂θ2

∣∣∣
θ=F−1(0.5)

= 2 f
(
F−1(0.5)

)
.

Finally one gets
√
n
(
m̃n − F−1(0.5)

) d−−−→
n→∞

N
(

0, 1

4 f2
(
F−1(0.5)

)).
Note also to estimate the asymptotic variance of m̃n one needs to estimate the quantity

f
(
F−1(0.5)

)
which is far from being straightforward.19

The end of

class 20

(7.5.2025)Literature: Hjort and Pollard [2011] Section 2A.

19This can be estimated with the help of kernel smoothing methods or circumvented with the help of bootstrap

methods. Both methods are included in the course NMST545 Mathematical Statistics 4.
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6 Quantile regression20

Generally speaking, while the least squares method aims at estimating (modelling) a condi-

tional expectation, quantile regression aims at estimating (modelling) a conditional quantile.

This is of interest if the covariate may have different effects on different quantiles of the

response.

Applications of the quantile regression can be found in medicine (e.g. constructing reference

charts), finance (e.g. estimating value at risk), economics (e.g. wage and income studies,

modelling household electricity demand) and environment modelling (e.g. modelling flood

height).

6.1 Identification of quantiles

For a given τ ∈ (0, 1) consider the following loss function

ρτ (x) = τ x I{x > 0}+ (1− τ) (−x) I{x ≤ 0}.

Note that for x 6= 0 one gets

ψτ (x) = ρ′τ (x) = τ I{x > 0} − (1− τ) I{x < 0}.

For x = 0 put ψτ (0) = 0.

Lemma 5. Let the random variable X have a cumulative distribution function F . Then

F−1(τ) = arg min
θ∈R

E
[
ρτ (X − θ)− ρτ (X)

]
. (78)

Proof. Put M(θ) = E
[
ρτ (X − θ)− ρτ (X)

]
. One can calculate

M(θ) = −E

∫ θ

0
ψτ (X − t) dt = −

∫ θ

0
E ψτ (X − t) dt

= −
∫ θ

0
τ P(X > t)− (1− τ)P(X < t) dt.

= −
∫ θ

0
τ − τ F (t)− (1− τ)F (t) dt.

= −τ θ +

∫ θ

0
F (t) dt.

Now for each θ < F−1(τ)

M ′(θ−) = −τ + F (θ−) ≤ −τ + F (θ) < 0,

M ′(θ+) = −τ + F (θ+) = −τ + F (θ) < 0.

20Kvantilová regrese.
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As the function M(θ) is continuous, this implies that M(θ) is decreasing on
(
−∞, F−1(τ)

)
.

Analogously for θ > F−1(τ)

M ′(θ−) = −τ + F (θ−) ≥ −τ + F
(
F−1(τ)

)
≥ 0,

M ′(θ+) = −τ + F (θ+) ≥ −τ + F
(
F−1(τ)

)
≥ 0.

Thus the function M(θ) is non-decreasing on
(
F−1(τ),+∞

)
. This further implies that F−1(τ)

is the point of the global minimum of the function M(θ).

Remark 16. Suppose we observe a random sample X1, . . . , Xn. Let F̂n be the corresponding

empirical distribution function. Then by

1

n

n∑
i=1

ρτ (Xi − θ) = E
F̂n
ρτ (Z − θ),

where the random variable Z has the distribution given by the empirical distribution function

F̂n and E
F̂n

stands for the expectation with respect to this distribution.

Thus by Lemma 5

F̂−1
n (τ) = arg min

θ∈R

1

n

n∑
i=1

ρτ (Xi − θ).

Note that for τ = 0.5 one gets the characterization of the sample median as in (86).

Further note that from the proof of Lemma 5 it follows that the arg minθ∈R
1
n

∑n
i=1 ρτ (Xi−θ)

is not unique if there exists a root of the function −τ + F̂n(θ). This happens if n τ = i0 ∈ N

and X(i0) < X(i0+1). Then M(θ) is minimised by any value from the interval
[
X(i0), X(i0+1)

]
.

In this situation F̂−1
n (τ) = X(i0) is the left point of this interval.

6.2 Regression quantiles21

Suppose that one observes independent and identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
being distributed as the generic vector

(
X
Y

)
.

The τ -th regression quantile is defined as

β̂n(τ) = arg min
b∈Rp

1

n

n∑
i=1

ρτ (Yi −XT
i b).

At the population level the regression quantile identifies the parameter

βX(τ) = arg min
b∈Rp

E
[
ρτ (Y −XTb)− ρτ (Y )

]
.

21Regresńı kvantily
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Note that thanks to (78)

E
[
ρτ (Y −XTb)− ρτ (Y )

]
= E

{
E
[
ρτ (Y −XTb)− ρτ (Y ) |X

]}
≥ E

{
E
[
ρτ
(
Y − F−1

Y |X(τ)
)
− ρτ (Y ) |X

]}
= E

[
ρτ
(
Y − F−1

Y |X(τ)
)
− ρτ (Y )

]
,

where F−1
Y |X(τ) is the τ -th conditional quantile of Y given X. Thus if the model for F−1

Y |X(τ)

is correctly specified, that is F−1
Y |X(τ) = XTβ0, then βX(τ) = β0.

Example 53. In applications the intercept is usually included in the model, i.e X =(
1, X̃

T)T
. Further it is instructive to see what happens if the following strict version of

the linear model holds, i.e.

Y = β0 + X̃
T
β + ε, where ε⊥X̃. (79)

Then

F−1
Y |X(τ) = β0 + X̃

T
β + F−1

ε (τ),

where F−1
ε (τ) is the τ -th quantile of the random error ε. Thus for the model (79) the identified

regression quantiles are

βX(τ) =

(
β0 + F−1

ε (τ)

β

)
, τ ∈ (0, 1).

Thus if model (79) holds, then for τ1 6= τ2 the regression quantiles βX(τ1) and βX(τ2) differ

only in the intercepts. That is the effect of the covariate is the same for all quantiles of

the response. But this is not true in general. In fact regression quantiles are interesting in

situations where the effect of the covariate can be different for different (conditional) quantiles

of the response, i.e. not only the intercept component of βX(τ) depends on τ .

As also illustrated by the following simple examples, the regression quantiles gives us a

more detailed idea about the effect of the covariate on the response. This can be of interest

on its own or as a check that we do not simplify the situation too much by considering only

the effect of the covariate on the conditional expectation.

Example 54. To illustrate consider one-dimensional covariate Xi which is generated from

the uniform distribution on the interval (0, 1) and the error term εi which has an exponential

distribution with mean 1 and which is independent of Xi. Further consider the following two

models:

� The homoscedastic model given by

Yi = 1 + 2Xi + εi, i = 1, . . . , n.
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� The heteroscedastic model given by

Yi = 1 + 2Xi + 2Xi εi, i = 1, . . . , n.

On Figure 54 one can find a random sample of size 1 000 from these models. The solid lines

represent the fitted regression quantiles for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} assuming that the

conditional quantile is in the simple linear form

F−1
Y |X(τ) = β1(τ) + β2(τ)X.

The standard least square estimator is included for the reason of comparison.

Note that in the homoscedastic model all the fitted lines are approximately parallel. This

is in agreement with the above finding that in the ‘strict linear model’ (79) the slope of the

(theoretical) regression quantiles is the same (up to the random variations that decreases as

the sample size increases).

On the other hand in the heteroscedastic model the slopes differ and in this simple example

we see that the effect of the covariate is stronger on larger conditional quantiles.

Homework exercise. In the homoscedastic as well as heteroscedastic model find the theoret-

ical conditional quantile F−1
Y |X(τ) for different values of τ and compare it with the conditional

expectation E [Y |X]. Compare the results with the fitted lines on Figure 54.

Example 55. Let Y1, . . . , Yn1 be a random sample with the distribution function F and

Yn1+1, . . . , Yn1+n2 be a random sample from the distribution function G .

Often it is assumed that G(x) = F (x + µ) for each x ∈ R. Thus alternatively we can

formulate the two-sample problem as a linear regression problem with

Yi = β0 + β1xi + εi, (80)

where

xi =

{
0, i = 1, . . . , n1,

1, i = n1 + 1, . . . , n1 + n2,

and the error term εi has a cumulative distribution function F . Usually we are interested in

estimating β1. By the LS method one gets

β̂1 =
1

n2

n1+n2∑
i=n1+1

Yi −
1

n1

n1∑
i=1

Yi
P−−−−−−→

n1,n2→∞
µG − µF︸ ︷︷ ︸

=:µ

=: βLS1 ,

where µF and µG stand for the expectation of an observation from the first and second sample

respectively.
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Figure 1: Fitted regression quantiles for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} (solid lines with different

colours) for homoscedastic model (the upper figure) and heteroscedastic model (the

lower figure). The least squares fit is included for the reason of comparison (dashed

line).
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On the other hand let n = n1 + n2. Then the quantile regression yields

β̂(τ) = arg min
b0,b1

1

n

n∑
i=1

ρτ (Yi − b0 − b1xi)

= arg min
b0,b1

1

n

(
n1∑
i=1

ρτ (Yi − b0) +

n1+n2∑
i=n1+1

ρτ (Yi − b0 − b1)

)
.

The first sum is minimised by

β̂0(τ) = F−1
n1

(τ)

and the second sum by

̂β0(τ) + β1(τ) = G−1
n2

(τ).

Thus we get

β̂1(τ) = G−1
n2

(τ)− F−1
n1

(τ)
P−−−−−−→

n1,n2→∞
G−1(τ)− F−1(τ) := β1(τ).

Further if model (80) really holds, then G−1(τ) = F−1(τ) + µ and one gets β1(τ) = µ = βLS1

for each τ ∈ (0, 1).
The end of

class 21

(15.5.2025)

Computing regression quantiles22

The optimisation task

min
b∈Rp

n∑
i=1

ρτ (Yi −XT
i b)

can be rewritten with the help of linear programming as the minimisation of the objective

function

τ

n∑
i=1

r+
i + (1− τ)

n∑
i=1

r−i ,

subject to the following constrains

p∑
j=1

Xij bj + r+
i − r

−
i = Yi, i = 1, . . . , n,

r+
i ≥ 0, r−i ≥ 0, i = 1, . . . , n,

bj ∈ R, j = 1, . . . , p.

Note that one can think of r+
i and r−i as the positive or negative part of the i-th residual, i.e.

r+
i =

(
Yi −XT

i b
)

+
, r−i =

(
Yi −XT

i b
)
− .

This can be solved for instance with the help of the simplex algorithm.

22Not done at the lecture.
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6.3 Interpretation of the regression quantiles

Provided F−1
Y |X(τ) = XTβ and the model is correctly specified then one can interpret β̂nk(τ)(

the k-th element of β̂n(τ)
)

as the estimated change of the conditional quantile of the response

when the k-th element of the explanation variable increases by 1.

Intersection of the fitted regression quantiles

Note that it might happen that for a given value of the covariate x and given quantiles

0 < τ1 < τ2 < 1

F̂−1
Y |X=x(τ1) = xTβ̂n(τ1) > xTβ̂n(τ2) = F̂−1

Y |X=x(τ2). (81)

But this is rather strange as we know that the theoretical quantiles for τ1 < τ2 must satisfy

F−1
Y |X=x(τ1) ≤ F−1

Y |X=x(τ2).

Thus if one gets the inequality (81) (we also say that regression quantiles cross) for x from the

support of the covariate, it might indicate that the assumed linear model for the conditional

quantile is not correct.

Transformed response

It is worth noting that if one models the conditional quantile of the transformed response,

that is one assumes that F−1
h(Y )|X(τ) = XTβ for a given increasing transformation h, then

τ = P
(
h(Y ) ≤XTβ |X

)
= P

(
Y ≤ h−1(XTβ) |X

)
,

which implies that F−1
Y |X(τ) = h−1(XTβ). Analogously F−1

Y |X(1 − τ) = h−1(XTβ) for h

decreasing. That is unlike for modelling of conditional expectation (through the least squares

method), here we still have a link between β and the quantile of the original (not transformed)

response F−1
Y |X(τ).

Thus from the practical point of view even if β̂n(τ) is estimated from the response-

transformed data
(
X1

h(Y1)

)
, . . . ,

(
Xn

h(Yn)

)
, one can still estimate the conditional quantile of the

original (not transformed) data F̂−1
Y |X(τ) = h−1

(
XTβ̂n(τ)

)
(for h increasing). On the other

hand if we estimate the conditional expectation of E [h(Y )|X] as XTβ̂n, there is no general

way how to use β̂n to get an estimate of E [Y |X].

A very common and popular transformation is log-transformation, i.e. h(y) = log y. This

results in F−1
Y |X(τ) = eX

Tβ(τ) and eβk(τ) measures how many times the conditional quantile

F−1
Y |X(τ) changes when the k-th coordinate of the covariate is increased by adding one.
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6.4 Inference for regression quantiles

The asymptotic distribution of β̂
(LAD)

n can be heuristically derived by Theorem 12 as follows.

The score function is given by

ψ(x, y; b) = −ψτ (y − xTb) x.

Now put M(b) = E
[
ρτ (Y − XTb) − ρ(Y )

]
, where the random vector

(
Y
X

)
has the same

distribution as
(
Yi
Xi

)
. Then

∂M(b)

∂b
= E

[
ψτ (Y −XTb) (−X)

]
= −E X[τ I{Y >XTb} − (1− τ) I{Y <XTb}

]
= −E X

[
τ − FY |X

(
XTb

)]
.

Thus
∂2M(b)

∂b ∂bT
= E XfY |X

(
XTb

)
XT,

which finally implies that

J(βX(τ)) =
∂2M(b)

∂b ∂bT

∣∣∣
b=βX(τ)

= E
[
XXTfY |X

(
XTβX(τ)

)]
= E

[
XXTfY |X

(
F−1
Y |X(τ)

)]
.

Further as

�(βX(τ)) = var
(
ψ(X, Y ;βX(τ))

)
= τ(1− τ)E XXT,

one gets that under appropriate regularity assumptions

√
n
(
β̂n(τ)− βX(τ)

) d−−−→
n→∞

Np
(
0p,V(τ)

)
, (82)

where

V(τ) =
(
E
[
XXTfY |X

(
F−1
Y |X(τ)

)])−1
τ(1−τ)E XXT

(
E
[
XXTfY |X

(
F−1
Y |X(τ)

)])−1
. (83)

Example 56. Note that in in the situation of Example 53 one gets

fY |X
(
F−1
Y |X(τ)

)
= fε

(
F−1
ε (τ)

)
,

which further implies

E
[
XXTfY |X

(
F−1
Y |X(τ)

)]
= fε

(
F−1
ε (τ)

)
E XXT

and

V(τ) =
τ(1− τ)[

fε
(
F−1
ε (τ)

)]2 (E XXT
)−1

. (84)
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Estimation of asymptotic variance of β̂n(τ)

Note that in general the asymptotic variance matrix (83) of β̂n(τ) is rather complicated and

it is not clear how to estimate it. That is why nonparametric bootstrap is of interest.

If model (79) holds, then the asymptotic variance matrix of β̂n(τ) simplifies considerably

and one gets

avar
(
β̂n(τ)

)
= 1

n

(
E XXT

)−1 τ(1−τ)

f2ε (F−1
ε (τ))

.

The matrix E XXT can be estimated as 1
n

∑n
i=1XiX

T
i . The difficulty is in estimating the

sparsity function s(τ) = 1
fε(F−1

ε (τ))
. In Chapter 4.10.1 of Koenker [2005] it is suggested that

one can use the following estimate

ŝn(τ) =
F̂−1
nε̂ (τ + hn)− F̂−1

nε̂ (τ − hn)

2hn
,

where

F̂nε̂(y) =
1

n

n∑
i=1

I{Yi −XT
i β̂n(τ) ≤ y} =

1

n

n∑
i=1

I{ε̂i(τ) ≤ y}

is the empirical distribution function of the residuals and (the bandwidth) hn is a sequence

going to zero as n → ∞. A possible choice of hn (derived when assuming normal errors

ε1, . . . , εn) is given by

hn = n−1/3 u
2/3
1−α/2

[
1.5ϕ2(uτ )

2u2τ+1

]1/3
,

where ϕ is the density of N(0, 1). For details and other possible choices of hn see Chapter 4.10.1

in Koenker [2005] and the references therein.

As estimating 1
fε(F−1

ε (τ))
is rather delicate, also in this situation the nonparametric boot-

strap23 is of interest.

6.5 Asymptotic normality of sample quantiles24

Suppose that we have a random sample X1, . . . , Xn, where X1 has a cumulative distribution

function F . Note that for a given τ ∈ (0, 1) thanks to Remark 16 one can view the sample

quantile F̂−1
n (τ) as the argument of minimum of a convex function. Thus analogously as in

Chapter 5.4 one can derive that if f(x) (the density of X1) is positive and continuous in a

neighbourhood of F−1(τ), then

√
n
(
F̂−1
n (τ)− F−1(τ)

) d−−−→
n→∞

N
(
0, τ(1−τ)

f2(F−1(τ))

)
.

Literature: Koenker [2005], Sections 2.1, 2.4, 4.2. 4.10. The end of

class 22

(15.5.2025)23Bootstrap and othere resampling methods are in detail explained in the course NMST545 Mathematical

Statistics 4.
24Not done at the lecture. It is assumed that it is known from the bachelor degree.
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7 M-estimators and Z-estimators in robust statistics25

In statistics the word ‘robust’ has basically two meanings.

(i) We say that a procedure is robust, if it stays (approximately/asymptotically) valid even

when some of the assumptions (under which the procedure is derived) are not satisfied.

For instance the standard ANOVA F -statistic is robust against the violation of the

normality of the observations provided that the variances of all the observations are the

same (and finite).

(ii) People interested in robust statistics say that a procedure is robust, if it is not ‘too

much’ influenced by the outlying observations. In what follows we will concentrate on

this meaning of the robustness.

One of the standard measures of robustness is the breakdown point. Vaguely speaking26

the breakdown point of an estimator is the smallest percentage of observations that one has

to change so that the estimator produces a nonsense value (e.g. ±∞ for location or regression

estimator; 0 or +∞ when estimating the scale).

Let θ̂n be an M - or Z-estimator of a parameter θX . Note that thanks to Theorems 11

or 12 (under appropriate assumptions) one has the following representation

θ̂n − θX =
1

n

n∑
i=1

IF (Xi) + oP
(

1√
n

)
,

where IF (x) = −�−1(θX)ψ(x;θX) is called the influence function. Thus if one can ignore

the remainder term oP
(

1√
n

)
, then changing Xi to Xi + ∆ results that the estimates θ̂n

changes (approximately) by
1

n

[
IF (Xi + ∆)− IF (Xi)

]
.

Thus provided that IF (x) is bounded then also this change is hopefully bounded provided

that the term oP
(

1√
n

)
can be neglected.

7.1 Robust estimation of location27

Suppose that we observe a random sample X1, . . . , Xn from a distribution F and we are

interested in characterising the location.

Note that for the sample mean Xn = 1
n

∑n
i=1Xi it is sufficient to change only one observa-

tion to get an arbitrary value of Xn.

25Robustńı statistika
26The precise definition can be found in the course NMST444 Robust statistical methods.
27Robustńı odhad polohy
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On the other hand when considering the sample median m̃n = F̂−1
n (0.5) then one needs to

change at least half of the observations so that one can for instance change the estimator to

±∞.

When deciding between a sample mean and a sample median one has to take into con-

sideration that if the distribution F is not symmetric then Xn and m̃n estimate different

quantities. But when one can hope that the distribution F is symmetric, then both Xn and

m̃n estimate the centre of the symmetry and one can be interested which of the estimators

is more appropriate. By the maximum likelihood theory we know that Xn is efficient if F is

normal while m̃n is asymptotically efficient if F is doubly exponential (i.e. it has a density

f(x) = 1
2σ exp{− |x−θ|σ }).

In robust statistics it is usually assumed that most of our observations follow normal dis-

tributions but there are some outlying values. This can be formalised by assuming that the

distribution function F of each of the observations satisfies

F (x) = (1− η) Φ
(x−µ

σ

)
+ η G(x), (85)

where η is usually interpreted as probability of having an outlying observation and G is a

distribution (hopefully symmetric around µ) of outlying observations. It was found that if η

is ‘small’ then using sample median is too pessimistic (and inefficient). We will mention here

several alternative options.

Before we proceed note that both the sample mean Xn and the sample median m̃n can be

viewed as M -estimators

Xn = arg min
θ∈R

n∑
i=1

(Xi − θ)2 and m̃n = arg min
θ∈R

n∑
i=1

|Xi − θ|. (86)

Huber estimator

This estimator is defined as

θ̂(H)
n = arg min

θ∈R

1

n

n∑
i=1

ρH(Xi − θ),

where

ρH(x) =

{
x2

2 , |x| ≤ k,
k ·
(
|x| − k

2

)
, |x| > k

(87)

and k is a given constant. Note that the ‘score function’ ψH(x) = ρ′H(x) of the estimator is

ψH(x) = ρ′H(x) =

{
x, |x| ≤ k,
k · sign(x), |x| > k.

(88)
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Thus one can see that for x ∈ (−k, k) the function ψH corresponds to a score function of a

sample mean (which is ψ(x) = x) while for x ∈ (−∞, k) ∪ (k,∞) it corresponds to a score

function of a sample median (which is ψ(x) = sign(x)). Thus Huber estimator presents a

compromise between a sample mean and a sample median. So it is not surprising that θ̂
(H)
n

is usually a value between the sample median and the sample mean.

When using Huber estimator one has to keep in mind that in general the identified param-

eter is

θ(H) = arg min
θ∈R

E
[
ρH(X1 − θ)− ρH(X1)

]
.

Thus if the distribution F is not symmetric then E X1 generally does not coincide with

F−1(0.5) and θ(H) lies between E X1 and F−1(0.5).

On the other hand if the distribution F is symmetric, then θ(H) coincides with the centre

of symmetry, i.e. with F−1(0.5) (the median of F ) and also with E X1, if the expectation

exists. It was observed that for the contamination model (85) with G symmetric, Huber

estimator usually performs better than the sample mean as well as the sample median. This

can be proved analytically by showing that for η > 0 and G heavy tailed, then usually

avar
(
θ̂(H)
n

)
< min

{
var(Xn), avar(m̃n)

}
,

where the asymptotic variance avar
(
θ̂

(H)
n

)
is derived in Example 57.

The nice thing about Huber estimator is that its loss function ρ(x; θ) = ρH(x−θ) is convex

(in θ) thus θ̂
(H)
n is not too difficult to calculate and with the help of Theorem 12 one can

derive its asymptotic distribution (see also Example 57).

Example 57. With the help of Theorem 12 one can show that (under appropriate regularity

assumptions)
√
n
(
θ̂(H)
n − θ(H)

) d−−−→
n→∞

N
(
0,

σ2
ψ

γ2

)
,

where

γ =
∂2 E ρH(X1 − θ)

∂θ2

∣∣∣
θ=θ(H)

= F
(
θ(H) + k

)
− F

(
θ(H) − k

)
and

σ2
ψ = var

(
ψH(X1 − θ(H))

)
=

∫ θ(H)+k

θ(H)−k
(x− θ(H))2 dF (x) + k2

[
1−F

(
θ(H) + k

)
+F

(
θ(H) − k

)]
.

Thus avar(θ̂
(H)
n ) =

σ2
ψ

nγ2
.

The choice of the constant k is usually done as follows. Suppose that X1, . . . , Xn follows

N(0, 1). Then one takes the smallest k such that

avar
(
θ̂

(H)
n

)
var
(
Xn

) ≤ 1 + δ,
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where δ stands for the efficiency loss of Huber estimator under normal distributions. For

instance the common choices are δ = 0.05 or δ = 0.1 which corresponds approximately to

k = 1.37 or k = 1.03.

Other robust M/Z-estimators of location

The other most common M/Z-estimators are the following.

(i) Cauchy-pseudolikelihood: ρ(x; θ) = log(1 + (x − θ)2). The problem is that this

function is not convex in θ and the estimating equation

1

n

n∑
i=1

2 (Xi − θ̂n)

1 + (Xi − θ̂n)2︸ ︷︷ ︸
ψ(Xi;θ̂n)

!
= 0

has usually more roots.

(ii) Tukey’s biweight:

ψ(x) =

 x
(

1− x2

k2

)2
, |x| ≤ k,

0, |x| > k.

But also here the corresponding loss function ρ (ψ = ρ′) is not convex.
The expected

end of class 23

(22.5.2025)

7.2 Robust studentized M/Z-estimators of location

The problem is that the M/Z-estimators presented above (except for the sample mean and

the sample median) are not scale equivariant (i.e. θ̂n(cX) 6= c θ̂n(X) for each c ∈ R). That

is why in practice M/Z-estimators are usually defined as

θ̂n = arg min
θ∈R

1

n

n∑
i=1

ρ
(
Xi−θ
Sn

)
, or as

n∑
i=1

ψ
(
Xi−θ̂n
Sn

) !
= 0,

where Sn is an appropriate estimator of scale28, which satisfies Sn(cX) = |c|Sn(X) for each

c ∈ R. The most common estimators of scale are as follows.

Sample standard deviation

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi −Xn)2.

Note that in robust statistics Sn is rather rarely used as it is not robust (i.e. it is sensitive to

outlying observations).

28odhad měř́ıtka
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Interquartile range29

Sn = IQR = F̂−1
n (0.75)− F̂−1

n (0.25),

where F̂n is the empirical distribution function
(
i.e. F̂n(x) = 1

n

∑n
i=1 I{Xi ≤ x}

)
. Some

people prefer to use

S̃n =
F̂−1
n (0.75)− F̂−1

n (0.25)

Φ−1(0.75)− Φ−1(0.25)
,

as it is desired that S̃n estimates σ, when X1, . . . , Xn is a random sample from N(µ, σ2).

Note that the breakdown point of interquartile range is 0.25.

Median absolute deviation30

This measure is given as the median absolute deviation from the median, i.e.

MAD = med1≤i≤n{|Xi − F̂−1
n (0.5)|},

or its modification

M̃AD =
MAD

Φ−1(0.75)
,

so that it estimates σ for random samples from N(µ, σ2).

Note that the breakdown point of this estimator is 0.50.

Remark 17. Note that due to the studentization the functions ρ(x; θ) = ρ
(
x−θ
Sn

)
and ψ(x; θ) =

ψ
(
x−θ
Sn

)
(when viewed as functions of x and θ) are random. Thus one can use neither Theo-

rem 11 nor Theorem 12 to derive the asymptotic distribution of studentized M/Z-estimators.

Nevertheless, if Sn
P−−−→

n→∞
S(F ) and the distribution F is symmetric, then (under some

regularity assumptions) it can be shown that the asymptotic distribution of studentized Z/M -

estimators is the same as the asymptotic distribution of M/Z-estimators with ρ(x; θ) =

ρ
(
x−θ
S(F )

)
and ψ(x; θ) = ψ

(
x−θ
S(F )

)
for which one can (usually) use either Theorem 11 or Theo-

rem 12.

7.3 Robust estimation in linear models

Suppose we observe independent random vectors
(
Y1
X1

)
, . . . ,

(
Yn
Xn

)
each of them having the

same distribution as the generic random vector
(
Y
X

)
.

29mezikvartilové rozpět́ı
30mediánová absolutńı odchylka
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7.3.1 The least squares method (LS)

This method results in the estimator

β̂
(LS)

n = arg min
b∈Rp

n∑
i=1

(
Yi −XT

i b
)2

=

(
1

n

n∑
i=1

XiX
T
i

)−1( 1

n

n∑
i=1

XiYi

)
.

Note that if Xik 6= 0 then by changing Yi one can arrive at any arbitrary value of β̂nk.

From Example 51 we know that the method of the least squares identifies the parameter

β
(LS)
X =

[
E XXT

]−1
E XY

and it holds that

√
n
(
β̂

(LS)

n − β(LS)
X

) d−−−→
n→∞

Np(0,V), where V =
[
E XXT

]−1 [
E σ2(X)XXT

] [
E XXT

]−1
,

with σ2(X1) = E
[
(Y1−XT

1βX)2|X1

]
. Further provided E

[
Y |X

]
= XTβ0, then β

(LS)
X = β0

and σ2(X) = var(Y |X).
The expected

end of class 24

(22. 5. 2025)

7.3.2 Method of the least absolute deviation (LAD)31

This method is usually considered as a robust alternative to the least squares methods. The

estimate of the regression parameter is given by

β̂
(LAD)

n = arg min
b∈Rp

1

n

n∑
i=1

∣∣Yi −XT
i b
∣∣.

Thus LAD method is a special case of a quantile regression for τ = 1/2. Thus the LAD

method aims at modelling of the conditional median, i.e. s med[Y |X] = F−1
Y |X(0.5) as XTβ.

So if indeed med[Y |X] = XTβ0, then β
(LAD)
X = β0.

The asymptotic distribution of β̂
(LAD)

n follows as a special case of (82) with τ = 1/2 as

√
n
(
β̂

(LAD)

n − β(LAD)
X

) d−−−→
n→∞

Np(0p,V),

where

V =
1

4

(
E
[
XXTfY |X

(
F−1
Y |X(0.5)

)])−1
E XXT

(
E
[
XXTfY |X

(
F−1
Y |X(0.5)

)])−1
.

Regarding the robustness of the least absolute deviation estimator note that the asymptotic

representation (77) together with the derivations in Chapter 6.4 yields that

β̂
(LAD)

n −β(LAD)
X =

(
E
[
XXTfY |X

(
F−1
Y |X(0.5)

)])−1 1

n

n∑
i=1

Xi
sign

(
Yi −XT

i β
(LAD)
X

)
2

+oP
(

1√
n

)
.

31Metoda nejmenš́ıch absolutńıch odchylek, mediánová regrese
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Thus one can expect that the change of Yi has only a bounded effect on β̂
(LAD)

n . On the other

hand note that the change of Xi has an unbounded effect on β̂
(LAD)

n . Thus LAD method is

(typically) robust with respect to the response Yi but not with respect to the regressors Xi.

Example 58. Note that in in the situation of Example 53 one gets

E [Y |X] = β0 + βTX̃ + E ε, med(Y1 |X1) = β0 + X̃
T

1β + F−1
ε (0.5)

and thus the LS method and the LAD method identify respectively

β
(LS)
X =

(
β0 + E ε

β

)
, β

(LAD)
X =

(
β0 + F−1

ε (0.5)

β

)
. (89)

Thus both methods identify the same slope β.

Further the asymptotic distributions are given by

√
n
(
β̂

(LS)

n − β(LS)
X

) d−−−→
n→∞

Np
(
0, σ2

ε

(
E XXT

)−1
)
, σ2

ε = var(ε), (90)

√
n
(
β̂

(LAD)

n − β(LAD)
X

) d−−−→
n→∞

Np

(
0, 1

4
[
fε
(
F−1
ε (0.5)

)]2 (E XXT
)−1
)
. (91)

Now comparing the asymptotic variances one can see that the least absolute deviation

method is favourable if
1[

4fε
(
F−1
ε (0.5)

)]2 < var(ε).

7.3.3 Huber estimator of regression

Analogously as Huber estimator of location is a compromise between a sample mean and a

sample median, Huber estimator of regression is a compromise between LS and LAD. Put

β̂
(H)

n = arg min
b∈Rp

1

n

n∑
i=1

ρH
(
Yi −XT

i b
)
,

where ρH is defined in (87). Generally, it is difficult to interpret what is being modelled with

Huber estimator of regression (it is something between E (Y |X) and med(Y |X)). Note that

it identifies

β
(H)
X = arg min

b∈Rp
E ρH(Y −XTb).

Equivalently β
(H)
X solves

E
[
ψH
(
Y −XTβ

(H)
X

)
X
] !

= 0p,

where ψH is defined in (88).
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Analogously as in Example 57 one can derive that under appropriate assumptions

√
n
(
β̂

(H)

n − β(H)
X

) d−−−→
n→∞

Np(0p,V), with V = �−1(β
(H)
X )�(β

(H)
X )�−1(β

(H)
X ),

where

�
(
β

(H)
X

)
= EX

[
FY |X(XTβ

(H)
X + k)− FY |X(XTβ

(H)
X − k)

]
XXT

and

�
(
β

(H)
X

)
= EX

[
XXT var

(
ψ(Y −XTβ

(H)
X )|X)

]
.

Regarding the robustness properties the influence function is given by

IF (x, y) =
[
�
(
β

(H)
X

]−1
ψH
(
y − xTβ

(H)
X

)
x,

thus the estimator is robust in response but not in the covariate.

Example 59. Note that in in the situation of Example 53 one gets that β
(H)
X =

(β(H)
X0

β̃
(H)
X

)
solves

E
[
ψH
(
β0 + X̃

T
β + ε− β(H)

X0 − X̃
T
β̃

(H)

X

)
X
] !

= 0p.

Thus β
(H)
X identifies the following parameter

β
(H)
X =

(
β0 + θ(H)

β

)
,

where θ(H) solves E ψH(ε − θ(H))
!

= 0. So if model (79) holds then the interpretation of the

regression slope coefficient (β) is the same for each of the methods described above (LS, LAD,

Huber regression).

Further the asymptotic variance matrix simplifies to

V =
σ2
ψ

γ2

(
E XXT

)−1
, (92)

where

γ = Fε(θ
(H) + k)− Fε(θ(H) − k)

and

σ2
ψ =

∫ θ(H)+k

θ(H)−k
(x− θ(H))2 dFε(x) + k2

(
1− Fε(θ(H) + k) + Fε(θ

(H) − k)
)
.

Using (90), (91) and (92) one sees that to compare the efficiency of the estimators β̂
(LS)

n ,

β̂
(LAD)

n and β̂
(H)

n it is sufficient to compare var(ε), 1
4f2ε (F−1

ε (0.5))
and

σ2
ψ

γ2
.
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7.3.4 Studentized Huber estimator of regression

Analogously as in Chapter 7.2 in practice the studentized Huber estimator is usually used.

This estimator is defined as

β̂n = arg min
b∈Rp

1

n

n∑
i=1

ρH

(
Yi−XT

i b
Sn

)
,

where Sn is an estimator of scale of εi. For instance one can take MAD or IQR calculated

from the residuals from LAD regression ε̂i = Yi −XT
i β̂

(LAD)

n .

Inference:

� With the help of Theorem 12 one can show the asymptotic normality of β̂n of the

(non-Studentized) Huber estimator.

� If ‘strict linear model’ (79) holds, then it can be shown, that the estimate of the scale

influences only the asymptotic distribution of the estimate of the intercept and not of

the slope.

Literature: Maronna et al. [2006] Chapters 2.1-2.2 and Chapters 4.1-4.4.
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Appendix

Inverse function theorem

The following theorem is sometimes also called the theorem about the local diffeomorphism.

It follows easily from the implicit function theorem applied to the function g(x,y) = x−f(y).

Theorem A13. Let f : Rn → Rn have continuous first order partial derivatives in a neigh-

bourhood of the point a ∈ Rn and the Jacobi matrix Df (a) is a non-singular matrix. Then

there exist open neighbourhoods U of the point a and V of the point f(a) such that f is a

bijection of U on V . Further there exists an inverse function f−1 on V with the continuous

first order partial derivatives.

Lemma about the distribution of a quadratic form

The following lemma can be found as Theorem 4.16 in Anděl [2007].

Lemma A6. Let Z ∼ Np(0p,V), where V is p× p matrix. Let B be a positively semidefinite

matrix such that BV is an idempotent (nonzero) matrix. Then ZTBZ ∼ χ2
tr(BV).

Banach fixed point theorem

Definition. Let (P, ρ) be a metric space. Then a map T : P 7→ P is called a contraction

mapping on P if there exists q ∈ [0, 1) such that for all x, y ∈ P

ρ
(
T (x), T (y)

)
≤ qρ(x, y).

Theorem A14. Let (P, ρ) be a non-empty complete metric space with a contraction mapping

T : P 7→ P . Then T admits a unique fixed-point x∗ ∈ P (i.e. T (x∗) = x∗).

Bayes theorem for densities

Theorem A15. Suppose that X = (X1, . . . , Xk)
T and Z = (Z1, . . . , ZG)T be random vectors

defined on the same probability space. Let fX and fZ be the densities of X and Z respectively

and fX|Z be the conditional density of X given Z. Then the conditional density of Z given

X equals

fZ|X(z|x) =


fX|Z(x|z)fZ(z)

fX(x) , for fX(x) > 0,

0, for fX(x) = 0.

Proof. The proof follows from the fact that fX,Z(x, z) = fX|Z(x|z)fZ(z) is the joint density

of
(
X
Z

)
and then by the definition of the conditional density. For details see e.g. Chapter 3.5

of Anděl [2007].
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