
Uniform asymptotics for S- and MM-regression estimators

Running title: “Uniform asymptotics for robust regression”

Marek Omelka∗ and Mat́ıas Salibián-Barrera†

June 5, 2008

Abstract

In this paper we find verifiable regularity conditions to ensure that S-estimators of scale

and regression and MM-estimators of regression are uniformly consistent and uniformly asymp-

totically normally distributed over contamination neighbourhoods. Moreover, we show how to

calculate the size of these neighbourhoods. In particular, we find that, for MM-estimators com-

puted with Tukey’s family of bisquare score functions, there is a trade-off between the size of

these neighbourhoods and both the breakdown point of the S-estimators and the leverage of

the contamination that is allowed in the neighbourhood. These results extend previous work of

Salibian-Barrera and Zamar for location-scale to the linear regression model.
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1 Introduction

Many robust estimators have been proposed in the literature since Huber’s seminal paper (Huber,

1964). Unfortunately, interest on inference methods based on robust estimators seems to have

fallen behind. Generally, robust inference relies on the asymptotic distribution of the estimator of
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interest. However, many asymptotic results available in the robustness literature require regularity

conditions that are difficult to verify in practice, or that may not be valid precisely when robust

methods are more appropriate. Typical regularity conditions under which asymptotic properties

of robust estimators have been studied include: symmetric errors (see for example Bickel, 1975;

Maronna and Yohai, 1981; Huber, 1981; Simpson et. al, 1992; Simpson and Yohai, 1998); known

error scale (e.g. Huber, 1964; Markatou and Hettmansperger, 1990); or conditions that involve the

expected value of the estimating equations under the unknown distribution of the data (e.g. Huber,

1981).

This type of regularity conditions limits the applicability of these results in practice. In partic-

ular, results derived under the assumption of symmetric errors only apply to uncontaminated data

or to the rather uncommon situation of outliers that are symmetrically distributed. Furthermore,

symmetry conditions are in general very hard to verify and when the distribution of the errors is

not symmetric the asymptotic properties of location or regression robust estimators are affected

in a non-trivial way by the choice of the scale estimate (Carroll, 1978, 1979; Rocke and Downs,

1981; Salibian-Barrera, 2000; Croux et al. 2003). By proceeding as if the formulae obtained un-

der symmetry assumptions hold we may be underestimating the variability of the estimate. This

in turn may lead to lower than nominal confidence levels for intervals and to wrong sample size

calculations.

Since according to the robustness model one does not know the actual distribution of the data, it

is desirable to have robust estimators with asymptotic properties that hold uniformly over some set

of plausible distributions. Results of this type are important from both a practical and theoretical

point of view. Since statistical inference based on robust estimators generally relies on asymptotic

approximations to the estimators’ distribution, asymptotic approximations that hold uniformly on

a set of distributions would guarantee that the quality of the asymptotic approximation (and hence

that of the resulting inference) does not depend on the particular data distribution within this set.

We refer the interested reader to Davies (1993, 1998) for a more detailed discussion on this topic.

For the location-scale model some results on uniform asymptotic properties exist in the litera-

ture. Hampel (1971) showed that under certain regularity conditions, M-location estimators have

uniform asymptotic properties over Prokhorov neighbourhoods. These are the first asymptotic re-

sults for robust estimators that hold uniformly over a set of distribution functions. Unfortunately
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the size of the neighbourhood where these uniform asymptotics hold is unknown. Huber (1967,

1981) shows that when the scale is known, M-location estimates are asymptotically normal and

the approximation is uniform over the set of symmetric distribution functions with no mass on the

points where the estimating equation is not differentiable. Uniform convergence of simultaneous

estimators of location and scale with Huber’s Proposal 2 has been studied by Clarke (1980). In

Clarke (1986) it is shown that Huber’s Proposal 2 estimates with nonsmooth estimating equations

fall in the framework of Hampel (1971).

Davies (1998) constructed M-location estimates with simultaneous scale estimate (Huber Pro-

posal II) that are locally asymptotically normal. Davies’ results are “locally uniform”, that is, for

each distribution function there exists a neighbourhood of distributions where the convergence holds

uniformly. Unfortunately, the size of these neighbourhoods is unknown. Moreover, the regularity

conditions needed for Davies’s construction include that the score functions used in the estimating

equations are strictly monotone. Martin and Zamar (1993) showed that Huber’s Proposal 2 esti-

mates have larger asymptotic bias than the estimates that use a fixed ad-hoc scale. Furthermore,

Berrendero and Zamar (1999) proved that strictly monotone score functions negatively affect the

estimate’s breakdown rate. From a practical point of view this means that Huber Proposal II es-

timates with strictly monotone score functions may have considerably larger asymptotic bias than

other robust estimators.

Clarke (2000) showed that certain M-location estimates [including the simultaneous location and

scale estimation proposed in Heathcote and Silvapulle (1981)] are continuous over full Prokhorov

neighbourhoods of the parametric model. It follows that these estimates have uniform asymptotic

behaviour over Prokhorov neighbourhoods. Unfortunately, as in Hampel (1971) and Davies (1998),

the size of these neighbourhoods is unknown.

More recently, Salibian-Barrera and Zamar (2004) proved that M-estimators of location com-

puted with the M-estimator of scale associated with an S-estimator of location (Rousseeuw and

Yohai, 1984) are consistent and asymptotically normally distributed uniformly over contamina-

tion neighbourhoods. Unlike previous results, the size of the neighbourhoods where these uniform

asymptotic results hold can be calculated. Salibian-Barrera and Zamar (2004) found that there

is a trade-off between the breakdown point of the S-estimator and the size of the neighbourhood

where uniform asymptotics hold. For contamination neighbourhoods of the form Hε0 in (2) these
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range from ε0 = 0.11 for estimators with 50% breakdown point to ε0 = 0.25 for estimators with

25% breakdown point. See also Berrendero and Zamar (2006) for similar results for M-estimators

of location computed with a generalized S-estimator of scale (Croux et al. 1994).

In this paper we explore whether and how the results of Salibian-Barrera and Zamar (2004) can

be extended to the linear regression model. We obtain sufficient regularity conditions that ensure

uniform asymptotic properties for S-regression and scale estimators (Rousseeuw and Yohai, 1984)

and MM-estimators (Yohai, 1987) and we compute lower bounds for the size of the neighbourhoods

where these results hold. Our results also show one limitation of the extension from the location-

scale model to the linear regression one, where we now find that the trade-off between the size

of the contamination neighbourhoods where uniform asymptotic results hold involves not only the

breakdown point of the estimators but also the maximum leverage of outliers that are present in

the neighbourhood. Not surprisingly, the size of these neighbourhoods for linear regression models

is smaller than those for the location-scale model.

The rest of the paper is organized as follows. Section 2 contains some basic definitions. The

uniform consistency of the S-scale estimator is discussed in Section 3, while Section 4 deals with

the uniform consistency of the S-regression estimator. Their uniform asymptotic distributions are

derived in Section 5. MM-estimators are considered in Section 6 while Section 7 contains some

concluding remarks. Finally, all proofs are given in Section 8.

2 Definitions

Consider the usual regression model with random carriers where we observe i.i.d. random vectors

(Yi,Xi) ∈ Rp+1, i = 1, . . . n, where Yi ∈ R and Xi ∈ Rp satisfy

Yi = θT
0 Xi + ui, i = 1, . . . , n , (1)

ui are random errors independent from the covariates Xi, and θ0 ∈ Rp is the parameter of interest.

Let G0(x) and F0(u) be the distribution of the carriers Xi and the errors ui, respectively. Then the

distribution of (Yi,Xi) is given by H0(y,x) = G0(x) F0(y − θT
0 x). We are concerned with the case

where a certain proportion of the observations may not follow model (1) above. Thus, we will only

assume that the distribution H of the observed data belongs to a contamination neighbourhood of
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H0 of size ε0. More precisely, we will assume that H ∈ Hε0 where

Hε0 = {H ∈ D : H = (1− ε)H0 + εH∗, ε ∈ [0, ε0]} , (2)

D is the set of all distribution functions, H∗ is arbitrary and ε0 < 0.5.

In what follows we will focus on S- and MM-regression estimators (see Rousseeuw and Yohai

(1984) and Yohai (1987) respectively). MM-estimates are based on two loss functions ρ0 and

ρ1, which determine the breakdown point and the efficiency of the estimate, respectively. More

precisely, let σ̂n be a scale S-estimate. That is, σ̂n satisfies:

σ̂n = min
θ∈Rp

σ̂n(θ) , (3)

where σ̂n(θ) is implicitly defined by the equation

1
n

n∑

i=1

ρ0

(
yi − x′iθ
σ̂n(θ)

)
= b , (4)

where

A.1 ρ0 is even, continuous, nondecreasing on [0,∞), ρ0(0) = 0 and supu∈R ρ0(u) = 1.

To ensure consistency of σ̂n under the central model, we choose b = EF0 [ρ0(u1)]. Moreover, in what

follows we will assume that:

A.2 ε0 < EF0 [ρ0(u1)] = b < 1− ε0 ,

where ε0 is the size of the contamination neighbourhood (2). The breakdown point of σ̂n and of θ̃

is given by min(b, 1− b).

For future reference, let θ̃n be the S-regression estimator, i.e.

θ̃n = arg min
θ∈Rp

σ̂n(θ) . (5)

The computation of S-regression estimators is generally difficult. Recent advances in this direction

include Salibian-Barrera and Yohai (2006) and Salibian-Barrera, Willems, and Zamar (2008).

Let ρ1 : R → R+ be such that ρ1(u) ≤ ρ0(u) for all u ∈ R and supu ρ1(u) = supu ρ0(u). The

MM-regression estimator θ̂n is defined as any local minimum of f : Rp → R+ defined by

f(θ) =
1
n

n∑

i=1

ρ1

(
yi − x′iθ

σ̂n

)
,
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such that f(θ̂n) ≤ f(θ̃n). For technical reasons we will choose the global minimum of f(θ) as our

MM-regression estimator. Since these estimators are affine equivariant, without loss of generality,

in what follows we will assume that θ0 = 0.

The consistency and asymptotic distribution of MM-estimates when the observed data follow

the central model (1) has been studied by Yohai (1987) for the case of random covariates, and by

Salibian-Barrera (2006) for fixed designs. Consistency and asymptotic distribution of S-estimators

has been studied by Rousseeuw and Yohai (1984), Davies (1990) and Salibian-Barrera (2006).

3 Uniform consistency of S-estimators

In this section we find sufficient conditions to ensure that the S-scale estimator σ̂n defined in (3)

is uniformly consistent over the contamination neighbourhood Hε0 . This result, together with the

uniform consistency of the S-regression estimator studied in Section 4, is needed to obtain the

uniform weak convergence of S-estimators in Section 5 below.

The uniform consistency of the S-scale estimator holds under relatively weak regularity condi-

tions. These apply to the function ρ0 used in the estimating equations and to the central distribution

H0 of the contamination neighbourhood Hε0 .

In what follows we will assume that

F.1 the central distribution of the errors F0 is absolutely continuous with an even, unimodal and

positive density function over the real line.

By assumptions A.1, A.2 and F.1, for each θ ∈ Rp and H ∈ Hε0 we can find σ(H, θ) that satisfies

EH

[
ρ0

(
Y1 − θTX1

σ(H, θ)

)]
= b . (6)

Hence, for each θ ∈ Rp we define a functional σ(·,θ) : F 7→ R+, with domain F which we assume

includes Hε0 . The associated S-scale functional σ(·) : F 7→ R+ can then be defined as

σ(H) = inf
θ∈Rp

σ(H, θ) , (7)

and the corresponding S-regression functional θ̃(·) : F 7→ Rp is given by

θ̃(H) = arg inf
θ∈Rp

σ(H, θ) . (8)
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Under certain regularity conditions (see references above) the S-estimators of regression and scale

are consistent to the functionals θ̃ (H) and σ (H), respectively.

For each s > 0 and θ ∈ Rp consider the function

h(s,θ) =
∂

∂s

{
EH0 ρ0

(
Y1 − θTX1

s

)}
, (9)

and assume that

B.1 the function h(s,θ) is continuous and h(s,θ) < 0 for all s > 0 and θ ∈ Rp.

Assumption B.1 is satisfied if we assume that the errors in (1) satisfy F.1 above and the function ρ′0

is bounded and continuous.

Finally, we need the following regularity condition for the central distribution of the covariates:

X.1 PG0

[
θTX1 = 0

]
= 0 for every θ 6= 0.

Remark 1 Note that assumptions B.1, F.1 and X.1 only impose conditions on the central dis-

tribution H0 of Hε0 and not on the distribution H of the observed (and potentially contaminated)

data.

One of the main results of this section shows that, under these conditions, σ̂n in (3) converges

to σ(H) uniformly on Hε0 . We need the following definition to make this statement precise:

Definition 1 – Uniform consistency – We say that the sequence of estimates τ̂n is uniformly

consistent to the functional τ (F ) over the contamination neighbourhood Hε0 if for all δ > 0

lim
m→∞ sup

F∈Hε0

PF

[
sup
n≥m

|τ̂n − τ (F )| > δ

]
= 0 ,

where τ (F ) is the a.s. limit of τ̂n for an i.i.d. sequence of observations with distribution function

F . We will denote this type of convergence by τ̂n
ε0−→ τ .

The following theorem extends the results of Martin and Zamar (1993) for the location-scale

model to the linear regression case.

Theorem 1 Let ρ0 : R → R+ satisfy A.1 and A.2 and assume that X.1 and B.1 hold. Then

σ̂n
ε0−→ σ over Hε0.
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4 Uniform consistency of the S-regression estimator

The uniform consistency of the S-regression estimators requires more conditions than that of the

S-scale estimators. Note, however, that our results are constructive and allow us to compute the

size of the neighbourhoods Hε0 where these results hold.

For each H ∈ Hε0 , let the S-regression functional θ̃(H) be defined by

θ̃(H) = arg min
θ∈Rp

σ(H, θ) ,

where σ(H, θ) is given in (6). To simplify the notation, for each s > 0 and θ ∈ Rp let

g(H, θ, s) = EH ρ0

(
Y1 − θTX1

s

)
. (10)

For our main result in this section we need the following regularity conditions (see also Salibian-

Barrera, 2000).

U.1 For any 0 < s1 < s2 < ∞ the function g(H, θ, s) is continuous in s ∈ [s1, s2] uniformly in

θ ∈ Rp and H ∈ Hε0 . That is: for any ε̃ > 0 there exists a δ = δ(ε̃) > 0 such that |s′−s′′| < δ

implies
∣∣g(H, θ, s′)− g(H, θ, s′′)

∣∣ < ε̃, ∀θ ∈ Rp, ∀H ∈ Hε0 .

U.2 For each H ∈ Hε0 , the function fH(θ) = g(H, θ, σ(H)) has a unique minimum θ̃(H).

U.3 For every δ > 0, let ε̃(δ,H) be defined by the property

inf
‖θ−θ̃(H)‖>δ

g(H,θ, σ(H)) ≥ g(H, θ̃(H), σ(H)) + ε̃(δ,H),

where θ̃(H) is the global minimum of g(H, θ, σ(H)), then ε̃(δ,H) satisfies

ε̃(δ) = inf
H∈Hε0

ε̃(δ,H) > 0 .

Note that, as expected, these conditions involve the distributions H over the whole contamination

neighbourhood Hε0 . The following theorem shows that under these conditions, the S-estimator

θ̃n in (5) is uniformly consistent over Hε0 . Section 4.1 below discusses sufficient and verifiable

conditions for U.1 to U.3 to hold. Moreover, we calculate lower bounds for ε0 where U.1-3 hold.

Theorem 2 If U.1 to U.3 and the assumptions of Theorem 1 hold, then θ̃n
ε0−→ θ̃.
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4.1 Verification of conditions U.1-3

In this section we discuss sufficient conditions for U.1 to U.3 to hold for S-regression estimates as

in (5), when the loss function ρ0 belongs to Tukey’s bi-square family (Beaton and Tukey, 1974):

ρd(u) =





3 (u/d)2 − 3 (u/d)4 + (u/d)6 if |u| ≤ d ,

1 if |u| > d ,
(11)

where d > 0 is a user-chosen tuning constant. Recall that g(H, θ, s) = EH [ρ0((Y − θ′X)/s)].

Condition U.1 - If ρ0 belongs to the family (11), then using the mean value theorem we have

that

∣∣∣∣g(H, θ, s′)− g(H, θ, s′′)
∣∣∣∣ ≤

∣∣∣∣∣−EH

[
ρ′0

(
Y1 − θTX1

s∗

)(
Y1 − θ′X1

s∗

)]
(s′ − s′′)

s∗

∣∣∣∣∣

≤
∣∣∣∣
s′ − s′′

s1

∣∣∣∣ sup
x

∣∣x ρ′0(x)
∣∣ .

Since ρ′0(u) = 0 for |u| > d and bounded for |u| ≤ d we have supx |x ρ′0(x)| < ∞, and thus U.1

holds.

Conditions U.2 & U.3 - Since these conditions are closely related we will consider them jointly.

First, we show that we only need to verify them for θ in a compact set. Specifically: in the proof

of Theorem 1 we show that there exist K < ∞ and η > 0, such that for all H ∈ Hε0 we have

σ(H) = inf
‖θ‖≤K

σ(H, θ) ,

and

inf
‖θ‖>K

EH ρ0

(
Y1 − θTX1

σ(H)

)
≥ (1− ε0) EH0 ρ0

(
Y1 − θTX1

σ(H,0)

)
> b + η.

It follows that the minimum of g(H, θ, σ(H)) as a function of θ is attained in the ball ΘK = {θ :

‖θ‖ ≤ K}.
Hence, we see that to verify U.2 it is sufficient to show that, for all H ∈ Hε0 , the function

g(H,θ, σ(H)) is convex on ΘK . Alternatively, it is sufficient to show that the matrix of second

derivatives of g(H, θ, σ(H)) is positive definite on ΘK . Since σ(H) is unknown but there exists

an interval [s1, s2] such that σ(H) ∈ [s1, s2] (see Lemma 1), we can verify this condition only for
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θ ∈ ΘK and s ∈ [s1, s2]. Differentiating with respect to θ twice we obtain

s2 [∇2
θg(H,θ, s)] = EH

[
ρ′′0

(
Y1 − θTX1

s

)
X1XT

1

]

= (1− ε)EH0

[
ρ′′0

(
Y1 − θTX1

s

)
X1XT

1

]
+ (1− ε) EH∗

[
ρ′′0

(
Y1 − θTX1

s

)
X1XT

1

]

= (1− ε)A(H0, θ, s) + εA(H∗, θ, s) , (12)

where A(H, θ, s) = EH [ρ′′0((Y1−θ′X1)/s)X1X′
1]. Thus, we need to show that (12) is positive definite

for all H ∈ Hε0 , θ ∈ ΘK and s ∈ [s1, s2]. It is enough to show that the minimum eigenvalue of this

matrix is positive for all H ∈ Hε0 , θ ∈ ΘK and s ∈ [s1, s2]. A sufficient condition is then that the

smallest eigenvalue of the matrix A(H0,θ, s) is greater than the largest eigenvalue of the matrix

εA(H∗, θ, s)/(1− ε). Equivalently, we need to verify that

inf
‖θ‖≤K

inf
s1≤s≤s2

λMIN

(
EH0

[
ρ′′0

(
Y1 − θTX1

s

)
X1XT

1

])

>
(1− ε0)

ε0
sup

x
ρ′′0(x)− sup

H∗
λMAX

(
EH∗

[
X1XT

1

])
, (13)

where λMIN(A) and λMAX(A) denote the minimum and maximum eigenvalue of the matrix A,

respectively. Therefore, condition (13) ensures that the functions f(θ) = g(H, θ, s) are strictly

convex on ΘK and thus that they have a unique global minimum in this set, and condition U.2

holds. Furthermore, a Taylor expansion of f(θ) = g(H, θ, σ(H)) around θ(H) shows that (13) is

also sufficient for U.3.

Unfortunately, condition (13) is rather strong. In the rest of this section we show how it can

be relaxed. The main idea is to note that we do not need to verify (13) for all combinations of

θ ∈ ΘK and s ∈ [s1, s2]. For each θ ∈ ΘK let

A(θ) = {sH(θ) : g(H, θ, sH(θ)) = b, H ∈ Hε0}.

By a standard argument we can show that A(θ) ⊂ [s1(θ), s2(θ)], where s1(θ) and s2(θ) solve

equations

(1− ε0) EH0 ρ0

(
Y1 − θTX1

s1(θ)

)
= b, and (1− ε0) EH0 ρ0

(
Y1 − θTX1

s2(θ)

)
= b− ε0 ,

respectively. It is trivial but useful to notice that instead of s2(θ) it is sufficient to take s∗2(θ) =

min{s2(θ), s2(0)}. This implies that while checking condition (13) for a particular value of θ we can
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consider only those values of s ∈ [s1(θ), s∗2(θ)]. Furthermore, if θ is a minimum of g(H, θ, σ(H)),

then it satisfies

(1− ε) EH0

[
ρ′0

(
Y1 − θTX1

sH(θ)

)
X1

]
+ ε EH∗

[
ρ′0

(
Y1 − θTX1

sH(θ)

)
X1

]
= 0 , (14)

or, equivalently

(1− ε) EH0

[
ρ′0

(
Y1 − θTX1

sH(θ)

)
X1

]
= −ε EH∗

[
ρ′0

(
Y1 − θTX1

sH(θ)

)
X1

]
.

This gives us for all s ∈ [s1(θ), s2(θ)] the following coordinate-wise inequality
∣∣∣∣∣EH0

[
ρ′0

(
Y1 − θTX1

s

)
X1

]∣∣∣∣∣ ≤
ε0

1− ε0
sup

x
|ρ′0(x)| EH∗ |X1| , (15)

and it follows that equation (14) cannot be satisfied if any component of the left-hand side of (15)

is greater than the corresponding coordinate on the right-hand side. Hence, (13) only needs to be

verified for those θ for which (15) holds.

We verified (13) numerically when the error and covariates in the central model are independent

standard normal random variables. The model includes an intercept and one and two covariates

(p = 1 and p = 2 respectively). We used functions ρ0(u) in Tukey’s bisquare family (11) with tuning

constants d that yield S-estimators with breakdown points 25, 30, 35, 40, 45 and 50%. We considered

contamination neighbourhoods for which λMAX , the largest eigenvalue of EH∗ [X1XT
1 ], is less than

2, 5, 10, 15 and 20. Note that when p = 1 the outliers are such that EH∗ |X(1)
1 | ≤ √

2λMAX − 1,

while for p = 2 we have EH∗ |X(1)
1 | + EH∗ |X(2)

1 | ≤ √
3λMAX − 1, where X

(j)
1 denotes the j-th

coordinate of X1. In other words, we only allow outliers with bounded leverage.

For each tuning constant d, and for each value of λMAX Table 1 contains lower bounds for the

proportion ε∗(d) of this type of contaminations for which (13) holds for p = 1 and p = 2. We

see that the size of the sets of distributions where uniform asymptotic properties hold decreases

both with the breakdown point of the estimator and with the leverage of the contamination that

is allowed.

Remark 2 Note that the lower bounds for the contamination neighbourhoods in Table 1 are smaller

than those for location-scale models found in Salibian-Barrera and Zamar (2004). One reason for

this difference is that model (2) allows for simulataneous contamination in both the errors ui and the

covariates Xi. This may introduce dependence between the covariates and errors, which violates
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ε0 ε0

BP λMAX p = 1 p = 2 BP λMAX p = 1 p = 2

25% 2 0.14 0.08 40% 2 0.08 0.05

5 0.07 0.05 5 0.04 0.03

10 0.04 0.03 10 0.02 0.02

15 0.03 0.02 15 0.01 0.01

20 0.02 0.02 20 0.01 0.01

30% 2 0.12 0.07 45% 2 0.06 0.04

5 0.06 0.04 5 0.03 0.02

10 0.03 0.03 10 0.02 0.01

15 0.02 0.02 15 0.01 0.01

20 0.02 0.01 20 0.00 0.01

35% 2 0.09 0.06 50% 2 0.05 0.03

5 0.05 0.04 5 0.02 0.02

10 0.03 0.02 10 0.01 0.01

15 0.02 0.01 15 0.01 0.01

20 0.01 0.01 20 0.00 0.00

Table 1: Lower bounds for the size of the contamination neighbourhood Hε0 where S-estimators

with breakdown points between 25% and 50% calculated with functions ρ0(u) in Tukey’s bisquare

family are uniformly consistent. The errors and covariates have independent standard normal

distributions at the centre of the contamination neighbourhood Hε0 . The columns p = 1 and p = 2

correspond to models with an intercept and one and two covariates, respectively.
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one of the classical assumption of regression analysis and results in uniqueness problems for S-

estimators. However, this changes if the contamination does not introduce dependence between the

errors and the covariates, and the model (1) contains an intercept. To see this, suppose that the

observations satisfy

Yi = α0 + βT
0 Xi + ui, i = 1, . . . , n , (16)

and that the distribution of the vector (Yi,X) can be written as H(y,x) = G(x) F (y−α0 + βT
0 Xi),

where G ∈ G, for some set of distributions G, and

F ∈ Fε0 = {Fε = (1− ε)F0 + εF ∗, ε ∈ [0, ε0]} .

Then, we have

EH ρ0

(
Y1 − a− bTX1

s

)
= EG EF ρ0

(
α0 + βT

0 X1 + u1 − a− bTX1

s

)
,

which implies that β̃(H) = β0 and the problem of uniqueness of S-regression functional reduces to

the problem of uniqueness of S-location functional in a location-scale problem. Thus, provided that

the family of distributions G satisfies X.1, X.2, N.2 and (21) below, we obtain the same lower

bounds as in the location-scale model. We conjecture that the same is true for regression models

with fixed designs, however a proper study of those models is beyond the scope of this paper.

5 Uniform asymptotic normality of S-estimators

The main result in this section shows that, under certain regularity conditions, σ̂n and θ̃n are

uniformly linearizable. It then follows that they are asymptotically normally distributed uniformly

over the contamination neighbourhood. We first list the required regularity conditions and the

main theorem. In Section 5.1 we provide sufficient conditions for these to hold.

In what follows we will assume that the covariates satisfy:

X.2 supH∈Hε0
EH

∥∥X1XT
1

∥∥ < ∞, where ‖A‖ =
∑

i

∑
j |aij |.

We will also assume that the function ρ0 is twice differentiable and that:

13



N.1 the following functions are continuous at the point (θ̃(H), σ(H)), uniformly in Hε0 :

aH
1 (θ, s) = EH

[
ρ′0

(
Y1 − θTX1

s

)
X1

s

]
,

aH
2 (θ, s) = EH

[
ρ′0

(
Y1 − θTX1

s

)
(Y1 − θTX1)

s

]
,

aH
3 (θ, s) = EH

[
ρ′′0

(
Y1 − θTX1

s

)
X1XT

1

s2

]
,

aH
4 (θ, s) = EH

[
ρ′′0

(
Y1 − θTX1

s

)
(Y1 − θTX1)XT

1

s2

]
.

In other words, for every ε > 0 there exists δ > 0 such that for every H ∈ Hε0 and i = 1, 2, 3, 4,

we have
∥∥∥aH

i (θ, s)− aH
i (θ̃(H), σ(H))

∥∥∥ < ε, whenever ‖θ − β̃(H)‖ < δ and |s− σ(H)| < δ.

Moreover, we will assume that ρ0 is such that:

A.3 ρ′0(t), ρ′0(t)t, ρ′′0(t) and ρ′′0(t)t can be uniformly approximated by finite linear combinations of

indicator functions as in Definition 2 below.

Definition 2 We say that the function f : R 7→ R can be uniformly approximated by finite

linear combinations of indicator functions if for every ε > 0 there exist constants a1, . . . , ak

and b1, . . . , bk such that

sup
u∈R

∣∣∣f(u)−
k∑

j=1

aj I{u > bj}
∣∣∣ < ε.

Finally, let CH = aH
3 (θ̃(H), σ(H)) ∈ Rp×p and assume that:

N.2 λ1 = infH∈Hε0
λMIN (CH) > 0.

Our main result is the following theorem which shows that both the scale and regression S-estimators

are uniformly linearizable over the contamination neighbourhood Hε0 .

Theorem 3 Assume that conditions B.1, A.1-3, X.1-2, U.1-3, and N.1-2 are satisfied. Then

√
n(σ̂n − σ(H)) =

1
bH
√

n

n∑

i=1

[ρ0(ũi(H))− b] + UoP (1) , (17)

and
√

n(θ̃n − θ̃(H)) = C−1
H

1√
n

n∑

i=1

ρ′0(ũi(H))Xi −C−1
H dH

√
n[σ̂n − σ(H)] + UoP (1) , (18)

14



where bH = aH
2 (θ̃(H), σ(H)), dH = aH

4 (θ̃(H), σ(H)), ũi(H) = (Yi − θ̃(H)TXi)/σ(H) and UoP (1)

denotes a term that approaches zero in probability uniformly on H ∈ Hε0 (see Definition 4 on page

23).

Remark 3 From (18) we see that for each H ∈ Hε0 the sequence
√

n(θ̃n− θ̃(H)) is asymptotically

normally distributed with covariance matrix ΣH , given by

ΣH = C−1
H EH

[
ρ′0

2(u1(H))X1XT
1

σ(H)2

]
C−1

H + C−1
H

dH
bH

dT
H

bH
C−1

H EH

[
(ρ0(u1(H))− b)2

]

−C−1
H EH

[
ρ′0(ũ1(H)) (ρ0(ũ1(H))− b) X1

σ(H)

]
dT

H
bH

C−1
H

−C−1
H

dH
bH

EH

[
ρ′0(ũ1(H)) (ρ0(ũ1(H))− b) XT

1
σ(H)

]
C−1

H . (19)

The following corollary shows that the standardized sequence Σ−1/2
H

√
n(θ̃n − θ̃(H)) is, for

sufficiently large n, uniformly close to a p-variate standard normal distribution.

Corollary 1 Let FH
n denote the distribution of the random vector Σ−1/2

H

√
n(θ̃n− θ̃(H)) and let Φ

denote a p-variate standard normal distribution. If the conditions of Theorem 3 together with F.1

are satisfied and

lim
x→∞ sup

H∈Hε0

EH

[‖ρ′0(ũ1(H))X1‖2 I{‖ρ′0(ũ1(H))X1‖ > x}] = 0 . (20)

then

lim
n→∞ sup

H∈Hε0

dP (FH
n ,Φ) = 0,

where dP denotes the Prokhorov metric.

Since ρ′0 is bounded by A.3, condition (20) is satisfied if X2
1 is uniformly integrable over the

neighbourhood. This condition is not surprising as convergence results for a given fixed distribution

require the existence of the second moment of the covariates. We can ensure the required uniform

integrability by the existence of δ > 0 such that

sup
H∈Hε0

EH ‖X1‖2+δ < ∞. (21)

Remark 4 Corollary 1 implies that

lim
n→∞ sup

H∈Hε0

sup
x∈Rp

∣∣∣PH

[
Σ−1/2

H

√
n(θ̃n − θ̃(H)) ≤ x

]
− Φ(x)

∣∣∣ = 0 . (22)

This is proved in Section 8.
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5.1 Sufficient conditions for the regularity conditions of this Section

Condition A.3 - It is easy to verify that A.3 is satisfied for ρ0 in Tukey’s family (11).

Condition X.2 - Finite second moment for the carriers is a relatively standard condition to

derive the asymptotic distribution of robust estimators (for results at the central distribution see

Davies (1990), Yohai (1987), and also Maronna and Yohai (1981) where finite 4th moments of the

covariates are required). To control the behaviour of the estimator uniformly over the contamination

neighbourhood we need finite second moments over the contamination neighbourhood Hε0 .

Conditions N.1 & N.2 - If ρ0 belongs to Tukey’s family (11) then condition N.1 is satisfied

whenever X.2 holds because all the functions ρ′0(x), x ρ′0(x), ρ′′0(x), x ρ′′0(x) are continuous. Finally,

note that condition N.2 is weaker than (13).

6 MM-estimators

Let ρ1 : R→ R+ satisfy A.1 and A.3. In what follows we need the MM-estimator θ̂n to satisfy:

θ̂n = arg min
‖θ‖∈Rp

1
n

n∑

i=1

ρ1

(
Yi − θTXi

σ̂n

)
.

Similarly, define the corresponding functional θ(H) : F → Rp by

θ(H) = arg min
‖θ‖∈Rp

E ρ1

(
Y1 − θTX1

σ(H)

)
,

where σ(H) is given by (7). The proof of the uniform strong consistency of the MM-estimator is

very similar to that of the S-regression estimator. In particular, note that

PH

[∥∥∥θ̂n − θ(H)
∥∥∥ > δ

]

≤ PH

[
inf

‖θ−θ(H)‖>δ

1
n

n∑

i=1

ρ1

(
Yi − θTXi

σ̂n

)
≤ 1

n

n∑

i=1

ρ1

(
Yi − θ(H)TXi

σ̂n

)]
. (23)

Since

g1(Hn, θ(H), σ̂n) :=
1
n

n∑

i=1

ρ1

(
Yi − θ(H)TXi

σ̂n

)
a.s.−−−→

n→∞ EH ρ1

(
Y1 − θ(H)TX1

σ(H)

)
,
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uniformly over Hε0 , we can replace g1(Hn, θ(H), σ̂n) in (23) by

EH ρ1

(
Y1 − θ(H)TX1

σ(H)

)
+ γ ,

where γ > 0 is arbitrarily small, and then follow the proof of the consistency of the regression

S-estimator. The proof of the uniform asymptotic normality of MM -estimator is analogous to the

proof for the S-estimator. We only need to replace the function ρ0 by ρ1 where necessary.

7 Conclusion

In this paper we find verifiable regularity conditions to ensure that S- and MM-regression estimators

are uniformly consistent and asymptotically normally distributed over contamination neighbour-

hoods. Moreover, we compute the size of the neighbourhoods where these uniform asymptotic

results hold when the central model is normal and the estimators are computed using Tukey’s

bisquare family of score functions. Table 1 contains lower bounds for the size of these contamina-

tion neighbourhoods for S-estimators which increase with the tuning constant d in Tukey’s bisquare

family of functions ρd. Hence, if one uses MM-estimators where ρ1 is a re-scaled version of ρ0, the

values in Table 1 also apply to the MM-estimators. Furthermore, if the S-scale estimator is uni-

formly consistency and asymptotically normally distributed, the uniform asymptotic distribution

of the MM-estimator follows as long as (21), N.1 and the equivalent to A.3 hold.

These results are important from both a practical and theoretical point of view. Since sta-

tistical inference based on robust estimators generally relies on asymptotic approximations to the

estimators’ distribution, the results in this paper guarantee that the quality of this approximation

does not depend on the unknown distribution of the data. Moreover, our results extend to the

linear regression model preliminary work of Salibian-Barrera and Zamar (2004) for the simpler

location-scale model. While in the location-scale model there is a trade-off between the size of the

contamination neighbourhoods where uniform asymptotic results hold and the breakdown point

of the S-estimator (Salibian-Barrera and Zamar, 2004), our calculations show that for the linear

regression model this trade-off also involves the leverage of the contamination that may be present

in the neighbourhood.
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8 Proofs

In this section we prove Theorems 1 to 3, Corollary 1 and Remark 4. Lemmas 1 and 2 below are

required to prove Theorems 1 and 2, while Lemma 3 is used in the proof of Theorem 3. Finally,

Remark 6 below is used in the proof of Corollary 1.

Lemma 1 Let K > 0 be given and suppose that assumptions A.1-2 hold. Then, there exist

0 < s1 < s2 < ∞ such that s1 ≤ σ(H, θ) ≤ s2 for all ‖θ‖ < K and H ∈ Hε0.

Proof (a) Existence of s2

EH ρ0

(
Y1 − θTX1

s

)
≤ (1− ε0) EH0 ρ0

(
Y1 − θTX1

s

)
+ ε0

≤ (1− ε0) EH0 ρ0

( |u1|+ ‖θ‖ ‖X1‖
s

)
+ ε0

≤ (1− ε0) EH0 ρ0

( |u1|+ K‖X1‖
s

)
+ ε0 −−−→

s→∞ ε0 < b.

So there exists s2 (s2 < ∞) such that for all s > s2

sup
H∈Hε0

sup
‖θ‖≤K

EH ρ0

(
Y1 − θTX1

s

)
< b,

which implies that

sup
H∈Hε0

sup
‖θ‖≤K

σ(H, θ) ≤ s2.

(b) Existence of s1

Note that

EH ρ0

(
Y1 − θTX1

s

)
≥ (1− ε0) EH0 ρ0

(
Y1 − θTX1

s

)
,

and define

f(s) = inf
‖θ‖≤K

EH0 ρ0

(
Y1 − θTX1

s

)
.

We will now show that lims→0+ f(s) = 1. Let δ > 0 be given. Since for each fixed θ ∈ {‖θ‖ ≤ K}
we have

lim
s→0+

EH0 ρ0

(
Y1 − θTX1

s

)
= 1 ,
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we can define s(θ) > 0 such that

EH0 ρ0

(
Y1 − θTX1

s

)
> 1− δ, ∀s < s(θ).

Now we can proceed similarly as in the proof of Lemma 4.2 of Salibian-Barrera (2000) to find s′ > 0

such that f(s) > 1 − δ for all s < s′. As δ > 0 was arbitrary, we have lims→0+ f(s) = 1. Thus, it

follows that there exists s1 > 0 such that

inf
H∈Hε0

inf
‖θ‖≤K

EH ρ0

(
Y1 − θTX1

s

)
> b ,

for all s < s1, which implies that

inf
H∈Hε0

inf
‖θ‖≤K

σ(H, θ) ≥ s1.

¥

Lemma 2 Suppose that assumptions A.1-2 and B.1 hold. Let K > 0 be fixed. Then, for all δ > 0

lim
m→∞ sup

H∈Hε0

PH

[
sup
n≥m

sup
‖θ‖≤K

|σ(Hn, θ)− σ(H, θ)| > δ

]
= 0 ,

where σ(H, θ) is defined in (6) and Hn is the empirical distribution function of the sample.

Proof We have

PH

[
sup
n≥m

sup
‖θ‖≤K

|σ(Hn, θ)− σ(H, θ)| > δ

]

≤
∞∑

n=m

PH

[
sup
‖θ‖≤K

|σ(Hn, θ)− σ(H, θ)| > δ

]

≤
∞∑

n=m

PH

[
sup
‖θ‖≤K

(σ(Hn, θ)− σ(H, θ)) > δ

]

+
∞∑

n=m

PH

[
inf

‖θ‖≤K
(σ(Hn,θ)− σ(H,θ)) < −δ

]
. (24)

The event [σ(Hn, θ)− σ(H, θ) > δ] satisfies

[σ(Hn, θ)− σ(H, θ) > δ] = [σ(Hn,θ) > σ(H, θ) + δ]

⊂
[

1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ(H,θ) + δ

)
> b

]

=

[
1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ(H, θ) + δ

)
− EH ρ0

(
Y1 − θTX1

σ(H, θ) + δ

)
> b− EH ρ0

(
Y1 − θTX1

σ(H, θ) + δ

)]
.
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Now let m = sup‖θ‖≤K sups1≤s≤s2+δ h(s,θ), where s1 and s2 are given by Lemma 1. From the

assumptions we know that m < 0. Hence, for every ‖θ‖ ≤ K and every H ∈ Hε0 the mean value

theorem yields

b− EH ρ0

(
Y1 − θTX1

σ(H, θ) + δ

)
= EH

[
ρ0

(
Y1 − θTX1

σ(H, θ)

)
− ρ0

(
Y1 − θTX1

σ(H,θ) + δ

)]

≥ (1− ε0)EH0

[
ρ0

(
Y1 − θTX1

σ(H,θ)

)
− ρ0

(
Y1 − θTX1

σ(H, θ) + δ

)]

≥ (1− ε0) inf
s∈[s1,s2]

EH0

[
ρ0

(
Y1 − θTX1

s

)
− ρ0

(
Y1 − θTX1

s + δ

)]

≥ −(1− ε0) mδ > 0 .

Call ∆0 = −(1− ε0) mδ. We have

PH

[
sup
‖θ‖≤K

(σ(Hn, θ)− σ(H, θ)) > δ

]

≤ PH

[
sup

‖θ‖≤K,s∈[s1,s2]

(
1
n

n∑

i=1

ρ0

(
Yi − θTXi

s + δ

)
− EH ρ0

(
Y1 − θTX1

s + δ

))
> ∆0

]

≤ P(n) exp
{−2n∆2

0

}
, (25)

where P(n) is a polynomial in n which depends only on the dimension of the vector X1. The last

inequality can be justified as follows. The set of functions {(y + θTx)/s : θ ∈ Rp, s ∈ R+} is,

according to Lemma 2.6.15 (iii) of van der Vaart and Wellner (1996) [VW], a VC-class of functions.

Using (ii) and (iv) of Lemma 2.6.18 of VW we see that the set of functions {|y+θTx|/s : θ ∈ Rp, s ∈
R+} is a VC-class as well. Finally, because the function ρ is monotone on [0,∞), the set of functions

{ρ0(|y + θTx|/s) : θ ∈ Rp, s ∈ R+}, which is the same as {ρ0((y + θTx)/s) : θ ∈ Rp, s ∈ R+}, is a

VC-class (see Lemma 2.6.18 (viii) of VW). Moreover we are assuming that the function ρ takes its

values in the interval [0, 1]. Thus, (25) follows from Theorem 2.14.9 of VW. Next, note that (25)

implies that
∞∑

n=m

PH

[
sup
‖θ‖≤K

(σ(Hn,θ)− σ(H,θ)) > δ

]
< ∞ . (26)

A similar argument shows that
∞∑

n=m

PH

[
inf

‖θ‖≤K
(σ(Hn, θ)− σ(H, θ)) < −δ

]
< ∞ . (27)

Finally, (26), (27) and (24) prove the lemma. ¥
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Proof of Theorem 1 Let δ > 0 be given, fix an arbitrary ε > 0 and let S = supH∈Hε0
σ(H,0).

By Lemma 1 we know that S < ∞. As in the proof of Lemma 4.4. in Salibian-Barrera (2000), we

can prove that

lim
K→∞

EH0

[
inf

‖θ‖>K
ρ0

(
Y1 − θTX1

S + ε

)
I(|Y1| ≤ K)

]
= 1.

It follows that there is a sufficiently large K such that

η = (1− ε0) EH0

[
inf

‖θ‖>K
ρ0

(
Y1 − θTX1

S + ε

)]
− b > 0. (28)

Moreover, for every H ∈ Hε0 we have
[

inf
‖θ‖>K

EH ρ0

(
Y1 − θTX1

S + ε

)]
≥ (1− ε0) EH0

[
inf

‖θ‖>K
ρ0

(
Y1 − θTX1

S + ε

)]
> b ,

which implies that σ(H, θ) ≥ S + ε ≥ σ(H,0) + ε for every ‖θ‖ > K. Thus, we can conclude that

σ(H) = inf
θ∈Rp

σ(H, θ) = inf
‖θ‖≤K

σ(H, θ).

Next note that

PH

[
|σ̂n − σ(H)| > δ

]

≤ PH

[
sup
‖θ‖≤K

|σ(Hn, θ)− σ(H, θ)| > δ

]
+ PH

[
σ̂n = inf

‖θ‖>K
σ(Hn,θ)

]
. (29)

As in the proof of Lemma 2, we can show that the first term above goes to zero exponentially fast.

For the second term we have

PH

[
σ̂n = inf

‖θ‖>K
σ(Hn, θ)

]

≤ PH

[
inf

‖θ‖>K
σ(Hn, θ) < σ(Hn,0)

]
= PH

[
inf

‖θ‖>K

n∑

i=1

ρ0

(
Yi − θTXi

σ(Hn,0)

)
< b

]

≤ PH

[
inf

‖θ‖>K

n∑

i=1

ρ0

(
Yi − θTXi

σ(Hn,0)

)
< b , |σ(Hn,0)− σ(H,0)| ≤ ε

]

+ PH

[
|σ(Hn,0)− σ(H,0)| > ε

]

≤ PH

[
inf

‖θ‖>K

n∑

i=1

ρ0

(
Yi − θTXi

σ(H,0) + ε

)
< b

]
+ PH

[
|σ(Hn,0)− σ(H,0)| > ε

]
.
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The second term in the last equation converges to zero exponentially fast (according to the proof

Lemma 2), so we only need to look at the first term. Note that

PH

[
inf

‖θ‖>K

n∑

i=1

ρ0

(
Yi − θTXi

σ(H,0) + ε

)
< b

]

≤ PH

[
1
n

n∑

i=1

inf
‖θ‖>K

ρ0

(
Yi − θTXi

σ(H,0) + ε

)
− EH inf

‖θ‖>K
ρ0

(
Y1 − θTX1

σ(H,0) + ε

)

< b− EH inf
‖θ‖>K

ρ0

(
Y1 − θTX1

σ(H,0) + ε

)]

(28)

≤ PH

[
1
n

n∑

i=1

inf
‖θ‖>K

ρ0

(
Yi − θTXi

σ(H,0) + ε

)
− EH inf

‖θ‖>K
ρ0

(
Y1 − θTX1

σ(H,0) + ε

)
< −η

]

≤ 2 exp(−2nη2) , (30)

where the last inequality follows from Hoeffding’s inequality. We see that both probabilities in (29)

go to zero exponentially fast and thus the same holds for PH [|σ̂n − σ(H)| > δ]. Now the theorem

follows from the standard inequality

PH

[
sup
n≥m

|σ̂n − σ(H)| > δ

]
≤

∞∑
n=m

PH [|σ̂n − σ(H)| > δ] .

¥

Proof of Theorem 2 Fix δ > 0 and let ε̃ = ε̃(δ) > 0 be as in assumption U.3. Next find δ0 > 0

such that assumption U.1 holds with ε̃
2 . We have

PH

[
|θ̃(Hn)− θ̃(H)| > δ

]
≤ PH

[
inf

‖θ−θ̃(H)‖>δ

1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ̂n

)
≤ b

]

≤ PH

[
inf

‖θ−θ̃(H)‖>δ

1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ̂n

)
≤ b , |σ̂n − σ(H)| ≤ δ

]
+ PH [|σ̂n − σ(H)| > δ0]

≤ PH

[
inf

‖θ−θ̃(H)‖>δ

1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ(H) + δ0

)
≤ b

]
+ PH [|σ̂n − σ(H)| > δ0]

≤ PH

[
inf

‖θ−θ̃(H)‖>δ

(
1
n

n∑

i=1

ρ0

(
Yi − θTXi

σ(H) + δ0

)
− g(H, θ, σ(H) + δ0)

)

≤ b− inf
‖θ−θ̃(H)‖>δ

g(H, θ, σ(H) + δ0)

]
+ PH [|σ̂n − σ(H)| > δ0] .
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Theorem 1 shows that the second term goes to zero exponentially fast. Using the empirical process

approach considered in the proof of Lemma 2 we can obtain a similar bound as in (25) if we show

that

η = b− inf
‖θ−θ̃(H)‖>δ

g(H, θ, σ(H) + δ0) < 0 .

We have

inf
‖θ−θ̃(H)‖>δ

g(H, θ, σ(H) + δ0)

≥ inf
‖θ−θ̃(H)‖>δ

[g(H, θ, σ(H) + δ0)− g(H, θ, σ(H) + δ0)] + inf
‖θ−θ̃(H)‖>δ

g(H, θ, σ(H) + δ0)

≥ − ε̃

2
+ b + ε̃ = b +

ε̃

2
,

where the last inequality follows from assumptions U.1 and U.3. Thus η ≤ − ε̃
2 < 0 and this

completes the proof. ¥

In what follows we will need the following definitions (Salibian-Barrera, 2000).

Definition 3 - Uniform big O in probability: Let an, n ≥ 1, be a sequence of real numbers

and let Xn, n ≥ 1, be a sequence of random variables. We say that Xn = UOP (an) over the set of

distribution functions Hε0 if

lim
k→∞

sup
F∈Hε0

lim
n→∞PF

[ ∣∣∣∣
Xn

an

∣∣∣∣ > k

]
= 0.

Definition 4 - Uniform small o in probability: Let an, n ≥ 1, be a sequence of real numbers

and let Xn, n ≥ 1, be a sequence of random variables. We say that Xn = UoP (an) over the set of

distribution functions Hε0 if ∀ δ > 0

lim
n→∞ sup

F∈Hε0

PF

[ ∣∣∣∣
Xn

an

∣∣∣∣ > δ

]
= 0.

With the above definitions we can show that these “uniform little o”, “uniform big O” and “uniform

asymptotic distribution” behave similarly to their “non-uniform” counterparts. This is made more

precise in the following remark. In particular, if an = UoP (1) and Xn is UAN then Xn + an is

UAN.
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Remark 5 - Properties of UOp (1) and Uop (1) - In what follows an, bn and Xn, n ∈ N denote

sequences of random variables. It is easy to see that the following properties hold. Proofs of these

results can be found in Salibian-Barrera (2000, Chapter 2).

Property 1 - if an = UOP (1) and bn = UoP (1), then an bn = UoP (1);

Property 2 - if an = UOP (1) and there exists b 6= 0 with bn − b = UoP (1),

then an/ bn = an/ b + UoP (1);

Property 3 - if an = UOP (1) and there exists b with bn − b = UoP (1), then

an bn = an b + UoP (1);

Lemma 3 Assume that A.1-3, X.1 and N.1 hold and let {εn}n≥1 ⊂ R and {δn}n≥1 ⊂ Rp be two

sequences converging to zero. Then, uniformly over Hε0,

1
n

n∑

i=1

ρ0

(
Yi − (θ̃(H) + δn)TXi

σ(H) + εn

)

=
1
n

n∑

i=1

ρ0

(
Yi − θ̃(H)TXi

σ(H)

)
− [aH + o(1) + UoP (1)]T δn − [bH + o(1) + UoP (1)] εn , (31)

and

1
n

n∑

i=1

ρ′0

(
Yi − (θ̃(H) + δn)TXi

σ(H) + εn

)
Xi

=
1
n

n∑

i=1

ρ′0

(
Yi − θ̃(H)TXi

σ(H)

)
Xi − [CH + o(1) + UoP (1)] δn − [dH + o(1) + UoP (1)] εn . (32)

Proof We will prove (31), the proof of expansion (32) being completely analogous. According to

the mean value theorem there exists a point (θ∗n, σ∗n) which lies in the interior of the line segment

connecting the points (θ̃(H) + δn, σH + εn) and (θ̃(H), σH) such that

1
n

n∑

i=1

ρ0

(
Yi − (θ̃(H) + δn)TXi

σ(H) + εn

)
− 1

n

n∑

i=1

ρ0

(
Yi − θ̃(H)TXi

σ(H)

)

= −
[

1
n

n∑

i=1

ρ′0

(
Yi − (θ∗n)TXi

σ∗n

)
Xi

σ∗n

]T

δn −
[

1
n

n∑

i=1

ρ′0

(
Yi − (θ∗n)TXi

σ∗n

)
Yi − (θ∗n)TXi

(σ∗n)2

]
εn

= −aHn
1 (θ∗n, σ∗n)T δn − aHn

2 (θ∗n, σ∗n) εn .

We will first show that

aHn
1 (θ∗n, σ∗n) = aH

1 (θ∗n, σ∗n) + Uop(1) , (33)
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and

aHn
2 (θ∗n, σ∗n) = aH

2 (θ∗n, σ∗n) + Uop(1) . (34)

aHn
2 (θ∗n, σ∗n)). It is obvious that it suffices to work component-wise. In what follows let Xj

i denote

the j-th component of the vector Xi. So fix ε > 0 (without loss of generality assume that ε < 1)

and let j ∈ {1, . . . , p}. Since the set of functions

G1 = {gθ,s(y,x) = I{y − θTx > s}, θ ∈ Rp, s ∈ R+}

is a VC-class with envelope G = 1, which trivially satisfies

sup
H∈Hε0

EH G < ∞, (35)

there exists C > 0 and a polynomial Pn in n (with coefficients not depending on the distribution

H or the sample size n) such that

PH

[
sup
g∈G1

∣∣∣∣∣
1
n

n∑

i=1

g(Yi,Xi)− EH g(Y1,X1)

∣∣∣∣∣ > ε

]
≤ Pn exp{−C n ε}. (36)

As Xj
i is integrable (by assumption X.2), the set of functions

G2 = {xj gθ,s(y,x) = xj I{y − θTx > s}, θ ∈ Rp, s ∈ R+} = xj G1

is a VC-class as well with envelope G = |Xj
i | (which is integrable) and so an inequality like (36)

(with different C > 0 and Pn) holds for the set of functions G2 as well.

Let

K = sup
H∈Hε0

max
j=1,...,p

EH

∣∣∣Xj
1

∣∣∣ < ∞ .

According to assumption A.3 we can approximate the derivative ρ′0(u) with a function ρ′k(u) =
∑k

j=1 ajI{u > bj} such that

sup
u∈R

∣∣ρ′0(u)− ρ′k(u)
∣∣ <

ε2 s1

4K
.

Then, uniformly in Hε0 , we have

PH

[
sup

θ∈Rp,s∈[s1,s2]

∣∣∣∣∣
1
n

n∑

i=1

ρ′0

(
Yi − θTXi

s

)
Xi

s
− E ρ′0

(
Y1 − θTX1

s

)
X1

s

∣∣∣∣∣ > ε

]

≤ PH

[
sup

θ∈Rp,s∈[s1,s2]

∣∣∣∣∣
1
n

n∑

i=1

ρ′k

(
Yi − θTXi

s

)
Xi

s
− E ρ′k

(
Y1 − θTX1

s

)
X1

s

∣∣∣∣∣ >
ε

2

]

+ PH

[
ε2

4K

1
n

n∑

i=1

|Xj
i |+

ε2

4
>

ε

2

]
= An + Bn.
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Using the exponential inequality (36) we obtain

An ≤ Pn exp{−C n ε
2} .

Finally, the Markov inequality yields

Bn ≤ PH

[
ε2

4K

1
n

n∑

i=1

|Xj
i | >

ε

4

]
≤ 4

ε
EH

ε2

4K
|Xj

1 | ≤ ε .

So (33) is proved, and (34) can be proved in a similar way. To finish the proof of the lemma note

that using assumption N.1 we obtain

EH ρ′0

(
Y1 − (θ∗n)TX1

σ∗n

)
X1

σ∗n
= EH ρ′0

(
Y1 − θ̃(H)TX1

σ(H)

)
X1

σ(H)
+ o(1) ,

and

EH ρ′0

(
Y1 − (θ∗n)TX1

σ∗n

)
Y1 − (θ∗n)TX1

(σ∗n)2
= EH ρ′0

(
Y1 − θ̃(H)TX1

σ(H)

)
Y1 − θ̃(H)TX1

σ(H)2
+ o(1) ,

because εn → 0 and δn → 0 implies θ∗n → θ̃(H) and σ∗n → σ(H). ¥

Proof of Theorem 3 Since the assumptions of Theorems 1 and 2 are satisfied, we have

θ̃(Hn) = θ̃(H) + UoP (1) ,

and

σ̂n = σ(H) + UoP (1) .

Substituting δn 7→
[
θ̃n − θ̃(H)

]
and εn 7→ [σ̂n − σ(H)] into (31) and (32) and noting that from the

defition of S-estimators we have aH = 0, we obtain

b =
1
n

n∑

i=1

ρ0(ũi(H))− UoP (1)T (θ̃n − θ̃(H))− [bH + UoP (1)] (σ̂n − σ(H)) , (37)

and

0 =
1
n

n∑

i=1

ρ′0(ũi(H))Xi − [CH + UoP (1)] (θ̃n − θ̃(H))− [dH + UoP (1)] (σ̂n − σ(H)) . (38)

The idea of the proof is as follows. We first use (38) to find an expression for
√

n(θ̃n − θ̃(H)). We

then substitute this expression into (37) and arrive at (17). Finally, we substitute this result back

into (38) to obtain (18). The only difficulty is to verify that all our steps hold uniformly on Hε0 .
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First note that assumptions A.3 and X.2 imply

sup
H∈Hε0

max{|bH |, ‖CH‖, ‖dH‖} < ∞ . (39)

(This can be also derived from assumption N.1). Furthermore, by N.2 we know that the smallest

eigenvalue of the matrix CH is bounded away from zero uniformly in Hε0 . This together with

equation (39) yields supH∈Hε0
‖C−1

H ‖ < ∞ and this implies

[CH + UoP (1)]−1 = C−1
H + UoP (1) .

Thus,

√
n(θ̃(Hn)− θ̃(H)) =

C−1
H + Uop(1)√

n

n∑

i=1

ρ′0(ũi(H))Xi −
√

n(σ̂n − σ(H)) [dH + UoP (1)] . (40)

It is easy to see that
∑n

i=1 ρ′0(ũi(H))Xi/
√

n = UOp(1), and thus substituting (40) into equation

(37) yields

√
n(σ̂n − σ(H)) [bH + UoP (1)]

+ C−1
H

{
UOP (1) + [dH + UoP (1)]

√
n(σ̂n − σ(H))

}
UoP (1) =

1√
n

n∑

i=1

[ρ0(ũi(H))− b] . (41)

After some reorganization and using (39) we get

√
n(σ̂n − σ(H)) [bH + UoP (1)] =

1√
n

n∑

i=1

[ρ0(ũi(H))− b] + UoP (1) .

Again, it is easy to verify that

1√
n

n∑

i=1

[ρ0(ũi(H))− b] = UOp(1) ,

and from the proof of Lemma 2 we know that infH∈Hε0
bH > 0, so we can divide both sides of (41)

by (bH + Uop(1)) to arrive at (17). Substituting the last expansion for
√

n(σ̂n − σ(H)) into (40)

yields the second part of the theorem. ¥

Remark 6 Before we start the proof of Corollary 1 we need to verify

Σ−1/2
H Uop(1) = Uop(1) , (42)
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where ΣH was defined in (19). Since it is easy to verify that all the quantities in formula (19) are

uniformly finite, it is sufficient to show that the smallest eigenvalue of the matrix ΣH is bounded

away from zero uniformly for H ∈ Hε0. For each θ ∈ Rp, s ∈ R+ and t ∈ Rp let

Z(θ, s, t) = ρ′0
(

Y1−θTX1
s

)
X1
s −

(
ρ0

(
Y1−θTX1

s

)
− b

)
t .

We need to show that there exists η > 0 such that

inf
H∈Hε0

inf
‖λ‖=1

varH

{
λTZ

(
θ̃(H), σ(H),

dH

bH

)}
≥ η .

Note that we have dropped the matrix CH since we know that

sup
H∈Hε0

{‖CH‖, ‖C−1
H ‖} < ∞ .

Consider

varH

{
λTZ

(
θ̃(H), σ(H),

dH

bH

)}
= EH

[
λTZ

(
θ̃(H), σ(H),

dH

bH

)]2

≥ (1− ε0) EH0

[
λTZ

(
θ̃(H), σ(H),

dH

bH

)]2

≥ (1− ε0) inf
‖θ‖≤K1

inf
s∈[s1,s2]

inf
‖t‖≤K2

EH0

[
λTZ(θ, s, t)

]2
, (43)

where K1 is taken from the proof of Theorem 2, s1, s2 are from Lemma 1 and K2 is chosen such

that supH∈Hε0
‖dH/bH‖ ≤ K2 < ∞. Note that the lower bound in (43) holds uniformly over Hε0.

We will now assume that

inf
‖λ‖=1

inf
‖θ‖≤K1

inf
s∈[s1,s2]

inf
‖t‖≤K2

EH0

[
λTZ(θ, s, t)

]2
= 0 , (44)

and show that this leads to a contradiction. If (44) holds, then for each n ∈ N there exists a

foursome (λn, θn, sn, tn), such that

(λn, θn, sn, tn) ∈ {(λ, θ, s, t) : ‖λ‖ = 1, ‖θ‖ ≤ K1, s ∈ [s1, s2], ‖t‖ ≤ K2} = K ,

and satisfies

EH0

[
λT

nZ(θn, sn, tn)
]2
≤ 1

n
.

Since the set K is compact, there exists a foursome (λ∗, θ∗, s∗, t∗) ∈ K, for which

EH0

[
λT
∗Z(θ∗, s∗, t∗)

]2
= 0.
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But this further implies that the random variable λT
∗Z(θ∗, s∗, t∗) equals zero almost surely H0.

However, this is not possible because, under the central model H0, u1 is independent from X1,

which has a nonsingular distribution.

Using (42) we can rewrite expansion (18) as

Σ−1/2
H

√
n(θ̃n − θ̃(H))

= Σ−1/2
H C−1

H

1√
n

n∑

i=1

ρ′0(ũi(H))Xi −Σ−1/2
H C−1

H dH

√
n[σ̂n − σ(H)] + UoP (1) . (45)

¥

Proof of Corollary 1 Let µH
n denote the distribution of the random vector

∑n
i=1 Zi/

√
n, where

Zi = Σ−1/2
H

[
C−1

H ρ′0(ũi(H))
Xi

σ(H)
−C−1

H

dH

bH
(ρ0(u′i(H))− b)

]
. (46)

Since

dP (FH
n ,Φ) ≤ dP (FH

n , µH
n ) + dP (µH

n ,Φ) , (47)

we only need to show that both terms on the right-hand side of the equation (47) are sufficiently

small. Fix ε > 0 (without loss of generality we can assume 0 < ε < 1). Then, by Defini-

tion 4 (Uop(1)) we can find n0 such that for all n ≥ n0 the remainder term in (45) satisfies

supH∈Hε0
PH(‖Uop(1)‖ ≥ ε) < ε. Then, for every Borel-measurable set B we have

FH
n (B) = PH

[
Σ−1/2

H

√
n(θ̃n − θ̃(H)) ∈ B

]
= PH

[
1√
n

n∑

i=1

Zi + Uop(1) ∈ B

]

≤ PH

[
1√
n

n∑

i=1

Zi + Uop(1) ∈ B, ‖Uop(1)‖ < ε

]
+ PH [‖Uop(1)‖ ≥ ε]

≤ PH

[
1√
n

n∑

i=1

Zi ∈ Bε

]
+ ε = µH

n (Bε) + ε, (48)

which implies that

sup
H∈Hε0

dP (FH
n , µH

n ) < ε . (49)

29



To bound the second term in (47) we use Proposition A.5.2 of van der Vaart and Wellner (1996),

which yields

sup
H∈Hε0

dP (µH
n ,Φ)

≤ 2max{ε−2g(ε
√

n), ε}+ 41/3 g(ε
√

n)1/3 + (p g(0) ε)1/4 C

(
1 +

∣∣∣∣log
ε g(0)

p

∣∣∣∣
1/2

)
, (50)

where C is a constant and

g(x) = sup
H∈Hε0

EH ‖Z1‖2 I{‖Z1‖ > x} .

Since

sup
H∈Hε0

‖C−1
H

dH

bH
(ρ0(ui(H))− b)‖ < ∞ ,

and

sup
H∈Hε0

‖Σ−1/2
H ‖ < ∞ ,

we have that (20) implies limn→∞ g(ε
√

n) = 0 and so we can make (50) arbitrarily small by taking

n sufficiently large and ε sufficiently small. This concludes the proof. ¥

Proof of Remark 4 We will use the same notation as in Corollary 1. The uniform convergence

in Prokhorov metric means that for all ε > 0 there exists n0 such that for all n > n0 and for all

Borel-measurable sets B we have

FH
n (B) ≤ Φ(Bε) + ε and Φ(B) ≤ FH

n (Bε) + ε . (51)

Define the set of one-sided intervals I = {(−∞,x] : x ∈ Rp}. Clearly the elements of I are Borel

measurable.

Recall that, without loss of generality, we are using the maximum norm. For each ε ∈ R define

Iε = (−∞,x]ε = (−∞,x + ε] ∈ I .

Note that when ε > 0 this definition is consistent with the definition of Iε used in the definition of

Prokhorov metric. Now the ‘Prokhorov bounds’ (51) imply that for all n > n0 and for all I ∈ I

FH
n (I) ≤ Φ(Iε) + ε ≤ Φ(I) +

(
1 +

p

(2 π)p/2

)
ε ≤ Φ(I) + 2 ε ,

30



where µ denotes a p-variate standard normal measure. Similarly we obtain

FH
n (I) ≥ Φ(I−ε)− ε ≥ Φ(I)−

(
1 +

p

(2π)p/2

)
ε ≥ Φ(I)− 2 ε .

Adding the last two equations shows that for any ε > 0 and for all sufficiently large n we have

sup
H∈Hε0

sup
I∈I

∣∣FH
n (I)−Φ(I)

∣∣ ≤ 2 ε ,

which verifies (22). ¥
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