THE HALFSPACE DEPTH CHARACTERIZATION PROBLEM: ADDITIONAL DETAILS

STANISLAV NAGY¹

ABSTRACT. This note contains some technical details and derivations that complement the analysis from Section 2 of the paper [1]: The halfspace depth characterization problem.

HALFSPACE DEPTH FOR DISTRIBUTIONS SUPPORTED ON COORDINATE AXES

Let $P \in \mathcal{P}(\mathbb{R}^2)$ be a probability distribution supported on the coordinate axes $A_x = \{(x, y)^{\mathsf{T}} : y = 0\}$ and $A_y = \{(x, y)^{\mathsf{T}} : x = 0\}$. The density of P with respect to the sum of one-dimensional Lebesgue measures concentrated on A_x and A_y is given by

(1)
$$f(x,y) = \begin{cases} f_x(x)/2 & \text{for } (x,y)^\mathsf{T} \in A_x, \\ f_y(y)/2 & \text{for } (x,y)^\mathsf{T} \in A_y, \end{cases}$$

where f_x and f_y are symmetric univariate density functions that are positive and bounded on \mathbb{R} . Denote by F_x and F_y the distribution functions that correspond to densities f_x and f_y , respectively, i.e. for F_x we have

$$F_x(x) = \int_{-\infty}^x f_x(t) \,\mathrm{d}\,t,$$

and F_y is given analogously.

We now compute the halfspace depth of a point $\boldsymbol{x} = (x_0, y_0)^{\mathsf{T}} \in (0, \infty) \times [0, \infty)$ with respect to a random vector $X \sim P$. For that, define the halfspace function

$$\varphi\left(\theta\right) = \mathsf{P}\left(\langle X, u_{\theta} \rangle \ge \langle \boldsymbol{x}, u_{\theta} \rangle\right)$$

where $u_{\theta} = (\cos(\theta), \sin(\theta))^{\mathsf{T}}$. Function $\varphi(\theta)$ provides the probability mass of the halfplane whose boundary passes through \boldsymbol{x} , with inner normal u_{θ} . Of course, φ depends on the choice of \boldsymbol{x} . The depth of \boldsymbol{x} is given by

(2)
$$D(\boldsymbol{x}; P) = \inf_{\boldsymbol{\theta} \in (-\pi, \pi]} \varphi(\boldsymbol{\theta}).$$

Since the densities f_x and f_y are symmetric and have equal weights in (1), and because we restrict \boldsymbol{x} to lie in first quadrant of \mathbb{R}^2 , it is sufficient to search for the minimum in (2) only in the interval $\theta \in [0, \pi/2]$.

If $y_0 = 0$, it is easy to see that for the halfspace depth we have

(3)
$$D(\boldsymbol{x}; P) = \varphi(0) = (1 - F_x(x_0))/2.$$

Suppose then that both x_0 and y_0 are positive. For $\theta \in (-\pi/2, \pi/2) \setminus \{0\}$, the boundary line of the halfspace $H_{\theta} = \{ \boldsymbol{y} \in \mathbb{R}^2 : \langle \boldsymbol{y}, u_{\theta} \rangle \geq \langle \boldsymbol{x}, u_{\theta} \rangle \}$ intersects the axis A_x in

¹CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, PRAGUE, CZECH REPUBLIC *E-mail address:* nagy@karlin.mff.cuni.cz.

Date: August 4, 2019.

 $(x_0 + y_0 \tan(\theta), 0)^{\mathsf{T}}$, and A_y in $(0, x_0 / \tan(\theta) + y_0)^{\mathsf{T}}$. Likewise, for $\theta = 0$ we have $\partial H_\theta \cap A_x = (x_0, 0)^{\mathsf{T}}$, $\partial H_\theta \cap A_y = \emptyset$, and for $\theta = \pi/2$ we can write $\partial H_\theta \cap A_x = \emptyset$, $\partial H_\theta \cap A_y = (0, y_0)^{\mathsf{T}}$. That gives us

(4)
$$2\varphi(\theta) = \begin{cases} 1 - F_x \left(x_0 + y_0 \tan(\theta) \right) + F_y \left(x_0 / \tan(\theta) + y_0 \right) & \text{for } \theta \in (-\pi/2, 0), \\ 1 - F_x \left(x_0 \right) & \text{for } \theta = 0, \\ 1 - F_x \left(x_0 + y_0 \tan(\theta) \right) + 1 - F_y \left(x_0 / \tan(\theta) + y_0 \right) & \text{for } \theta \in (0, \pi/2), \\ 1 - F_y \left(y_0 \right) & \text{for } \theta = \pi/2. \end{cases}$$

Because θ enters function $\varphi(\theta)$ only as $\tan(\theta)$, it will be convenient to minimize function $\psi(t) = \varphi(\tan(\theta))$ instead of $\varphi(\theta)$, with $t \in \mathbb{R} \cup \{+\infty\}$. That way, we consider

$$2\psi(t) = \begin{cases} 1 - F_x \left(x_0 + y_0 t\right) + F_y \left(x_0/t + y_0\right) & \text{for } t \in (-\infty, 0), \\ 1 - F_x \left(x_0\right) & \text{for } t = 0, \\ 1 - F_x \left(x_0 + y_0 t\right) + 1 - F_y \left(x_0/t + y_0\right) & \text{for } t \in (0, \infty), \\ 1 - F_y \left(y_0\right) & \text{for } \theta = +\infty. \end{cases}$$

Let us focus on the derivative of ψ around t = 0; the situation with function φ around $\theta = \pi/2$ is analogous. Direct computation yields

(5)
$$2\psi'(t) = \begin{cases} -f_x \left(x_0 + y_0 t\right) y_0 - f_y \left(x_0/t + y_0\right) x_0/t^2 & \text{for } t \in (-\infty, 0), \\ -f_x \left(x_0 + y_0 t\right) y_0 + f_y \left(x_0/t + y_0\right) x_0/t^2 & \text{for } t \in (0, \infty), \end{cases}$$

and, provided that all the limits on the right hand sides of the following expressions exist,

$$\begin{split} \lim_{t \to 0^{-}} 2\psi'(t) &= -\lim_{t \to 0^{-}} \left(f_x \left(x_0 + y_0 t \right) y_0 + f_y \left(x_0 / t + y_0 \right) x_0 / t^2 \right) \\ &= -f_x \left(x_0 \right) y_0 - \lim_{t \to 0^{-}} f_y \left(x_0 / t + y_0 \right) x_0 / t^2 \\ &= -f_x \left(x_0 \right) y_0 - x_0 \lim_{s \to -\infty} f_y \left(s \right) \left(\frac{s - y_0}{x_0} \right)^2 \\ &= -f_x \left(x_0 \right) y_0 - \frac{1}{x_0} \left(\lim_{s \to -\infty} f_y \left(s \right) s^2 - 2y_0 \lim_{s \to -\infty} f_y(s) s + y_0^2 \lim_{s \to -\infty} f_y(s) \right), \\ \lim_{t \to 0^+} 2\psi'(t) &= -\lim_{t \to 0^+} \left(f_x \left(x_0 + y_0 t \right) y_0 - f_y \left(x_0 / t + y_0 \right) x_0 / t^2 \right) \\ &= -f_x \left(x_0 \right) y_0 + \lim_{t \to 0^+} f_y \left(x_0 / t + y_0 \right) x_0 / t^2 \\ &= -f_x \left(x_0 \right) y_0 + x_0 \lim_{s \to +\infty} f_y \left(s \right) \left(\frac{s - y_0}{x_0} \right)^2 \\ &= -f_x \left(x_0 \right) y_0 + \frac{1}{x_0} \left(\lim_{s \to +\infty} f_y \left(s \right) s^2 - 2y_0 \lim_{s \to +\infty} f_y(s) s + y_0^2 \lim_{s \to +\infty} f_y(s) \right). \end{split}$$

Because f_y is a density, if its limit at infinity exists, then necessarily $\lim_{s\to-\infty} f_y(s) = \lim_{s\to+\infty} f_y(s) = 0$. Since f_y was assumed to be a symmetric function, $\lim_{s\to-\infty} f_y(s)s = -\lim_{s\to+\infty} f_y(s)s$, and $\lim_{s\to-\infty} f_y(s)s^2 = \lim_{s\to+\infty} f_y(s)s^2$. Thus, $\psi'(0)$ exists if and only if $\lim_{s\to+\infty} f_y(s)s^2 = 0$, and in that case

$$\psi'(0) = -f_x(x_0) y_0/2 < 0.$$

This result is rather intuitive — for \boldsymbol{x} in the positive quadrant, function $\varphi(\theta)$ is decreasing at $\theta = 0$; i.e. tilting the halfplane H_{θ} at $\theta = 0$ in the counter-clockwise sense results in a smaller probability mass.

If

(6)
$$\lim_{s \to +\infty} f_y(s)s^2 > 0,$$

the derivative of $\varphi(\theta)$ does not exist at $\theta = 0$. If $\lim_{s \to +\infty} f_y(s)s^2 = +\infty$, we have

$$\lim_{t \to 0-} 2\psi'(t) = -\infty,$$
$$\lim_{t \to 0+} 2\psi'(t) = +\infty,$$

and t = 0 is a local minimum of ψ . In the case $\lim_{s \to +\infty} f_y(s)s^2 = S < \infty$, necessarily $\lim_{s \to +\infty} f_y(s)s = 0$, and

$$\lim_{t \to 0^{-}} 2\psi'(t) = -f_x(x_0) y_0 - \frac{S}{x_0},$$
$$\lim_{t \to 0^{+}} 2\psi'(t) = -f_x(x_0) y_0 + \frac{S}{x_0}.$$

Point t = 0 is a local minimum of ψ if and only if

(7) $S \ge f_x(x_0)y_0x_0,$

which holds true at least if x is close to the origin. Note that (6) implies that the expectation of $X \sim P$ cannot exist.

Example: Cauchy distribution. In what follows, let both f_x and f_y be the densities of the standard univariate Cauchy random variable, i.e.

$$f_x(s) = f_y(s) = \frac{1}{\pi (1+s^2)}, \quad \text{for } s \in \mathbb{R}.$$

We have that $S = \lim_{s \to +\infty} f_y(s)s^2 = \pi^{-1}$, and $\theta = 0$ is a local minimum of φ if and only if

(8)
$$\frac{x_0 y_0}{(1+x_0^2)} \le 1$$

due to (7). By symmetry considerations, $\theta = \pi/2$ is a local minimum of φ for any \boldsymbol{x} such that

(9)
$$\frac{x_0 y_0}{(1+y_0^2)} \le 1.$$

If $y_0 = 0$, the depth of \boldsymbol{x} is given by (3). Thus, we may assume that $y_0 > 0$. Now we establish that for any $\boldsymbol{x} = (x_0, y_0)^{\mathsf{T}} \in (0, \infty) \times (0, \infty)$ function φ is quasi-concave^{*} on $(0, \pi/2)$. From that it follows that

(10)
$$D(\boldsymbol{x}; P) = \inf_{\boldsymbol{\theta} \in (0, \pi/2)} \varphi(\boldsymbol{\theta}) = \min\{\varphi(0), \varphi(\pi/2)\}$$

To show the quasi-concavity of φ , note first that for $\theta \in (0, \pi/2)$ function $\varphi(\theta)$ is continuously differentiable, with finite one-sided derivatives at $\theta \in \{0, \pi/2\}$. For such a function, it is sufficient to show that either φ is monotone on $(0, \pi/2)$, or that it is increasing in a neighbourhood of $\theta = 0$, with at most one critical point. We proceed to find the critical

^{*}By a quasi-concave function φ on the interval $(0, \pi/2)$ we mean that for all $\theta_1, \theta_2 \in (0, \pi/2)$ and $\lambda \in [0, 1]$ we can write $\varphi(\lambda \theta_1 + (1 - \lambda)\theta_2) \ge \min\{\varphi(\theta_1), \varphi(\theta_2)\}.$

4 THE HALFSPACE DEPTH CHARACTERIZATION PROBLEM: ADDITIONAL DETAILS

points of φ in $(0, \pi/2)$, which, by the considerations above, coincide with the critical points of ψ in $(0, \infty)$. For our choice of f_x and f_y , by (5), the derivative of ψ can be written for $t \in (0, \infty)$ as

$$2\pi\psi'(t) = -\frac{y_0}{1 + (x_0 + y_0 t)^2} + \frac{x_0}{t^2 \left(1 + (x_0/t + y_0)^2\right)}.$$

Recall that we assume $y_0 > 0$, and re-parametrise the derivative above using $t = \alpha x_0/y_0$ for $\alpha \in (0, \infty)$. We obtain

$$2\pi\psi'\left(\frac{\alpha x_0}{y_0}\right) = -\frac{y_0}{1 + (x_0(1+\alpha))^2} + \frac{y_0^2}{\alpha^2 x_0\left(1 + (y_0(1+1/\alpha))^2\right)}.$$

Set the right hand side of this formula to be zero, and solve for $\alpha \in (0, \infty)$. It turns out that this equation is quadratic in α , and its only positive solution is given by

$$\alpha = \frac{\sqrt{x_0 y_0 \left(x_0^2 - 2x_0 y_0 + y_0^2 + 1\right)} + x_0^2 y_0 - x_0 y_0^2}{x_0^2 (-y_0) + x_0 y_0^2 + x_0},$$

for

- $0 < x_0 < 2$ and at the same time $0 < y_0 < x_0 + 1/x_0$, or
- $2 \leq x_0 < \infty$ and at the same time

either
$$0 < y_0 < \frac{x_0}{2} - \frac{\sqrt{x_0^2 - 4}}{2}$$
, or $\frac{\sqrt{x_0^2 - 4}}{2} + \frac{x_0}{2} < y_0 < \frac{x_0^2 + 1}{x_0}$.

FIGURE 1. Left panel: region R where a single critical point of φ exists in $(0, \pi/2)$ (coloured region), and a choice of the point $\boldsymbol{x} = (x_0, y_0)^{\mathsf{T}} = (1, 3/2)^{\mathsf{T}} \in \mathbb{R}$ (red dot). Right panel: function $\varphi(\theta)$ corresponding to the chosen \boldsymbol{x} (blue curve), its maximal value (orange line), and the critical point of φ (red dashed line). Obviously, function φ is quasi-concave on its domain, and minimized at $\theta = \pi/2$ (since $|x_0| < |y_0|$).

It is tedious, yet straightforward to verify that this region, say $R \subset (0, \infty) \times (0, \infty)$, is equal to the complement of the union of the two regions given by (8) and (9) in $(0, \infty) \times (0, \infty)$. The part of region R that lies inside the rectangle $(0, 5) \times (0, 5)$ is depicted in Figure 1. Outside R, there is no positive solution to equation $\psi'(t) = 0$ over $t \in (0, \infty)$. Consequently, function $\varphi(\theta)$ has a single critical point in the interval $\theta \in (0, \pi/2)$ for $\boldsymbol{x} \in R$, and no critical point in the interval $\theta \in (0, \pi/2)$ if $\boldsymbol{x} \in (0, \infty) \times (0, \infty) \setminus R$. Overall, it follows that for any $\boldsymbol{x} \in (0, \infty) \times (0, \infty)$ function φ is quasi-concave on $(0, \pi/2)$, and (10) holds true as asserted. Combine this with (3) and (4) to obtain

$$D(\boldsymbol{x}; P) = \min\{1 - F_x(x_0), 1 - F_x(y_0)\}/2 = (1 - F_x(\max\{x_0, y_0\}))/2$$

= 1/4 - arctan(max{x_0, y_0})/(2\pi) for all $\boldsymbol{x} = (x_0, y_0)^{\mathsf{T}} \in (0, \infty) \times [0, \infty).$

Obvious symmetry considerations provide that the above formula holds also generally for any $\boldsymbol{x} = (x_0, y_0)^{\mathsf{T}} \in \mathbb{R}^2 \setminus \{0\}$ — writing $\|\boldsymbol{x}\|_{\infty} = \max\{|x_0|, |y_0|\}$ we conclude that

$$D(\boldsymbol{x}; P) = \begin{cases} 1/4 - \arctan\left(\|\boldsymbol{x}\|_{\infty}\right)/(2\pi) & \text{for all } \boldsymbol{x} \in \mathbb{R}^2 \setminus \{0\},\\ 1/2 & \text{for } \boldsymbol{x} = 0. \end{cases}$$

This proves formula (6) in [1] for dimension d = 2. The result for general positive integers d follows analogously.

References

[1] Nagy, S. (2019). The halfspace depth characterization problem. *Springer Proc. Math. Stat.*, 10 pp. To appear.