THE HALFSPACE DEPTH CHARACTERIZATION PROBLEM: ADDITIONAL DETAILS

STANISLAV NAGY¹

Abstract

This note contains some technical details and derivations that complement the analysis from Section 2 of the paper [1]: The halfspace depth characterization problem.

Halfspace depth for distributions supported on coordinate axes

Let $P \in \mathcal{P}\left(\mathbb{R}^{2}\right)$ be a probability distribution supported on the coordinate axes $A_{x}=$ $\left\{(x, y)^{\top}: y=0\right\}$ and $A_{y}=\left\{(x, y)^{\top}: x=0\right\}$. The density of P with respect to the sum of one-dimensional Lebesgue measures concentrated on A_{x} and A_{y} is given by

$$
f(x, y)= \begin{cases}f_{x}(x) / 2 & \text { for }(x, y)^{\top} \in A_{x} \tag{1}\\ f_{y}(y) / 2 & \text { for }(x, y)^{\top} \in A_{y}\end{cases}
$$

where f_{x} and f_{y} are symmetric univariate density functions that are positive and bounded on \mathbb{R}. Denote by F_{x} and F_{y} the distribution functions that correspond to densities f_{x} and f_{y}, respectively, i.e. for F_{x} we have

$$
F_{x}(x)=\int_{-\infty}^{x} f_{x}(t) \mathrm{d} t
$$

and F_{y} is given analogously.
We now compute the halfspace depth of a point $\boldsymbol{x}=\left(x_{0}, y_{0}\right)^{\top} \in(0, \infty) \times[0, \infty)$ with respect to a random vector $X \sim P$. For that, define the halfspace function

$$
\varphi(\theta)=\mathrm{P}\left(\left\langle X, u_{\theta}\right\rangle \geq\left\langle\boldsymbol{x}, u_{\theta}\right\rangle\right),
$$

where $u_{\theta}=(\cos (\theta), \sin (\theta))^{\top}$. Function $\varphi(\theta)$ provides the probability mass of the halfplane whose boundary passes through \boldsymbol{x}, with inner normal u_{θ}. Of course, φ depends on the choice of \boldsymbol{x}. The depth of \boldsymbol{x} is given by

$$
\begin{equation*}
D(\boldsymbol{x} ; P)=\inf _{\theta \in(-\pi, \pi]} \varphi(\theta) . \tag{2}
\end{equation*}
$$

Since the densities f_{x} and f_{y} are symmetric and have equal weights in (1), and because we restrict \boldsymbol{x} to lie in first quadrant of \mathbb{R}^{2}, it is sufficient to search for the minimum in (2) only in the interval $\theta \in[0, \pi / 2]$.

If $y_{0}=0$, it is easy to see that for the halfspace depth we have

$$
\begin{equation*}
D(\boldsymbol{x} ; P)=\varphi(0)=\left(1-F_{x}\left(x_{0}\right)\right) / 2 . \tag{3}
\end{equation*}
$$

Suppose then that both x_{0} and y_{0} are positive. For $\theta \in(-\pi / 2, \pi / 2) \backslash\{0\}$, the boundary line of the halfspace $H_{\theta}=\left\{\boldsymbol{y} \in \mathbb{R}^{2}:\left\langle\boldsymbol{y}, u_{\theta}\right\rangle \geq\left\langle\boldsymbol{x}, u_{\theta}\right\rangle\right\}$ intersects the axis A_{x} in

[^0]$\left(x_{0}+y_{0} \tan (\theta), 0\right)^{\top}$, and A_{y} in $\left(0, x_{0} / \tan (\theta)+y_{0}\right)^{\top}$. Likewise, for $\theta=0$ we have $\partial H_{\theta} \cap$ $A_{x}=\left(x_{0}, 0\right)^{\top}, \partial H_{\theta} \cap A_{y}=\emptyset$, and for $\theta=\pi / 2$ we can write $\partial H_{\theta} \cap A_{x}=\emptyset, \partial H_{\theta} \cap A_{y}=$ $\left(0, y_{0}\right)^{\top}$. That gives us
\[

2 \varphi(\theta)= $$
\begin{cases}1-F_{x}\left(x_{0}+y_{0} \tan (\theta)\right)+F_{y}\left(x_{0} / \tan (\theta)+y_{0}\right) & \text { for } \theta \in(-\pi / 2,0) \tag{4}\\ 1-F_{x}\left(x_{0}\right) & \text { for } \theta=0 \\ 1-F_{x}\left(x_{0}+y_{0} \tan (\theta)\right)+1-F_{y}\left(x_{0} / \tan (\theta)+y_{0}\right) & \text { for } \theta \in(0, \pi / 2) \\ 1-F_{y}\left(y_{0}\right) & \text { for } \theta=\pi / 2\end{cases}
$$
\]

Because θ enters function $\varphi(\theta)$ only as $\tan (\theta)$, it will be convenient to minimize function $\psi(t)=\varphi(\tan (\theta))$ instead of $\varphi(\theta)$, with $t \in \mathbb{R} \cup\{+\infty\}$. That way, we consider

$$
2 \psi(t)= \begin{cases}1-F_{x}\left(x_{0}+y_{0} t\right)+F_{y}\left(x_{0} / t+y_{0}\right) & \text { for } t \in(-\infty, 0) \\ 1-F_{x}\left(x_{0}\right) & \text { for } t=0 \\ 1-F_{x}\left(x_{0}+y_{0} t\right)+1-F_{y}\left(x_{0} / t+y_{0}\right) & \text { for } t \in(0, \infty) \\ 1-F_{y}\left(y_{0}\right) & \text { for } \theta=+\infty\end{cases}
$$

Let us focus on the derivative of ψ around $t=0$; the situation with function φ around $\theta=\pi / 2$ is analogous. Direct computation yields

$$
2 \psi^{\prime}(t)= \begin{cases}-f_{x}\left(x_{0}+y_{0} t\right) y_{0}-f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2} & \text { for } t \in(-\infty, 0) \tag{5}\\ -f_{x}\left(x_{0}+y_{0} t\right) y_{0}+f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2} & \text { for } t \in(0, \infty)\end{cases}
$$

and, provided that all the limits on the right hand sides of the following expressions exist,

$$
\begin{aligned}
\lim _{t \rightarrow 0-} 2 \psi^{\prime}(t) & =-\lim _{t \rightarrow 0-}\left(f_{x}\left(x_{0}+y_{0} t\right) y_{0}+f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2}\right) \\
& =-f_{x}\left(x_{0}\right) y_{0}-\lim _{t \rightarrow 0-} f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2} \\
& =-f_{x}\left(x_{0}\right) y_{0}-x_{0} \lim _{s \rightarrow-\infty} f_{y}(s)\left(\frac{s-y_{0}}{x_{0}}\right)^{2} \\
& =-f_{x}\left(x_{0}\right) y_{0}-\frac{1}{x_{0}}\left(\lim _{s \rightarrow-\infty} f_{y}(s) s^{2}-2 y_{0} \lim _{s \rightarrow-\infty} f_{y}(s) s+y_{0}^{2} \lim _{s \rightarrow-\infty} f_{y}(s)\right), \\
\lim _{t \rightarrow 0+} 2 \psi^{\prime}(t) & =-\lim _{t \rightarrow 0+}\left(f_{x}\left(x_{0}+y_{0} t\right) y_{0}-f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2}\right) \\
& =-f_{x}\left(x_{0}\right) y_{0}+\lim _{t \rightarrow 0+} f_{y}\left(x_{0} / t+y_{0}\right) x_{0} / t^{2} \\
& =-f_{x}\left(x_{0}\right) y_{0}+x_{0} \lim _{s \rightarrow+\infty} f_{y}(s)\left(\frac{s-y_{0}}{x_{0}}\right)^{2} \\
& =-f_{x}\left(x_{0}\right) y_{0}+\frac{1}{x_{0}}\left(\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}-2 y_{0} \lim _{s \rightarrow+\infty} f_{y}(s) s+y_{0}^{2} \lim _{s \rightarrow+\infty} f_{y}(s)\right) .
\end{aligned}
$$

Because f_{y} is a density, if its limit at infinity exists, then necessarily $\lim _{s \rightarrow-\infty} f_{y}(s)=$ $\lim _{s \rightarrow+\infty} f_{y}(s)=0$. Since f_{y} was assumed to be a symmetric function, $\lim _{s \rightarrow-\infty} f_{y}(s) s=$ $-\lim _{s \rightarrow+\infty} f_{y}(s) s$, and $\lim _{s \rightarrow-\infty} f_{y}(s) s^{2}=\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}$. Thus, $\psi^{\prime}(0)$ exists if and only if $\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}=0$, and in that case

$$
\psi^{\prime}(0)=-f_{x}\left(x_{0}\right) y_{0} / 2<0
$$

This result is rather intuitive - for \boldsymbol{x} in the positive quadrant, function $\varphi(\theta)$ is decreasing at $\theta=0$; i.e. tilting the halfplane H_{θ} at $\theta=0$ in the counter-clockwise sense results in a smaller probability mass.
If

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}>0 \tag{6}
\end{equation*}
$$

the derivative of $\varphi(\theta)$ does not exist at $\theta=0$. If $\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}=+\infty$, we have

$$
\begin{aligned}
& \lim _{t \rightarrow 0-} 2 \psi^{\prime}(t)=-\infty \\
& \lim _{t \rightarrow 0+} 2 \psi^{\prime}(t)=+\infty
\end{aligned}
$$

and $t=0$ is a local minimum of ψ. In the case $\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}=S<\infty$, necessarily $\lim _{s \rightarrow+\infty} f_{y}(s) s=0$, and

$$
\begin{aligned}
\lim _{t \rightarrow 0-} 2 \psi^{\prime}(t) & =-f_{x}\left(x_{0}\right) y_{0}-\frac{S}{x_{0}}, \\
\lim _{t \rightarrow 0+} 2 \psi^{\prime}(t) & =-f_{x}\left(x_{0}\right) y_{0}+\frac{S}{x_{0}} .
\end{aligned}
$$

Point $t=0$ is a local minimum of ψ if and only if

$$
\begin{equation*}
S \geq f_{x}\left(x_{0}\right) y_{0} x_{0} \tag{7}
\end{equation*}
$$

which holds true at least if \boldsymbol{x} is close to the origin. Note that (6) implies that the expectation of $X \sim P$ cannot exist.

Example: Cauchy distribution. In what follows, let both f_{x} and f_{y} be the densities of the standard univariate Cauchy random variable, i.e.

$$
f_{x}(s)=f_{y}(s)=\frac{1}{\pi\left(1+s^{2}\right)}, \quad \text { for } s \in \mathbb{R}
$$

We have that $S=\lim _{s \rightarrow+\infty} f_{y}(s) s^{2}=\pi^{-1}$, and $\theta=0$ is a local minimum of φ if and only if

$$
\begin{equation*}
\frac{x_{0} y_{0}}{\left(1+x_{0}^{2}\right)} \leq 1 \tag{8}
\end{equation*}
$$

due to (7). By symmetry considerations, $\theta=\pi / 2$ is a local minimum of φ for any \boldsymbol{x} such that

$$
\begin{equation*}
\frac{x_{0} y_{0}}{\left(1+y_{0}^{2}\right)} \leq 1 \tag{9}
\end{equation*}
$$

If $y_{0}=0$, the depth of \boldsymbol{x} is given by (3). Thus, we may assume that $y_{0}>0$. Now we establish that for any $\boldsymbol{x}=\left(x_{0}, y_{0}\right)^{\top} \in(0, \infty) \times(0, \infty)$ function φ is quasi-concave* on $(0, \pi / 2)$. From that it follows that

$$
\begin{equation*}
D(\boldsymbol{x} ; P)=\inf _{\theta \in(0, \pi / 2)} \varphi(\theta)=\min \{\varphi(0), \varphi(\pi / 2)\} \tag{10}
\end{equation*}
$$

To show the quasi-concavity of φ, note first that for $\theta \in(0, \pi / 2)$ function $\varphi(\theta)$ is continuously differentiable, with finite one-sided derivatives at $\theta \in\{0, \pi / 2\}$. For such a function, it is sufficient to show that either φ is monotone on $(0, \pi / 2)$, or that it is increasing in a neighbourhood of $\theta=0$, with at most one critical point. We proceed to find the critical

[^1]points of φ in $(0, \pi / 2)$, which, by the considerations above, coincide with the critical points of ψ in $(0, \infty)$. For our choice of f_{x} and f_{y}, by (5), the derivative of ψ can be written for $t \in(0, \infty)$ as
$$
2 \pi \psi^{\prime}(t)=-\frac{y_{0}}{1+\left(x_{0}+y_{0} t\right)^{2}}+\frac{x_{0}}{t^{2}\left(1+\left(x_{0} / t+y_{0}\right)^{2}\right)}
$$

Recall that we assume $y_{0}>0$, and re-parametrise the derivative above using $t=\alpha x_{0} / y_{0}$ for $\alpha \in(0, \infty)$. We obtain

$$
2 \pi \psi^{\prime}\left(\frac{\alpha x_{0}}{y_{0}}\right)=-\frac{y_{0}}{1+\left(x_{0}(1+\alpha)\right)^{2}}+\frac{y_{0}^{2}}{\alpha^{2} x_{0}\left(1+\left(y_{0}(1+1 / \alpha)\right)^{2}\right)} .
$$

Set the right hand side of this formula to be zero, and solve for $\alpha \in(0, \infty)$. It turns out that this equation is quadratic in α, and its only positive solution is given by

$$
\alpha=\frac{\sqrt{x_{0} y_{0}\left(x_{0}^{2}-2 x_{0} y_{0}+y_{0}^{2}+1\right)}+x_{0}^{2} y_{0}-x_{0} y_{0}^{2}}{x_{0}^{2}\left(-y_{0}\right)+x_{0} y_{0}^{2}+x_{0}}
$$

for

- $0<x_{0}<2$ and at the same time $0<y_{0}<x_{0}+1 / x_{0}$, or
- $2 \leq x_{0}<\infty$ and at the same time

$$
\text { either } 0<y_{0}<\frac{x_{0}}{2}-\frac{\sqrt{x_{0}^{2}-4}}{2} \text {, or } \frac{\sqrt{x_{0}^{2}-4}}{2}+\frac{x_{0}}{2}<y_{0}<\frac{x_{0}^{2}+1}{x_{0}} .
$$

Figure 1. Left panel: region R where a single critical point of φ exists in $(0, \pi / 2)$ (coloured region), and a choice of the point $\boldsymbol{x}=\left(x_{0}, y_{0}\right)^{\top}=$ $(1,3 / 2)^{\top} \in R$ (red dot). Right panel: function $\varphi(\theta)$ corresponding to the chosen \boldsymbol{x} (blue curve), its maximal value (orange line), and the critical point of φ (red dashed line). Obviously, function φ is quasi-concave on its domain, and minimized at $\theta=\pi / 2$ (since $\left.\left|x_{0}\right|<\left|y_{0}\right|\right)$.

It is tedious, yet straightforward to verify that this region, say $R \subset(0, \infty) \times(0, \infty)$, is equal to the complement of the union of the two regions given by (8) and (9) in $(0, \infty) \times(0, \infty)$. The part of region R that lies inside the rectangle $(0,5) \times(0,5)$ is depicted in Figure 1. Outside R, there is no positive solution to equation $\psi^{\prime}(t)=0$ over $t \in(0, \infty)$.

Consequently, function $\varphi(\theta)$ has a single critical point in the interval $\theta \in(0, \pi / 2)$ for $\boldsymbol{x} \in R$, and no critical point in the interval $\theta \in(0, \pi / 2)$ if $\boldsymbol{x} \in(0, \infty) \times(0, \infty) \backslash R$. Overall, it follows that for any $\boldsymbol{x} \in(0, \infty) \times(0, \infty)$ function φ is quasi-concave on $(0, \pi / 2)$, and (10) holds true as asserted. Combine this with (3) and (4) to obtain

$$
\begin{aligned}
D(\boldsymbol{x} ; P) & =\min \left\{1-F_{x}\left(x_{0}\right), 1-F_{x}\left(y_{0}\right)\right\} / 2=\left(1-F_{x}\left(\max \left\{x_{0}, y_{0}\right\}\right)\right) / 2 \\
& =1 / 4-\arctan \left(\max \left\{x_{0}, y_{0}\right\}\right) /(2 \pi) \quad \text { for all } \boldsymbol{x}=\left(x_{0}, y_{0}\right)^{\top} \in(0, \infty) \times[0, \infty) .
\end{aligned}
$$

Obvious symmetry considerations provide that the above formula holds also generally for any $\boldsymbol{x}=\left(x_{0}, y_{0}\right)^{\top} \in \mathbb{R}^{2} \backslash\{0\}$ - writing $\|\boldsymbol{x}\|_{\infty}=\max \left\{\left|x_{0}\right|,\left|y_{0}\right|\right\}$ we conclude that

$$
D(\boldsymbol{x} ; P)= \begin{cases}1 / 4-\arctan \left(\|\boldsymbol{x}\|_{\infty}\right) /(2 \pi) & \text { for all } \boldsymbol{x} \in \mathbb{R}^{2} \backslash\{0\} \\ 1 / 2 & \text { for } \boldsymbol{x}=0\end{cases}
$$

This proves formula (6) in [1] for dimension $d=2$. The result for general positive integers d follows analogously.

References

[1] Nagy, S. (2019). The halfspace depth characterization problem. Springer Proc. Math. Stat., 10 pp. To appear.

[^0]: ${ }^{1}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic E-mail address: nagy@karlin.mff.cuni.cz. Date: August 4, 2019.

[^1]: *By a quasi-concave function φ on the interval $(0, \pi / 2)$ we mean that for all $\theta_{1}, \theta_{2} \in(0, \pi / 2)$ and $\lambda \in[0,1]$ we can write $\varphi\left(\lambda \theta_{1}+(1-\lambda) \theta_{2}\right) \geq \min \left\{\varphi\left(\theta_{1}\right), \varphi\left(\theta_{2}\right)\right\}$.

