THE HALFSPACE DEPTH CHARACTERIZATION PROBLEM:
ADDITIONAL DETAILS

STANISLAV NAGY!

ABSTRACT. This note contains some technical details and derivations that complement
the analysis from Section 2 of the paper [1]: The halfspace depth characterization prob-
lem.

HALFSPACE DEPTH FOR DISTRIBUTIONS SUPPORTED ON COORDINATE AXES
Let P € P (R?) be a probability distribution supported on the coordinate axes A, =
{(m, y)T LY = O} and A, = {(m, y)T Cx = O}. The density of P with respect to the sum
of one-dimensional Lebesgue measures concentrated on A, and A, is given by

folz)/2 for (z,y)" € A,,
f(y)/2 for (z,y)" € A,

where f, and f, are symmetric univariate density functions that are positive and bounded
on R. Denote by [, and F), the distribution functions that correspond to densities f,
and f,, respectively, i.e. for F, we have

R = [ Lo

(1) fla,y) = {

and F}, is given analogously.

We now compute the halfspace depth of a point & = (xg,yo)T € (0,00) x [0,00) with
respect to a random vector X ~ P. For that, define the halfspace function

90(9) = P(<X7 u9> > <CB,UQ>),

where ug = (cos(6),sin(h))". Function o(#) provides the probability mass of the halfplane
whose boundary passes through x, with inner normal uy. Of course, ¢ depends on the
choice of . The depth of x is given by
(2) D(xz; P)= inf ¢(6).
0e(—m,m)

Since the densities f, and f, are symmetric and have equal weights in (1), and because
we restrict @ to lie in first quadrant of R?, it is sufficient to search for the minimum in
(2) only in the interval 6 € [0, 7/2].

If yo = 0, it is easy to see that for the halfspace depth we have

(3) D(x; P) = ¢(0) = (1 = Fy (o)) /2.
Suppose then that both zy and y, are positive. For 6 € (—x/2,7/2) \ {0}, the bound-
ary line of the halfspace Hy = {y € R?: (y,uy) > (x,up)} intersects the axis A, in
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(zo + yo tan (8) ,0)7, and A, in (0, z0/ tan(d) + y)". Likewise, for § = 0 we have dHy N
A, = (xO,O)T, OHyN A, =0, and for § = 7/2 we can write 0HyN A, =0, 0Hy N A, =
(0,)". That gives us

1 — F, (xo + yotan(0)) + F, (xo/ tan(d) + yo) for 6 € (—7/2,0),
1= F,(x0) for 6 =0,
(1) 2000) = 1 — F, (xo +yotan(h)) + 1 — F, (zo/ tan(d) +yo) for 6 € (0,7/2),
1—F, (yo) for 0 = 7 /2.

Because 6 enters function ¢(6) only as tan(6), it will be convenient to minimize function
¥(t) = p(tan(0)) instead of ¢(0), with ¢t € RU {+o0}. That way, we consider

1 — F, (xo + yot) + E, (zo/t + yo) for t € (—o0,0),
20(t) = 1 — F, (x) for t =0,

1 — F,(xo+yot) + 1 — F, (zo/t +yo) fort e (0,00),

1 — F, (yo) for 6 = +o0.

Let us focus on the derivative of ¥ around ¢ = 0; the situation with function ¢ around
0 = 7/2 is analogous. Direct computation yields

(5) 21/},@) _ _fx (513'0 + y0t> Yo — fy (l’o/t + yo) LCo/tQ fOI‘ t e (—OO, 0),
—f (xo + yot) yo + f,, (T /t + yo) 2o/t for t € (0, 00),

and, provided that all the limits on the right hand sides of the following expressions exist,
tl_i)%l_ 20'(t) = — tl—i}gl— (fx (2o + yot) yo + fy (zo/t + o) xo/tQ)

= — [ (20) yo — tl_i)%l_ fy (@o/t + yo) xo /¥

2
= —fo(z0) Yo =z lim_f, (s) (S — yo)

Zo
= —fu (%0) Yo — xio (gmoo fy(s)s* = 2yo lim f,(s)s+y lim_ fy(3)> ,
lim 2¢/(t) = — tl_i)r& (fa (zo + yot) yo — fy (xo/t + yo) To/t?)

t—0+
= —fo (z0) Yo + Jim f, (zo/t + yo) To/t*

2
= —fz (x0) yo + o sginoofy () (3 — yo)

Zo

1 i . .
= 1ot o dim fy (05" =2 i (s)s-+ o8 i £(5)).
Because f, is a density, if its limit at infinity exists, then necessarily lim,_,_ f,(s) =
lim, 1o fy(s) = 0. Since f,, was assumed to be a symmetric function, lim,_,_ f,(s)s =
—limg s 100 fy(8)s, and lim,, o f,(8)s* = limg, oo fy(s)s?. Thus, ¥/(0) exists if and only
if limg 1o fy(s)s? =0, and in that case

Y'(0) = —f. (z0) yo /2 < O.
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This result is rather intuitive — for « in the positive quadrant, function () is decreasing
at @ = 0; i.e. tilting the halfplane Hy at # = 0 in the counter-clockwise sense results in a
smaller probability mass.

If

(6) lim f,(s)s*> >0,

S§——+00
the derivative of p(6) does not exist at 6 = 0. If lim, o f,(s)s*> = +00, we have
lim 2¢/(t) = —o0,

t—0—

. / o

and ¢t = 0 is a local minimum of ¢. In the case lim,, o f,(s)s? = S < 0o, necessarily
limg_, 4o fy(s)s =0, and

S
. / _ _ =
Jim 2¢°(t) = —fx (w0) Yo —
S
. / . -~
tl_l}Igi_ 20 (t) = — fo (x0) yo + o

Point ¢ = 0 is a local minimum of v if and only if

(7) S > fu(x0)yoo,

which holds true at least if @ is close to the origin. Note that (6) implies that the
expectation of X ~ P cannot exist.

Example: Cauchy distribution. In what follows, let both f, and f, be the densities
of the standard univariate Cauchy random variable, i.e.

fa(s) = fy(s) = W; for s € R.

(1+s%)
We have that S = lims, o fy(s)s* =71, and 6 = 0 is a local minimum of ¢ if and only
if
LoYo
8 ——<1
(8) (1+a2) —
due to (7). By symmetry considerations, § = 7/2 is a local minimum of ¢ for any « such
that
LoYo
9 v S
) T+ 3)
If yo = 0, the depth of x is given by (3). Thus, we may assume that yo > 0. Now
we establish that for any = = (9, 10)" € (0,00) x (0, 00) function ¢ is quasi-concave* on
(0,7/2). From that it follows that

(10) D(x; P) = ”e (1317{ ) @(0) = min{p(0), p(7/2)}.

To show the quasi-concavity of ¢, note first that for 6 € (0, 7/2) function ¢(0) is continu-
ously differentiable, with finite one-sided derivatives at 6 € {0, 7/2}. For such a function,
it is sufficient to show that either ¢ is monotone on (0,7/2), or that it is increasing in a
neighbourhood of ¢ = 0, with at most one critical point. We proceed to find the critical

*By a quasi-concave function ¢ on the interval (0,7/2) we mean that for all 01,6, € (0,7/2) and
A € [0, 1] we can write @(A01 + (1 — X)f2) > min{p(61), ©(02)}.
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points of ¢ in (0,7/2), which, by the considerations above, coincide with the critical
points of ¢ in (0,00). For our choice of f, and f,, by (5), the derivative of ¢ can be
written for ¢ € (0,00) as

Yo 2o

2 (t) = — + :

©) 1+ (zo +yot)? 12 (1 + (wo/t + 3/0)2)

Recall that we assume y, > 0, and re-parametrise the derivative above using ¢t = axg/yo
for av € (0, 00). We obtain

(oo _ Yo Yo
e < Yo ) L+ (wo(1+a)] | o’y (14 (yo (1 +1/a))*)

Set the right hand side of this formula to be zero, and solve for a € (0, 00). It turns out
that this equation is quadratic in «, and its only positive solution is given by

oy (# — 2xoyo + v + 1) + xdyo — zoyd
= 2 2
25(=yo) + 2oyg + 2o

Y

for
e 0 < zp < 2 and at the same time 0 < yy < xg + 1/z0, or
e 2 < xp < oo and at the same time
2 2 2
. T g —4 x5 —4 re+ 1
e1ther0<y0<—0— 0 , Or 9 +—0<yg< 0 :
2 2 2 2 T
$(0)
\ 0,13-/_'
0.12} :
3L
0.11
2L
0.1}
1l
Ot}

FI1GURE 1. Left panel: region R where a single critical point of ¢ exists
in (0,7/2) (coloured region), and a choice of the point © = (xo,y0)' =
(1,3/2)" € R (red dot). Right panel: function o(0) corresponding to the
chosen x (blue curve), its mazimal value (orange line), and the critical
point of ¢ (red dashed line). Obviously, function ¢ is quasi-concave on its

domain, and minimized at 0 = /2 (since |zo| < |yo|).

It is tedious, yet straightforward to verify that this region, say R C (0,00) x (0, 00),
is equal to the complement of the union of the two regions given by (8) and (9) in
(0,00) x(0,00). The part of region R that lies inside the rectangle (0,5) x (0, 5) is depicted
in Figure 1. Outside R, there is no positive solution to equation ¢’(¢) = 0 over ¢ € (0, o).
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Consequently, function ¢(#) has a single critical point in the interval 6 € (0,7/2) for
x € R, and no critical point in the interval 0 € (0,7/2) if ¢ € (0, 00) x (0, 00) \ R. Overall,
it follows that for any « € (0,00) x (0,00) function ¢ is quasi-concave on (0, 7/2), and
(10) holds true as asserted. Combine this with (3) and (4) to obtain

D(ZL‘,P) - mln{l _Fx (xO)vl - FJ: <y0>}/2 - (1 - Fa: (max{xmyO})) /2
= 1/4 — arctan (max{zo, yo}) /(27) for all & = (20,40)" € (0,00) X [0, 00).

Obvious symmetry considerations provide that the above formula holds also generally for
any « = (z0,50)" € R?\ {0} — writing ||z||, = max{|xo|, |yo|} We conclude that

D(a; P) = {1/4 — arctan (||||) /(27) for all & € R*\ {0},

1/2 for ¢ = 0.
This proves formula (6) in [1] for dimension d = 2. The result for general positive integers
d follows analogously.
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