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In several places in this course, using the stochastic op and Op notation will be essential.
Those not familiar with these concepts can find definitions and a few basic algebraic rules for

these symbols in the Appendix, Definition A9.

1 Bootstrap and other resampling methods

Suppose we observe independent and identically distributed k-dimensional random vectors
X1,..., X, from the distribution Fx and let @ x = 6(Fx) be the quantity of interest. Let
R, = g(X1,...,X,;0x) be a p-dimensional random vector that we want to use for doing

inference about Ox, e.g.

—
~

Ry = Vit (0~ 0x) or Ru= (8, —0,)" |avar(d,)| (8, —60),
where 5n is an estimator of @x and 0, is a known value.

To infer about parameter 8, one needs to know the distribution of R,,. Usually, we are not
able to derive the exact distribution of R,, analytically. For instance consider the distribution
of /n (@n -0 X), where @n is a maximum likelihood estimator for n fixed. In such situations,
the inference is often based on the asymptotic distribution of R,,. For example by Nagy
(2023a, Theorem 25) or Omelka (2023, Theorem 5), for a maximum likelihood estimator in
regular models one has \/n (én —0x) ﬁ N, (0,,17(6x)), for I(6x) the Fisher informa-
tion matrix of @x. Bootstrap presents an alternative to using the asymptotic normality. As
we will see later, bootstrap combines the ‘Monte Carlo principle’ and ‘substitution (plug-in)

principle’.

1.1 Monte Carlo principle

Sometimes one knows the distribution of X; and thus also of X = (X;,...,X,) so one
is (at least theoretically) able to derive the distribution of R,, = (Ry 1, ..., Rmp)T. But the
derivations are too complicated, and/or the resulting distribution is too complex to work with.
For instance, consider the standard maximum likelihood tests without nuisance parameters
as in Nagy (2023a, Section 3.3.1) or Omelka (2023, Chapter 2.4) when the null hypothesis
holds.

If one knows the distribution of X = (X1,...,X,,), then one can generate random vec-

tors X*, which have the same distribution as X. The Monte Carlo principle runs as follows.

e Choose B sufficiently large and for each b € {1, ..., B} independently generate random
samples X} = (X7 ,,..., X}, ;) such that the distribution of Xj is the same as the

distribution of X. We get B independent samples X7, ..., X%.



e For each b, compute R;b as the quantity R,, calculated from the b-th sample Xj.
e The unknown distribution function
H,(x) =P (R, <x) forxeRP
of R,, can now be estimated by the empirical distribution function of R:;b, b=1,....B

~

B
H, p(x) = %Z {R;, <x} forxeR
b=1

As Ry ,R:’ p are independent and identically distributed random variables and each

variable has the same distribution as R,,, the Glivenko-Cantelli Theorem (Theorem A10)

implies
sup ’HAH,B(X) - Hn(x)‘ 2% 5 0. (1)
xERP B—oo

Thus for a sufficiently large B one can use ﬁn p(x) as an approximation of H,(x).

Note that to achieve (1) it is not necessary to know the distribution of X exactly nor
that X,...,X,, are independent and identically distributed. We only need that we can
generate independent copies of R,,. Also, it is interesting to see that in (1), we do not
estimate the asymptotic distribution of R,, as n — oo, but rather the exact, finite sample

distribution with the sample size n fixed.

Application to hypotheses testing

If R, is a (one-dimensional) test statistic whose large values are in favour of the alternative
hypothesis, then with the help of the Monte Carlo principle, the p-value of the test can be
approximated (estimated) by

o 1+ZE=1|{RZ7bZRn}
PB = B+1 ’

as
~ 1+B (1 - Hn,B(Rn—)) a.s.
PB = B+1 B—oo

1 —Hp(R,-),

which is the ‘true’ (precise) p-value. Note that the quality of the approximation of pp as an
estimate of 1 — H,,(R,,—) depends on B which we can take as large as we want (provided that

enough computation time is available).

@ Example 1. * Consider the Neyman-Pearson test (Nagy, 2023a, Section 3.1), or any
likelihood-based test introduced in Nagy (2023a, Section 3.3.1) or Omelka (2023, Chapter 2.4).

* Examples designated by @ are accompanied by R codes.



We test the null hypothesis Hy : @x = 6y against the alternative Hy : Ox # 69, for 0y
given. The test statistic R,, is one-dimensional and explicitly given, but its exact distribution
under Hy does not have to be simple to determine. Under Hy, however, we know that
R, =g(X1,...,X,;0p) for Xq,..., X, arandom sample from distribution with parameter
0y, which is completely specified. The significance of the test statistic R,, can thus be directly

assessed using the Monte Carlo principle.

@ Example 2. We observe a random vector with a multinomial distribution Mg (n; p1, . . ., px)-
Denote p = (pl, e ,pK)T and let px be the true value of the parameter p. We are interested
in testing

Hy:px =p vs. Hi:px #p?,

where p(® = (pgo), ey pgg))T is a given vector. Explain how the Monte Carlo principle can

be used to estimate the p-value of the x2-test of goodness-of-fit.

The Monte Carlo principle does not have to be used only if the distribution of X =
(X1,...,X,) is completely specified. In the following examples, we will utilise that, in
fact, it is not necessary to know the data-generating mechanism of X exactly, provided we

can generate independent copies of R,,.

@ Example 3. Let (Y1, X1)",..., (Y, X,)T be independent and identically distributed ran-
dom vectors from the bivariate normal distribution with the true value of the correlation

coefficient denoted as px. We are interested in testing the hypothesis

Hy : px = po, vs.  Hi:px # pos (2)

for pg € (—1,1) given. Our intention is to use the test statistic R, = /n (p, — po) for p, the
sample correlation coefficient, see also Kulich and Omelka (2022, Section 10.1.2). A direct use
of a Monte Carlo approach to assess the significance of R, seems impossible, since we deal
with a problem of testing with nuisance parameters (means and variances of the marginal
variables X; and Y;). For simulating Monte Carlo replicates from R,,, one would thus need
to choose the values of these nuisance parameters for sampling X*, which could affect the
distribution of R,,.

The use of Monte Carlo is, however, still possible. For every a,b,c,d € R, ac # 0 we have

for the correlation coefficient p(X,Y’) between random variables X and Y that
plaX +b,cY +d) =sgn(ac)p(X,Y).

From this expression it is easy to see that both the correlation coefficient and the distribution

of the sample correlation coeflicient depend only on the single parameter px of the bivariate



normal distribution. Thus, one should be able (at least theoretically) to calculate the distri-
bution of R, when the null hypothesis holds. But this distribution is rather complicated.”
The same observation, however, shows that also the distribution of R,, depends only on py,
and it is the same for any choice of the nuisance parameters. Thus, when generating random
variables (Y7, X f)T, (Y X;‘L)T, one can choose any values of the nuisance parameters, as
long as p(X,Y;*) = px for all i. The resulting distribution of R} = v/n (p;, — po) has, under
the null hypothesis, necessarily the same distribution as R,,. Think how this can be used to

calculate (estimate) the p-value of the test of the hypothesis (2).

@ Example 4. Let X = (X1,...,X,) be a random sample from the distribution Fx in R.
We want to test the hypothesis

Hy: Fx(x) = Fy(x),Vz €R, vs. Hy:3x€R Fx(z)# Fo(x)
for Fy a given distribution function, using the Kolmogorov-Smirnov test statistic

R, = sup | Fy(z) — Fy(a)|.
z€eR
Here, ﬁn is the empirical cumulative distribution function of X. Compared to the classical
approach based on the asymptotic distribution of the statistic R,, (Kulich and Omelka, 2022,
Section 5.1), Monte Carlo approximation has two major advantages: (i) the approximation
is non-asymptotic, and works well also for small sample size n, and (ii) does not require the
assumption of continuity of Fp, i.e. works well also for discrete distributions. Furthermore,
using a Monte Carlo approach, analogous goodness-of-fit tests can be considered also in the

setup of multivariate distributions in R¥.

@ Example 5. Let Xi,...,X,, and Yj,...,Y,, be two independent random samples from
the exponential distributions with the density f(z;\) = Ae™**1[z > 0]. Let Ax be the true
value of the parameter for the first sample and Ay for the second sample. We want to use

the Monte Carlo principle to test the following hypothesis
Ho:)\X:)\y, VS. H1 Z/\X§£Ay. (3)

Again, we deal with the problem of a nuisance parameter, as under Hq there is still the
common parameter A\x = Ay to be specified.

We base the test on the best unbiased (and efficient) point estimators XXM = (Xm)_l
and /):y7712 = (Ynz)fl. There are several test statistics to consider. The first to consider

might assess the difference Ry, n, = h\ Xng — Xy,m. Take the distribution of Ry, n, under

*

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Using_the_exact_distribution


https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Using_the_exact_distribution

Hy, given that the common value of the parameter is A = Ax = Ay. We know that for X
with exponential distribution with density f(x;\), the distribution of A X is the standard
exponential with density f(z;1). Thus,
~ ~ ni n9 ni n2
Ry =AXn; — AV, = — =A < — > .
o = TN S R TSR \SEAK: | SR,
On the right-hand side, the expression in the brackets has a distribution that depends only on

the sample sizes n1 and nsy. But, the factor A in front of the brackets makes the distribution
of Ry pn, n, depend also on A. The distribution of the test statistic thus depends on a nuisance
parameter, and a Monte Carlo approach is not appropriate.

A second choice of a test statistic might be the ratio Ra , n, = h\ X,n1 /Xym. We have

Y an no Zzzll X U ZZ:I1 A X;
and again because all A Xy,...,AX,,,AY],...,\Y,, are independent with standard expo-
nential distribution, the distribution of R, », does not depend on the unknown A. The test
statistic R, n, is thus under Hp pivotal, and can be used for a Monte Carlo test of the

hypothesis (3), similarly as we did in Example 3.

Application to confidence intervals

Note that if R,, is one dimensional then also for each fixed u € (0,1):

~

Hy () == H ! (u),

provided that H, is continuous and increasing in u.* Thus one can use the quantile H o }9 (u)
as an estimate (approximation) of the quantile H,, *(u).

Let 5n = (én,l,...,§n7p)T be an estimator of Ox = (6X71, .. .,Hx,p)T and R, = 5n —0x.
Suppose the distribution of R,, does not depend on the parameter @x, i.e. that one is able
to generate random variables R} with the same distribution as R,,. Further, suppose that
we want to find the confidence interval for fx j, (the k-th component of @x). Denote H,, the

distribution function of é\nk — Ox 1 and ﬁn B the empirical distribution function of the k-th

*

component of Ry ;,...

R} 5. Now provided that the distribution function H, is continuous

and increasing in H,, '(a/2) and H,,'(1 — a/2), then one gets

lim P (ﬁ;}g(a/z) <O — Oxe < Hy (1 - a/2)> —1-a

B—o

Thus the approximate confidence interval for 6x ; can be calculated as

(B — ﬁ;}g(l —a/2), 0 — H, 1 (a/2)).

* In fact, it is sufficient to assume that H,, ! (u) is a unique solution of H, (z_) < u < H,(x), see e.g. the main
theorem of Serfling (1980, Section 2.3.1).




Observe that on the left-hand side of this interval is the upper sample quantile ﬁgg(l —a/2),
and on the right-hand side the lower sample quantile H o }B(a /2).

Example 6. Let X1,..., X, be a random sample from a distribution F'x that belongs to a

location family, i.e.
Fx e F={F(-—10),0 € R}, (4)

where F' is a known function and 6 is an unknown parameter.
Let O0x be the true value of the parameter 6 (i.e. Fx(z)= F(x —0x), for all z € R) and b,

be its estimator that is location equivariant, i.e.
On(X14¢ ..., Xp+0)=0n(X1,...,Xn)+c, VeeER

Then the distribution of R, = 0, — 0x = 0n(X1, ..., Xn) — Ox = (X1 —Ox, ..., Xn —0x)
depends only on the distribution of X; —0x,i=1,...,n. We have

P(X;—0x <x)=P(X;<z+0x)=F(x+60x —0x)=F(z) forallzeR.

Thus, the distribution of all X; — 0x, and consequently also the distribution of R,, depends
only on the known function F' but it does not depend on fx. The distribution of R, can be
thus approximated using a Monte Carlo procedure by simulating from the distribution with a
given 6y (e.g. 0y = 0) and calculating Rz,b = A;'iL — 0, in the same way as we did in Example 3.

Use this approach to find a Monte Carlo confidence interval for

e parameter 6 € R given a random sample X, ..., X, from the logistic distribution with
density
—(xz—0
flz) = exp{—(z —0)} . zER,
(1 +exp{—(z—0)})
e the median 6 € R of Fx, given a random sample X7, ..., X,, from a location family (4)

with F' having a symmetric density.

1.2 Standard nonparametric bootstrap

In the Monte Carlo principle, we leveraged the fact that the data-generating process of R,
was known completely, and we were able to sample from the distribution of R, directly. This
is in practice quite rare, and Monte Carlo per se is thus of relatively limited interest.

A generalisation of the Monte Carlo principle is the bootstrap. In that case, instead of
knowing the distribution of X precisely, we estimate it, and sample X from that estimated
distribution. Depending on whether this distribution is estimated parametrically or nonpara-

metrically, we distinguish parametric or nonparametric bootstrap.

The end of
lecture 1
(2.10.2024)



Throughout this section, we suppose that we observe independent and identically dis-
tributed random vectors X1, ..., X, from the distribution Fx. Let 8(Fx) be the quantity
of interest and §n be its estimator. For presentation purposes, it will be instructive to write

the estimator as én = O(ﬁn), with ﬁn the empirical distribution
~ 1 &
Fo.(x) = - z; HX; <x} forxe R”.
1=

We are interested in the distribution of a p-dimensional random vector
R, = g0 (0, 0x) =8 (0(F,),0(Fx)) (8. R = v (B, — 6x)).

where g, is a deterministic and known function that depends only on n.

1.2.1 Idea of nonparametric bootstrap

In nonparametric bootstrap® the unknown Fx is estimated by the empirical distribution

function F\n The empirical distribution puts mass 1/n to each observation Xi,...,X,.
Thus, generating independent random vectors X7,..., X from E, is equivalent to drawing
a simple random sample with replacement! of size n from the observed values X1,..., X,

ie. P(X7, = X;|X) = % foreach b=1,...,B,i,j=1,...,n, and all the random variables
{X;lﬁ 1=1,...,n,b=1,.. .,B} are independent.

Our intention is to approximate/estimate the unknown distribution function H,, of R,,, i.e.
H,(x) =P (R, <x) forx€RP. (5)
The nonparametric bootstrap algorithm runs as follows.

. e
(i) Choose B sufficiently large. For each b € {1 B} independently generate the datasets
;= (X4, ;’b)T (i.e. the datasets XJ,...,X}; are independent) using a simple
random sample with replacement from X.
(ii) Let

o~k o~

:L,b = 8n (en,b> /e\n) = 8n (0( A;:,b)a e(ﬁn)) (e.g. R;,b =vn (aij - Gn)),

o~

where 0;1) is an estimator of @ based on Xj and analogously ﬁ;;b is the empirical

distribution function based on X5.

(iii) The distribution function H,, of R,, is now (by the combination of the Monte Carlo and
plug-in principle) estimated by

B
I?I;L“’B(x) = %Z {R;, <x} forxeR? (6)
b=1

* neparametricky bootstrap T prosty ndhodng vibér s vracenim



It is important to observe that ﬁ;‘; g from (6) is, in fact, a two-step approximation of the

true distribution function H,, from (5):

e Plug-in. First, note that the random variables/vectors R;,p .. ’R;, p are independent
and identically distributed as a generic random vector R}, and conditionally on X (that
is, if the original random sample X is taken as fixed). In the first approximation of H,,,
the distribution of R,, is approximated by the conditional distribution of R} given X.

Its (conditional) distribution function is

Ho(x) =P (R;; < x| x) —p (gn((a(ﬁ;),e(ﬁn)) < x| x)

v~ (7)
= (gn(en,en) < X|X) for x € RP.

That is, for fixed X, H, is the true distribution of R if only the randomness in sampling

; is involved. Because .FAIn still depends on the random sample X, it is itself random.

e Monte Carlo. In the second approximation of H,, from (5), the distribution function

(7) is estimated by the empirical distribution function of the B bootstrap replicates

*

w1, Ry g from Ry, ie. using H} 5 from (6).

*
n,l""

X, by the Glivenko-Cantelli Theorem (Theorem A10) we know that

Because R , R’ p are a random sample from the conditional distribution of R}, given

sup |5 5 (00) = Ha(x)] 552 0,
Taking B sufficiently large, we see that ﬁ; p can be made arbitrarily close to fIn For this
reason, the second approximation (Monte Carlo) is always valid, as long as B is large
enough. Consequently, in the theory of bootstrap, the second approximation of fIn by .FAI,;'; B
is usually ignored, and only the first, plug-in approximation (of H,, by f[n) is studied. If
ﬁn is a ‘good’ estimator of H,,, then the nonparametric bootstrap is said to ‘work’, or to be

consistent.

1.2.2 Convergence of conditional distributions

The distribution function f[n depends on the random sample X and thus it is random, and
can be viewed as an estimator of the distribution function H,. The crucial question for the
success of the nonparametric bootstrap is whether fIn is ‘close’ (at least asymptotically) to
H,. To answer this question it is useful to introduce the supremum metric on the space of
distribution functions (of random vectors on RP) as

Poo(H1, Hy) = sup ’Hl(x) - Hg(x)‘.
xERP

10



Suppose that we have a sequence of random vectors Y1,Y5,... and Y with distribution
functions G1,Go,..., and G. Lemma A2 given in the Appendix states that if the limiting
distribution function G is continuous, then p., can be used for metrizing the convergence
in distribution, meaning that po(Gp, G) — 0 if and only if Y, # Y.

Recall the random vector R whose distribution function H,, is given by (7). We saw
that the distribution of R} depends on (the realisations of our data) X1,..., X ,. Thus the
distribution R} is conditionally on X7,...,X,. We need to define a notion of convergence
for conditional distributions.

Let R be a candidate for the limiting random vector R, and let H be the distribution
function of R. Let p be a metric on the space of distribution functions that can be used for
metrizing weak convergence (for instance the supremum metric p if the limiting distribution
is continuous, but in literature other metrics can be found). Since H, given by (7) depends
on X, p(ﬁn, H) is a random variable (also depending on X).

We say that

e conditionally on X, Xo,... the random variable R} converges in distribution

to R in probability if

~

p(Hy,, H) 250 (i.e. for each € >0 lim P [we Q: p(ﬁn(w),H) >e] = 0).
n—oo n—oo
e conditionally on X, X, ... the random variable R} converges in distribution to

R almost surely if

~

p(H,, H) =250 (i.e. P [w €Q: lim p(ﬁn(w),H) = 0} = 1).

n—oo n—oo

In the following theorem, we formulate the conditions needed for the nonparametric boot-

strap to work.

Theorem 1. Suppose that R, _}L R, where R is a random vector with a continuous
n—oo

distribution function H. Further suppose that

75 P a.s.
poo(Hn, Hy) —— 0 (or ——0), (B)
then conditionally on X1, X2,... one gets R}, % R in probability (or almost surely).

Proof. By the triangle inequality, (B), and Lemma A2 we have

~ ~

P S.
poo(Hpy H) < poo(Hp, Hp) + poo(Hp, H) —— 0 (or —=0).

n—oo n—o0

This is precisely what we wanted to prove. ]

11



The first thing worth noting in Theorem 1 is the assumption that R,, % R, where R is
a random vector with a continuous distribution function. This requires tl?at Ox?ve use bootstrap
to approximate a distribution that is asymptotically not degenerate. This is analogous to
the use of normal approximation (to which using bootstrap is an alternative), where we also
normalise the random vector so that it asymptotically has a non-degenerate distribution. In
our analysis, the assumption of non-degeneracy of R appears to be a remnant of the use
of the supremum norm p.,, but this limitation can be shown to be fundamental. Thus,
for the nonparametric bootstrap to work appropriately asymptotically, it must be assumed
that the limiting distribution R of R,, is non-degenerate. Typically we choose R,, so
that it converges to a multivariate normal distribution, thus also the continuity of the limit
distribution of R is satisfied.

The crucial condition (B) from Theorem 1 is precisely what is needed for the first ap-
proximation (plug-in) of H,, by ﬁn in nonparametric bootstrap to be valid. Thus, we say
that nonparametric bootstrap is consistent (or simply that it ‘works’) if (B) is true. In what

follows, we will explore when this is the case.

1.2.3 Consistent nonparametric bootstrap

In view of Theorem 1, the crucial question is whether the convergence in (B) holds. Our first

answer is the next theorem, which states that (B) holds for a sample mean.

Theorem 2. Let X1, Xo, ... be independent identically distributed random vectors such that
E || X1]|> < oo and the variance matriv = var(X ) is positive definite. Consider R,, =
Vi (Xn —E X1) and R:, = /n (X, — X»). Then

poo(ﬁnaHn) %} 0. (8)

Proof. By the standard central limit theorem for random vectors, we have po(Hy,, H) —— 0,
n—oo
for H the distribution function of the k-variate normal distribution Ng(0, ). We can use the

triangle inequality for p,, and write
poo(ﬁm Hn) < poo(ﬁna H) + poo(Hv Hn)

As n — oo, the second summand above vanishes, so it remains to prove

~

Poo(Hp, H) -2 0. (9)
n—oo
We proceed conditionally on the sequence X, Xo,..., i.e., the values X1, Xo,... are con-

sidered to be fixed, and the only randomness in E’n comes from the bootstrap resampling in

*...., X from the fixed distribution given by F,. This means that the random variables

12
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X7 are all independent and identically distributed for ¢ = 1,...,n, but have a different dis-
tribution ﬁn for each n = 1,2,.... Thus, it is more appropriate to write X f” to emphasise
that the (conditional) distribution of X depends on n. We want to use a central limit theo-
rem to prove that conditionally on X, X, ..., the quantity R converges in distribution to
Nx(0, ) almost surely. That would be enough to conclude that also (9) is true.

The conditional mean and variance of X ; are for each i =1,...,n
k)

E (X X1,Xs,...) :lzxi:yn’

n
=1
var (X7, | X1, Xs,...) =E ((x:;,i ~X,) (X5, — X)) | Xl,Xg,...>
1 " ~ - \I as.
:Eiﬂ (X — Xn) (X — X,) —=

the final limit following from the usual strong law of large numbers. Define

*

Y,:,= \/%’Z fori=1,...,n.
We use the Lindeberg-Feller central limit theorem for the triangular array Y, ;, ¢ =1,...,n,

n=1,2,..., see Theorem All in the Appendix. We have

Zvar(Yn,i]Xl,Xg,...)zzvar( ni | X1, Xa, ):var(X,il\XhXQ,...)&

X N n n—00
=1 =1

It remains to check the ‘Lindeberg-Feller condition’ (A108); for € > 0 we have
- * 1 - * * *
S OB I aalP 1Y aill > 23] = = D€ [ Xl 11Xl > = v}
i=1 i=1
= E* [ X5 "1 X > e vin)]

where E* is a shortcut for the conditional expectation given X1, Xo,.... If M > 0 is any
constant so that M < ey/n, we know that || X7 ;|| > ey/n implies || X7, ;|| > M, and thus for

any M < oo we find that for all n large enough we can bound

E* X0 " X0l > e vy < B [ X071 | X5]| > A}

1 - 2 .S. 2
= =S IXIPH X > MY 2 E X 1] > ]

n P n—o00
Because this is true for any M € (0,00), we can take M sufficiently large so that the
right-hand side is arbitrarily small. Necessarily, Y ;' | E* {||Ym||2 { Y il > 5}} 22, 0.

n—0o0

The Lindeberg-Feller central limit theorem (Theorem A11) now gives that, conditionally on
X1, Xo,...,

n
% d
> (Vi —E (Vail X1, X2,...)) =R}, —— Ni(0, ),
and this convergence is true almost surely. We conclude the proof. 0
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Note that for X a p-variate random vector the central limit theorem implies that the
distribution function H,, converges weakly to the distribution function of N, (Op,var(X 1))

Now Theorems 1 and 2 imply that conditionally on X1, Xo,... also

« d
R} —= N, (0p,var(X1)), almost surely.

Thus one can say that H, estimates the distribution function of N, (0p,var(X1)), and boot-

strap works.

@ Example 7. Let X1,..., X, be independent and identically distributed random variables
and we are interested in the expectation E X;. The usual approach to find the confidence
interval for E X is to use the convergence

Vi (X, —EX;) 4

Sh, n—oo

N(0,1), (10)

which holds provided that var(X;) € (0,00). Here, of course, S2 is the sample variance of
Xi,..., X,
In view of the theory presented above we want to approximate/estimate the distribution
function
H,(z) =P(R, <z), where R, =+/n (Yn —E Xi).

With the help of (10) the estimate of this distribution based on the normal approximation is
HPorm) (z) = (). (11)

Alternatively one can use the nonparametric bootstrap resulting in an estimator H ; p from (6).

Figure 1 illustrates the normal and the bootstrap approximation (with B = 10000) for
the sample sizes n = 30 and n = 1000 when the true distribution of X; is exponential
Exp(1). In the plots in the first column one can find the densities of the true distribution
of R, = v/n (X, — E X;) (black solid), the normal approximation (11) (blue solid) and the
limit distribution which is N(0,1) (dotted, the variance is 1 because of Exp(1) chosen in the
simulations). The bootstrap approximation is given by the histogram.

In the plots in the second column one can find the difference of the true distribution
function H,, of R,, with its estimates. The difference H,(x) — e (x) is in blue colour,
while the difference Hy,(z) — fIn p(x) is in red colour. Note that these differences are much
smaller for the bigger sample size. However, none of the approximations seems evidently

preferable in this example.

The standard nonparametric bootstrap also works for ‘smooth’ transformations of sample

means.
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Figure 1: Comparison of the normal and bootstrap approximations of the distribution of the
random variable R, = /n (X, — E X;).
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Theorem 3. Let X1, X9, ... be independent identically distributed random (p-variate) vectors
such that E | X1]|* < co. Further suppose that there exists a neighbourhood U of p = E X4
such that the function g : U — R™ has continuous partial derivatives in this neighbourhood.
Consider Ry, = /n (g(X,) —g(p)) and R}, = /n (g(Y;) —g(Xy)). Then (8) and (B) both

hold, i.e. nonparametric bootstrap is consistent.

The above theorem can be of interest for functions of (sample) moments whose asymptotic
distribution is difficult to derive (e.g. Pearson’s correlation coefficient, skewness, kurtosis,
Finally, the are also plenty of situations when the bootstrap works with statistics that are
not (smooth transformations of) sample means. Roughly speaking, it can be shown that (B)

holds provided that /én satisfies the following asymptotic representation

n
6, :0X+%ZIF(XZ»)+0P(ﬁ), (12)
i=1
where [F(x) is a given function. In this case, /H\n can be well approximated by a ‘sample
mean’ of variables [F'(X;),i=1,...,n, and thus a variant of Theorem 3 can still be stated.
The ‘linearization’ of the statistic 8, from (12) can be formalised through the concept of
influence functions, and Fréchet, or Hadamard-differentiability of the functional F' +— @(F)
at F'x. That is, however, out of the scope of this course; for details and references one can

see e.g. Nagy (2023b, Section 2.2).

In summary, we have found that nonparametric bootstrap works when

e the random variables X1, X, ... are independent and identically distributed,

e the moment assumption E || X1]|? < oo is true,

e R,=\n (g(fn) — g(u)) for a sufficiently smooth function g and pu = E X1, or more
generally, an expansion such as (12) holds true for R,, = /n (én -0 X), and

e the limiting distribution R of R,, exists, and is non-degenerate.

1.2.4 Comparison of nonparametric bootstrap and normal approximation

Theorems 1 and 3 imply the asymptotic validity of bootstrap provided that (B) holds. A
most interesting question is whether the bootstrap estimate H, can be a better estimate of
H,, than the asymptotic distribution H (with estimated unknown parameters).

To answer the above question, consider p = 1 and the case of the sample mean. The

following result can be found in Shao and Tu (1996, Theorem 3.11).
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Theorem 4. Let X1, Xo,... be independent identically distributed random variables with a
continuous distribution such that E X{ < oo. Denote v, = E (?)3, where p = E X1, 0° =
var(X1), and let ¢ and ® be the density and the distribution function of the standard normal

distribution, respectively. Then

Hy(z) = (@ <) = 0(z) + 7 (2 + 1)p(x) +O(2), (13)

where X, = 230 | X, and S2 = 2557 (X; — Xp)?. Further, for H,(z) we have

Hy(w) = P (L1550 < 5 |X) = 0(a) + 222 (22% + (@) + Op(),  (19)

~ F * * x _ F i—Xn)3
where X, = %Z?:l X/ Syt = ﬁ Do (X7 = X,)?* and T = %Z?:l (%) :

n

First, observe that Theorem 4 is stated for the studentized sample mean statistic

\/ﬁ(yn - EXj)

R, = o

Suppose now that E X9 < co. Then the standard central limit theorem and the A-method
give y1 — Y10 = Op(ﬁ), and comparing (13) and (14) one gets

Hy(z) — Hy(z) = Op(L).

On the other hand if 4 # 0, then by the normal approximation one gets from the Berry-
Esséen inequality only

®(z) - Hy(x) = ().

Thus if v4 # 0, one can expect that for R, based on the studentized sample mean, in
comparison with ®, the bootstrap estimator fIn is closer to the true distribution H,, of R,.
Without studentization, it can be shown that this advantage of using bootstrap disappears.

We observed this in Example 7.

@ Example 8. We are in the same situation as in Example 7. But instead of approximat-
ing/estimating the distribution of /n (X, — E X;), we approximate the distribution of its

studentized version, i.e.

Vit (X, —E X)

R, =
Sn

Note that the normal approximation of the distribution of R,, is simply given by f[ﬁnorm) (x) =
®(x). The comparison of the true distribution function with its either normal or bootstrap
approximation is found in Figure 2. Similarly as in Example 7, the results are for the ran-
dom sample from the standard exponential distribution. In agreement with Theorem 4, the

bootstrap approximation is better than the normal approximation.

17

The end of
lecture 3
(16.10.2024)



Sample size 30 Sample size 200

—— true df minus normal. approx. —— true df minus normal. approx.

] —— true df minus bootstrap approx. g —— true df minus bootstrap approx.
IS] IS

< <

S S

o o

N N

S A S

o o

0.00
1

Difference of true cdf and its approximation

%

Difference of true cdf and its approximation

Figure 2: Comparison of the normal and bootstrap approximation of the distribution of the

random variable R, = @

1.2.5 Bootstrap-based confidence intervals

In what follows consider R,, = /n (En -0 X) and suppose that R, # R, where R is
a random vector with a continuous distribution function. We are interested in finding the
confidence interval for fx ; (the j-th component of 8x).

Suppose for a moment that the distribution of R, ; (the j-th component of R,,) is known

and continuous. Then one has

P [rn(a/Q) <+n (QAnJ —Ox,;) <rn(l— a/Q)} =1-aq,
where 7, () is the a-quantile of R,, ;. Thus one would get a ‘theoretical’ confidence interval

(8- 50, - i), w

The problem is that the distribution of R, ; is not known and thus also the quantiles 7, (a/2)

and r,(1 — «/2) are not known.

Basic bootstrap confidence interval

Consider R} = \/n (52—@) and suppose that the assumptions of Theorem 1 are satisfied, i.e.,

bootstrap works. Let 77 («) be the quantile of the bootstrap distribution of R}, ; = \/n (@*;] —

gn]) Then Theorem 1 and Lemma A3 from the Appendix imply that 7} () %) ri(a)
n oo

(or even 7} () % rj(c)), where 7;(a) is the a-quantile of R; (the j-th coordinate of the
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limiting distribution R). Thus one gets

lim P [r;;(a/Q) </ (B — Ox,) <ri(1 — a/z)] ~1-a. (16)
n—o00
Now with the help of (16) one can construct an asymptotic confidence interval for fx ; as

(A rel-a/2) 5 M) (17)

On.j NG Ing T T
~ -1
where 1, p(a) = (H;,B) (o) is a Monte-Carlo approximation (estimate) of r(a). The
confidence interval in (17) is usually called basic bootstrap confidence interval.
The formula for the confidence interval (17) mimics the formula for the theoretical con-
fidence interval (15). The bootstrap idea is to estimate the unknown quantiles r,(«) with

*(a) that can be calculated only from the observed data X,..., X, (‘substitution princi-

r
ple’). Further, as the quantiles 7 («) are difficult to calculate analytically, one approximates

them with r}; p(a) (‘Monte Carlo principle’).

Typically
R, = 7 (6, — 0x) # N, (0,, V). (18)

Then, the advantage of the confidence interval given by (16) is that it does not require to
explicitly estimate the asymptotic variance matrix V. Thus this confidence interval
can be used in situations where deriving or estimating the asymptotic variance of R,, is rather
difficult.

On the other hand, the theoretical results (such as Theorem 4) stating that the bootstrap
confidence interval is more accurate require that the asymptotic distribution of R, ; is pivotal
(i.e., it does not depend on unknown parameters). If this is not the case, then the basic
bootstrap confidence interval (17) can be (for finite sample sizes) less accurate than the

standard asymptotic confidence interval

(5n,j — UV G, 4 M2y ”"‘“'), (19)

where vy, j ; is a consistent estimate of the j-th diagonal element of the matrix V. Consider

the following example.

@ Example 9. We have a random sample X7, ..., X, from a normal distribution N(\, A?),
with A > 0 an unknown parameter. We construct a basic bootstrap confidence interval (17)
for A based on R,, = \/ﬁ(yn — Ax); we know that the assumptions of both Theorems 1 and 2
are valid with the limiting random variable R distributed as N(0, )@(), and the bootstrap is
thus consistent. We approximate the a-quantiles of R by 7“;; p(a), and set the confidence

interval (17) to be
(— B r, p(1—a/2) X _ r;‘L’B(a/Q))'
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Suppose now first that the true value of X is Ax = 1. Then R has distribution N(0,1), and
the estimated quantiles r}, p(a) approximate wu,, the quantiles of N(0,1). Our confidence

interval (20) is thus, for n and B large, approximately

(yn _ u1\—/%/2’yn _ u\yﬁz)

A confidence interval should, however, cover the true value of the parameter Ax with high
probability for any Ax > 0. Taking a different A\x > 0 and X1, ..., X,, a random sample from

N(Ax,\%), we get for the confidence interval from (20) (and the quantiles 7y, p(a) computed
with Ax =1 fixed)

P (A e (X, - el 2 X, T |4 (a/2), 75 5(1 - a/2)

N NG
rr plo/2 X, — rr p(l—a/2
_p B /)<\/ﬁ Ax < 5 /2)
Ax Ax Ax

~ Ul—a/2 B U /2
~o (M) e (),

For Ax = 10 and a = 0.05, the coverage on right-hand side is approximately only 0.155, very
far from the desired 1 — a = 0.95. This shows that in the confidence interval (17), also the

7 /2, (1~ a/2>)

quantiles 77 (or r} ;) must be considered random, as the distribution of the limiting quantity
R can still depend on the unknown parameter 6.
These difficulties, of course, disappear if we choose a quantity R, ; for the construction of

confidence interval (17) pivotal, i.e., not depending on the parameter 6.

We see that if possible, it is beneficial to use asymptotically pivotal R, ;, or quantities R, ;
that at least ‘less dependent’ on the unknown parameters (see Remark 2 and Section 1.2.5

below).

X1
Y1

is a p-dimensional covariate and Y; is one-dimensional response. In regression models (linear

Example 10. Suppose we observe Z; = ( ), sy = ()}(,:) a random sample, where, X;
models, generalised linear models, quantile regression models,. ..) one aims at estimating 3y
which specifies how the covariate influences the response. Usually based on theoretical results

one can hope that
~ d
Vn (IBn - ,3)() m Ny (0p,V)

and to find a confidence interval for Sx ; (the j-th component of 3y) one needs to estimate V
(or at least its j-th diagonal element). But this might be rather difficult, see for instance the
general asymptotic variance matrix of the least absolute deviation estimator (Omelka, 2023,
Section 4.3.2). The bootstrap can thus present an interesting alternative. In this situation,
the nonparametric bootstrap corresponds to generating Z7 = (i,?), N A ();n") as a simple
random sample with replacement from Z1,...,Z,.
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In some textbooks, a formula for a confidence interval different from (17) can be found. To

explain this formula note that 7“;, p(a) is the sample a-quantile of R} PRTEEE ’R;,j, > Where
Ry ., =Vn (A:‘w.,b — 9\”]) Further let g, p(a) be a sample a-quantile calculated from the
values 971_7 15++++ 0, ; - Then
rn5(@) = vV (4, p(@) — On;) (21)
and because »
~ r gla) ~ ~

= 0nj — (¢, 5(0) = Ong) = 2005 — ¢ p(a),

the basic bootstrap confidence interval (17) can also be rewritten in an equivalent form as
(200 — 65501 — @/2),200; — 65.5(0/2)). (22)

Thus in practice it is sufficient to calculate 9* 5o instead of Ry ., and then use formula (22).
On the other hand, the approach based on calculating R} n,jb 1S MOre appropriate from the
theoretical point of view. The reason is that to justify the bootstrap, one needs (among others)

that the limiting distribution R, ; has a continuous distribution function (see Theorem 1).

Remark 1. Sometimes, in literature, one can find a bootstrap confidence interval of the form

(4n.5(0/2). 45 5(1 = a/2), (23)
which is usually called the percentile confidence interval. With the help of (21) this confidence
interval can be rewritten as

ng + —Jn 70%]’ +

(9 rh.s(@/2) > .

np(1-a/2) ) '

Thus, when using the percentile confidence interval, one hopes that (taking B = c0)

i P (B + R By 7 /2)) >0

— lim P [_ i1 = a/2) < /(0o — 0x;) < —r;;(a/m] ~1-a

n—oo

The use of the percentile interval can thus be justified if the limiting distribution of R, ; is

symmetric, because then
P
(L= a/2) L (1 - a/2) = —r;(0/2)

and analogously 7} (a/2) £, —rj(1 — «/2). As the limiting distribution of R, is typically
n—oo

a zero mean Gaussian distribution, the assumption of the symmetry of R; is often satisfied.

The practical advantage of the percentile confidence is that it is always contained in the

parametric space.
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Remark 2. Suppose for simplicity that x € R. Then using R, = /n (HAn — GX) is natural
for location estimators. But sometimes it may be of interest to consider for instance R, =
vn (g—; —1)or R, =+/n (g(é\n) —g(fx)), where g is a function that stabilises the asymptotic
variance (see Omelka, 2023, Chapter 1.4). This might be useful especially if one can guarantee

that the limiting distribution of R,, is pivotal.

Studentized bootstrap confidence interval

We saw that it is recommended to ‘bootstrap’ a variable whose limit distribution is pivotal

(i.e. does not depend on the unknown parameters).

Vi (0n,j—0x ;)
VUn.ii
Un,j,j is a consistent estimate of the j-th diagonal element of V. Let 7 (o) be the a-th quantile
_ \/ﬁ(é\:,j_amj)

Suppose that the asymptotic normality (18) holds and consider Rw‘ = , where

*

- n,5,j
KCIVEV]

of V but calculated from the bootstrap sample. Thus if ‘bootstrap works’ (i.e. Theorem 1

holds), then

of the distribution }NB;‘; j , where v is an estimate of the j-th diagonal element

lim P [f;;(am) < Y Oni=bxy) o jx(q a/2)} ~1-a,

n—00 V.5,
which yields an asymptotic confidence interval
~ (o (1—-a/2) \/Un j; = (3 (a/2) \/Un.j.;
(ij — E vn = ) ‘9n,j - %)7 (24)

where 7, p(a) is a Monte-Carlo approximation of 77 (). The confidence interval in (24) is
usually called the studentized bootstrap confidence interval.

Note that in comparison with (19) we replace the quantiles —u;_,/o and u;_o/o with
—7 5(1 — a/2) and —7, p(a/2), respectively. There are theoretical results that state that
the studentized confidence interval (24) is (for finite sample sizes) more accurate than the
standard asymptotic confidence interval (19) based on asymptotic normality, as well as the

basic bootstrap confidence interval (17).

@ Example 11. Consider X1, ..., X, a random sample from exponential distribution Exp(\)
with an unknown parameter A > 0. We are interested in the expectation § = E X; = 1/\.

Consider different types of confidence intervals for 0:

e The exact interval using the assumption of exponential distribution;

The standard asymptotic confidence interval using the central limit theorem:;

The asymptotic confidence interval based on the variance-stabilising transformation;

The standard bootstrap confidence interval and its studentized variant; and

The bootstrap confidence interval based on the variance-stabilising transformation.
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Compare the performance of all these confidence intervals both under the validity of the
exponentiality assumption, and under model misspecification (i.e., when the true model is
not exponential, but the confidence intervals are based on the assumption of exponential

distribution).

Literature: Davison and Hinkley (1997, Chapters 5.1-5.3), Efron and Tibshirani (1993,
Chapters 12 and 13).

1.2.6 Variance estimation and bootstrap

Often one knows that
~ d
v (0n — 0x) P N, (0, V),
but the matrix V typically depends on unknown parameters (or it might be ‘too difficult’ to
derive the analytic form of V). In such a situation, a straightforward bootstrap estimator of
the asymptotic variance matrix V,, = %V is given by

B B

S 1 ~k —% ~k —x —x 1 ~x%
V.= 51 Z (6,5 —0,5)(0,,— On,B)Ta where 6, p = B Z 0,1
b=1 b=1

Note that applying the standard law of large numbers conditionally on X we get
Vi p =25 var (6, ] X).
n,B B—soo Var( n| )
Thus, for a valid inference we need a condition analogous to (B) saying that

n var (52 1 X) L v (25)

n—oo

Condition (B) and Theorem 1 in this situation give that \/ﬁ(az ~6,) % N(0,V)

n oo
almost surely (or in probability), conditionally on X1, X9, .... This, however, generally does
not imply that (25) holds. The reason is that var (5; | X) estimates var (én) rather than 1V;

we know that convergence in distribution does not generally imply convergence of moments.

Example 12. Let Xq,...,X, be a random sample from the distribution with the density
f(z) = %H:L’ > 1]. Then by the central limit theorem
~ d
Vi (Xn—3) —— N(0,2).

Further consider the transformation g(x) = ¢®'. Then with the help of A-theorem (Omelka,
2023, Theorem 3) one gets
- d 2
Vi [9(Xn) = 9(3)] = N(0, [7(3)]° - 3).
But it is straightforward to calculate that E (g(yn)) = oo and thus var (g(yn)) does not

exist. Further it can be proved that var (g(Y:L)]X) 22 .
n—oo

23



Literature: Efron and Tibshirani (1993, Chapters 6 and 7), (Shao and Tu, 1996, Sec-
tion 3.2.2) .

1.2.7 Bias reduction and bootstrap

In practice, one can get unbiased estimators for only very simple models. Let En be an
estimator of @x and put b, = E én — @ x for the bias of 5n The bias b,, can be estimated

by b} =E [52]3{] — 0,,. The bias-corrected estimator of 0 is then defined as /O\SC) =6, — b’

Example 13. Let Xj,..., X, be a random sample, E X} < oo and g : R — R be such that
¢"" is bounded and continuous in a neighbourhood U of u = E X; . Then X,, is an unbiased
estimator of y. But if g is not linear, then g(X,) is generally not unbiased for g(u). Put
02 = var(X7). Then, one can use Taylor’s expansion of g, and subsequently apply an expected

value, to approximate the bias of g(X,,)

by =E g(Xn) —g(n) = E{g()(Xn—p)+ LK, — )} + %
- W +0(dn ) (26)

To bound the remainder term R,, we have used that for n large enough, X,, € U almost surely
and thus

|Ry| < sup |¢"”(z)| E | X — ,u|3 < sup |g"” ()] [E (Xn - '“)4] "
zcU U

n n

ETTACIIED3)3) 3) SACTIE I AIE A

i=1 j=1 k=1 (=1

3/4

We used the Jensen inequality with the concave function ¢ — t3/4 in the second inequality
above. Now, it is enough to realise that the last expectation will be zero unless (i) either all

1,7, k, £ are the same, in which case we have

E (X — ) (X — ) (X — 1) (Xe — ) = E (X1 — )",

or (ii) if two of the indices i, j, k, ¢ are the same, and the other two are also equal, but not

the same as the first two. In case (ii) we have
2
E (X — ) (X; = 1) (Xe =) (Xe = ) = (E (X1 = p)*) = o™

Case (i) appears in n summands; it is not hard to calculate that case (ii) appears in (g) (;) =

O(n?) out of the total number of n? summands. We can thus bound
1 1 4 1 4 3/4 _ 1 3/4 B 1
[Bal < sup|g"(2)] | 5 E (X1-n) +0( )o} = 05| =0(r).

n2
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as we claimed in (26).
Analogously, one can expand also g(Y;) around g(X,), and apply the conditional expec-
tation E*[-] = E[-|X] to obtain

N e ED

by = EL0(X3) 1] — (%) = L) varlxg 1] 4 0p ()

CPEDE

_T+op<n3/2>. (27)

where 2 = 13" | (X; — X,,)%. To obtain the stochastic bound Op( 3/2> we considered,

similarly as above,

3 g _\4 3/4 i\ 4 3/4
n}SE*KXn—XN -]
_ 4
where we denote Y;* = X —X,, and Y =1 Zz 1 Y.*. Conditionally on X, we expand ( )
and find that

e
e |(7)'] = el +o (7)ot

. . ~ a.s.
Finally, since 52 —>— ¢* and
n—oo

E*UX;;_X

as we did before for (7

n

E* (V)] = %Z (X; - X,)" 225 E(X, —E X)),
=1

n—oo

we have that both 63 and E* [(Y;*)*] are Op(1), and the final expression in (27) is correct.
Now, comparing (26) and (27) one gets that

.1 2 T \Aa2 1 1
o= b = 5 (9" (10> — " (Xa)52) + O () = O (), (28)
where we used the A-theorem (Omelka, 2023, Theorem 3) for the sample mean with the

function ¢”, and the fact that \/n(62 — o?) is asymptotically normal (Kulich and Omelka,
2022, Theorem 2.6), to get

9"(Xn) =9"(0) +O0p(5), and o, =0"+0p().

Suppose that ¢”(u) # 0. The the bias of the estimator o) = g(X,) — b is given by
E 0 — (1) = E 9(X») — g(n) — E b, = b, — E b}

We saw in (28) that b, — b% = Op(n~%/2). This does not generally imply b, — E b =
O(n=3/2) (convergence in distribution does not imply convergence of moments), but under
an appropriate uniform integrability assumption, it does. We conclude that typically, while
the bias of the original estimator 8, = g(X,) is of order O(n™1!) by (26), the bias-corrected
estimator g(b °) = g(X ) — b will typically have bias only of order O( -3/ 2).

Literature: Efron and Tibshirani (1993, Chapter 10).
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1.2.8 Jackknife

Jackknife can be considered to be an ancestor of bootstrap; its history goes back to 1949 and
the work of Quenouille. Jackknife was originally proposed as a method to reduce the bias of
an estimator. Later, it was found that it can often be also used to estimate the variance of
an estimator.

Suppose that X = (X,...,X,) is a random sample, and denote T,, = T(X1,...,X,)
the estimator of the parameter of interest @x. The jackknife is based on ‘bootstrapping’ X

by erasing single observations, that is the i-th jackknife sample from X is given by
XF=(X1,...,.Xi-1, Xiv1, .., Xn) fori=1,...,n,
of sample size n — 1. The i-th jackknifed estimator is given by
Tho1;=Tp1(X)) =T(Xq,...., Xi—1, Xiq1,... Xp).

The quantity
b, = (n—1) (T, — T,)

with T,, = % Z?Zl T,,—1, is then used as an estimator of the bias of T,,. The scaling factor
(n — 1) comes from a Taylor expansion similar to that performed in Example 13. It is meant

to guarantee that the bias-corrected jackknife estimator
T =T, — b,. (29)

achieves bias of order O(n~%/2), while the original estimator T,, has bias of order O(n~1).

Literature: (Shao and Tu, 1996, Section 1.3).

1.2.9 Limits of the standard nonparametric bootstrap

Although the standard nonparametric bootstrap often presents an interesting alternative to
the inference based on the asymptotic normality, it can also fail. This happens, for example,
in situations when the asymptotic normality of R, does not hold, for extremal statistics,
or non-smooth transformations of sample means. The standard nonparametric bootstrap
assumes that the observations are realisations of independent and identically distributed
random vectors. Thus, among others, the standard nonparametric bootstrap is inappropriate
in regression problems with fixed design or time series problems.

We give two examples when nonparametric bootstrap fails for independent and identically

distributed data.
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Example 14. We are in the situation with smooth transforms of the sample mean from
Theorem 3. Suppose for simplicity that g : RP — R. Let = var(Xi). Note that if
VgT () Vg(p) = 0, then although (B) holds (by Theorem 3), the bootstrap might be not
useful as the limiting distribution of R,, is degenerate.

To illustrate this, consider p = 1. Let X7, ..., X,, be a random sample from the distribution
with E X7 = px. Further let g be twice continuously differentiable at px, such that ¢’'(ux) =
0 and ¢”(ux) # 0. Then by the delta theorem (Omelka, 2023, Theorem 3) one gets R, =
Vi (9(Xn) — g(ux)) ﬁ 0. Thus although by Theorem 3 convergence (B) holds, one
cannot say whether bootstrap works as the limiting distribution R of R,, is not continuous
(the assumptions of Theorem 1 are not satisfied).

A finer analysis shows that (see Theorem B of Section 3.1 in Serfling, 1980)

Ry =2n(9(X0) — g(ux)) —== [¢"(ux)] 0* 3.

n—oo

So the bootstrap would work if the convergence (B) holds also for R* = 2n (g(YZ) —9(Xn)),
where H,, is now the distribution function of En and ﬁn is the distribution function of ]A-E;“L
But for this situation, it can be shown that (B) does not hold (see Example 3.6 of Shao
and Tu, 1996). The standard nonparametric bootstrap thus, in this situation, fails to be

consistent.

@ Example 15. Let X1,..., X, be a random sample from the uniform distribution on (0, fx)

with distribution function Fx,. Then the maximum likelihood estimator of fx is given by

0n = maxi<j<, X; =: X(n). For z < 0
P (n(X(n) —0x) < $) =P (X(n) <0x + %) = F;él (HX + %)

n
= |:9X+72;:| = |:]_+ z i|n—>e%

Ox n0x n—00

Thus R, = n (X,) — 0x) 4, Y, where Y has a cumulative distribution function
n—oo

_z
efx  x <0,

1, z2>0.

PY <z) = {
On the other hand, for R =n (X(*n) - X(n)) we have

P (R}, =0]X) = P(X{,) = X() | X) =1-P (X ¢ {X7],..., X }X)

=1- (=) ——1-¢"!
n—00

and thus (B) cannot hold for R}.

Literature: Praskova (2004), Shao and Tu (1996, Sections 3.2.2, 3.6, and A.10).
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1.3 Parametric bootstrap

Let X1,..., X, beindependent random vectors, each with distribution F'(-; @x) that is known
up to an unknown parameter 8 x. In parametric bootstrap, we generate the bootstrap vectors

1ps -+ » Xy from the estimated distribution F'( En), where 8, is a consistent estimator of
Ox.

@ Example 16. Suppose we are in the situation from Example 15, i.e. X; are distributed
uniformly on (0,0x). Apply now the parametric bootstrap, by generating, conditionally on
X, a random sample X7,..., X from the uniform distribution on (0, X(n)). Then, for ﬁn
the (conditional) distribution function of R} = n (X )~ X (n)) With X (n) = MaXi<i<n X7 we
have for x < 0

Hy(z) =P (n (X[ — X(m) < 1‘|X) —P (X( < X +:L‘/n|X)

)
. [X(nﬁ»m/n} N {1 L } a.s. QL
o X(n) 1 X(n) n—00

In the final limit, we used that X, 2%, @x. Comparing the previous expression with
n—oo
Example 15, we see that in this situation, the parametric bootstrap works,” since we found
Sz
that for H(z) = emm{ Ox ’0} we have
P (ﬁn(x) — H(x) for each x € R) =

n—o0

Example 17. Let X;,...,X,, and Yi,...,Y,, be two independent random samples from
exponential distributions with the density f(z;\) = Ae™**1{z > 0}. Let Ax be the true value
of the parameter for the first sample and Ay for the second sample. Find a confidence interval

for A—X.
Y

Solution. The maximum likelihood estimators are given by h\ X == )\y . Now gen-
ng

erate X7{,..., X} and Y7",... Y as two independent random Samples from the exponential
distributions with the parameters Ax and Ay, respectively. Put

_ (2x _ Ax « _ (2% _ Ax

Ry = (3 -3%) and R, <A* xy> :
where Ay = 7; and )\* = % The confidence interval for the ratio i\\—’; can now be
ni n2
calculated as
B\\X * o] B\\X * «

<§ —r(1-9),55 — s (5)) )
where r’ () is the estimate of the a-quantile of R}.
* Note also that it would be more natural to resample R, = n (g— — 1)7 as its asymptotic distribution is

pivotal.
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Alternatively instead of bootstrap one can use the A-theorem (Omelka, 2023, Theorem 3),

by Ax ) & (1,1
(B 3) BN (05 (i)

Combining A-theorem and bootstrap one can also use

which implies that

Ax  Ax A Ax

> p) > AL A
R,==-2"2  and R = Yy _2X

Ax [1 1’ X [, 1
3y Vo Tns X n1 Thg

1.3.1 Goodness-of-fit testing

Parametric bootstrap is often used in goodness-of-fit testing. Let X, ..., X, be a random
sample of k-variate random vectors with the distribution function F'. We are interested in

testing whether F' belongs to a given parametric family, i.e.
Hy:F e F={F(x;0),6 € 0}, Hy:F¢F.

As a test statistic one can use for instance

K S, = sup yi%(x)'_-FKX;an)
xRk

)

where ﬁn is an empirical distribution function and /én is an estimate of @ under the null
hypothesis. As the asymptotic distribution of the test statistic under the null hypothesis is

difficult to obtain, the significance of the test statistic is derived as follows.

(i) For b = 1,..., B generate an independent random sample Xj = (X7 ;,..., X}, ;) (of

size n), where each random vector X7, has the distribution function F'(x; §n)

(ii) Calculate

KSy, = sup |Fyy(x) — F(x;0,,)|,
x€Rk

where ﬁ;b is the empirical distribution function calculated from X; and 5:”(, is the

estimate of @ (under Hy) calculated from Xj.

(iii) Estimate the p-value as
L+ 35 {KS; ), > KSa}
B+1 ’

where B is high, e.g. 999 or 9999.
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Remark 3. Sometimes, people ignore the fact that the value of the parameter 0 x is not fixed
in advance and assess the significance of the Kolmogorov-Smirnov test statistic KS,, with the
help of the (asymptotic) distribution of

Zn = /n sup |Fy(x) — F(x;0x)|,

x€ERF

where Fx(x) = F(x;0x) is the true distribution function. The problem is that under the
null hypothesis, the (asymptotic) distribution of

Zn = /1 sup |F — F(x; On)‘

xERk

is quite different from the (asymptotic) distribution of Z,. Simulation studies show that
if the significance of \/n K S,, is assessed with the help of the distribution of Z,, the true
level of the test is much smaller than the prescribed value «. The test is thus very conser-
vative. The intuitive reason is that En is estimated from X1,...,X,. Thus, the empirical
distribution function Fj(x) is closer to its parametric estimate F(x;8,) than to the true
distribution F(x;60x).

To conclude, using the (asymptotic) distribution of Z,, to assess the significance of the test

statistic /n K .S, results in a huge loss of power.

Remark 4. Instead of the test statistic K5, in R, one of the following statistics is usually
recommended. The reason is that the tests based on these statistics usually have more power
against the alternatives that seem to be natural.

Cramér-von-Mises:

CM,, = /Rk (Fu(x) — F(x;0,))f(x;0,)dx, or CM, = %Z (Fu(X:) — F(X16,))".

Anderson-Darling:
B, 0 ~ L (Fa(Xs) = F(X3:00))
ADn:/ (Fu(x) = F(x:8))° FxiB)dx, or AD, =13 (Fu(Xi) = F(X3:00))"
RE F(x X; n 0,)(1— F(X6,))

(
59n)( F(x;6 )) o F(XG
Example 18. Testing goodness-of-fit of multinomial distribution with estimated parameters.

1.4 Testing hypotheses and bootstrap

Provided the parameter of interest is one-dimensional and one can construct a confidence
interval for this parameter (see Section 1.2.5), then one can use the duality of confidence in-
tervals and testing hypotheses. But in many situations, the approach based on an appropriate

test statistic is more straightforward.
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Suppose that we have a test statistic T,, = T(X,...,X,) and that large values of T,
speak against the null hypothesis. Let X7 = (X7 ,,...,X5,1), ..., X5 = (X1p,.--, X, p)
be independently resampled datasets by a procedure that mimics generating data under the
null hypothesis. Let T}, = T, (X}) be the test statistic calculated from the b-th generated
sample Xj (b=1,...,B). Then, the p-value of the test can be estimated as

L+ 3 HT, 2 T)

bB = B+1 '
Example 19. Let X3, ..., X, be a random sample such that var X; € (0,00) and Hy : E X7 =

(30)

to- One can use nonparametric bootstrap and generate X7 ,,..., X", as a simple random
sample with replacement from X; — X,, + po, ..., X, — X, + po. A possible test statistic is
then

\/ﬁ (Yn - MO)

T —
n Sn bl

X5 - -
and T, = W, where X,*%b and S, are the sample mean and sample standard

deviation calculated from the bootstrap sample. Observe that this procedure is equivalent

with sampling Xib, . vX;;,b from X; — X,,,...,X,, — X,,, and consequently using T;}b =

Vi (X74—=0)
Shp
As an alternative, one could also use parametric bootstrap. What procedure do we obtain
in this situation?
Comparison of expectations in two-sample problems

Let Xi,...,X,, and Y1,...,Y,, be two independent random samples from distributions F'

and G, respectively. We are interested in testing the hypothesis
H():EXl:EYh VS. HliEXlﬁEyl.
There are several options for how to test for the above hypothesis.

1. Standard ¢-test is based on the test statistics

D O 7
S\t s
where
1 1 ¢ ~
o2 _ — (1 = 1)S% + (ny —1)52] , S% = | ;(Xi ~X.,)%  ete

The crucial assumption of this test is the homoscedasticity, i.e., var X3 = varY; € (0, 00)

or that —%— — 1 Then, under the null hypothesis, T}, 4, N(0,1) (Kulich and
n—o0

ni1+ne 2

Omelka, 2022, Section 6.3).
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2. Welch ¢-test is based on the test statistics

T, = Ve (31)
B s
ni no

The advantage of this test is that it does not require var X; = varY] in order to have

that under the null hypothesis T}, % N(0,1).

3. Parametric bootstrap. Suppose that F' = N(uj,0?) and G = N(ug,03). Thus the

null hypothesis can be written as Hg : p1 = pz. Let us generate Xib,...,X*

ni,b
and Y1, ..., Y . as independent random samples from the distributions N(O, Sg() and
N(0,5%) respectively. Based on these bootstrap samples calculate ]TV;L“1|, e |T;B|
Alternatively, one could also use a test statistic such as 75,0 = |Yn1 — ?m , but it

is recommended to use a test statistic whose asymptotic distribution under the null

hypothesis does not depend on the unknown parameters.

4. Standard nonparametric bootstrap. Suppose that var X1, varY; € (0,00). Let us gener-

* * * * : S
ate X7,,..., X} 5 and Y, Y, a8 independent random samples with replacement

from X — Ym, vy X, — Ym and Y7 — ?m, ..., Yy, —Y,,, respectively.

A further alternative to how to approach a two-sample problem is the use of an appropriate

permutation test.

Example 20. Suggest a test that would compare medians in two-sample problems.

1.5 Permutation tests

Permutation tests present an interesting alternative to nonparametric bootstrap. They are

particularly useful in two situations:
e in two (or more generally K) sample problems, and

e when testing for independence.

1.5.1 Permutation tests in two-sample problems

Let Xy,...,X,, and Y7,...,Y,, be two independent random samples with distribution func-
tions F' and G, respectively. Let the null hypothesis state that the distribution functions F
and G coincide, i.e. Hy: F(z) = G(z) for all z € R.

Put n = n; + np and denote Z = (Zy,...,7Z,)" the joint sample, that is Z; = X; for
i=1,...,n1and Z; =Y, p, fori=mn; +1,...,n. Let Z(y = (Z(y), .. .,Z(n))T be the ordered
sample, that is Z1) < Zp) < ... < Z(;). Under the null hypothesis, the random variables
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Z1,..., 2, are independent and identically distributed. Thus, the conditional distribution of
Z given Z, is a discrete uniform distribution on the set of all permutations of Z., (see, e.g.,
Kulich and Omelka, 2022, Theorem 2.15). More formally, let M be the cardinality of the set

{(ziys.--,%,) : where (i1,...,i,) is a permutation of the set (1,...,n)}.

If there are no ties, i.e., if all values z1, ..., z, are distinct, then M = n!.* Now the conditional

distribution of Z given Z, is given by

P (Z = (21, .. .,Zn) ’Z() = (2(1), .. ,Z(n)))
1 : i
= I{(zl, .-+, 2n) iIs a permutation of (z(y), .. ~7Z(n))}7

where Z(1) < Z(2) <...< Z(n)-
In permutation tests, the ‘bootstrap’ samples Z7,...,Z} are generated by randomly per-
muting the joint sample Z. For each b € {1,..., B} the test statistic 7};, is recalculated

from

(Xib, P 7X7’>:1,b) == (Zib’ ey Z;:l,b)7 (ij}ﬁ e ’YT;;,[)) = (Z:;»l‘i‘lyb’ ey Z’:,b)

and the p-value is estimated by (30).

Remark 5. For two-sample problems, there are only (:1) permutations which can give rise to
different values of the test statistic (provided that the test statistic is symmetric with respect
to the permutations within X7,..., X,, and Yi,...,Y,,, respectively). So, if ny and ny are
small, then one can calculate the permutation p-value exactly, where exactly means with
respect to the exact permutation distribution of the test statistic. But usually, the number
(1?1) is already too big, and one generates only B random permutations of Z to estimate the

p-value.

@ Example 21. The permutation test approach can be used to assess the significance of

the two-sample Kolmogorov-Smirnov test statistic

~

Kn1,7l2 = sup ‘F\nl (.%') - GnQ (3?)

Y

zeR
where F\nl is the empirical distribution function of Xj,...,X,,, and analogously for (A?m
and the sample Y7,...,Y,,. For this test, the standard inference is based on the asymptotic

distribution of K, ,, that is derived in case the distribution function F (under the null
hypothesis equal to G) is continuous. Using the permutation test, we do not have this
restriction. Permutation testing can thus be of interest especially in the presence of ties (e.g.

due to rounding), or when F' is discontinuous, or when X; are k-dimensional random vectors.

* If there are ties, let a1,...,as be the distinct values of (z1,...,2n). Put r; = >0 {z; = a;}. Then

M= "

rilorg!”
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All permutation tests above assumed that under the null hypothesis, the distribution
functions F' and G coincide, or more generally, an exchangeability condition under Hy.
Such permutation tests are called exact. In practice, it is also of interest to know whether the
permutation test is useful to test for instance the null hypothesis that E X7 = E Y7 without
assuming that F© = G. Usually, it can be proved that if the test statistic under the null
hypothesis has a limiting distribution that does not depend on the unknown parameters,
then the permutation test holds the prescribed level asymptotically. A permutation test is
called approximate in that situation. It was shown by simulations in many different settings
that the level of approximate permutation tests is usually closer to the prescribed value o than
the level of a test that directly uses the asymptotic distribution of the test statistic T,. This
is quite similar to what we saw in Theorem 4 in the situation with bootstrapping studentized

averages.

@ Example 22. It can be shown that the permutation version of the Welch t-test, see (31),
is asymptotically valid also in models where the null hypothesis holds (i.e., E X; = E Y;), but
the distributions of X; and Y; are different.

The end of
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1.5.2 Permutation tests of independence
Suppose we observe independent and identically distributed random vectors
Z, = (Xla le)T’ RN (Xna Yn)T

and we are interested in testing the null hypothesis that X; is independent of Y;. Then, under
the null hypothesis, we have

Y1 n) \Ya Yn Y Y1) Y Yn) Y(n)
1 . .
= I{(yl, -+, Yn) is a permutation of (y(),. .. ,y(n))},
where M is analogously as above the cardinality of

{(Yiys---,9i,) : where (i1, ...,i,) is a permutation of the set (1,...,n)}.

Thus one can generate Z7,...,Z; by permuting Y7,...,Y,, while keeping X1, ..., X, fixed.
This permutation scheme can be used for assessing the significance of the test statistic based

on a correlation coefficient, or of the y?-test of independence.

@ Example 23. Consider a contingency table with J rows and K columns. The row vectors

can be represented as realisations of independent multinomial random vectors Xq,..., X s,
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for X; with distribution Multg(n;,p;). Here, n; is the sum of the elements of X;, and
the parameter p; € [0, 1]%, whose entries sum to one, is unknown. We want to test the

independence of rows and columns in this contingency table, which is equivalent to testing
Hy:p1=---=py vs Hi: Hpis not true.

This is commonly done using the y2-test of independence (Kulich and Omelka, 2022, Sec-
tion 8.2) with test statistic x?. To get a permutation version of this test, one decom-
poses each X ; into X; = ZZZI Y ;; with Y';; independent and distributed as Multx (1, p;).
Each Y ;; represents a single observation in the table. Under Hy, the random vectors

Yii,--wY1n,Y21,...,Y jy, are independent and identically distributed. One thus per-

mutes these n = Z;-Izl njvectorstoget Yy 1,..., Y7, Y5,,..., Y, sets X7 = S Y3,
and uses X7,..., X for a Monte Carlo approximation of the distribution of the test statistic

x? under Hy. There are two advantages of the permutation test. For n small, it might be
possible to determine also the exact permutation distribution of x2, by considering all possible
n! permutations of the observations. That leads to an exact testing procedure. Second, it
is known that the convergence of x? to its asymptotic distribution is slow if some elements
of p; are close to zero (Kulich and Omelka, 2022, Section 8.1). This is not a problem for a

permutation test, as it does not involve asymptotics.

Remark 6. Generally, any K-sample problem can be viewed as a testing of independence

Zn
In

I =k (for i = 1,...,n, k = 1,...,K) if the observation Z; belongs to the k-th sample.

problem. The reason is that one can view the data as random vectors (il), ceey ( ), where

Thus, the independence of Z; and I is equivalent to all the random samples having the same

distribution function.

Literature: Davison and Hinkley (1997, Chapters 4.1-4.4), Efron and Tibshirani (1993,
Chapters 15 and 16).
1.6 Model-based bootstrap

Suppose we observe @(’11)’ ceey ()f,") a random sample, where, X; is a p-dimensional random
n

vector. We assume the structure of a linear model

Y,=XB+e, i=1,...,n, (32)
where €1, ..., €, are independent and identically distributed zero-mean random variables inde-
pendent of X1,..., X, and 3 is an unknown parameter. We are interested in the distribution

of an estimator Bn of B. In Example 10, we considered the standard nonparametric bootstrap

that generates ()151*{)’ e (igﬁ) as a simple random sample with replacement from the vectors
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@(’11)’ ey ())g:) Provided the estimator Bn is asymptotically normal, one can usually assume
that this bootstrap method works.
Another possibility is to use the model-based bootstrap that runs as follows. Calculate

the standardised residuals as

K3 \/1—7]1“" ) » Yy

where hy; is the i-th diagonal element of the projection matrix H = X(X"X)™'XT. Then, one

can generate the response in the bootstrap sample as

Y =X]B,+e, i=1,...,n, (33)
where €7,...,¢; is a simple random sample with replacement from the residuals £1,...,&,.
As the covariate values are fixed, the bootstrap sample is given by (gfl*l), ceey ();”)

The advantage of the nonparametric bootstrap is that it does not require model (32) to hold.
On the other hand, if model (32) holds, then the distribution of \/n (3, —8,,) from the model-
based bootstrap is closer to the conditional distribution of \/n (,@n —3) given the values of the
covariates X1, ..., X, than the corresponding distribution from the nonparametric bootstrap.
Further, the model-based bootstrap can also be used with a fixed design regression. On the

other hand, a model-based bootstrap is inappropriate, for instance, under heteroscedasticity.

Model-based bootstrap can be successfully used also in time series analysis.

@ Example 24. Take the autoregressive process AR(1) given by X; = a X; 1 + &, t =
1,...,n for Xo = 0, a € (—1,1) an unknown parameter, and each ¢; with distribution
N(0, 1), independent of the remaining quantities. Since the observed data X7, ..., X,, are not
independent, one cannot apply nonparametric bootstrap directly. In a model-based approach,
one estimates a by a, and considers the residuals é; = X; — @, X¢_1, t = 1,...,n. These are
the counterparts of the independent and identically distributed errors e;; we thus resample
the residuals. We take €7, ..., ¢, a simple random sample with replacement from éi,...,&,,
and with X = 0 define

X =a, X; | +¢e; fort=1,...,n.
Bootstrap can be performed analogously for estimators in an AR(p) process.

@ Example 25. We have a linear model as in (32), but we suppose that the error terms
€1,...,En might form a time series. For the validity of the classical least-squared inference,
we thus need to test the independence of the errors. For that, we adapt a model, and assume

that €1,...,e, form an AR(1) process as in Example 24, with (conditional) autocorrelation
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p = corr(g;,ei—1 | X) = px € (—1,1). Here, X = (X1,...,X,) are the regressors. We want
to test
Hy: px =0 vs. Hi:px #0.
We calculate the least-squares fit ,@n, the residuals §; =Y, — X IBW and use the test statistic
Sois (6 —&i1)?
X

This test statistic can be shown to estimate 2 (1—px ), so Hy is rejected if T}, is far from 2. The

T, =

distribution of T}, under Hy, however, depends on the model matrix X, and thus no universally

valid asymptotic inference is possible. This problem can be solved using bootstrap. Under

Hy, the errors €1, ...,¢, are independent and identically distributed. We can thus resample
€],...,€; as a simple random sample with replacement from the residuals é1,...,€&,. Then we
generate the bootstrap sample ()}fli), ce ();,?) as in (33), recalculate the fit BZ, and evaluate

the test statistic 7;, with the new residuals Y;* — X;'—BZ, i = 1,...,n. The model-based
bootstrap now allows us to approximate the conditional distribution of T}, given X under Hy.
This test is called the Durbin-Watson test in linear models; in R, it is implemented in

function durbinWatsonTest in package car. For more details, see Komarek (2021, Section 9.5.1).

Literature: Davison and Hinkley (1997, Chapter 6.3).

2 Kernel density estimation*®

Suppose we have independent identically distributed random variables Xi,..., X, drawn
from a distribution with the density f(z) with respect to the Lebesgue measure. We
are interested in estimating this density nonparametrically.

As

. Flz+h)—F(z—h)
f(x)_hli}& 2h

)

a naive estimator of f(x) would be

fal@) = : (34)

Fo(x +hn) = Fp(w —hy) _ 1 il{Xie(m—hn,x—khn]}
2 prt n

2 hy, hpn —
where ﬁn z)=1 " HX; <z} is the empirical distribution function and (the bandwidth
1

n
h, is a sequence of positive constants going to zero.

It follows from the Lebesgue differentiation theorem' that for almost every point z € R we

have
F(x+ hy) — F(x — hy)

2h, n—00

E fulz) = f(z)

* Jddrové odhady hustoty T https://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem
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and

[F(m—l—hn)—F(x—hn)] [I—F(m—i—hn)—i—F(x—hn)]

() -
 F@x+hy) = F(x—hy) 1= F(x+ hy) + F(x — hy) 0
N 2 hy, 2n hy, n—00
provided that h, — 0 and at the same time (n h,) — oco.
The estimator (34) can be rewritten as
= 1 < 1 <
fn() thn; {-1<5F<+1} nhn;w( i) (35)

where w(y) = 2 l{y € (—1,1]} can be viewed as the density of the uniform distribution on

(—1,1]. Generalising (35) we define the kernel density estimator as

Falw) = —

Y K(X£E) forzeR, (36)
i=1

n hy,

where the function K is called a kernel function and h, is usually called bandwidth™ or
smoothing parameter. Usually, the function K is taken as a symmetric density of a probability

distribution. The common choices of K are summarised in Table 1.

Epanechnikov kernel:  K(z) = 2(1 — 2?) I{|z| < 1}
Triangular kernel: K(z)=(1—|z|) {]z| <1}
Uniform kernel: K(z) =3 I{|z| <1}

Biweight kernel: K(z) = %(1 —22)2l{|z| < 1}
Tricube kernel: K(z) = (1 — 2?3 1{|z| < 1}
Gaussian kernel: K(x) = \/% exp{—22/2}

Table 1: Commonly used kernel functions.

The end of
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Remark 7. Note that: (6.11.2024)

(i) The estimator (36) can be interpreted as an average of n terms of the form ﬁK (X;l;x )
for t = 1,...,n. If K is a symmetric density with unit variance (without loss of gen-
erality), each of these terms is a density in « € R; it corresponds to a random variable

centred at X; with variance h2 > 0, see Figure 3.

(ii) When compared to a histogram, none of the estimators f,(z) and ﬁl(a:) require to

specify the starting point to calculate the intervals.

¥V cestiné se mluvi o Sitce vyhlazovaci okna nebo jednoduSeji o vyhlazovacnim prametru.
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(iii) The function ﬁ(x) is continuous (has a continuous derivative) if K is continuous (has

a continuous derivative). That is why usually a continuous function K is preferred.

(iv) If K is a density of a probability distribution, then ﬁb(m) > 0 for all x € R and
Jr fn(ac) de =1.

0.2 0.3 0.4 0.5 0.6

0.1

0.0
|

Figure 3: A kernel density estimator (thick brown curve) based on n = 10 observations (orange
ticks on the horizontal axis). We used the Gaussian kernel K with bandwidth
h = 1/4. The resulting estimator is a sum of n functions (thin dashed lines), each

centred at one X;, with a scale proportional to the bandwidth h.

Example 26. Consider a random sample of size 200 from the distribution with distribution
function
F(z)=3®(z) + 3 ®(%2) forz €R,

i.e. the distribution is given by the normal mixture % N(0,1) + % N(4,4). The corresponding

kernel estimates with different bandwidth choices h,, and the Gaussian kernel K are found
in Figure 4. For reasons of comparison, also the associated histogram with the width of the
columns given by 2 h,, is included.

The true density f = F’ is indicated by the black solid line. Note that a reasonable
bandwidth seems to be between 0.5 and 1. Bandwidths smaller than 0.5 result in a ‘too wiggly’
estimate (the variance term of the estimator dominates). On the other hand, bandwidths
greater than 1 result in an estimate that is too biased.

Unfortunately, in practice, we do not know what is the true density, which makes it much
more difficult to guess what a reasonable bandwidth should be. For the histogram, the

problem of the choice of the bandwidth h,, corresponds to the choice of the width of the bars.
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Figure 4: Kernel estimates vs. histograms for different bandwidth choices.

For a general kernel density estimate, the bandwidth corresponds to the width (scaling) of

the individual summands, as seen in Figure 3.

2.1 Consistency and asymptotic normality

In what follows, we study the properties of the kernel density estimator (36). Observe that
because X1, ..., X, are independent and identically distributed, the expected value of fn(x)

takes the form

~ 1 X1 —x 1 zZ—x
E fu(zr) =E —K = — K dz, 37
Fe) =€ i (U)o [k (30 (37)
for f the density of X;. The following theorem will be essential for understanding the be-
haviour of integrals such as that on the right-hand of (37).
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Theorem 5 (Bochner’s theorem). Let the function K satisfy
(B1) Jx|K(y)|dy < oo, and
(B2) limy o [y K(y)| = 0.

Further let the function g satisfy fR lg(y)| dy < co. Put

gn(x) = };/Rg(z)K(z,;x) dz,

where h, \(0 as n — oo. Then, in each point x of continuity of g it holds that

i g,(x) = g() | K(y)dy. (39)
n—oo R
Proof. Let x be a point of continuity g. We need to show that
lim |g,(x) — /K dy' = 0.
n—oo

Using the two substitutions y = z — z and z = h one can write

x)/RK(z)dz = / (x+y)K %)d - }(L:Z)/RK(}E’TL)dy
= o [lata ) - g@IK () dv.

Before we proceed, note that for each fixed 6 > 0 we have because of h,, \, 0 and (B2) that

) 1
— = o0 and — sup }t K(t)‘ — 0, as n — oo. (39)
i i[> 52
Thus, it is possible to find a sequence of positive constants {0, }22 ; that converges to zero so
slowly so that
On 1
0p >0, — — 00 and — sup !tK } 0, as n — oo. (40)
hn On 4. |t]> pm-
This can be seen as follows. Take any sequence of positive constants {am,},»_, such that
am N 0. Thanks to (39), for each m > 1 there exists an index n,, > 1 such that for all
n > n,, we have
1 1
/Iy, > m, and —  sup }tK(t)‘ < —. (41)
Am t:|t]>gm m
It is surely possible to choose this so that the sequence of integers {n,},._; is strictly in-
creasing. Define
1 if n < ng,

On =
am 1€ [Ny Nt1)-
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We see that for any n > ny we have that d,, = a,, implies n > n,,, meaning that by (41) we
have
1 1
On/hn > m, and — sup }tK ‘ —.
On 4, [t]> 22 m
As n — 00, also m — oo in the definition of d,,, and we see that we get the sequence {4, },~ ;
as required.

Now, taking d,, satisfying (40) one can bound

on
2) /R K@) dy' < }jn / ot -+ 9) — o) ()

dy. (42)

Dealing with A,. As g is continuous in the point z

An< sup |g(e+y) - |/ <o) [ K@t =o(t),  (43)
Y:ly|<dn R
—_——
<o0; by (B].)
as n — oo.
Dealing with B,,. Further, one can bound B,, with
1
By | el KG e [ @Kl @
n Jy:ly|>on ly|>6n
Z:Blyn :ZBQ,n
Using the substitution ¢ = ;- and (40) one gets
B = |g(x \/ o | B () | dy = [g(2)] ()] dt — 0. (45)
\y|>5n tife|> 9 oo

because d,,/h, — oo and (B1).

Finally using (40) again, we have

Bin = / |y| }K( )‘ Mdy< sup ‘tK ‘/ ‘g(x-i-y)‘dy
ly|>0 %z—“ Y ly|>0.

] ti[t|> fm g
<sup, 11> 8 5n [t K(¢)]
1
< — sup ‘tK ‘/‘gw—i—y‘dy—)O (46)
™ot > g 5n
=Jrl9()|dy<oo
Now combining (42), (43), (44), (45) and (46) yields the statement of the theorem. O
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Remark 8. Note that:
(i) If K is a density, then [; |K(y)|dy = [z K(y) dy = 1 and assumption (B1) holds.

(ii) Assumption (B2) holds true if K has a bounded support. Further, from the last part of
the proof of Theorem 5 (dealing with By ;) it follows that for K with bounded support
one can even drop the assumption [, [g(y)|dy < oo from Theorem 5. This observation

will be useful later when dealing with kernel regression estimators.

(iii) If K is a density but with unbounded support, then assumption (B2) is satisfied if
there exists a finite constant ¢ > 0 such that K is non-decreasing on (—oo, —c) and

non-increasing on (¢, 00).

(iv) A direct modification of the proof of Theorem 5 shows that if g is uniformly continuous,

then the convergence in (38) is uniform.

(v) The kernel K(z) = Yo%, 5= I{z € (2" — 1,2" + 1)} meets assumption (B1), but (B2)

is not satisfied.

Theorem 6 (Variance and consistency of ﬁl( )). Let the estimator Fa() be given by (36) and
the function K satisfies (B1) and (B2) introduced in Theorem 5. Further, let [ K(y)dy =1,

supyer |[K(y)| < 00, by \(0 asn — oo and (nhy,) — 0o asn — oo. Then at eachpomtm €R
of continuity of f:

(i) limy, o0 1 Ay var (fn@)) z) [x K2(y)dy;
(i) fulz) —— f(a).

Proof. Let x be a point of continuity of f.

Showing (i). Because X1, ..., X, are assumed to be independent and identically distributed,

we can calculate

var (J?n(x)) = var [nzn ZK(Xﬁ:$)] _ #var {K(X,{L;x)}

=1 n

[E K*(%=2) - (E K(X}Z;I))Q] . (47)

nh2
Now using Theorem 5
1 . 1 s
LE () = [ LK) ) dy— 1) [ Koy =@, @9
n R n n—+00 R
Analogously
- EK2 Xz = /K2 () dy —— f(@) K2 ) dy, (49)
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where we have used again Theorem 5 with the kernel K replaced by K2. Assumptions (B1)
and (B2) are satisfied also for K2 as

d(Bl):/\Kz ydy<supyK /yK )dy < oo
R

<0o <oo; by (Bl) for K
and

ad (B2): lim |yK?(y)| <sup]K( )| lim |yK(y)| =0.

ly|—o0 yeR ly|—o0

<oo  —0; by (B2) for K
Now combining (47), (48) and (49) yields

~ 1 1 2
nhy var (fu(z)) = ;= E K?(5=2) - [h E K(X;L;x)] I —— f(a K2 . (50)
—f(x) [g K2(y) dy —[f(x)]?
Showing (ii). With the help of (48)
N 1 Xi—z
E fu(z) = . E K(5°) — f(@) (51)

Now with the help of (i) and (51)
2

€ [7ulo) — 1) =var [fute)] + [E ) - $@)] ——r0,

n—o0

which implies the consistency of f,(z) (Kulich and Omelka, 2022, Theorem 3.1). O

Remark 9. Note that Theorem 6 implies only point-wise consistency. It is much more difficult
to show that sup,cg ‘ﬁ(w) — f(2)] RN 0, see, e.g., Wied and Weifibach (2012, Theorem 2).
n—oo

Remark 10. It is not possible to prove the consistency of fn(a:) using the standard law of

large numbers, as one would need a law of large numbers for a triangular array.

In the proof of the following theorem and subsequently in the text, we use the notation
R(K fR K?(y)dy for a square-integrable function K: R — R. The letter R stands for

roughness of K.

Theorem 7 (Asymptotic normality of fn(x)) Let the assumptions of Theorem 0 be satisfied
and further let x € R be such that f(x) > 0. Then

Fa(2) = E fulz) 4 N(0, 1).
n(z

\/var (f ) noree
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Proof. From Theorem 6 we know that

var (fn(x))

f(z)R(K) n— 00
n hny

where R(K) = [; K*(y) dy. Thus thanks to CS (Omelka, 2023, Theorem 2) it is sufficient to

consider

L

Fule) — E Fulw) _ v i [N C%%) —E R ()] X,
f@ORK) f(z)R(K) B P "

nhy

where

K(%=2) —E K(X==2
Xpi= ! (Gi) (h"), i=1,....n,

vnhy f(z)R(K)

are independent and identically distributed random variables (with the distribution depending

on n). Thus, the statement follows from the Lindeberg-Feller central limit theorem (Theo-
rem All), provided its assumptions are satisfied. To apply it, we have to verify its assump-

tions. We have
EX,1=--=EX,,=0.

As for the condition for the variance in Theorem A11, we have by part (i) of Theorem 6 that

n hy, var (ﬁ(x)) = nhy, var (nz Zn:K <Xih— :v>>
n 4 n

Thus,
. (0 KW)—EK(%)
var(X,.i) = var " "
2 vernd = v <¢nhn VI@RE)

s (ml n \/I;EX)R(I)()> “rgama (K(5)) ==t

Finally for each € > 0 for all sufficiently large n it holds that uniformly in i =1,...,n
L [K(5) - E K ()
I{‘Xn,i|>5}:| = . €
vnhy f(z)R(K)
<[ L TmenlKO) )
Vnh, /f(x)R(K)
which implies that the ‘Lindeberg-Feller condition’ from (A108)

nlgngozn:E [Xﬁ}il{\Xn,A > 5}] =0
i=1

is satisfied. O
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Remark 11. Note that in Theorem 7, we have in the numerator fn(az) —E ﬁl(az), but not the

usual expression ﬁl(a:) — f(z) that one might expect. In fact, Theorem 7 implies

var (fn(ac)) noee

only if R N
E fn(‘r) B f(l‘) _ bias(fn(x))

\/var (fn(x)) N \/var (fn(x)) oo

which depends on the rate of h,,. We already saw in (50) that var (ﬁb(a:)) =0 (n}m). As we

0,

will see later in (55), typically we have bias(fn(:c)) = O(h2), which together gives

E fulz —f

\/ Var
nh'n

and thus lim,,_so 1 h;r’l = 0 is needed to show (52). But this would require that h,, = o(n_1/5)

nh5

which would exclude the optimal bandwidth choice (see the next section).

2.2 Bandwidth choice

Basically, we distinguish two situations:

(i) hy, depends on x (on the point where we estimate the density f), then we speak about
the local bandwidth;

(ii) the same h,, is used for all z, then we speak about the global bandwidth.

The standard methods of choosing the bandwidth are based on the mean squared error

MSE(fn(z)) = var (fu(z)) + [bias(fu(2))]*.

Note that by Theorem 6

var (ﬁ(x)) _ f(l‘)R(K)

+o(:k), (53)

nhy,

where R(K) = [, K*(y) dy.

To approx1mate the bias, suppose that f is twice differentiable in x that is an interior point
of the support of f. Further, let the kernel K be such that fR t)ydt =1 thK t)ydt =0
and [q [t2K ()| dt < oo. This is true, e.g., if K is a bounded even functlon with a bounded
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support. Then, for all sufficiently large n

E fule) = 5, EK(

/K (z + thy) dt = /K )+ thaf'(z) + 52 h2 f"(x) + o(t*h3)] dt
() + 5 by " (@) o, + o(h7),
(54)
where o x =[5 y? K(y) dy. Thus one gets
bias(fn(2)) = E fu(@) — f(2) = § b2 (%) paic + o(h2), (55)
which together with (53) implies
MSE(fu(®)) = sk f(2) RU) + § iy [ @) 13 1 + 0 (5537 + o(hn).- (56)

Ignoring the remainder o(-) terms in (56), AMSE (asymptotic mean squared error) of fn(x)

is given by

AMSE(fo(2)) = 73 f(2) RUK) + 3l [ (@))453 (57)

We want to minimise (57) to get an optimal bandwidth choice. Taking a derivative of AMSE
with respect to h we get

d f(z) R(K) 3 2,2

g AMSE = ———"—>—+h [ (@) 13
Setting this equation equal zero and solving for h one gets, provided that f”(z) # 0, the
asymptotically optimal local bandwidth (i.e., bandwidth that minimises the AMSE)

1/5

h%Opt)(IL‘) — n71/5 |: f(-T) R(K) :| ) (58)
" (@)]? 3

To get a global bandwidth, it is useful to define (A)MISE - (asymptotic) mean inte-

grated squared error. Introduce

MISE(f,,) = /R MSE (fn(2)) dz = / E [ful(z) — f(z)]” da, (59)

R

and its asymptotic approximation

AMISE(F,) = /R AMSE(f, (z)) dz = /R L p (@) R(K) + L0 1 g,
R(K)

nhn
R " 2
_ +hi (f )/’L2K’
nhy, 4

(60)

where R(f") = [ [f"(z ]

47



Minimising (60) one gets the asymptotically optimal global bandwidth (i.e., bandwidth that
minimises the AMISE)

- R(K) 1/5
plont) — 15 [} | 61

RO i 5 oy
Remark 12. After substitution of the optimal bandwidth (61) into (60) one gets that the
optimal AMISE is given by

m11/5
- [}31(754/); { [R(K)} ? M2,K}2/5-

It can be shown that if we consider kernels that are densities of probability distributions, then
[R(K )]2 2.k is minimised for K being Epanechnikov kernel, as proved by Miiller (1984).
Further, note that for f((x) = /2K K( [l K 3:) one has

py =1 and [R(K)])"® = [R(K)]"° 1ol

and the optimal AMISE is the same for K and K. That is why some authors prefer to use the
kernels in a standardised form so that po g = 1. Some of the most common kernels having

this property are summarised in Table 2.

Epanechnikov kernel: K(x) = ﬁ(l - —) I{|z| < V5}
Triangular kernel: K(z) = %(1 2|) 1{|z| < v6}
Uniform kernel: K(z) = L I{]:c| < f}

Biweight kernel: K(z) = 1615\} 2|z < VT}
Tricube kernel: K(z) = 7801\/\/2I(1 —|z[?)3 I{]m| < 2%153}
Gaussian kernel: K(x) = exp{ z?/2}

Table 2: Some kernel functions standardised so that po x = 1.

2.2.1 Normal reference rule

The problem of asymptotically optimal bandwidths given in (58) and (61) is that the quan-
tities f(x), f”(x) and R(f"”) are unknown. Normal reference rule assumes that f(z) =
L o(=1£), where ¢() is the density of a standard normal distribution.

Then

where
/ 1 —LZ —x _a?
Plr) = gre 2(-a)= Zzem 7 = —zp(r),
o2 2 _a?
J@) = ke T+ e T = (22— 1) pla)



Thus, with the help of (58) one gets

1
=—1, (=0 °
E(m):n—% R(K) SO<8)
n 2 ~\ 2
ik o[ (52) - (52
1
_ts R(K) 1

MK () 1) (55)

are some estimates of the unknown parameters p and o?, for instance =

X, 0% = 5 Sl (Xi = Xn)?,

= n

where /i a 2

For the global bandwidth choice, we need to calculate

R = e a= [{ X e -1]een) o

1 z—p\2 2 2(z—
S ACSERECORE
t = £F 1 2 2 2
- == [ (2 -1)220) dt
M o =12
1 4 2 ]. 72«/.2 1 / 4 2 ]. 7t2
= (W) e Pdls ——— [t =22+ 1) —=e " dt
od R( + )Qﬂ'e o527 R( + )\/77'6
——
n(03)
1 1 2 3
- E('-2v24+1)= [3-1 —92.1 1}:
205 £ =gz 3@ 2 =g

where Y ~ N (07 %) Thus the asymptotically optimal global bandwidth would be

1/5
h%opt) _ O_n—l/5 |:8ﬁf(K):| )
315 i

2
Further, if one uses the Gaussian kernel K(y) = \/#2?67%, one gets

po Kk = /RyQK(y)dyzl,

R = /K2ydy:1 /le_deyzl,
€)= | Kww=g7 | & L
which results in

1/5
hq(lOPt) —on /5 [g] = 1.060n" /%,

The standard normal reference rule is now given by

hyp = 1.06n~ /% min {Sn. I/C\Qﬁn}, (62)
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where

1 _ —
Sn = n_lz;(xi—xn)% and  IQR, =

E1(0.75) — F1(0.25)
1.34 ‘

Here, the constant 1.34 approximately equals ®~1(3/4) — ®~1(1/4), the inter-quartile range
of the standard normal distribution function ®. The bandwidth (62) is in R implemented as
the function bw.nrd.

It was found out that the bandwidth selector (62) works well if the true distribution is ‘very
close’ to the normal distribution. But simultaneously, the bandwidth is usually too large for
distributions ‘moderately’ deviating from a normal distribution. That is why some authors
prefer to use

hy, =0.9 n~ Y% min {Sn, ﬁ%n}

This choice is in R implemented as bw.nrd0. See Silverman (1986, page 48) for a more detailed

argumentation.

2.2.2 Least-squares cross-validation*

Our intention is to find the bandwidth h,, by minimising MISE(fn) from (59). That can be

rewritten as
n n 2 . Fub. 2.\1% 47 2
MISE(F) = | E (Fal@) = f(@)"de " E [ ()] = 2ha(@) (@) + @) do
N 2 N
~ £ [A@] ww-2E [ @@t [ f@)F o
R R R
72 12
An unbiased estimator of E [, [ fn(az)} dz is simply given by [5 [ fn(:p)} dz. Further, the
term |5 [f(2)]? dz does not depend on h,,. Thus it remains to estimate E Ik Fo(@) f(z) dz.
The last formula can be interpreted as E fn(X ), for X with the same distribution as the

sample variables X;, but independent from them.

In the sequel we show that an unbiased estimator of A4, = E ﬁ(X ) is

where

. 1 .
f—z‘(@:m Yo K(FEY)

is the estimate of f(x) that is based the sample without the i-th observation Xj.

*

‘cross-validation’ se stiidavé preklada jako metoda kiizového ovéfovani, metoda kiizové validace nebo prosté
jako krosvalidace.
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Overall, using least-squares cross-validation, we choose the global bandwidth as

hESEY) = arg min £(hy,),

hn>0

where
B
‘C(hn)_/R[fn( )7 d n; fi(Xa), (64)

with f,l(x) as above.
As our first observation, note that the integral in (64) can be computed directly from the
random sample X1,..., X, as

n

/R["?"“””Qd“/a[nin;K(ﬁ;ﬂrdw

)

=1 j=1
1l KX X
th ;;/K u) K u—l— >du th;;]{<hn )

Here, K is the so-called convolution kernel of K. It is given by K(t) = Jr K (u) K(u — t) du,

which can for K symmetric be written also as
:/K(U)K(t—u)du for t € R.
R
If K is seen as a density of a random variable, K is the density of the sum Z + Z’ with Z
and Z’ independent variables with density K. Thus, K is usually easy to calculate explicitly.

It remains to show that A, from (63) is an unbiased estimator of A, = Jr fn(az) f(z)d.

For that, we have
~ 1 <& -
=—) EfuX
n -
=1

Now with the help of (48) and (51)

Efm—E[l y K(xf—xw}:lm(xlhx?)

/REfn() /fn

Thus A, is an unbiased estimator of E Jr fn (z)f(z)dz and L(h,) is an unbiased estimator

of EfR[fn(a:)P de —2E [, Fo(@) f(2) da.
In R, this method can be found implemented as bw.ucv (unbiased cross-validation).
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Remark 13. Stone (1984) proved that

ISE (hglLSC’V)) N
ming, ISE(h,) n—oc

L

where ISE(hy,) = [5( fa(@) — f(x))? dz. But, simulations show that the variance of pLESEV)

(for not too large sample s1zes) is rather large. Thus, this method cannot be used blindly.

2.2.3 Biased cross-validation
This method minimises the AMISE given by (60), that is

R(E) | RU" B
nhy, 4

To estimate AMISE, it is sufficient to estimate R(f”). It was found that the straightforward

AMISE (fn) -

~
"

estimator R( n

) is (positively) biased. To correct for the main term in the bias expansion it

is recommended to use R(ﬁ’{) — Rél}g’) instead. That is why in this method the bandwidth is
chosen as '
hBEV) — argmin B(h,),
hn>0
where

R(K ) o R(K")
is the estimated counterpart of AMISE. In R, this method can be found implemented as

bw.bcv (biased cross-validation).

t)

(BCV)
Remark 14. Tt can be proved that "= _)L> 1, where it i given by (61).
o0

(opt)

2.3 Higher order kernels

In the same way as when we evaluated the bias of ﬁl(a:) in (54), a formal application of
Taylor’s expansion (for sufficiently large n, sufficiently smooth f and x an interior point of

the support) one gets

Efu@) = [ KOG+ th)

m)/K(t)dt—i—f’(x)hn/tK(t) dt
R

f”2( )h2/ (t)dt+f”;(!x)hi/Rt?’K(f)dt+~~

The kernel of order p is such that fR t)dt =1 and

/th(t)dt—O, j=1,...,p—1, and /tpK(t)dt#O.
R R
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Considering a kernel K of order p > 2, we can thus conclude that for the bias of ﬁl(m) we
have
bias ( fu(x)) = O(RE),

which converges to zero faster than O(h2) that we obtained for bias in (54). Thus, it might
seem that higher-order kernels might be preferable to the standard choice of the second-order
kernel from before.

However, if we have a kernel of order p > 2, then (among others) necessarily [; t*K(t) dt =
p2,x = 0, which implies that K cannot be non-negative. As a consequence, with a kernel of
order p > 2 it might happen that the estimator J?n(x) is negative.

One possible modification of a Gaussian kernel to get a kernel of order 4 is given by

)
K(y):%(3—1,/2)\/%ey/2 for y € R.

2.4 Mirror-reflection

The standard kernel density estimator (36) is usually not consistent at the points where the
density f is not continuous. These might be the boundary points of the support. Even if the
density is continuous at these points, the bias at these points is usually only of order O(h,,)
and not O(h2). There are several ways to improve the performance of fy(z) close to the
boundary points. The most straightforward is the mirror-reflection method.

Suppose for simplicity that we know that the support of the distribution with the density f
is [0,00), and let K be an even function. The modified kernel density estimator that uses

mirror-reflection is given by

ﬁ(LMR)(x) — ﬁzyle(X}lL;z) + izyle(XfiL:x)’ z Z 0’
0, x <0.

(66)

The first term on the right-hand side of (66) (for x > 0) is the standard kernel density esti-
mator ﬁl(m) The second term on the right-hand side of (66) is in fact also a standard kernel
density estimator fn(:c), but based on the ‘mirror-reflected’ observations — X1, ..., —X,,. This
second term is introduced in order to compensate for the mass of the standard kernel density
estimator fn(x) that falls outside the support [0,00). The mirror-reflected density estimator
/}LMR) (z) can be written also in a more compact form

~

PR (z) = (fn(:c) + fn(—:c)) 1{z >0}

2.5 Multivariate kernel density estimation

Suppose now that we observe multivariate (Rd—valued) random vectors X1,..., X, that are

independent and sampled from a distribution with density f: R? — [0,00). The role of a
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kernel is now played by a function K : R — R, which is typically chosen to be a d-dimensional
density, e.g., the d-variate standard Gaussian density.

For one-dimensional data, the bandwidth h,, was interpreted as a factor multiplying the
random variable Z with density K. Using the random variable Z, we saw in Theorem 6
that the expected value E ﬁz(:x) could be interpreted as the density of the random variable
X + h,, Z for X and Z independent, evaluated at x.

For multivariate data, we proceed analogously. Let K be a density, and let Z be a d-variate
random vector with this density. This time, however, we multiply Z by a matrix of constants
A € R4 obtaining a random variable AZ whose density is

B 1
~ det(A)

Ka (%) K (A_lx) for x € R%

For simplicity, suppose that K is a standard Gaussian density. The kernel K5 then corre-
sponds to the d-variate Gaussian distribution with zero mean and variance H = AAT. The
role of the bandwidth is now played by H, which is assumed to be positive definite. A natural

extension of the univariate kernel density estimator to R? is

-~ 1 " 1 —~1/2 d
=1

The reason why we consider as a bandwidth any positive definite matrix H € R¥? is the
flexibility this choice borrows, see Figure 5. Considering different matrices H, we are not
restricting only to kernels associated with (multiples of) the standard normal distribution Z
(as we see on the left-hand panel of Figure 5), but also kernels of different shapes represented
by H, and associated with the elliptically symmetric distributions H'/2Z (right-hand panel
of Figure 5). On the other hand, the choice of the bandwidth parameters represented by the
matrix H € R¥*? becomes more involved.

Using analysis similar to what we did for d = 1 in Section 2.2, it is possible to show that

for kernel density estimators in R?, the mean integrated squared error is of order

MISE(f,) = [ MSE(f,(00) dx = O(ht) + 0 (nzd> , (67)

where h,, > 0 measures the “size” of the bandwidth matrix H = h,Hy, for some Hy € R?*¢
fixed. In particular, compared to the density estimation with d = 1 and formula (59), the
exponent d in the variance term in (67) says that with growing dimension d, kernel density

estimation becomes much more difficult.

Literature: Wand and Jones (1995, Sections 2.5, 3.2, 3.3), Scott (2015).
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Figure 5: Several contours of two bivariate kernel density estimates with H the identity matrix
1

(left), and H chosen to be (O 0

0.9
. ) (right). As can be seen, the form of the

bandwidth matrix changes the shape of the resulting estimator profoundly.

3 Kernel regression*

Suppose that one observes independent and identically distributed bivariate random vectors

()}9), cen ()}S”) Our primary interest in this section is to estimate the conditional mean
1 n

function of Y7 given X; =z, i.e.
m(x) =E[Y1| X1 =x] forz€eR,

without assuming any parametric form of m(z).

In what follows, it is useful to denote the conditional variance function as

o(z) =var[Y1| X; =] forz€R.

3.1 Local polynomial regression

Suppose that the function m is a p-times differentiable function at the point z, then for X;

‘close’ to x one can approximate m using the Taylor polynomial as

m(X;) = m(z) +m'(2) (X — @) + ... + "0 (X, — ), (68)

* Jddrové regresni odhady
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Thus ‘locally’, one can view and estimate the function m(z) as a polynomial. This motivates

the definition of the local polynomial estimator as

= arg min Z |:}/z — by — bl(Xl — .73) — . — bp(Xz _ x)p}2K(XIil;z)7 (69)

where K is a given kernel function and h,, is a smoothing parameter (bandwidth) going to

Z€ero as n — o0.

m(j)(x)

Comparing (68) and (69) one gets that Bj(x) estimates =—7—. Often, we are interested

only in m(z) which is estimated by Bo(:c).

Put
n 1 (X1—-2) ... (X1—a)pP
v= |2 L X() = 1 (Xp—z) ... (Xo—a)
Yn 1 Xp—2) ... (Xp—2)P

and write W(z) for the diagonal matrix with the i-th element of the diagonal given by
K(%2).

n

The optimisation problem in (69) can be written as a weighted least squares problem

~ . T
B(x) = arg min { (Y — Xp(x) b) W(x) (Y — Xp(x) b) }, (70)
beRp+1
where b = (bg, b1, ...,b,)". This is very similar to the situation with general linear models

considered in Komadrek (2021, Chapter 15); the only difference is that here, the matrix of
weights W(z) depends on x. The solution of (70) can be explicitly written as

Bla) = (X0 () W) X)) ] () W(a) Y, (7)

provided that the matrix (X; (x) W(x) Xp) is non-singular.
The estimator of m(z) is Bo(a:), the first element of the vector B(:c) From (71) we get that

if we denote by (wp1(x),. .. ,wnm(x))-r € R” the first row of the matrix
~1
H) = (X (@) W() X)) X () W), (72

then 30(:5) can be written in the form

Because

o6

The end of
lecture 9
(27.11.2024)



is the identity matrix of size p + 1, looking at the first row of the last formula, we get that

n
Zwm(x) =1,
=1

and .
anyi(z) (X;i—2)'=0 foralll=1,...,p. (73)
i=1

In particular, ,/6’\0(33) is a special weighted average of the responses Y;, i =1,...,n.

The following technical lemma will be useful in deriving the properties of the local polyno-

mial estimator.
Lemma 1. Let

o the kernel K be bounded, symmetric around zero, positive on its support (—1,1), and
such that [o K(t)dt =1,

e h, — 0 and (nh,) — oo, and
e suppose that the density fx of X1 is positive and twice differentiable at x.

For ¢ e NU{0} put

5, 4(x) = Fx(@) [o K(8) £t + "5 i (2) [ K() 452 dt+ o(h2) + Op( -—), { even,
MU b fie@) fo K@) dt 4 o(h2) + Op (), ¢ odd.

Proof. For fn(:c) = Spo(x) we proved in Theorems 6 and 7 that
\MMA&MQ—E&WQ»;&jN(Qh@iﬁK%ﬂ&)—N@jﬂ@MK».

For other S, ¢(x) we apply the same theorems, but with kernel functions K (t) = K(t)t,
¢=1,2,.... Because we assume that the support of K is bounded, conditions (B1) and (B2)
from Theorem 5 are trivially satisfied for K. We can thus apply Theorems 6 and 7 also to
the kernel K , and get that
d
v/ nhy, (Sn,g(x) —E S’mg(x)) — N(O7 02(17)),

n—oo

where

ﬁ@—hmmm—hm/ﬂmww

R
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Thus
Smg(x) =E Sme(w) + (Sme(x) —E Sm@(l‘)) =E Sn’g(x) + OP(\/%Tn)

and it remains to calculate E S, /(). Using the substitution ¢t = % and the Taylor expansion

of the function fx(z + th,) around the point z one gets
—x —z\¢ —z —z\¢
ESue) = E K () (52) = [ K () (5) fx(w) dy

= / K@)t fx (x4 thy)dt
R

= fX(az)/RK(t)tfdt—Fhnfé((:c)/RK(t)t“l dt + 1 ;g(x)/RK(t)t“? dt + o(h?).

As K is symmetric, we get that [p K(t)t“T1dt = 0 for £ even and [5 K(t)t*2dt = 0 for ¢
odd. O

Remark 15. Lemma 1 implies that

Sn0(z) = fx(@) + 5 f4 (@) poic +0o(h2) + Op(Ae) = fx(@) +op(1),  (T4)
Sn1(x) = o fix (@) po,ic + o(hy) + Op(=5=) = op(1), (75)
Sn2(@) = fx (@) p2,x + op(1), (76)
Ss(@) = h fi(a )/Rt4K(t)dt+o(h%)+Op(\/ann) — op(1), (77)

The first expression (74) agrees with the bias for the kernel density estimator that we derived
n (54).

3.2 Nadaraya-Watson estimator

For p = 0 the local polynomial estimator given by (69) simplifies to

~ 2
Bo(z) = argmin y_ [Y — bo} K (%),
and solving this optimisation task one gets

n
=Y wni(2)Y; = myw(x),
=1

where
K)o k()
wnyz(x) — ~ nX'_:r — n nS n
Zj:lK( o ) no(@)

This estimator is in the context of the local polynomial regression also called the locally

constant estimator.
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For each z for which the weights are defined we have

n
Zwm(:v) =1.
i=1

Moreover, if the kernel K is a non-negative function then also the weights are non-negative.

Remark 16. Let us consider the kernel with the support [—1,1]. Then w,(z) is zero if
X; & [x — hn,z + hy). Further, if we assume the uniform kernel, i.e. K(z) = 3 I{|z| < 1},
then all the weights wy, ;(x) for which X; € [z — hy,z + hy,| are equal. Thus for this kernel,
the Nadaraya-Watson estimator mpyw () is given simply by the sample mean calculated from
those observations Y; for which X; € [z — hy, z + hy], ie.

Y VX -] <)
PN ) = S X ] < )

Thus one can view muyw (x) as a ‘moving average’ in the covariate direction.

To formulate theoretic properties of the estimator myw (z) put X = (Xy,..., X,,). Further,
let bias (myw (2)|X) and var (Myw (z)|X) stand for the conditional bias and variance of the

estimator myw (x) given X.
Theorem 8. Suppose that the assumptions of Lemma 1 are satisfied and further suppose that

o (nh

n) —— 00,

n—oo

e the function m(-) is twice differentiable at the point z, and

e the function o2(-) is continuous at the point x.

Then
bias (i w (2)]) = h pa,sc (™SS 4 200 o (1), (78)
o~ 0'2 T
var (mNW(:E)|X) = 7)0)(((;2)?(53 + Op(ﬁ), (79)
where
R(K) = / K*(t)dt  and  pox = / t2 K(t)dt. (80)
R R
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Proof. Showing (78). Let us calculate

E [myw (z Zwm E[Vi|X] = Zwm E [Vi| X;] Zwm

= m(l‘)zwnz anl - ) + m//(x) Z nZ(IE)(Xz 756)2
=1 i=1
+ 3 W) (X; — 2)2R(X))
=1
= m(e) + () 4, + P B, 4 0, (81)

where R(z) — 0 as z — = and
Ap = wni(2)(Xi =), By =Y wni(@)(Xi —2)%, Cp = wni(2)(X; — )’ R(X,). (82)
=1 =1 =1

Now with the help of (74) and (75)

n Xi—x
A=Y i) = T KD CER) _ B 2)

? 1 hn K( ) - Sno(@)
o (B @) pose 4 0(2) 4 Op ()| RS @ + o) +Op ()
fx(x) +op(1) fx(x) +op(1)
_ RZ () ek n2 \ _ hafx (@) i
= S Hop(i) £ Op( i) = ST op(h)), (83)
as (nh) — co. Further, with the help of (74) and (76)
_ - v 2 _ hiSmQ(x)
B, = ;wm(Xz —x)* = W
_ h721 [fX(‘T) M2 K + OP(l)] h2u2K + OP(h ) (84)

fx(x) +op(1)

Concerning C),, thanks to (84) and the fact that the support of K is (—1,1) one can bound

[Cnl = Y wni(@)(X; — ) R(XG)| < sup  |R(2)] ) wai(w)(X; — 2)?
i=1 =1

zi|z—z|<hnp

= 0(1) B, = 0o(1) Op(h2) = op(h?). (85)

Now combining (83), (84) and (85) one gets

E on (2) X = me) + )02 P i+ " e+ 0p02),
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which implies (78).
Showing (79). Let us calculate
var[inw (2)[X] = > w? j(z) var[V|Xi] = > w? ()0 (X;)
i=1 ‘

CTLK(RN)CX) 1 W,
N —2\12 n x)]2’
DR |

where V, = = > K2 (5=2)o?(X)).
Now, completely analogously as in Theorem 6 was proved that fn(az) LN f(x), in the
n—oo

rest of this proof we will show that
P
Vi, —— fx(z) o*(z) R(K), (86)

which combined with (74) implies (79).
Showing (86). First, with the help of Bochner’s theorem (Theorem 5)

1 —x
EVi= g E K2 (520 (x)|

:/hlKQ(ﬁ)Uz(z)fX(z)dzmaz(x)fx(x) /KQ(t)dt'
R "n R

Now it remains to show that var(V;,) —— 0. Using again Bochner’s theorem (Theorem 5)
n—oo

I —x —x 2
var(Vs) = — | E K (X=2)0 (X)) — (E K (52) 0% (X)) ]
_ L [ 1 E K4(X1—x)0_4(X1) o l LE K?(Xl—z)o_Q(Xl) 2
nhy, | hn hn n | hy hn
1 1 2
= Lt @) (@) / K1) dt+o(1)] ! [02(33) fx(@) / K1) dt—i—o(l)]
nhn L R n R
— 0.
n—oo
O
The end of
lecture 10
(04.12.2024)
3.3 Local linear estimator
For p =1 the local polynomial estimator given by (69) simplifies to
~ ~ n 2
(Bo(@), Br () = argmin 3 [i — by — by (X; — )] K (52).
bo,b1€R 5
To solve this optimisation task, one needs to find the first row of the matrix
T T
(<T@ W)X (@) XT (2) Wi(a) (87)
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from (72) with

1 (Xl — l’)
Xl (x) _ 1 (X2 — :C) 7
1 (Xp—1x)

and W(z) the diagonal matrix with the i-th element of the diagonal given by K (X;l—;x) We

have

XT () W(z) Xy (z) = ( Y K Xﬁ;x) > st K(Xfli;x) (Xi — l‘))

Y K () (X —w) S K (R0) (X - )

Sn70 (.%') hn Sn,l(.%')
=nh, .
I Sna(x) B2 Spa(z)

Inverting this matrix and plugging into (87), one gets
N n
Bo(x) =D wni(x)Y; = ipp(x),
i=1

where the (local linear) weights can be written in the form

e K (ZEE) (Sna(r) — A2 Spa(x)
10(2) Sp2(z) — 2, (2) ’

S
From (73) it follows (see also Remark 17 below) that the weights satisfy (for each x so that
the weights are defined)

W i(z) = i=1,...,n. (88)

dwpi@) =1, > wn(x)(X;—z) =0 (89)
=1 =1

On the other hand, it might happen that the weights are negative. In practice, this happens

if x is either ‘close’ to the minimal or maximal value of the covariate.

Remark 17. Formula (89) is possible to be seen also directly, as

S ) = S Soale) = SE)
i1 w Sno(x) Sp2(z) — Sg,l(fv)
and
n i —L n i—L i—z)?
S ) (X, — ) = L i KGO~ Snale) = S K () B 00
— o ! nhy, Sp,0(x)Sn2(x) — 5721,1(33)

Sn,l(l') Sn’g(l') — Smg(w) Sn,1($)
Sn,0(2)Sn2(x) = 574 (2)

= hy =0.
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Theorem 9. Suppose that the assumptions of Theorem § hold. Then

bias (7 (z)[X) = b2 pg i "L 4 0p(h2), (90)
var (i, (z)[X) = W +op (1), (91)

where R(K) and pg i are given in (80).

By Theorem 8 for the Nadaraya-Watson estimator one has

bias (mnw (2)|X) = hZ pa,x (m(f}z L) m';(x)) +op(hy),
var (M (2)[X) = % +op ().

We see that the main terms in the approximation of the conditional variances of myw ()

and mpr(z) are the same, i.e.
var (myw (2)|X) = var (mpr(z)|X) + Op(ﬁ).

Also the conditional biases are of the same order. But the conditional bias of my(z) in com-
parison to My () has ‘a simple structure’, as it does not contain the term h2 12, K %{5@)

This is the reason why the authors usually prefer mpr(z) to myw(x).

Proof of Theorem 9. Showing (90). Completely analogously as in the proof of Theorem 8 one
can arrive at (81) with the only difference that now the weights w,, ;(z) are given by (88).
Now with the help of (89)

Ap = wni(@)(X; — 2) =0. (92)
i=1
Further using (74), (75), (76) and (77)

2 ($) - Sn,3( )Sn,
n,0(2)Sp2(x) — Sz
2 [fx (z)p2,x + op(1 ] —op(1)op(1)
" (fx(z) +op(1)) [fx (z)p2,x + op(1)] — (0p(1))?
= h% w2, K + OP(h?z)' (93)

—
—~~
8

Si
Zwm )y B2 — 2

Thus it remains to show that Cy, = op(h2). Put D = Sy 0(x) Sp2(x) — S2 | (x) and note that
with the help of (74)—(76) one gets

Dy = f(x) pa + op(L). (94)
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Now using (94) and Lemma 1 we can bound

N n )2
Cal < sup  |R(2)[ 2D i(w)] Ko
=1

zilz—z|<hn

S2 o(@) + S ()] 0y o K (X)X )

D,

(@)1 +op(1) + op(1) [fx(@) [ K(b) [t2 dt + op(1)]
f%(x) p2,x + op(1)

which together with (82), (92) and (93) yields (90).

< hZo(1)

= o(hy,) = op(hy),

Showing (91). With the help of (75), (76), (86) and (94) one can calculate

var[fipr(z)[X] = > wh ()0 (X;)
=1

n2

= % [ 1h2 Z[@(%) (sz(m) _ X];nzsn’l(x)>2o-2(Xi)]

= D2
! 1
nhn fi (z) N%,K +op(1)

which implies (91). In the equality (95) above we used the fact that

% > K () (%) o2(X;) = Op(1)
" i=1

= [s,%,m?jbZKQ(X,g;x)a%XmoP(l)] (95)
™ i=1

[F%(2) 13 i +0p(1)] [fx(2) 0% (x) R(K) + op(1)],

and
1 . 2(X;—x X;—x 2 2
o KGR (M) () = 0p(1),
i=1
Both these formulas follow in the same way as

1 & .
V= oo Y KA (XEE)o?(X) = Op(1),
" =1

that was shown in (86) in the proof of Theorem 8 (that is, using Bochner’s Theorem 5). Now,

by (75) we have Sy, 1(x) = op(1) and by (76) we have S, 2(z) = Op(1). Thus, we can write

% 3 K2 (X (X;'Lf) 1 (2)Sn2(2)0%(X;) = 0p(1)Op(1) = op(1),
" i=1

and .
1 . N2
YR (%52) S2a@0 () = 0p(1)0(1) = 0p(1),
i=1
meaning that our simplification in (95) was correct. This concludes the proof. ]
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3.4 Locally polynomial regression (general p)

Analogously as for p € {0,1} one gets the estimator of m(z) in the form

= zn: Wni(2) Y
=1

where the weights wy, ;(x) are given by the first row of the matrix

(KT ) W) X (2)) X () W)

and satisfy that by (73) we have
Zwm )=1 and Zwm Z—x)fzo, £=1,...,p.

With the help of this property one can show (analogously as in Theorems 8 and 9) that if p
is even then the conditional biases of my,(z) and mp;1(x) are of the same order Op(hET),
but the bias of my1(z) has a simpler structure than the bias of my(z).

Further, it can be proved that conditional variances are of the same order for each p and it

holds v, ( )
var (r?Lp( )|X) fX( T

where Vo = Vi < Vo =V3 < V4 =V5 < ... and so on.

~+or ()

To sum it up, for p even, increasing the order of polynomial to p 4+ 1 does not increase the
asymptotic variance but it has the potential to reduce the bias. On the other hand, if p is
odd, then increasing the order of polynomial to p + 1 increases the asymptotic variance.

That is why, in practice, usually odd choices of p are preferred.

Literature: Fan and Gijbels (1996, Sections 3.1 and 3.2.1).

3.5 Bandwidth selection

3.5.1 Asymptotically optimal bandwidths

In what follows, we will consider p = 1. With the help of Theorem 9, one can approximate

the conditional MSE (mean squared error) of mpy(z) as
nhp

MSE (7 () | X) = = ZOIID 4 Lo ((2)[243 i + 0p (=) +op(h).  (96)

Ignoring the remainder op(.) terms in (96), we get that AMSE (asymptotic mean squared

error) of myr(x) is given by

o~ 0'2 X
AMSE (i () | X) = i Sy + 1 m @)1 k. (97)
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Minimising (97) one gets the asymptotically optimal local bandwidth (i.e. bandwidth that
minimises the AMSE)

o%(z) R(K) 1/5
) [m/ (x)]? 13 ¢

The mean integrated squared error (MISE) is usually defined as

h(opt)( ) 71/5 |:f (
X

MISE (. | X) = /R MSE (i1 (2) | X) wo(2) fx (z) dz (98)

where wg(z) is a given weight function which is introduced in order to guarantee that the
integral is — hopefully — finite (for instance wy(z) = I{z € [a,b]} can be used).
Now with the help of (97) and (98), the asymptotic mean integrated squared error (AMISE)

is defined as

AMISE (mpr | X) = /RAMSE(ﬁ”LLL(af) | X) wo(z) fx(z)da

- Jjb(f[:z) /RC’2(5U)w0($)dx+ hi, MQK/R[m/'(;E)]2w0(x) fx(z)dz. (99)

Minimising (99) one gets the asymptotically optimal global bandwidth (i.e., the bandwidth
that minimises the AMISE)

(opt) — ,,—1/5 Jro’ z) dx V5
& [uz,KfR ] ()fx() ] | (100)

3.5.2 Rule of thumb for bandwidth selection

Suppose that o2(x) = 02 > 0 is constant. Then, the asymptotically optimal global band-
width (100) is for mpr, given by

R(K)o? [qwo(r)de 1/5
13 Jrlm” (@) wo(2) fx (z) dz

Now let m(z) be an estimated mean function fitted by the (global) polynomial regression of

R(oPt) — =1/

order 4 (generally, p+3 is recommended) through the standard least squares method. In (100),
one replaces the unknown quantity o2 by 62 = 23" | [V; —m(X;)] * and m” (z) by m" (x).
Finally the integral [p[m”(z)]? wo(z) fx () dz = E x[m”(X)]?> wo(X) can be estimated by

>l 60 wol(Xo)
=1

This results in the bandwidth selector
R(K )52 [rwo(z) dz 1/5
/‘2 KE S [ (X)) wo(X5)

In R, it is implemented in function thumbBw in package locpol. The end of
lecture 11
(11.12.2024)

h'ELROT) — n—1/5 |:
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3.5.3 Cross-validation

Similarly as for the unbiased cross-validation for the kernel density estimator, we set

ACY) = argmin CV(h,,),

hn>0
where
1< . 2
CV(hn) = — z; [V; — b 0(X,)] " wo(X)
1=
with mS Y being the estimator based on a sample that leaves out the i-th observation.

The rationale of the above procedure is that one aims at minimising the estimated integrated

squared error, i.e.

ISE (i, (z)) = /R (p(x) — m(x))” fx(x) wo(x) da

— Ex (p(X") — m(X")) > wo(X"), (101)
where X' is independent of observations ();11), e ();:)

To illustrate that, put e; = Y; — m(X;) and calculate

V() = =3 [ei m(X0) = A (06)] wo(X)
=1

3

1 — 2
= EZE?wO(Xi)"'E
=1 =1

> [m(X0) = il (X)] wo(Xy)
2

)

+i2n:[m<Xi>— z(fi)(Xi)} wo(X5).
=1

Now % S e2wo(X;) does not depend on hy, and thus it is not interesting.
Further 1 5" | [m(X;) — ?/7\1;_1) (Xi)]Zwo(Xi) can be considered as a reasonable estimate
of (101). Finally 237, &[m(X;) — s (Xi)]wo(X;) does not ‘bias’ the estimate of (101),

as

E [e:[m(X:) — b (X,)]wo(Xi)] = E {E [ei [m(X;) — m$ ) (X3)] wo(X) |x}

— E {EfsilXi] E [ [m(X3) - g (X)]wo(X) %] } =0,
where we have used that E[g]|X;] = 0 and that &; and [m(X;) — fﬁ](,_i)(Xi)]wo(Xi) are
independent conditionally on X; (and thus also conditionally on X).

Remark 18. It would not make much sense to search for h,, that minimises the residual sum of

squares RSS(h,) = 370 [V; — ﬁ%(Xi)f wo(X;). The reason is that RSS(hy,) is minimised

n

if Y; = m(X;), which would result in a very low bandwidth h,,.
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Remark 19. Another view of the cross-validation procedure is that we aim at finding the
bandwidth h,, that minimises the prediction error. More precisely, suppose that ();,/) is a
random vector that has the same distribution as (i(ﬁl) and that is independent from our
random sample (ifll), el ()}f:) Then the prediction error (viewed as a function of h,) is
given by

R(hn) = E xryr (Y — (X)) 2w(X7),
where the expectation is taken only with respect to the random vector ()é,/) Now CV(hy,)

presents a natural estimator of R(hy) as ()}%) is independent of ﬁ@z(,_i).

3.5.4 Nearest-neighbour bandwidth choice

Suppose that the support of the kernel function K is the interval (—1,1). Then wy ;(x) =0
if | X; — x| > hy. The aim of the nearest-neighbour bandwidth choice is to choose such h,, so
that for at least k observations we have |X; — x| < h,. This can be technically achieved as
follows.
Put
di(z) = | X1 —z|,....dn(z) = | X, — 2

for the distances of the observations Xi,...,X,, from the point of interest x. Let d(l)(x) <
... <d(y)(x) be the ordered sample of di(x),...,d,(z). Then choose h,, as

W (@) = digy (). (102)
Note that (102) presents a local bandwidth choice.

To get an insight into the bandwidth choice (102), let us approximate

1 ~ ~
- > {IX; — x| < h} = Fu(x+h) — Fo(w — h) = Fx(z + h) — Fx(z — h) = fx(x)2h. (103)
i=1
By plugging h = d(x) = hy(x) into (103), one gets % = fx(x)2h,(z) which further implies
that

k
hq(lNN) (z) = 7271]”)((1‘) .

Remark 20. To derive the asymptotic properties of my;, when the bandwidth h,, is chosen as

(102), one needs to consider k, — oo and %" — 0 as n — oo.

Remark 21. Using hglNN) () usually makes the problem more computationally expensive, as
one is using a local bandwidth. Further, there is no guarantee that the estimator m,(x) is for
instance continuously differentiable even if K is continuously differentiable. To prevent those

difficulties, some authors recommend transforming the covariates to
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where F,(z) = LS H{X,; < a} is the empirical distribution function of the covariates.

Then the transformed covariates are ‘approximately uniformly spread’ on (0,1)* and one
can use a global bandwidth choice (e.g., using the cross-validation procedure described in
Section 3.5.3). As F,, is a consistent estimator of Fx, one should keep in mind that when

using the transformed covariates X/, one estimates

E[Y [Fx(X) = 2] = E[V | X = Fy'(2)] = m(Fx ' (2)).

3.6 Conditional variance estimation

The most straightforward estimate of the conditional variance o?(x) = var[Y; | X = 1] is

given by

(@) =Y waile) Y7 — (), (104)
i=1

where M, (z) = Y1, wn,i(2)Y; is an estimator of m(z) = E [Y; | X1 = «]. This estimator is

based on the expression
o?(z) =E [le | X1 =2] - (E V1| X, ::1:])2.

The estimator (104) is usually preferred in theoretical papers as its properties can be derived
completely analogously as for m,(x).

In practice, it is usually recommended to start from
2
o?(z) =E (M1 —E M |X1=1])" | X; =2],

and use the following estimator
~ = . 2
(@) =Y wai@) (Yi = mp( X)) (105)
i=1

If the weights wy, ;(z) are not guaranteed to be non-negative, then there is generally no

guarantee that either of the estimators (104) or (105) is positive.

3.7 Robust locally weighted regression (LOWESS)

LOWESS is an algorithm for ‘LOcally WEighted Scatterplot Smoothing’. It is used among
others in regression diagnostics; in R, it is implemented in function lowess in package stats.

The algorithm runs as follows.

Literature: Fan and Gijbels (1996, Sections 2.4.1, 3.2.3, 4.2, 4.10.1, 4.10.2).

* In case there are no ties in covariate values, one gets {X7,..., X, }={%,...,2}.
n

n’
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LOWESS: Locally weighted scatterplot smoothing.

Input: A dataset ()éll), (i%’), e ()é:)

Output: A robust local linear regression estimator m.
0. Set

o K(t)=20(1—[¢)) I{[t| < 1} the tricube kernel,
o hy, the k-nearest neighbour bandwidth with k = [n f] and f = 2/3, and
e §;=1foreachi=1,...,n.

1. Fit m(z) as a weighted local linear estimator with a kernel K and a bandwidth h,,.
That is, m(x) = Bo(x), where

n
~ ~

(Bo(z), r(z)) = abf)gbfgkn; [YZ — by — by (X; — x)r K(Xﬁ;x) 5;.

In the fist loop with d; = 1 for all ¢ = 1,...,n, we obtain the usual local linear

estimator m(x) = mpr(x).
2. Consider the residuals r; = Y; — m(X;) of the current fit, i = 1,...,n.

3. For B(t) = (1 —t3)?I{|t| < 1}, calculate the ‘measures of outlyingness’

5-:B(#> i=1,...,n
! 6med (|r1,.eufrn]) /’ T
that assess how much ‘extreme’ is the residual r; compared to the other residuals.

4. Repeat steps 1-3 three times.
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Appendix

Stochastic op and O, symbols

This section is identical to parts of Omelka (2023, Section 1.1).

Definition A9. Let {X n}zozl be a sequence of random vectors in RF and {rn}zozl a sequence
of positive constants. We write that
(i) X, =op(2), if (r, X») SN 0%, where 03 = (0,...,0)T is a zero point in R¥;
n n—oo

(ii) X, =Op(7), if

Ve > 03K < o0 supP(rnHXnH >K> <e,
neN

where || - || stands for instance for the Euclidean norm.

When X,, = Op(1) then some authors say that {X,,}7° ; is bounded in probability.” When
X, = op(1) then it is often said that {X,,}7°  is negligible in probability.

Remark 22. Note that

(i) X, N e implies X,, = Op(1) (Prohorov’s theorem, Portmanteau theorem, see e.g.
n—oo

van der Vaart, 2000, Chapter 2.1);
(i) X, —% 0, implies X, = op(1);
n—oo

(iii) (1, X,) P s X or (rn Xn) 4 x implies X, = Op(%)-
n—00 "

n—o0

(iv) If r, — 0o and X,, = Op(%), then X,, = op(1).
Proof of (iv). It is sufficient to prove that for each € > 0 and each n > 0 for all sufficiently
large n it holds that P (|| X,|| >€) < n.

Note that X,, = Op( ) implies there exists a finite constant K such that

1
Tn

sup P (1, || X,|| > K) <e.
neN

The statement now follows from the fact that

P (I X0l >¢€) =P (rn [ Xul >ern) <n

for all n such that er, > K. ]

* omezend v pravdépodobnosti
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Suppose that X1, X, ... are independent and identically distributed random vectors with

a finite variance matrix. Then the law of large numbers implies

X,=E X, +0p(1).

With the help of the central limit theorem one can be even more specific about the remainder
term and show that

% _ 1

X, =E X +0p(L).
Remark 23. The calculus with the random quantities op(1) and Op(1) is analogous to the
calculus with the (deterministic) quantities o(1) and O(1) in mathematical analysis. Thus,

among others it holds that
(i) op(1) +op(1) = op(1);
(i) op(1) Op(1) = op(1);
(iii) op(1) +Op(1) = Op(1);
(iv) op(1) +o(1) = op(1);
(v) Op(1) +0(1) = Op(1).

Proof of (ii). Let {Xy}>7,,{Yn},—; be such that X, = Op(1),Y, = op(l) and Y, X,
makes sense. Let € > 0 be given and consider for instance the Euclidean norm (for other
norms the proof would go through up to a multiplicative constant in some of the arguments).
Then one can find K < oo such that sup,cy P (| Xn]| > K) < §. Thus for all sufficiently
large n € N

P (I¥a Xall > 2) < P (1Y Xull > &, | X0 < K) +P (I1X,] > K)
<P(I%l> ) +5<e

as Y, = op(1).
We recommend the reader to prove the remaining statements as an exercise. O

For more details about the calculus with op(1) and Op(1) see for instance Jiang (2010,
Chapter 3.4).

Uniform consistency of the empirical distribution function

The following theorem can be found in Serfling (1980, Section 2.1.4) as Theorem A.
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Theorem A10. (Glivenko-Cantelli theorem) Suppose we observe independent and iden-
tically distributed random vectors X1, ..., X, (in R¥) from a distribution with the cumulative

distribution function F'. Let

~ 1 <&
Fo(x) =~ > {X;<x} forxeRF
=1

be the cumulative empirical distribution function. Then

sup ‘ﬁn(x) — F(x)| %5 0.

XERk n—o0

Supremum metric and convergence in distribution

Lemma A2. Suppose that Y1,Y 2,... and 'Y are random vectors (with values in Rk) with
the corresponding distribution functions G, Go, ... and G. Further, let the distribution func-

tion G be continuous. Then Y, Ly if and only if poo(Gn, G) = 0 as n — oo.
n—o0

Proof. We would like to show that

poo(Gpn,G) —— 0 —= G, —— G.

n—o0 n—oo

The implication = is straightforward as supycgr |Grn(y) — G(y)| — 0 implies that G, (y) —
G(y) for each y € R*.

The implication <= is slightly more difficult. By the continuity of G for each € > 0 there
exists a finite set of points B. = {y1,...,yn} such that for each y € R* one can find
yL,Yu € B that

yr<y<yu, and G(yy)—-G(yr) <3

By an inequality of p-dimensional vectors above we mean that the inequality is true for all

their components. For each y € RF one can bound

Gn(y) = G(y) < Gulyv) — G(y) < Gulyv) — Glyr) < Go(yv) —G(yv) +5  (A106)

and analogously also

Gn(y) = G(y) = Gul(yr) = G(y) = Gn(yr) = G(yv) = Gu(yL) = Glyr) — 5. (A107)

Now combining (A106) and (A107) together with G, _)L> G one gets that for all sufficiently

large n
sup |Gn(y) — G(y)| < max |Gu(y) - G(y)| +5 <5+ 5 =¢,
which implies the statement of the lemma. O
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Linderberg-Feller central limit theorem

The following result is a variant of the classical Linderberg-Feller central limit theorem for
triangular sequences of independent random vectors. It can be found in van der Vaart (2000,

Proposition 2.27).

Theorem All. For eachn = 1,2,..., let Yy1,...,Y 1, be independent random vectors

(in R¥) with finite variances such that

kn,
S E [HYM-H2 Y il > e}] —— 0 for every e >0, (A108)
=1
and
kn
Zvar Yy ——
n—oo

i=1

for a positive definite matriz € R*¥*. Then

n d
(Yn,i —E Yn,z) E— Nk (O, )
n—oo
=1
Equivalence of convergence in distribution and convergence of quantiles
The following result can be found as van der Vaart (2000, Lemma 21.2).

Lemma A3. Let {X,}22, be a sequence of random variables and Fx, be the cumulative

distribution function of X,. Then X, LN ‘e if and only if F)El(u) —_— F)El(u) for each
n— 00 " n— 00

u € (0,1).
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