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In several places in this course, using the stochastic oP and OP notation will be essential.

Those not familiar with these concepts can find definitions and a few basic algebraic rules for

these symbols in the Appendix, Definition A9.

1 Bootstrap and other resampling methods

Suppose we observe independent and identically distributed k-dimensional random vectors

X1, . . . ,Xn from the distribution FX and let θX = θ(FX) be the quantity of interest. Let

Rn = g(X1, . . . ,Xn;θX) be a p-dimensional random vector that we want to use for doing

inference about θX , e.g.

Rn =
√
n
(
θ̂n − θX

)
or Rn =

(
θ̂n − θ0

)T[ ̂
avar(θ̂n)

]−1(
θ̂n − θ0

)
,

where θ̂n is an estimator of θX and θ0 is a known value.

To infer about parameter θ, one needs to know the distribution of Rn. Usually, we are not

able to derive the exact distribution of Rn analytically. For instance consider the distribution

of
√
n
(
θ̂n−θX

)
, where θ̂n is a maximum likelihood estimator for n fixed. In such situations,

the inference is often based on the asymptotic distribution of Rn. For example by Nagy

(2023a, Theorem 25) or Omelka (2023, Theorem 5), for a maximum likelihood estimator in

regular models one has
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np

(
0p, I

−1(θX)
)
, for I(θX) the Fisher informa-

tion matrix of θX . Bootstrap presents an alternative to using the asymptotic normality. As

we will see later, bootstrap combines the ‘Monte Carlo principle’ and ‘substitution (plug-in)

principle’.

1.1 Monte Carlo principle

Sometimes one knows the distribution of Xi and thus also of X = (X1, . . . ,Xn) so one

is (at least theoretically) able to derive the distribution of Rn = (Rn,1, . . . , Rn,p)
T. But the

derivations are too complicated, and/or the resulting distribution is too complex to work with.

For instance, consider the standard maximum likelihood tests without nuisance parameters

as in Nagy (2023a, Section 3.3.1) or Omelka (2023, Chapter 2.4) when the null hypothesis

holds.

If one knows the distribution of X = (X1, . . . ,Xn), then one can generate random vec-

tors X∗, which have the same distribution as X. The Monte Carlo principle runs as follows.

• Choose B sufficiently large and for each b ∈ {1, . . . , B} independently generate random

samples X∗
b = (X∗

1,b, . . . ,X
∗
n,b) such that the distribution of X∗

b is the same as the

distribution of X. We get B independent samples X∗
1, . . . ,X

∗
B.
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• For each b, compute R∗
n,b as the quantity Rn calculated from the b-th sample X∗

b .

• The unknown distribution function

Hn(x) = P
(
Rn ≤ x

)
for x ∈ Rp

of Rn can now be estimated by the empirical distribution function of R∗
n,b, b = 1, . . . , B

Ĥn,B(x) =
1

B

B∑
b=1

I
{
R∗

n,b ≤ x
}

for x ∈ Rp.

As R∗
n,1, . . . ,R

∗
n,B are independent and identically distributed random variables and each

variable has the same distribution as Rn, the Glivenko-Cantelli Theorem (Theorem A10)

implies

sup
x∈Rp

∣∣Ĥn,B(x)−Hn(x)
∣∣ a.s.−−−−→

B→∞
0. (1)

Thus for a sufficiently large B one can use Ĥn,B(x) as an approximation of Hn(x).

Note that to achieve (1) it is not necessary to know the distribution of X exactly nor

that X1, . . . ,Xn are independent and identically distributed. We only need that we can

generate independent copies of Rn. Also, it is interesting to see that in (1), we do not

estimate the asymptotic distribution of Rn as n → ∞, but rather the exact, finite sample

distribution with the sample size n fixed.

Application to hypotheses testing

If Rn is a (one-dimensional) test statistic whose large values are in favour of the alternative

hypothesis, then with the help of the Monte Carlo principle, the p-value of the test can be

approximated (estimated) by

p̂B =
1 +

∑B
b=1 I{R∗

n,b ≥ Rn}
B + 1

,

as

p̂B =
1 +B

(
1− Ĥn,B(Rn−)

)
B + 1

a.s.−−−−→
B→∞

1−Hn(Rn−),

which is the ‘true’ (precise) p-value. Note that the quality of the approximation of p̂B as an

estimate of 1−Hn(Rn−) depends on B which we can take as large as we want (provided that

enough computation time is available).

® Example 1. ∗ Consider the Neyman-Pearson test (Nagy, 2023a, Section 3.1), or any

likelihood-based test introduced in Nagy (2023a, Section 3.3.1) or Omelka (2023, Chapter 2.4).

∗ Examples designated by ® are accompanied by R codes.
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We test the null hypothesis H0 : θX = θ0 against the alternative H1 : θX ̸= θ0, for θ0

given. The test statistic Rn is one-dimensional and explicitly given, but its exact distribution

under H0 does not have to be simple to determine. Under H0, however, we know that

Rn = g(X1, . . . ,Xn;θ0) for X1, . . . ,Xn a random sample from distribution with parameter

θ0, which is completely specified. The significance of the test statistic Rn can thus be directly

assessed using the Monte Carlo principle.

® Example 2. We observe a random vector with a multinomial distributionMK(n; p1, . . . , pK).

Denote p =
(
p1, . . . , pK

)T
and let pX be the true value of the parameter p. We are interested

in testing

H0 : pX = p(0) vs. H1 : pX ̸= p(0),

where p(0) =
(
p
(0)
1 , . . . , p

(0)
K

)T
is a given vector. Explain how the Monte Carlo principle can

be used to estimate the p-value of the χ2-test of goodness-of-fit.

The Monte Carlo principle does not have to be used only if the distribution of X =

(X1, . . . ,Xn) is completely specified. In the following examples, we will utilise that, in

fact, it is not necessary to know the data-generating mechanism of X exactly, provided we

can generate independent copies of Rn.

® Example 3. Let (Y1, X1)
T, . . . , (Yn, Xn)

T be independent and identically distributed ran-

dom vectors from the bivariate normal distribution with the true value of the correlation

coefficient denoted as ρX . We are interested in testing the hypothesis

H0 : ρX = ρ0, vs. H1 : ρX ̸= ρ0, (2)

for ρ0 ∈ (−1, 1) given. Our intention is to use the test statistic Rn =
√
n (ρ̂n − ρ0) for ρ̂n the

sample correlation coefficient, see also Kulich and Omelka (2022, Section 10.1.2). A direct use

of a Monte Carlo approach to assess the significance of Rn seems impossible, since we deal

with a problem of testing with nuisance parameters (means and variances of the marginal

variables Xi and Yi). For simulating Monte Carlo replicates from Rn, one would thus need

to choose the values of these nuisance parameters for sampling X∗, which could affect the

distribution of Rn.

The use of Monte Carlo is, however, still possible. For every a, b, c, d ∈ R, a c ̸= 0 we have

for the correlation coefficient ρ(X,Y ) between random variables X and Y that

ρ(aX + b, c Y + d) = sgn(a c)ρ(X,Y ).

From this expression it is easy to see that both the correlation coefficient and the distribution

of the sample correlation coefficient depend only on the single parameter ρX of the bivariate
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normal distribution. Thus, one should be able (at least theoretically) to calculate the distri-

bution of Rn when the null hypothesis holds. But this distribution is rather complicated.∗

The same observation, however, shows that also the distribution of Rn depends only on ρX ,

and it is the same for any choice of the nuisance parameters. Thus, when generating random

variables (Y ∗
1 , X

∗
1 )

T, . . . , (Y ∗
n , X

∗
n)

T, one can choose any values of the nuisance parameters, as

long as ρ(X∗
i , Y

∗
i ) = ρX for all i. The resulting distribution of R∗

n =
√
n (ρ̂∗n − ρ0) has, under

the null hypothesis, necessarily the same distribution as Rn. Think how this can be used to

calculate (estimate) the p-value of the test of the hypothesis (2).

® Example 4. Let X = (X1, . . . , Xn) be a random sample from the distribution FX in R.

We want to test the hypothesis

H0 : FX(x) = F0(x),∀x ∈ R, vs. H1 : ∃x ∈ R FX(x) ̸= F0(x)

for F0 a given distribution function, using the Kolmogorov-Smirnov test statistic

Rn = sup
x∈R

∣∣∣F̂n(x)− F0(x)
∣∣∣ .

Here, F̂n is the empirical cumulative distribution function of X. Compared to the classical

approach based on the asymptotic distribution of the statistic Rn (Kulich and Omelka, 2022,

Section 5.1), Monte Carlo approximation has two major advantages: (i) the approximation

is non-asymptotic, and works well also for small sample size n, and (ii) does not require the

assumption of continuity of F0, i.e. works well also for discrete distributions. Furthermore,

using a Monte Carlo approach, analogous goodness-of-fit tests can be considered also in the

setup of multivariate distributions in Rk.

® Example 5. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from

the exponential distributions with the density f(x;λ) = λe−λxI[x > 0]. Let λX be the true

value of the parameter for the first sample and λY for the second sample. We want to use

the Monte Carlo principle to test the following hypothesis

H0 : λX = λY , vs. H1 : λX ̸= λY . (3)

Again, we deal with the problem of a nuisance parameter, as under H0 there is still the

common parameter λX = λY to be specified.

We base the test on the best unbiased (and efficient) point estimators λ̂X,n1 =
(
X̄n1

)−1

and λ̂Y,n2 =
(
Ȳn2

)−1
. There are several test statistics to consider. The first to consider

might assess the difference R1,n1,n2 = λ̂X,n1 − λ̂Y,n2 . Take the distribution of R1,n1,n2 under

∗ https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Using_the_exact_distribution
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H0, given that the common value of the parameter is λ = λX = λY . We know that for X

with exponential distribution with density f(x;λ), the distribution of λX is the standard

exponential with density f(x; 1). Thus,

R1,n1,n2 = λ̂X,n1 − λ̂Y,n2 =
n1∑n1
i=1Xi

− n2∑n2
i=1 Yi

= λ

(
n1∑n1

i=1 λXi
− n2∑n2

i=1 λYi

)
.

On the right-hand side, the expression in the brackets has a distribution that depends only on

the sample sizes n1 and n2. But, the factor λ in front of the brackets makes the distribution

of R1,n1,n2 depend also on λ. The distribution of the test statistic thus depends on a nuisance

parameter, and a Monte Carlo approach is not appropriate.

A second choice of a test statistic might be the ratio R2,n1,n2 = λ̂X,n1/λ̂Y,n2 . We have

R2,n1,n2 =
Ȳn2

X̄n1

=
n1

n2

∑n2
i=1 Yi∑n1
i=1Xi

=
n1

n2

∑n2
i=1 λYi∑n1
i=1 λXi

,

and again because all λX1, . . . , λXn1 , λ Y1, . . . , λ Yn2 are independent with standard expo-

nential distribution, the distribution of R2,n1,n2 does not depend on the unknown λ. The test

statistic R2,n1,n2 is thus under H0 pivotal, and can be used for a Monte Carlo test of the

hypothesis (3), similarly as we did in Example 3.

Application to confidence intervals

Note that if Rn is one dimensional then also for each fixed u ∈ (0, 1):

Ĥ−1
n,B(u)

a.s.−−−−→
B→∞

H−1
n (u),

provided that Hn is continuous and increasing in u.∗ Thus one can use the quantile Ĥ−1
n,B(u)

as an estimate (approximation) of the quantile H−1
n (u).

Let θ̂n =
(
θ̂n,1, . . . , θ̂n,p

)T
be an estimator of θX =

(
θX,1, . . . , θX,p

)T
and Rn = θ̂n − θX .

Suppose the distribution of Rn does not depend on the parameter θX , i.e. that one is able

to generate random variables R∗
n with the same distribution as Rn. Further, suppose that

we want to find the confidence interval for θX,k (the k-th component of θX). Denote Hn the

distribution function of θ̂n,k − θX,k and Ĥn,B the empirical distribution function of the k-th

component of R∗
n,1, . . . ,R

∗
n,B. Now provided that the distribution function Hn is continuous

and increasing in H−1
n (α/2) and H−1

n (1− α/2), then one gets

lim
B→∞

P
(
Ĥ−1

n,B(α/2) < θ̂n,k − θX,k < Ĥ−1
n,B(1− α/2)

)
= 1− α.

Thus the approximate confidence interval for θX,k can be calculated as(
θ̂n,k − Ĥ−1

n,B(1− α/2), θ̂n,k − Ĥ−1
n,B(α/2)

)
.

∗ In fact, it is sufficient to assume that H−1
n (u) is a unique solution of Hn(x−) ≤ u ≤ Hn(x), see e.g. the main

theorem of Serfling (1980, Section 2.3.1).
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Observe that on the left-hand side of this interval is the upper sample quantile Ĥ−1
n,B(1−α/2),

and on the right-hand side the lower sample quantile Ĥ−1
n,B(α/2).

Example 6. Let X1, . . . , Xn be a random sample from a distribution FX that belongs to a

location family, i.e.

FX ∈ F =
{
F (· − θ), θ ∈ R

}
, (4)

where F is a known function and θ is an unknown parameter.

Let θX be the true value of the parameter θ (i.e. FX(x) = F (x− θX), for all x ∈ R) and θ̂n

be its estimator that is location equivariant, i.e.

θ̂n(X1 + c, . . . ,Xn + c) = θ̂n(X1, . . . , Xn) + c, ∀c ∈ R.

Then the distribution of Rn = θ̂n− θX = θ̂n(X1, . . . , Xn)− θX = θ̂n(X1− θX , . . . , Xn− θX)

depends only on the distribution of Xi − θX , i = 1, . . . , n. We have

P (Xi − θX ≤ x) = P (Xi ≤ x+ θX) = F (x+ θX − θX) = F (x) for all x ∈ R.

Thus, the distribution of all Xi − θX , and consequently also the distribution of Rn, depends

only on the known function F but it does not depend on θX . The distribution of Rn can be

thus approximated using a Monte Carlo procedure by simulating from the distribution with a

given θ0 (e.g. θ0 = 0) and calculating R∗
n,b = θ̂∗n−θ0, in the same way as we did in Example 3.

Use this approach to find a Monte Carlo confidence interval for

• parameter θ ∈ R given a random sample X1, . . . , Xn from the logistic distribution with

density

f(x) =
exp{−(x− θ)}(

1 + exp{−(x− θ)}
)2 , x ∈ R,

• the median θ ∈ R of FX , given a random sample X1, . . . , Xn from a location family (4)

with F having a symmetric density.
The end of

lecture 1

(2.10.2024)

1.2 Standard nonparametric bootstrap

In the Monte Carlo principle, we leveraged the fact that the data-generating process of Rn

was known completely, and we were able to sample from the distribution of Rn directly. This

is in practice quite rare, and Monte Carlo per se is thus of relatively limited interest.

A generalisation of the Monte Carlo principle is the bootstrap. In that case, instead of

knowing the distribution of X precisely, we estimate it, and sample X∗
b from that estimated

distribution. Depending on whether this distribution is estimated parametrically or nonpara-

metrically, we distinguish parametric or nonparametric bootstrap.
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Throughout this section, we suppose that we observe independent and identically dis-

tributed random vectors X1, . . . ,Xn from the distribution FX . Let θ(FX) be the quantity

of interest and θ̂n be its estimator. For presentation purposes, it will be instructive to write

the estimator as θ̂n = θ(F̂n), with F̂n the empirical distribution

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x} for x ∈ Rk.

We are interested in the distribution of a p-dimensional random vector

Rn = gn
(
θ̂n,θX

)
= gn

(
θ(F̂n),θ(FX)

) (
e.g. Rn =

√
n
(
θ̂n − θX

))
,

where gn is a deterministic and known function that depends only on n.

1.2.1 Idea of nonparametric bootstrap

In nonparametric bootstrap∗ the unknown FX is estimated by the empirical distribution

function F̂n. The empirical distribution puts mass 1/n to each observation X1, . . . ,Xn.

Thus, generating independent random vectors X∗
1, . . . ,X

∗
n from F̂n is equivalent to drawing

a simple random sample with replacement† of size n from the observed values X1, . . . ,Xn,

i.e. P(X∗
i,b = Xj |X) = 1

n for each b = 1, . . . , B, i, j = 1, . . . , n, and all the random variables{
X∗

i,b; i = 1, . . . , n, b = 1, . . . , B
}
are independent.

Our intention is to approximate/estimate the unknown distribution function Hn of Rn, i.e.

Hn(x) = P
(
Rn ≤ x

)
for x ∈ Rp. (5)

The nonparametric bootstrap algorithm runs as follows.

(i) Choose B sufficiently large. For each b ∈ {1, . . . , B} independently generate the datasets

X
∗
b = (X∗

1,b, . . . ,X
∗
n,b)

T (i.e. the datasets X∗
1, . . . ,X

∗
B are independent) using a simple

random sample with replacement from X.

(ii) Let

R∗
n,b = gn

(
θ̂
∗
n,b, θ̂n

)
= gn

(
θ(F̂ ∗

n,b),θ(F̂n)
) (

e.g. R∗
n,b =

√
n
(
θ̂
∗
n,b − θ̂n

))
,

where θ̂
∗
n,b is an estimator of θ based on X∗

b and analogously F̂ ∗
n,b is the empirical

distribution function based on X∗
b .

(iii) The distribution function Hn of Rn is now (by the combination of the Monte Carlo and

plug-in principle) estimated by

Ĥ∗
n,B(x) =

1

B

B∑
b=1

I
{
R∗

n,b ≤ x
}

for x ∈ Rp. (6)

∗ neparametrický bootstrap † prostý náhodný výběr s vraceńım
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It is important to observe that Ĥ∗
n,B from (6) is, in fact, a two-step approximation of the

true distribution function Hn from (5):

• Plug-in. First, note that the random variables/vectors R∗
n,1, . . . ,R

∗
n,B are independent

and identically distributed as a generic random vector R∗
n, and conditionally on X (that

is, if the original random sample X is taken as fixed). In the first approximation of Hn,

the distribution of Rn is approximated by the conditional distribution of R∗
n given X.

Its (conditional) distribution function is

Ĥn(x) = P
(
R∗

n ≤ x |X
)
= P

(
gn
(
θ(F̂ ∗

n),θ(F̂n)
)
≤ x |X

)
= P

(
gn
(
θ̂
∗
n, θ̂n

)
≤ x |X

)
for x ∈ Rp.

(7)

That is, for fixed X, Ĥn is the true distribution of R∗
n if only the randomness in sampling

X
∗
b is involved. Because Ĥn still depends on the random sample X, it is itself random.

• Monte Carlo. In the second approximation of Hn from (5), the distribution function

(7) is estimated by the empirical distribution function of the B bootstrap replicates

R∗
n,1, . . . ,R

∗
n,B from R∗

n, i.e. using Ĥ∗
n,B from (6).

Because R∗
n,1, . . . ,R

∗
n,B are a random sample from the conditional distribution of R∗

n given

X, by the Glivenko-Cantelli Theorem (Theorem A10) we know that

sup
x∈Rp

∣∣Ĥ∗
n,B(x)− Ĥn(x)

∣∣ a.s.−−−−→
B→∞

0,

Taking B sufficiently large, we see that Ĥ∗
n,B can be made arbitrarily close to Ĥn. For this

reason, the second approximation (Monte Carlo) is always valid, as long as B is large

enough. Consequently, in the theory of bootstrap, the second approximation of Ĥn by Ĥ∗
n,B

is usually ignored, and only the first, plug-in approximation (of Hn by Ĥn) is studied. If

Ĥn is a ‘good’ estimator of Hn, then the nonparametric bootstrap is said to ‘work’, or to be

consistent.

1.2.2 Convergence of conditional distributions

The distribution function Ĥn depends on the random sample X and thus it is random, and

can be viewed as an estimator of the distribution function Hn. The crucial question for the

success of the nonparametric bootstrap is whether Ĥn is ‘close’ (at least asymptotically) to

Hn. To answer this question it is useful to introduce the supremum metric on the space of

distribution functions (of random vectors on Rp) as

ρ∞(H1, H2) = sup
x∈Rp

∣∣H1(x)−H2(x)
∣∣.

10



Suppose that we have a sequence of random vectors Y 1,Y 2, . . . and Y with distribution

functions G1, G2, . . . , and G. Lemma A2 given in the Appendix states that if the limiting

distribution function G is continuous, then ρ∞ can be used for metrizing the convergence

in distribution, meaning that ρ∞(Gn, G) −−−→
n→∞

0 if and only if Y n
d−−−→

n→∞
Y .

Recall the random vector R∗
n whose distribution function Ĥn is given by (7). We saw

that the distribution of R∗
n depends on (the realisations of our data) X1, . . . ,Xn. Thus the

distribution R∗
n is conditionally on X1, . . . ,Xn. We need to define a notion of convergence

for conditional distributions.

Let R be a candidate for the limiting random vector R∗
n, and let H be the distribution

function of R. Let ρ be a metric on the space of distribution functions that can be used for

metrizing weak convergence (for instance the supremum metric ρ∞ if the limiting distribution

is continuous, but in literature other metrics can be found). Since Ĥn given by (7) depends

on X, ρ(Ĥn, H) is a random variable (also depending on X).

We say that

• conditionally on X1,X2, . . . the random variable R∗
n converges in distribution

to R in probability if

ρ(Ĥn, H)
P−−−→

n→∞
0
(
i.e. for each ε > 0 lim

n→∞
P
[
ω ∈ Ω : ρ

(
Ĥn(ω), H

)
≥ ε
]
= 0
)
.

• conditionally on X1,X2, . . . the random variable R∗
n converges in distribution to

R almost surely if

ρ(Ĥn, H)
a.s.−−−→

n→∞
0
(
i.e. P

[
ω ∈ Ω : lim

n→∞
ρ
(
Ĥn(ω), H

)
= 0
]
= 1
)
.

In the following theorem, we formulate the conditions needed for the nonparametric boot-

strap to work.

Theorem 1. Suppose that Rn
d−−−→

n→∞
R, where R is a random vector with a continuous

distribution function H. Further suppose that

ρ∞(Ĥn, Hn)
P−−−→

n→∞
0 (or

a.s.−−−→
n→∞

0), (B)

then conditionally on X1,X2, . . . one gets R∗
n

d−−−→
n→∞

R in probability (or almost surely).

Proof. By the triangle inequality, (B), and Lemma A2 we have

ρ∞(Ĥn, H) ≤ ρ∞(Ĥn, Hn) + ρ∞(Hn, H)
P−−−→

n→∞
0 (or

a.s.−−−→
n→∞

0).

This is precisely what we wanted to prove.
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The first thing worth noting in Theorem 1 is the assumption that Rn
d−−−→

n→∞
R, where R is

a random vector with a continuous distribution function. This requires that we use bootstrap

to approximate a distribution that is asymptotically not degenerate. This is analogous to

the use of normal approximation (to which using bootstrap is an alternative), where we also

normalise the random vector so that it asymptotically has a non-degenerate distribution. In

our analysis, the assumption of non-degeneracy of R appears to be a remnant of the use

of the supremum norm ρ∞, but this limitation can be shown to be fundamental. Thus,

for the nonparametric bootstrap to work appropriately asymptotically, it must be assumed

that the limiting distribution R of Rn is non-degenerate. Typically we choose Rn so

that it converges to a multivariate normal distribution, thus also the continuity of the limit

distribution of R is satisfied.

The crucial condition (B) from Theorem 1 is precisely what is needed for the first ap-

proximation (plug-in) of Hn by Ĥn in nonparametric bootstrap to be valid. Thus, we say

that nonparametric bootstrap is consistent (or simply that it ‘works’) if (B) is true. In what

follows, we will explore when this is the case. The end of

lecture 2

(9.10.2024)

1.2.3 Consistent nonparametric bootstrap

In view of Theorem 1, the crucial question is whether the convergence in (B) holds. Our first

answer is the next theorem, which states that (B) holds for a sample mean.

Theorem 2. Let X1,X2, ... be independent identically distributed random vectors such that

E ∥X1∥2 < ∞ and the variance matrix Σ = var(X1) is positive definite. Consider Rn =
√
n
(
Xn − E X1

)
and R∗

n =
√
n
(
X

∗
n −Xn). Then

ρ∞(Ĥn, Hn)
a.s.−−−→

n→∞
0. (8)

Proof. By the standard central limit theorem for random vectors, we have ρ∞(Hn, H) −−−→
n→∞

0,

for H the distribution function of the k-variate normal distribution Nk(0,Σ). We can use the

triangle inequality for ρ∞ and write

ρ∞(Ĥn, Hn) ≤ ρ∞(Ĥn, H) + ρ∞(H,Hn).

As n → ∞, the second summand above vanishes, so it remains to prove

ρ∞(Ĥn, H)
a.s.−−−→

n→∞
0. (9)

We proceed conditionally on the sequence X1,X2, . . . , i.e., the values X1,X2, . . . are con-

sidered to be fixed, and the only randomness in Ĥn comes from the bootstrap resampling in

X∗
1, . . . ,X

∗
n from the fixed distribution given by F̂n. This means that the random variables

12



X∗
i are all independent and identically distributed for i = 1, . . . , n, but have a different dis-

tribution F̂n for each n = 1, 2, . . . . Thus, it is more appropriate to write X∗
n,i to emphasise

that the (conditional) distribution of X∗
i depends on n. We want to use a central limit theo-

rem to prove that conditionally on X1,X2, . . . , the quantity R∗
n converges in distribution to

Nk(0,Σ) almost surely. That would be enough to conclude that also (9) is true.

The conditional mean and variance of X∗
n,i are for each i = 1, . . . , n

E
(
X∗

n,i | X1,X2, . . .
)
=

1

n

n∑
i=1

Xi = Xn,

var
(
X∗

n,i | X1,X2, . . .
)
= E

((
X∗

n,i −Xn

) (
X∗

n,i −Xn

)T | X1,X2, . . .
)

=
1

n

n∑
i=1

(
Xi −Xn

) (
Xi −Xn

)T a.s.−−−→
n→∞

Σ,

the final limit following from the usual strong law of large numbers. Define

Y n,i =
X∗

n,i√
n

for i = 1, . . . , n.

We use the Lindeberg-Feller central limit theorem for the triangular array Y n,i, i = 1, . . . , n,

n = 1, 2, . . . , see Theorem A11 in the Appendix. We have
n∑

i=1

var(Y n,i | X1,X2, . . . ) =
n∑

i=1

var(X∗
n,i | X1,X2, . . . )

n
= var

(
X∗

n,1 | X1,X2, . . .
) a.s.−−−→

n→∞
Σ.

It remains to check the ‘Lindeberg-Feller condition’ (A108); for ε > 0 we have

n∑
i=1

E ∗
[
∥Y n,i∥2 I

{
∥Y n,i∥ > ε

}]
=

1

n

n∑
i=1

E ∗
[∥∥X∗

n,i

∥∥2 I
{∥∥X∗

n,i

∥∥ > ε
√
n
}]

= E ∗
[∥∥X∗

n,1

∥∥2 I
{∥∥X∗

n,1

∥∥ > ε
√
n
}]

where E ∗ is a shortcut for the conditional expectation given X1,X2, . . . . If M > 0 is any

constant so that M ≤ ε
√
n, we know that

∥∥X∗
n,1

∥∥ > ε
√
n implies

∥∥X∗
n,1

∥∥ > M , and thus for

any M < ∞ we find that for all n large enough we can bound

E ∗
[∥∥X∗

n,1

∥∥2 I
{∥∥X∗

n,1

∥∥ > ε
√
n
}]

≤ E ∗
[∥∥X∗

n,1

∥∥2 I
{∥∥X∗

n,1

∥∥ > M
}]

=
1

n

n∑
i=1

∥Xi∥2 I
{
∥Xi∥ > M

} a.s.−−−→
n→∞

E
[
∥X1∥2 I

{
∥X1∥ > M

}]
.

Because this is true for any M ∈ (0,∞), we can take M sufficiently large so that the

right-hand side is arbitrarily small. Necessarily,
∑n

i=1 E
∗
[
∥Y n,i∥2 I

{
∥Y n,i∥ > ε

}] a.s.−−−→
n→∞

0.

The Lindeberg-Feller central limit theorem (Theorem A11) now gives that, conditionally on

X1,X2, . . . ,
n∑

i=1

(Y n,i − E (Y n,i|X1,X2, . . . )) = R∗
n

d−−−→
n→∞

Nk(0,Σ),

and this convergence is true almost surely. We conclude the proof.
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Note that for X1 a p-variate random vector the central limit theorem implies that the

distribution function Hn converges weakly to the distribution function of Np

(
0p, var(X1)

)
.

Now Theorems 1 and 2 imply that conditionally on X1,X2, . . . also

R∗
n

d−−−→
n→∞

Np

(
0p, var(X1)

)
, almost surely.

Thus one can say that Ĥn estimates the distribution function of Np

(
0p, var(X1)

)
, and boot-

strap works.

® Example 7. Let X1, . . . , Xn be independent and identically distributed random variables

and we are interested in the expectation E Xi. The usual approach to find the confidence

interval for E Xi is to use the convergence

√
n
(
Xn − E Xi

)
Sn

d−−−→
n→∞

N(0, 1), (10)

which holds provided that var(Xi) ∈ (0,∞). Here, of course, S2
n is the sample variance of

X1, . . . , Xn.

In view of the theory presented above we want to approximate/estimate the distribution

function

Hn(x) = P(Rn ≤ x), where Rn =
√
n
(
Xn − E Xi

)
.

With the help of (10) the estimate of this distribution based on the normal approximation is

Ĥ(norm)
n (x) = Φ

(
x
Sn

)
. (11)

Alternatively one can use the nonparametric bootstrap resulting in an estimator Ĥ∗
n,B from (6).

Figure 1 illustrates the normal and the bootstrap approximation (with B = 10 000) for

the sample sizes n = 30 and n = 1000 when the true distribution of Xi is exponential

Exp(1). In the plots in the first column one can find the densities of the true distribution

of Rn =
√
n
(
Xn − E Xi

)
(black solid), the normal approximation (11) (blue solid) and the

limit distribution which is N(0, 1) (dotted, the variance is 1 because of Exp(1) chosen in the

simulations). The bootstrap approximation is given by the histogram.

In the plots in the second column one can find the difference of the true distribution

function Hn of Rn with its estimates. The difference Hn(x) − Ĥ
(norm)
n (x) is in blue colour,

while the difference Hn(x) − Ĥn,B(x) is in red colour. Note that these differences are much

smaller for the bigger sample size. However, none of the approximations seems evidently

preferable in this example.

The standard nonparametric bootstrap also works for ‘smooth’ transformations of sample

means.
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Figure 1: Comparison of the normal and bootstrap approximations of the distribution of the

random variable Rn =
√
n (Xn − E Xi).
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Theorem 3. Let X1,X2, . . . be independent identically distributed random (p-variate) vectors

such that E ∥X1∥2 < ∞. Further suppose that there exists a neighbourhood U of µ = E X1

such that the function g : U → Rm has continuous partial derivatives in this neighbourhood.

Consider Rn =
√
n
(
g(Xn)−g(µ)

)
and R∗

n =
√
n
(
g(X

∗
n)−g(Xn)

)
. Then (8) and (B) both

hold, i.e. nonparametric bootstrap is consistent.

The above theorem can be of interest for functions of (sample) moments whose asymptotic

distribution is difficult to derive (e.g. Pearson’s correlation coefficient, skewness, kurtosis,

. . . ).

Finally, the are also plenty of situations when the bootstrap works with statistics that are

not (smooth transformations of) sample means. Roughly speaking, it can be shown that (B)

holds provided that θ̂n satisfies the following asymptotic representation

θ̂n = θX +
1

n

n∑
i=1

IF (Xi) + oP
(

1√
n

)
, (12)

where IF (x) is a given function. In this case, θ̂n can be well approximated by a ‘sample

mean’ of variables IF (Xi), i = 1, . . . , n, and thus a variant of Theorem 3 can still be stated.

The ‘linearization’ of the statistic θ̂n from (12) can be formalised through the concept of

influence functions, and Fréchet, or Hadamard-differentiability of the functional F 7→ θ(F )

at FX . That is, however, out of the scope of this course; for details and references one can

see e.g. Nagy (2023b, Section 2.2).

In summary, we have found that nonparametric bootstrap works when

• the random variables X1,X2, . . . are independent and identically distributed,

• the moment assumption E ∥X1∥2 < ∞ is true,

• Rn =
√
n
(
g(Xn)− g(µ)

)
for a sufficiently smooth function g and µ = E X1, or more

generally, an expansion such as (12) holds true for Rn =
√
n
(
θ̂n − θX

)
, and

• the limiting distribution R of Rn exists, and is non-degenerate.

1.2.4 Comparison of nonparametric bootstrap and normal approximation

Theorems 1 and 3 imply the asymptotic validity of bootstrap provided that (B) holds. A

most interesting question is whether the bootstrap estimate Ĥn can be a better estimate of

Hn than the asymptotic distribution H (with estimated unknown parameters).

To answer the above question, consider p = 1 and the case of the sample mean. The

following result can be found in Shao and Tu (1996, Theorem 3.11).
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Theorem 4. Let X1, X2, . . . be independent identically distributed random variables with a

continuous distribution such that E X4
1 < ∞. Denote γ1 = E

(X1−µ
σ

)3
, where µ = E X1, σ

2 =

var(X1), and let φ and Φ be the density and the distribution function of the standard normal

distribution, respectively. Then

Hn(x) = P
(√

n (Xn−µ)
Sn

≤ x
)
= Φ(x) + γ1

6
√
n
(2x2 + 1)φ(x) +O

(
1
n

)
, (13)

where Xn = 1
n

∑n
i=1Xi, and S2

n = 1
n−1

∑n
i=1(Xi −Xn)

2. Further, for Ĥn(x) we have

Ĥn(x) = P
(√

n (X
∗
n−Xn)
S∗
n

≤ x
∣∣X) = Φ(x) +

γ1,n
6
√
n
(2x2 + 1)φ(x) +OP

(
1
n

)
, (14)

where X
∗
n = 1

n

∑n
i=1X

∗
i , S

2∗
n = 1

n−1

∑n
i=1(X

∗
i −X

∗
n)

2 and γ1,n = 1
n

∑n
i=1

(
Xi−Xn

Sn

)3
.

First, observe that Theorem 4 is stated for the studentized sample mean statistic

Rn =

√
n (Xn − E Xi)

Sn
.

Suppose now that E X6
1 < ∞. Then the standard central limit theorem and the ∆-method

give γ1 − γ1,n = OP

(
1√
n

)
, and comparing (13) and (14) one gets

Ĥn(x)−Hn(x) = OP

(
1
n

)
.

On the other hand if γ1 ̸= 0, then by the normal approximation one gets from the Berry-

Esséen inequality only

Φ(x)−Hn(x) = O
(

1√
n

)
.

Thus if γ1 ̸= 0, one can expect that for Rn based on the studentized sample mean, in

comparison with Φ, the bootstrap estimator Ĥn is closer to the true distribution Hn of Rn.

Without studentization, it can be shown that this advantage of using bootstrap disappears.

We observed this in Example 7.

® Example 8. We are in the same situation as in Example 7. But instead of approximat-

ing/estimating the distribution of
√
n (Xn − E Xi), we approximate the distribution of its

studentized version, i.e.

Rn =

√
n (Xn − E Xi)

Sn
.

Note that the normal approximation of the distribution of Rn is simply given by Ĥ
(norm)
n (x) =

Φ(x). The comparison of the true distribution function with its either normal or bootstrap

approximation is found in Figure 2. Similarly as in Example 7, the results are for the ran-

dom sample from the standard exponential distribution. In agreement with Theorem 4, the

bootstrap approximation is better than the normal approximation.
The end of

lecture 3

(16.10.2024)
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Figure 2: Comparison of the normal and bootstrap approximation of the distribution of the

random variable Rn =
√
n (Xn−E Xi)

Sn
.

1.2.5 Bootstrap-based confidence intervals

In what follows consider Rn =
√
n
(
θ̂n − θX

)
and suppose that Rn

d−−−→
n→∞

R, where R is

a random vector with a continuous distribution function. We are interested in finding the

confidence interval for θX,j (the j-th component of θX).

Suppose for a moment that the distribution of Rn,j (the j-th component of Rn) is known

and continuous. Then one has

P
[
rn(α/2) <

√
n
(
θ̂n,j − θX,j

)
< rn(1− α/2)

]
= 1− α,

where rn(α) is the α-quantile of Rn,j . Thus one would get a ‘theoretical’ confidence interval(
θ̂n,j − rn(1−α/2)√

n
, θ̂n,j − rn(α/2)√

n

)
. (15)

The problem is that the distribution of Rn,j is not known and thus also the quantiles rn(α/2)

and rn(1− α/2) are not known.

Basic bootstrap confidence interval

ConsiderR∗
n =

√
n
(
θ̂
∗
n−θ̂n

)
and suppose that the assumptions of Theorem 1 are satisfied, i.e.,

bootstrap works. Let r∗n(α) be the quantile of the bootstrap distribution of R∗
n,j =

√
n
(
θ̂∗n,j −

θ̂n,j
)
. Then Theorem 1 and Lemma A3 from the Appendix imply that r∗n(α)

P−−−→
n→∞

rj(α)

(or even r∗n(α)
a.s.−−−→

n→∞
rj(α)), where rj(α) is the α-quantile of Rj (the j-th coordinate of the
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limiting distribution R). Thus one gets

lim
n→∞

P
[
r∗n(α/2) <

√
n
(
θ̂n,j − θX,j

)
< r∗n(1− α/2)

]
= 1− α. (16)

Now with the help of (16) one can construct an asymptotic confidence interval for θX,j as(
θ̂n,j −

r∗n,B(1−α/2)
√
n

, θ̂n,j −
r∗n,B(α/2)

√
n

)
, (17)

where r∗n,B(α) =
(
Ĥ∗

n,B

)−1
(α) is a Monte-Carlo approximation (estimate) of r∗n(α). The

confidence interval in (17) is usually called basic bootstrap confidence interval.

The formula for the confidence interval (17) mimics the formula for the theoretical con-

fidence interval (15). The bootstrap idea is to estimate the unknown quantiles rn(α) with

r∗n(α) that can be calculated only from the observed data X1, . . . ,Xn (‘substitution princi-

ple’). Further, as the quantiles r∗n(α) are difficult to calculate analytically, one approximates

them with r∗n,B(α) (‘Monte Carlo principle’).

Typically

Rn =
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np(0p,V). (18)

Then, the advantage of the confidence interval given by (16) is that it does not require to

explicitly estimate the asymptotic variance matrix V. Thus this confidence interval

can be used in situations where deriving or estimating the asymptotic variance of Rn is rather

difficult.

On the other hand, the theoretical results (such as Theorem 4) stating that the bootstrap

confidence interval is more accurate require that the asymptotic distribution of Rn,j is pivotal

(i.e., it does not depend on unknown parameters). If this is not the case, then the basic

bootstrap confidence interval (17) can be (for finite sample sizes) less accurate than the

standard asymptotic confidence interval(
θ̂n,j −

u1−α/2
√
vn,j,j√

n
, θ̂n,j +

u1−α/2
√
vn,j,j√

n

)
, (19)

where vn,j,j is a consistent estimate of the j-th diagonal element of the matrix V. Consider

the following example.

® Example 9. We have a random sample X1, . . . , Xn from a normal distribution N(λ, λ2),

with λ > 0 an unknown parameter. We construct a basic bootstrap confidence interval (17)

for λ based on Rn =
√
n(Xn−λX); we know that the assumptions of both Theorems 1 and 2

are valid with the limiting random variable R distributed as N(0, λ2
X), and the bootstrap is

thus consistent. We approximate the α-quantiles of R by r∗n,B(α), and set the confidence

interval (17) to be (
Xn − r∗n,B(1−α/2)

√
n

, Xn − r∗n,B(α/2)
√
n

)
. (20)
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Suppose now first that the true value of λ is λX = 1. Then R has distribution N(0, 1), and

the estimated quantiles r∗n,B(α) approximate uα, the quantiles of N(0, 1). Our confidence

interval (20) is thus, for n and B large, approximately(
Xn − u1−α/2√

n
, Xn − uα/2√

n

)
.

A confidence interval should, however, cover the true value of the parameter λX with high

probability for any λX > 0. Taking a different λX > 0 andX1, . . . , Xn a random sample from

N(λX , λ2
X), we get for the confidence interval from (20) (and the quantiles r∗n,B(α) computed

with λX = 1 fixed)

P
(
λX ∈

(
Xn − r∗n,B(1−α/2)

√
n

, Xn − r∗n,B(α/2)
√
n

)
| r∗n,B(α/2), r∗n,B(1− α/2)

)
= P

(
r∗n,B(α/2)

λX
<

√
n

(
Xn − λX

λX

)
<

r∗n,B(1− α/2)

λX
| r∗n,B(α/2), r∗n,B(1− α/2)

)
≈ Φ

(
u1−α/2

λX

)
− Φ

(
uα/2

λX

)
.

For λX = 10 and α = 0.05, the coverage on right-hand side is approximately only 0.155, very

far from the desired 1 − α = 0.95. This shows that in the confidence interval (17), also the

quantiles r∗n (or r∗n,B) must be considered random, as the distribution of the limiting quantity

R can still depend on the unknown parameter θ.

These difficulties, of course, disappear if we choose a quantity Rn,j for the construction of

confidence interval (17) pivotal, i.e., not depending on the parameter θ.

We see that if possible, it is beneficial to use asymptotically pivotal Rn,j , or quantities Rn,j

that at least ‘less dependent’ on the unknown parameters (see Remark 2 and Section 1.2.5

below).

Example 10. Suppose we observe Z1 =
(
X1

Y1

)
, . . . ,Zn =

(
Xn

Yn

)
a random sample, where, Xi

is a p-dimensional covariate and Yi is one-dimensional response. In regression models (linear

models, generalised linear models, quantile regression models,. . . ) one aims at estimating βX

which specifies how the covariate influences the response. Usually based on theoretical results

one can hope that
√
n
(
β̂n − βX

) d−−−→
n→∞

Np(0p,V)

and to find a confidence interval for βX,j (the j-th component of βX) one needs to estimate V

(or at least its j-th diagonal element). But this might be rather difficult, see for instance the

general asymptotic variance matrix of the least absolute deviation estimator (Omelka, 2023,

Section 4.3.2). The bootstrap can thus present an interesting alternative. In this situation,

the nonparametric bootstrap corresponds to generating Z∗
1 =

(X∗
1

Y ∗
1

)
, . . . ,Z∗

n =
(X∗

n
Y ∗
n

)
as a simple

random sample with replacement from Z1, . . . ,Zn.
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In some textbooks, a formula for a confidence interval different from (17) can be found. To

explain this formula note that r∗n,B(α) is the sample α-quantile of R∗
n,j,1, . . . , R

∗
n,j,B, where

R∗
n,j,b =

√
n
(
θ̂∗n,j,b − θ̂n,j

)
. Further let q∗n,B(α) be a sample α-quantile calculated from the

values θ̂∗n,j,1, . . . , θ̂
∗
n,j,B. Then

r∗n,B(α) =
√
n
(
q∗n,B(α)− θ̂n,j

)
(21)

and because

θ̂n,j −
r∗n,B(α)√

n
= θ̂n,j −

(
q∗n,B(α)− θ̂n,j

)
= 2 θ̂n,j − q∗n,B(α),

the basic bootstrap confidence interval (17) can also be rewritten in an equivalent form as(
2 θ̂n,j − q∗n,B(1− α/2), 2 θ̂n,j − q∗n,B(α/2)

)
. (22)

Thus in practice it is sufficient to calculate θ̂∗n,j,b instead of R∗
n,j,b and then use formula (22).

On the other hand, the approach based on calculating R∗
n,j,b is more appropriate from the

theoretical point of view. The reason is that to justify the bootstrap, one needs (among others)

that the limiting distribution Rn,j has a continuous distribution function (see Theorem 1).

Remark 1. Sometimes, in literature, one can find a bootstrap confidence interval of the form(
q∗n,B(α/2), q

∗
n,B(1− α/2)

)
, (23)

which is usually called the percentile confidence interval. With the help of (21) this confidence

interval can be rewritten as (
θ̂n,j +

r∗n,B(α/2)
√
n

, θ̂n,j +
r∗n,B(1−α/2)

√
n

)
.

Thus, when using the percentile confidence interval, one hopes that (taking B = ∞)

lim
n→∞

P
[(

θ̂n,j +
r∗n(α/2)√

n
, θ̂n,j +

r∗n(1−α/2)√
n

)
∋ θX,j

]
= lim

n→∞
P
[
− r∗n(1− α/2) <

√
n
(
θ̂n,j − θX,j

)
< −r∗n(α/2)

]
= 1− α.

The use of the percentile interval can thus be justified if the limiting distribution of Rn,j is

symmetric, because then

r∗n(1− α/2)
P−−−→

n→∞
rj(1− α/2) = −rj(α/2)

and analogously r∗n(α/2)
P−−−→

n→∞
−rj(1− α/2). As the limiting distribution of Rn is typically

a zero mean Gaussian distribution, the assumption of the symmetry of Rj is often satisfied.

The practical advantage of the percentile confidence is that it is always contained in the

parametric space.
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Remark 2. Suppose for simplicity that θX ∈ R. Then using Rn =
√
n
(
θ̂n − θX

)
is natural

for location estimators. But sometimes it may be of interest to consider for instance Rn =
√
n
(
θ̂n
θX

−1
)
or Rn =

√
n
(
g(θ̂n)−g(θX)

)
, where g is a function that stabilises the asymptotic

variance (see Omelka, 2023, Chapter 1.4). This might be useful especially if one can guarantee

that the limiting distribution of Rn is pivotal.

Studentized bootstrap confidence interval

We saw that it is recommended to ‘bootstrap’ a variable whose limit distribution is pivotal

(i.e. does not depend on the unknown parameters).

Suppose that the asymptotic normality (18) holds and consider R̃n,j =
√
n (θ̂n,j−θX,j)√

vn,j,j
, where

vn,j,j is a consistent estimate of the j-th diagonal element of V. Let r̃∗n(α) be the α-th quantile

of the distribution R̃∗
n,j =

√
n (θ̂∗n,j−θ̂n,j)√

v∗n,j,j

, where v∗n,j,j is an estimate of the j-th diagonal element

of V but calculated from the bootstrap sample. Thus if ‘bootstrap works’ (i.e. Theorem 1

holds), then

lim
n→∞

P
[
r̃∗n(α/2) <

√
n (θ̂n,j−θX,j)√

vn,j,j
< r̃∗n(1− α/2)

]
= 1− α,

which yields an asymptotic confidence interval(
θ̂n,j −

r̃∗n,B(1−α/2)
√
vn,j,j√

n
, θ̂n,j −

r̃∗n,B(α/2)
√
vn,j,j√

n

)
, (24)

where r̃∗n,B(α) is a Monte-Carlo approximation of r̃∗n(α). The confidence interval in (24) is

usually called the studentized bootstrap confidence interval.

Note that in comparison with (19) we replace the quantiles −u1−α/2 and u1−α/2 with

−r̃∗n,B(1 − α/2) and −r̃∗n,B(α/2), respectively. There are theoretical results that state that

the studentized confidence interval (24) is (for finite sample sizes) more accurate than the

standard asymptotic confidence interval (19) based on asymptotic normality, as well as the

basic bootstrap confidence interval (17).

® Example 11. Consider X1, . . . , Xn a random sample from exponential distribution Exp(λ)

with an unknown parameter λ > 0. We are interested in the expectation θ = E X1 = 1/λ.

Consider different types of confidence intervals for θ:

• The exact interval using the assumption of exponential distribution;

• The standard asymptotic confidence interval using the central limit theorem;

• The asymptotic confidence interval based on the variance-stabilising transformation;

• The standard bootstrap confidence interval and its studentized variant; and

• The bootstrap confidence interval based on the variance-stabilising transformation.
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Compare the performance of all these confidence intervals both under the validity of the

exponentiality assumption, and under model misspecification (i.e., when the true model is

not exponential, but the confidence intervals are based on the assumption of exponential

distribution).

Literature: Davison and Hinkley (1997, Chapters 5.1–5.3), Efron and Tibshirani (1993,

Chapters 12 and 13).

1.2.6 Variance estimation and bootstrap

Often one knows that
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np

(
0p,V

)
,

but the matrix V typically depends on unknown parameters (or it might be ‘too difficult’ to

derive the analytic form of V). In such a situation, a straightforward bootstrap estimator of

the asymptotic variance matrix Vn = 1
n V is given by

V̂∗
n,B =

1

B − 1

B∑
b=1

(
θ̂
∗
n,b − θ

∗
n,B

)(
θ̂
∗
n,b − θ

∗
n,B

)T
, where θ

∗
n,B =

1

B

B∑
b=1

θ̂
∗
n,b.

Note that applying the standard law of large numbers conditionally on X we get

V̂∗
n,B

a.s.−−−−→
B→∞

var
(
θ̂
∗
n |X

)
.

Thus, for a valid inference we need a condition analogous to (B) saying that

n var
(
θ̂
∗
n |X

) P−−−→
n→∞

V. (25)

Condition (B) and Theorem 1 in this situation give that
√
n (θ̂

∗
n − θ̂n)

d−−−→
n→∞

N(0,V)

almost surely (or in probability), conditionally on X1,X2, . . .. This, however, generally does

not imply that (25) holds. The reason is that var
(
θ̂
∗
n |X

)
estimates var

(
θ̂n

)
rather than 1

nV;

we know that convergence in distribution does not generally imply convergence of moments.

Example 12. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = 3
x4 I[x ≥ 1]. Then by the central limit theorem

√
n
(
Xn − 3

2

) d−−−→
n→∞

N
(
0, 34
)
.

Further consider the transformation g(x) = ex
4
. Then with the help of ∆-theorem (Omelka,

2023, Theorem 3) one gets

√
n
[
g(Xn)− g

(
3
2

)] d−−−→
n→∞

N
(
0,
[
g′
(
3
2

)]2 · 3
4

)
.

But it is straightforward to calculate that E
(
g(Xn)

)
= ∞ and thus var

(
g(Xn)

)
does not

exist. Further it can be proved that var
(
g(X

∗
n)|X

) a.s.−−−→
n→∞

∞.
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Literature: Efron and Tibshirani (1993, Chapters 6 and 7), (Shao and Tu, 1996, Sec-

tion 3.2.2) .

1.2.7 Bias reduction and bootstrap

In practice, one can get unbiased estimators for only very simple models. Let θ̂n be an

estimator of θX and put bn = E θ̂n − θX for the bias of θ̂n. The bias bn can be estimated

by b∗
n = E [θ̂

∗
n|X]− θ̂n. The bias-corrected estimator of θ is then defined as θ̂

(bc)

n := θ̂n − b∗
n.

Example 13. Let X1, . . . , Xn be a random sample, E X4
1 < ∞ and g : R → R be such that

g′′′ is bounded and continuous in a neighbourhood U of µ = E X1 . Then Xn is an unbiased

estimator of µ. But if g is not linear, then g(Xn) is generally not unbiased for g(µ). Put

σ2 = var(X1). Then, one can use Taylor’s expansion of g, and subsequently apply an expected

value, to approximate the bias of g(Xn)

bn = E g(Xn)− g(µ) = E
{
g′(µ)(Xn − µ) + g′′(µ)

2 (Xn − µ)2
}
+

Rn

3!

=
g′′(µ)σ2

2n
+O

(
1

n3/2

)
. (26)

To bound the remainder term Rn we have used that for n large enough, Xn ∈ U almost surely

and thus

|Rn| ≤ sup
x∈U

∣∣g′′′(x)∣∣ E ∣∣Xn − µ
∣∣3 ≤ sup

x∈U

∣∣g′′′(x)∣∣ [E (Xn − µ
)4]3/4

= sup
x∈U

∣∣g′′′(x)∣∣ [ 1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

E
(
Xi − µ

)(
Xj − µ

)(
Xk − µ

)(
Xℓ − µ

)]3/4
.

We used the Jensen inequality with the concave function t 7→ t3/4 in the second inequality

above. Now, it is enough to realise that the last expectation will be zero unless (i) either all

i, j, k, ℓ are the same, in which case we have

E
(
Xi − µ

)(
Xj − µ

)(
Xk − µ

)(
Xℓ − µ

)
= E

(
X1 − µ

)4
,

or (ii) if two of the indices i, j, k, ℓ are the same, and the other two are also equal, but not

the same as the first two. In case (ii) we have

E
(
Xi − µ

)(
Xj − µ

)(
Xk − µ

)(
Xℓ − µ

)
=
(
E
(
X1 − µ

)2)2
= σ4.

Case (i) appears in n summands; it is not hard to calculate that case (ii) appears in
(
n
2

)(
4
2

)
=

O(n2) out of the total number of n4 summands. We can thus bound

|Rn| ≤ sup
x∈U

∣∣g′′′(x)∣∣ [ 1

n3
E
(
X1 − µ

)4
+O

( 1

n2

)
σ4

]3/4
=
[
O
(

1
n2

)]3/4
= O

(
1

n3/2

)
,
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as we claimed in (26).

Analogously, one can expand also g(X
∗
n) around g(Xn), and apply the conditional expec-

tation E ∗[·] = E [·|X] to obtain

b∗n = E [g(X
∗
n) |X]− g(Xn) =

g′′(Xn)

2n
var[X∗

1 |X] +OP

(
1

n3/2

)
=

g′′(Xn) σ̂
2
n

2n
+OP

(
1

n3/2

)
. (27)

where σ̂2
n = 1

n

∑n
i=1(Xi − Xn)

2. To obtain the stochastic bound OP

(
1

n3/2

)
we considered,

similarly as above,

E ∗
[∣∣∣X∗

n −Xn

∣∣∣3] ≤ E ∗
[(

X
∗
n −Xn

)4]3/4
=

[
E ∗
[(

Y
∗
n

)4]]3/4
,

where we denote Y ∗
i = X∗

i −Xn and Y
∗
n = 1

n

∑n
i=1 Y

∗
i . Conditionally on X, we expand

(
Y

∗
n

)4
as we did before for

(
Xn − µ

)4
, and find that

E ∗
[(

Y
∗
n

)4]
=

1

n3
E ∗ [(Y ∗

1 )
4
]
+O

(
1

n2

)
σ̂4
n.

Finally, since σ̂4
n

a.s.−−−→
n→∞

σ4 and

E ∗ [(Y ∗
1 )

4
]
=

1

n

n∑
i=1

(
Xi −Xn

)4 a.s.−−−→
n→∞

E (X1 − E X1)
4,

we have that both σ̂4
n and E ∗ [(Y ∗

1 )
4
]
are OP (1), and the final expression in (27) is correct.

Now, comparing (26) and (27) one gets that

bn − b∗n =
1

2n

(
g′′(µ)σ2 − g′′(Xn)σ̂

2
n

)
+OP

(
1

n3/2

)
= OP

(
1

n3/2

)
, (28)

where we used the ∆-theorem (Omelka, 2023, Theorem 3) for the sample mean with the

function g′′, and the fact that
√
n(σ̂2

n − σ2) is asymptotically normal (Kulich and Omelka,

2022, Theorem 2.6), to get

g′′(Xn) = g′′(µ) +OP

(
1√
n

)
, and σ̂2

n = σ2 +OP

(
1√
n

)
.

Suppose that g′′(µ) ̸= 0. The the bias of the estimator θ̂
(bc)
n = g(Xn)− b∗n is given by

E θ̂(bc)n − g(µ) = E g(Xn)− g(µ)− E b∗n = bn − E b∗n.

We saw in (28) that bn − b∗n = OP (n
−3/2). This does not generally imply bn − E b∗n =

O(n−3/2) (convergence in distribution does not imply convergence of moments), but under

an appropriate uniform integrability assumption, it does. We conclude that typically, while

the bias of the original estimator θ̂n = g(Xn) is of order O(n−1) by (26), the bias-corrected

estimator θ̂
(bc)
n = g(Xn)− b∗n will typically have bias only of order O

(
n−3/2

)
.

Literature: Efron and Tibshirani (1993, Chapter 10).
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1.2.8 Jackknife

Jackknife can be considered to be an ancestor of bootstrap; its history goes back to 1949 and

the work of Quenouille. Jackknife was originally proposed as a method to reduce the bias of

an estimator. Later, it was found that it can often be also used to estimate the variance of

an estimator.

Suppose that X = (X1, . . . ,Xn) is a random sample, and denote Tn = T(X1, . . . ,Xn)

the estimator of the parameter of interest θX . The jackknife is based on ‘bootstrapping’ X

by erasing single observations, that is the i-th jackknife sample from X is given by

X
∗
i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) for i = 1, . . . , n,

of sample size n− 1. The i-th jackknifed estimator is given by

Tn−1,i = Tn−1(X
∗
i ) = T(X1, . . . ,Xi−1,Xi+1, . . .Xn).

The quantity

b̂n = (n− 1)
(
Tn −Tn

)
with Tn = 1

n

∑n
i=1Tn−1,i is then used as an estimator of the bias of Tn. The scaling factor

(n− 1) comes from a Taylor expansion similar to that performed in Example 13. It is meant

to guarantee that the bias-corrected jackknife estimator

T(bc)
n = Tn − b̂n. (29)

achieves bias of order O(n−3/2), while the original estimator Tn has bias of order O(n−1).

Literature: (Shao and Tu, 1996, Section 1.3). The end of

lecture 4

(23.10.2024)

1.2.9 Limits of the standard nonparametric bootstrap

Although the standard nonparametric bootstrap often presents an interesting alternative to

the inference based on the asymptotic normality, it can also fail. This happens, for example,

in situations when the asymptotic normality of Rn does not hold, for extremal statistics,

or non-smooth transformations of sample means. The standard nonparametric bootstrap

assumes that the observations are realisations of independent and identically distributed

random vectors. Thus, among others, the standard nonparametric bootstrap is inappropriate

in regression problems with fixed design or time series problems.

We give two examples when nonparametric bootstrap fails for independent and identically

distributed data.
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Example 14. We are in the situation with smooth transforms of the sample mean from

Theorem 3. Suppose for simplicity that g : Rp → R. Let Σ = var(X1). Note that if

∇gT(µ)Σ∇g(µ) = 0, then although (B) holds (by Theorem 3), the bootstrap might be not

useful as the limiting distribution of Rn is degenerate.

To illustrate this, consider p = 1. Let X1, . . . , Xn be a random sample from the distribution

with E X1 = µX . Further let g be twice continuously differentiable at µX , such that g′(µX) =

0 and g′′(µX) ̸= 0. Then by the delta theorem (Omelka, 2023, Theorem 3) one gets Rn =
√
n
(
g(Xn) − g(µX)

) P−−−→
n→∞

0. Thus although by Theorem 3 convergence (B) holds, one

cannot say whether bootstrap works as the limiting distribution R of Rn is not continuous

(the assumptions of Theorem 1 are not satisfied).

A finer analysis shows that (see Theorem B of Section 3.1 in Serfling, 1980)

R̃n = 2n
(
g(Xn)− g(µX)

) d−−−→
n→∞

[
g′′(µX)

]
σ2 χ2

1.

So the bootstrap would work if the convergence (B) holds also for R̃∗
n = 2n

(
g(X

∗
n)− g(Xn)

)
,

where Hn is now the distribution function of R̃n and Ĥn is the distribution function of R̃∗
n.

But for this situation, it can be shown that (B) does not hold (see Example 3.6 of Shao

and Tu, 1996). The standard nonparametric bootstrap thus, in this situation, fails to be

consistent.

® Example 15. LetX1, . . . , Xn be a random sample from the uniform distribution on (0, θX)

with distribution function FX1 . Then the maximum likelihood estimator of θX is given by

θ̂n = max1≤i≤nXi =: X(n). For x < 0

P
(
n(X(n) − θX) ≤ x

)
= P

(
X(n) ≤ θX + x

n

)
= Fn

X1

(
θX + x

n

)
=

[
θX+

x
n

θX

]n
=
[
1 + x

n θX

]n
−−−→
n→∞

e
x
θX .

Thus Rn = n (X(n) − θX)
d−−−→

n→∞
Y , where Y has a cumulative distribution function

P(Y ≤ x) =

{
e

x
θX , x < 0,

1, x ≥ 0.

On the other hand, for R∗
n = n

(
X∗

(n) −X(n)

)
we have

P (R∗
n = 0 |X) = P(X∗

(n) = X(n) |X) = 1− P
(
X(n) /∈ {X∗

1 , . . . , X
∗
n} |X

)
= 1−

(
n−1
n

)n −−−→
n→∞

1− e−1

and thus (B) cannot hold for R∗
n.

Literature: Prášková (2004), Shao and Tu (1996, Sections 3.2.2, 3.6, and A.10).
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1.3 Parametric bootstrap

LetX1, . . . ,Xn be independent random vectors, each with distribution F (·;θX) that is known

up to an unknown parameter θX . In parametric bootstrap, we generate the bootstrap vectors

X∗
1,b, . . . ,X

∗
n,b from the estimated distribution F (·; θ̂n), where θ̂n is a consistent estimator of

θX .

® Example 16. Suppose we are in the situation from Example 15, i.e. Xi are distributed

uniformly on (0, θX). Apply now the parametric bootstrap, by generating, conditionally on

X, a random sample X∗
1 , . . . , X

∗
n from the uniform distribution on (0, X(n)). Then, for Ĥn

the (conditional) distribution function of R∗
n = n (X∗

(n) −X(n)) with X∗
(n) = max1≤i≤nX

∗
i we

have for x < 0

Ĥn(x) = P
(
n (X∗

(n) −X(n)) ≤ x |X
)
= P

(
X∗

(n) ≤ X(n) + x/n |X
)

=
[
X(n)+x/n

X(n)

]n
=
[
1 + x

nX(n)

]n a.s.−−−→
n→∞

e
x
θX .

In the final limit, we used that X(n)
a.s.−−−→

n→∞
θX . Comparing the previous expression with

Example 15, we see that in this situation, the parametric bootstrap works,∗ since we found

that for H(x) = e
min

{
x
θX

,0
}
we have

P
(
Ĥn(x) −−−→

n→∞
H(x) for each x ∈ R

)
= 1.

Example 17. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from

exponential distributions with the density f(x;λ) = λe−λxI{x > 0}. Let λX be the true value

of the parameter for the first sample and λY for the second sample. Find a confidence interval

for λX
λY

.

Solution. The maximum likelihood estimators are given by λ̂X = 1
Xn1

, λ̂Y = 1
Y n2

. Now gen-

erate X∗
1 , . . . , X

∗
n1

and Y ∗
1 , . . . , Y

∗
n2

as two independent random samples from the exponential

distributions with the parameters λ̂X and λ̂Y , respectively. Put

Rn =
(
λ̂X

λ̂Y
− λX

λY

)
and R∗

n =

(
λ̂∗
X

λ̂∗
Y

− λ̂X

λ̂Y

)
,

where λ̂∗
X = 1

X
∗
n1

and λ̂∗
Y = 1

Y
∗
n2

. The confidence interval for the ratio λX
λY

can now be

calculated as (
λ̂X

λ̂Y
− r∗n,B

(
1− α

2

)
, λ̂X

λ̂Y
− r∗n,B

(
α
2

))
,

where r∗n,B(α) is the estimate of the α-quantile of R∗
n.

∗ Note also that it would be more natural to resample Rn = n
(

θ̂n
θX

− 1
)
, as its asymptotic distribution is

pivotal.
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Alternatively instead of bootstrap one can use the ∆-theorem (Omelka, 2023, Theorem 3),

which implies that (
λ̂X

λ̂Y
− λX

λY

)
as
≈ N

(
0,

λ2
X

λ2
Y

(
1
n1

+ 1
n2

))
.

Combining ∆-theorem and bootstrap one can also use

R̃n =

λ̂X

λ̂Y
−λX

λY

λ̂X

λ̂Y

√
1
n1

+
1
n2

, and R̃∗
n =

λ̂∗
X

λ̂∗
Y

− λ̂X

λ̂X

λ̂∗
X

λ̂∗
Y

√
1
n1

+
1
n2

.

1.3.1 Goodness-of-fit testing

Parametric bootstrap is often used in goodness-of-fit testing. Let X1, . . . ,Xn be a random

sample of k-variate random vectors with the distribution function F . We are interested in

testing whether F belongs to a given parametric family, i.e.

H0 : F ∈ F =
{
F (x;θ),θ ∈ Θ

}
, H1 : F /∈ F .

As a test statistic one can use for instance

KSn = sup
x∈Rk

∣∣F̂n(x)− F (x; θ̂n)
∣∣,

where F̂n is an empirical distribution function and θ̂n is an estimate of θ under the null

hypothesis. As the asymptotic distribution of the test statistic under the null hypothesis is

difficult to obtain, the significance of the test statistic is derived as follows.

(i) For b = 1, . . . , B generate an independent random sample X∗
b = (X∗

1,b, . . . ,X
∗
n,b) (of

size n), where each random vector X∗
i,b has the distribution function F (x; θ̂n).

(ii) Calculate

KS∗
n,b = sup

x∈Rk

∣∣F̂ ∗
n,b(x)− F (x; θ̂

∗
n,b)
∣∣,

where F̂ ∗
n,b is the empirical distribution function calculated from X

∗
b and θ̂

∗
n,b is the

estimate of θ (under H0) calculated from X
∗
b .

(iii) Estimate the p-value as

1 +
∑B

b=1 I
{
KS∗

n,b ≥ KSn

}
B + 1

,

where B is high, e.g. 999 or 9 999.

29



Remark 3. Sometimes, people ignore the fact that the value of the parameter θX is not fixed

in advance and assess the significance of the Kolmogorov-Smirnov test statistic KSn with the

help of the (asymptotic) distribution of

Zn =
√
n sup

x∈Rk

∣∣F̂n(x)− F (x;θX)
∣∣,

where FX(x) = F (x;θX) is the true distribution function. The problem is that under the

null hypothesis, the (asymptotic) distribution of

Z̃n =
√
n sup

x∈Rk

∣∣F̂n(x)− F (x; θ̂n)
∣∣

is quite different from the (asymptotic) distribution of Zn. Simulation studies show that

if the significance of
√
nKSn is assessed with the help of the distribution of Zn, the true

level of the test is much smaller than the prescribed value α. The test is thus very conser-

vative. The intuitive reason is that θ̂n is estimated from X1, . . . ,Xn. Thus, the empirical

distribution function F̂n(x) is closer to its parametric estimate F (x; θ̂n) than to the true

distribution F (x;θX).

To conclude, using the (asymptotic) distribution of Zn to assess the significance of the test

statistic
√
nKSn results in a huge loss of power.

Remark 4. Instead of the test statistic KSn in R, one of the following statistics is usually

recommended. The reason is that the tests based on these statistics usually have more power

against the alternatives that seem to be natural.

Cramér-von-Mises:

CMn =

∫
Rk

(
F̂n(x)− F (x; θ̂n)

)2
f(x; θ̂n) dx, or CMn =

1

n

n∑
i=1

(
F̂n(Xi)− F (Xi; θ̂n)

)2
.

Anderson-Darling:

ADn =

∫
Rk

(
F̂n(x)− F (x; θ̂n)

)2
F (x; θ̂n)

(
1− F (x; θ̂n)

) f(x; θ̂n) dx, or ADn =
1

n

n∑
i=1

(
F̂n(Xi)− F (Xi; θ̂n)

)2
F (Xi; θ̂n)

(
1− F (Xi; θ̂n)

) .
Example 18. Testing goodness-of-fit of multinomial distribution with estimated parameters.

1.4 Testing hypotheses and bootstrap

Provided the parameter of interest is one-dimensional and one can construct a confidence

interval for this parameter (see Section 1.2.5), then one can use the duality of confidence in-

tervals and testing hypotheses. But in many situations, the approach based on an appropriate

test statistic is more straightforward.

30



Suppose that we have a test statistic Tn = T (X1, . . . ,Xn) and that large values of Tn

speak against the null hypothesis. Let X∗
1 = (X∗

1,1, . . . ,X
∗
n,1), . . . , X

∗
B = (X∗

1,B, . . . ,X
∗
n,B)

be independently resampled datasets by a procedure that mimics generating data under the

null hypothesis. Let T ∗
n,b = Tn(X

∗
b) be the test statistic calculated from the b-th generated

sample X∗
b (b = 1, . . . , B). Then, the p-value of the test can be estimated as

p̂B =
1 +

∑B
b=1 I{T ∗

n,b ≥ Tn}
B + 1

. (30)

Example 19. LetX1, . . . , Xn be a random sample such that varX1 ∈ (0,∞) andH0 : E X1 =

µ0. One can use nonparametric bootstrap and generate X∗
1,b, . . . , X

∗
n,b as a simple random

sample with replacement from X1 −Xn + µ0, . . . , Xn −Xn + µ0. A possible test statistic is

then

Tn =

√
n (Xn − µ0)

Sn
,

and T ∗
n,b =

√
n (X

∗
n,b−µ0)

S∗
n,b

, where X
∗
n,b and S∗

n,b are the sample mean and sample standard

deviation calculated from the bootstrap sample. Observe that this procedure is equivalent

with sampling X∗
1,b, . . . , X

∗
n,b from X1 − Xn, . . . , Xn − Xn, and consequently using T ∗

n,b =
√
n (X

∗
n,b−0)

S∗
n,b

.

As an alternative, one could also use parametric bootstrap. What procedure do we obtain

in this situation?

Comparison of expectations in two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from distributions F

and G, respectively. We are interested in testing the hypothesis

H0 : E X1 = E Y1, vs. H1 : E X1 ̸= E Y1.

There are several options for how to test for the above hypothesis.

1. Standard t-test is based on the test statistics

Tn =
Xn1 − Y n2

S∗
√

1
n1

+ 1
n2

,

where

S∗2 =
1

n1 + n2 − 2

[
(n1 − 1)S2

X + (n2 − 1)S2
Y

]
, S2

X =
1

n1 − 1

n1∑
i=1

(Xi −Xn1)
2, etc.

The crucial assumption of this test is the homoscedasticity, i.e., varX1 = var Y1 ∈ (0,∞)

or that n1
n1+n2

→ 1
2 . Then, under the null hypothesis, Tn

d−−−→
n→∞

N(0, 1) (Kulich and

Omelka, 2022, Section 6.3).
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2. Welch t-test is based on the test statistics

T̃n =
Xn1 − Y n2√

S2
X
n1

+
S2
Y

n2

. (31)

The advantage of this test is that it does not require varX1 = var Y1 in order to have

that under the null hypothesis T̃n
d−−−→

n→∞
N(0, 1).

3. Parametric bootstrap. Suppose that F = N(µ1, σ
2
1) and G = N(µ2, σ

2
2). Thus the

null hypothesis can be written as H0 : µ1 = µ2. Let us generate X∗
1,b, . . . , X

∗
n1,b

and Y ∗
1,b, . . . , Y

∗
n2,b

as independent random samples from the distributions N(0, S2
X) and

N(0, S2
Y ) respectively. Based on these bootstrap samples calculate |T̃ ∗

n,1|, . . . , |T̃ ∗
n,B|.

Alternatively, one could also use a test statistic such as Tn,0 =
∣∣Xn1 − Y n2

∣∣, but it

is recommended to use a test statistic whose asymptotic distribution under the null

hypothesis does not depend on the unknown parameters.

4. Standard nonparametric bootstrap. Suppose that varX1, var Y1 ∈ (0,∞). Let us gener-

ate X∗
1,b, . . . , X

∗
n1,b

and Y ∗
1,b, . . . , Y

∗
n2,b

as independent random samples with replacement

from X1 −Xn1 , . . . , Xn1 −Xn1 and Y1 − Y n2 , . . . , Yn2 − Y n2 , respectively.

A further alternative to how to approach a two-sample problem is the use of an appropriate

permutation test.

Example 20. Suggest a test that would compare medians in two-sample problems.

1.5 Permutation tests

Permutation tests present an interesting alternative to nonparametric bootstrap. They are

particularly useful in two situations:

• in two (or more generally K) sample problems, and

• when testing for independence.

1.5.1 Permutation tests in two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples with distribution func-

tions F and G, respectively. Let the null hypothesis state that the distribution functions F

and G coincide, i.e. H0 : F (x) = G(x) for all x ∈ R.

Put n = n1 + n2 and denote Z = (Z1, . . . , Zn)
T the joint sample, that is Zi = Xi for

i = 1, . . . , n1 and Zi = Yi−n1 for i = n1 +1, . . . , n. Let Z(·) = (Z(1), . . . , Z(n))
T be the ordered

sample, that is Z(1) ≤ Z(2) ≤ . . . ≤ Z(n). Under the null hypothesis, the random variables
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Z1, . . . , Zn are independent and identically distributed. Thus, the conditional distribution of

Z given Z(·) is a discrete uniform distribution on the set of all permutations of Z(·) (see, e.g.,

Kulich and Omelka, 2022, Theorem 2.15). More formally, let M be the cardinality of the set

{(zi1 , . . . , zin) : where (i1, . . . , in) is a permutation of the set (1, . . . , n)}.

If there are no ties, i.e., if all values z1, . . . , zn are distinct, then M = n!.∗ Now the conditional

distribution of Z given Z(·) is given by

P
(
Z = (z1, . . . , zn) |Z(·) = (z(1), . . . , z(n))

)
=

1

M
I
{
(z1, . . . , zn) is a permutation of (z(1), . . . , z(n))

}
,

where z(1) ≤ z(2) ≤ . . . ≤ z(n).

In permutation tests, the ‘bootstrap’ samples Z∗
1, . . . ,Z

∗
B are generated by randomly per-

muting the joint sample Z. For each b ∈ {1, . . . , B} the test statistic T ∗
n,b is recalculated

from (
X∗

1,b, . . . , X
∗
n1,b

)
=
(
Z∗
1,b, . . . , Z

∗
n1,b

)
,

(
Y ∗
1,b, . . . , Y

∗
n2,b

)
=
(
Z∗
n1+1,b, . . . , Z

∗
n,b

)
and the p-value is estimated by (30).

Remark 5. For two-sample problems, there are only
(
n
n1

)
permutations which can give rise to

different values of the test statistic (provided that the test statistic is symmetric with respect

to the permutations within X1, . . . , Xn1 and Y1, . . . , Yn2 , respectively). So, if n1 and n2 are

small, then one can calculate the permutation p-value exactly, where exactly means with

respect to the exact permutation distribution of the test statistic. But usually, the number(
n
n1

)
is already too big, and one generates only B random permutations of Z to estimate the

p-value.

® Example 21. The permutation test approach can be used to assess the significance of

the two-sample Kolmogorov-Smirnov test statistic

Kn1,n2 = sup
x∈R

∣∣F̂n1(x)− Ĝn2(x)
∣∣,

where F̂n1 is the empirical distribution function of X1, . . . , Xn1 , and analogously for Ĝn2

and the sample Y1, . . . , Yn2 . For this test, the standard inference is based on the asymptotic

distribution of Kn1,n2 that is derived in case the distribution function F (under the null

hypothesis equal to G) is continuous. Using the permutation test, we do not have this

restriction. Permutation testing can thus be of interest especially in the presence of ties (e.g.

due to rounding), or when F is discontinuous, or when Xi are k-dimensional random vectors.

∗ If there are ties, let a1, . . . , aJ be the distinct values of (z1, . . . , zn). Put rj =
∑n

i=1 I{zi = aj}. Then

M = n!
r1!...rJ !

.
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All permutation tests above assumed that under the null hypothesis, the distribution

functions F and G coincide, or more generally, an exchangeability condition under H0.

Such permutation tests are called exact. In practice, it is also of interest to know whether the

permutation test is useful to test for instance the null hypothesis that E X1 = E Y1 without

assuming that F ≡ G. Usually, it can be proved that if the test statistic under the null

hypothesis has a limiting distribution that does not depend on the unknown parameters,

then the permutation test holds the prescribed level asymptotically. A permutation test is

called approximate in that situation. It was shown by simulations in many different settings

that the level of approximate permutation tests is usually closer to the prescribed value α than

the level of a test that directly uses the asymptotic distribution of the test statistic Tn. This

is quite similar to what we saw in Theorem 4 in the situation with bootstrapping studentized

averages.

® Example 22. It can be shown that the permutation version of the Welch t-test, see (31),

is asymptotically valid also in models where the null hypothesis holds (i.e., E Xi = E Yi), but

the distributions of Xi and Yi are different.
The end of

lecture 5

(30.11.2024)

1.5.2 Permutation tests of independence

Suppose we observe independent and identically distributed random vectors

Z1 = (X1, Y1)
T, . . . ,Zn = (Xn, Yn)

T

and we are interested in testing the null hypothesis that X1 is independent of Y1. Then, under

the null hypothesis, we have

P

((
X1

Y1

)
=

(
x1

y1

)
, . . . ,

(
Xn

Yn

)
=

(
xn

yn

) ∣∣∣∣
(
X1

Y(1)

)
=

(
x1

y(1)

)
, . . . ,

(
Xn

Y(n)

)
=

(
xn

y(n)

))

=
1

M
I
{
(y1, . . . , yn) is a permutation of (y(1), . . . , y(n))

}
,

where M is analogously as above the cardinality of

{(yi1 , . . . , yin) : where (i1, . . . , in) is a permutation of the set (1, . . . , n)}.

Thus one can generate Z∗
1, . . . ,Z

∗
n by permuting Y1, . . . , Yn, while keeping X1, . . . , Xn fixed.

This permutation scheme can be used for assessing the significance of the test statistic based

on a correlation coefficient, or of the χ2-test of independence.

® Example 23. Consider a contingency table with J rows and K columns. The row vectors

can be represented as realisations of independent multinomial random vectors X1, . . . ,XJ ,
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for Xj with distribution MultK(nj ,pj). Here, nj is the sum of the elements of Xj , and

the parameter pj ∈ [0, 1]K , whose entries sum to one, is unknown. We want to test the

independence of rows and columns in this contingency table, which is equivalent to testing

H0 : p1 = · · · = pJ vs H1 : H0 is not true.

This is commonly done using the χ2-test of independence (Kulich and Omelka, 2022, Sec-

tion 8.2) with test statistic χ2. To get a permutation version of this test, one decom-

poses each Xj into Xj =
∑nj

i=1 Y j,i with Y j,i independent and distributed as MultK(1,pj).

Each Y j,i represents a single observation in the table. Under H0, the random vectors

Y 1,1, . . . ,Y 1,n1 ,Y 2,1, . . . ,Y J,nJ
are independent and identically distributed. One thus per-

mutes these n =
∑J

j=1 nj vectors to get Y
∗
1,1, . . . ,Y

∗
1,n1

,Y ∗
2,1, . . . ,Y

∗
J,nJ

, setsX∗
j =

∑nj

i=1 Y
∗
j,i,

and uses X∗
1, . . . ,X

∗
J for a Monte Carlo approximation of the distribution of the test statistic

χ2 under H0. There are two advantages of the permutation test. For n small, it might be

possible to determine also the exact permutation distribution of χ2, by considering all possible

n! permutations of the observations. That leads to an exact testing procedure. Second, it

is known that the convergence of χ2 to its asymptotic distribution is slow if some elements

of pj are close to zero (Kulich and Omelka, 2022, Section 8.1). This is not a problem for a

permutation test, as it does not involve asymptotics.

Remark 6. Generally, any K-sample problem can be viewed as a testing of independence

problem. The reason is that one can view the data as random vectors
(
Z1

I1

)
, . . . ,

(
Zn

In

)
, where

Ii = k (for i = 1, . . . , n, k = 1, . . . ,K) if the observation Zi belongs to the k-th sample.

Thus, the independence of Z1 and I1 is equivalent to all the random samples having the same

distribution function.

Literature: Davison and Hinkley (1997, Chapters 4.1–4.4), Efron and Tibshirani (1993,

Chapters 15 and 16).

1.6 Model-based bootstrap

Suppose we observe
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
a random sample, where, Xi is a p-dimensional random

vector. We assume the structure of a linear model

Yi = XT
i β + εi, i = 1, . . . , n, (32)

where ε1, . . . , εn are independent and identically distributed zero-mean random variables inde-

pendent ofX1, . . . ,Xn, and β is an unknown parameter. We are interested in the distribution

of an estimator β̂n of β. In Example 10, we considered the standard nonparametric bootstrap

that generates
(X∗

1
Y ∗
1

)
, . . . ,

(X∗
n

Y ∗
n

)
as a simple random sample with replacement from the vectors
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(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
. Provided the estimator β̂n is asymptotically normal, one can usually assume

that this bootstrap method works.

Another possibility is to use the model-based bootstrap that runs as follows. Calculate

the standardised residuals as

ε̂i =
Yi −XT

i β̂n√
1− hii

, i = 1, . . . , n,

where hii is the i-th diagonal element of the projection matrix H = X(XT
X)−1

X
T. Then, one

can generate the response in the bootstrap sample as

Y ∗
i = XT

i β̂n + ε∗i , i = 1, . . . , n, (33)

where ε∗1, . . . , ε
∗
n is a simple random sample with replacement from the residuals ε̂1, . . . , ε̂n.

As the covariate values are fixed, the bootstrap sample is given by
(
X1

Y ∗
1

)
, . . . ,

(
Xn

Y ∗
n

)
.

The advantage of the nonparametric bootstrap is that it does not require model (32) to hold.

On the other hand, if model (32) holds, then the distribution of
√
n (β̂

∗
n−β̂n) from the model-

based bootstrap is closer to the conditional distribution of
√
n (β̂n−β) given the values of the

covariatesX1, . . . ,Xn than the corresponding distribution from the nonparametric bootstrap.

Further, the model-based bootstrap can also be used with a fixed design regression. On the

other hand, a model-based bootstrap is inappropriate, for instance, under heteroscedasticity.

Model-based bootstrap can be successfully used also in time series analysis.

® Example 24. Take the autoregressive process AR(1) given by Xt = aXt−1 + εt, t =

1, . . . , n for X0 = 0, a ∈ (−1, 1) an unknown parameter, and each εt with distribution

N(0, 1), independent of the remaining quantities. Since the observed data X1, . . . , Xn are not

independent, one cannot apply nonparametric bootstrap directly. In a model-based approach,

one estimates a by ân and considers the residuals ε̂t = Xt − ânXt−1, t = 1, . . . , n. These are

the counterparts of the independent and identically distributed errors εt; we thus resample

the residuals. We take ε∗1, . . . , ε
∗
n a simple random sample with replacement from ε̂1, . . . , ε̂n,

and with X∗
0 = 0 define

X∗
t = ânX

∗
t−1 + ε∗t for t = 1, . . . , n.

Bootstrap can be performed analogously for estimators in an AR(p) process.

® Example 25. We have a linear model as in (32), but we suppose that the error terms

ε1, . . . , εn might form a time series. For the validity of the classical least-squared inference,

we thus need to test the independence of the errors. For that, we adapt a model, and assume

that ε1, . . . , εn form an AR(1) process as in Example 24, with (conditional) autocorrelation
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ρ = corr (εi, εi−1 | X) = ρX ∈ (−1, 1). Here, X = (X1, . . . ,Xn) are the regressors. We want

to test

H0 : ρX = 0 vs. H1 : ρX ̸= 0.

We calculate the least-squares fit β̂n, the residuals ε̂i = Yi−XT
i β̂n, and use the test statistic

Tn =

∑n
i=2 (ε̂i − ε̂i−1)

2∑n
i=1 ε̂

2
i

.

This test statistic can be shown to estimate 2 (1−ρX), soH0 is rejected if Tn is far from 2. The

distribution of Tn underH0, however, depends on the model matrix X, and thus no universally

valid asymptotic inference is possible. This problem can be solved using bootstrap. Under

H0, the errors ε1, . . . , εn are independent and identically distributed. We can thus resample

ε∗1, . . . , ε
∗
n as a simple random sample with replacement from the residuals ε̂1, . . . , ε̂n. Then we

generate the bootstrap sample
(
X1

Y ∗
1

)
, . . . ,

(
Xn

Y ∗
n

)
as in (33), recalculate the fit β̂

∗
n, and evaluate

the test statistic Tn with the new residuals Y ∗
i − XT

i β̂
∗
n, i = 1, . . . , n. The model-based

bootstrap now allows us to approximate the conditional distribution of Tn given X under H0.

This test is called the Durbin-Watson test in linear models; in R, it is implemented in

function durbinWatsonTest in package car. For more details, see Komárek (2021, Section 9.5.1).

Literature: Davison and Hinkley (1997, Chapter 6.3).

2 Kernel density estimation∗

Suppose we have independent identically distributed random variables X1, . . . , Xn drawn

from a distribution with the density f(x) with respect to the Lebesgue measure. We

are interested in estimating this density nonparametrically.

As

f(x) = lim
h→0+

F (x+ h)− F (x− h)

2h
,

a naive estimator of f(x) would be

f̃n(x) =
F̂n(x+ hn)− F̂n(x− hn)

2hn
=

1

2hn

n∑
i=1

I{Xi ∈ (x− hn, x+ hn]}
n

, (34)

where F̂n(x) =
1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function and (the bandwidth)

hn is a sequence of positive constants going to zero.

It follows from the Lebesgue differentiation theorem† that for almost every point x ∈ R we

have

E f̃n(x) =
F (x+ hn)− F (x− hn)

2hn
−−−→
n→∞

f(x)

∗ Jádrové odhady hustoty † https://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem
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and

var(f̃n(x)
)
=

[
F (x+ hn)− F (x− hn)

][
1− F (x+ hn) + F (x− hn)

]
4h2n n

=
F (x+ hn)− F (x− hn)

2hn

1− F (x+ hn) + F (x− hn)

2nhn
−−−→
n→∞

0

provided that hn → 0 and at the same time (nhn) → ∞.

The estimator (34) can be rewritten as

f̃n(x) =
1

2nhn

n∑
i=1

I
{
− 1 < Xi−x

hn
≤ +1

}
=

1

nhn

n∑
i=1

w
(
Xi−x
hn

)
, (35)

where w(y) = 1
2 I{y ∈ (−1, 1]} can be viewed as the density of the uniform distribution on

(−1, 1]. Generalising (35) we define the kernel density estimator as

f̂n(x) =
1

nhn

n∑
i=1

K
(
Xi−x
hn

)
for x ∈ R, (36)

where the function K is called a kernel function and hn is usually called bandwidth∗ or

smoothing parameter. Usually, the functionK is taken as a symmetric density of a probability

distribution. The common choices of K are summarised in Table 1.

Epanechnikov kernel: K(x) = 3
4(1− x2) I{|x| ≤ 1}

Triangular kernel: K(x) = (1− |x|) I{|x| ≤ 1}
Uniform kernel: K(x) = 1

2 I{|x| ≤ 1}
Biweight kernel: K(x) = 15

16(1− x2)2 I{|x| ≤ 1}
Tricube kernel: K(x) = 70

81(1− |x|3)3 I{|x| ≤ 1}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 1: Commonly used kernel functions.

The end of

lecture 6

(6.11.2024)Remark 7. Note that:

(i) The estimator (36) can be interpreted as an average of n terms of the form 1
hn

K
(
Xi−x
hn

)
for i = 1, . . . , n. If K is a symmetric density with unit variance (without loss of gen-

erality), each of these terms is a density in x ∈ R; it corresponds to a random variable

centred at Xi with variance h2n > 0, see Figure 3.

(ii) When compared to a histogram, none of the estimators f̃n(x) and f̂n(x) require to

specify the starting point to calculate the intervals.

∗ V češtině se mluv́ı o š́ıřce vyhlazovaćı okna nebo jednodušeji o vyhlazovacńım prametru.
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(iii) The function f̂n(x) is continuous (has a continuous derivative) if K is continuous (has

a continuous derivative). That is why usually a continuous function K is preferred.

(iv) If K is a density of a probability distribution, then f̂n(x) ≥ 0 for all x ∈ R and∫
R f̂n(x) dx = 1.

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 3: A kernel density estimator (thick brown curve) based on n = 10 observations (orange

ticks on the horizontal axis). We used the Gaussian kernel K with bandwidth

h = 1/4. The resulting estimator is a sum of n functions (thin dashed lines), each

centred at one Xi, with a scale proportional to the bandwidth h.

Example 26. Consider a random sample of size 200 from the distribution with distribution

function

F (x) = 1
2 Φ
(
x
)
+ 1

2 Φ
(
x−4
2

)
for x ∈ R,

i.e. the distribution is given by the normal mixture 1
2 N(0, 1) +

1
2 N(4, 4). The corresponding

kernel estimates with different bandwidth choices hn and the Gaussian kernel K are found

in Figure 4. For reasons of comparison, also the associated histogram with the width of the

columns given by 2hn is included.

The true density f = F ′ is indicated by the black solid line. Note that a reasonable

bandwidth seems to be between 0.5 and 1. Bandwidths smaller than 0.5 result in a ‘too wiggly’

estimate (the variance term of the estimator dominates). On the other hand, bandwidths

greater than 1 result in an estimate that is too biased.

Unfortunately, in practice, we do not know what is the true density, which makes it much

more difficult to guess what a reasonable bandwidth should be. For the histogram, the

problem of the choice of the bandwidth hn corresponds to the choice of the width of the bars.
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Figure 4: Kernel estimates vs. histograms for different bandwidth choices.

For a general kernel density estimate, the bandwidth corresponds to the width (scaling) of

the individual summands, as seen in Figure 3.

2.1 Consistency and asymptotic normality

In what follows, we study the properties of the kernel density estimator (36). Observe that

because X1, . . . , Xn are independent and identically distributed, the expected value of f̂n(x)

takes the form

E f̂n(x) = E
1

hn
K

(
X1 − x

hn

)
=

1

hn

∫
R
f(z)K

(
z − x

hn

)
d z, (37)

for f the density of X1. The following theorem will be essential for understanding the be-

haviour of integrals such as that on the right-hand of (37).
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Theorem 5 (Bochner’s theorem). Let the function K satisfy

(B1)
∫

R |K(y)| dy < ∞, and

(B2) lim|y|→∞ |y K(y)| = 0.

Further let the function g satisfy
∫

R |g(y)|dy < ∞. Put

gn(x) =
1

hn

∫
R
g(z)K

(
z−x
hn

)
dz,

where hn ↘ 0 as n → ∞. Then, in each point x of continuity of g it holds that

lim
n→∞

gn(x) = g(x)

∫
R
K(y) dy. (38)

Proof. Let x be a point of continuity g. We need to show that

lim
n→∞

∣∣∣∣gn(x)− g(x)

∫
R
K(y) dy

∣∣∣∣ = 0.

Using the two substitutions y = z − x and z = y
hn

one can write

gn(x)− g(x)

∫
R
K(z) dz =

1

hn

∫
R
g(x+ y)K

( y
hn

)
dy − g(x)

hn

∫
R
K
( y
hn

)
dy

=
1

hn

∫
R
[g(x+ y)− g(x)]K

( y
hn

)
dy.

Before we proceed, note that for each fixed δ > 0 we have because of hn ↘ 0 and (B2) that

δ

hn
→ ∞ and

1

δ
sup

t:|t|≥ δ
hn

∣∣tK(t)
∣∣→ 0, as n → ∞. (39)

Thus, it is possible to find a sequence of positive constants {δn}∞n=1 that converges to zero so

slowly so that

δn → 0,
δn
hn

→ ∞ and
1

δn
sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣→ 0, as n → ∞. (40)

This can be seen as follows. Take any sequence of positive constants {am}∞m=1 such that

am ↘ 0. Thanks to (39), for each m ≥ 1 there exists an index nm ≥ 1 such that for all

n ≥ nm we have

am/hn > m, and
1

am
sup

t:|t|≥am
hn

∣∣tK(t)
∣∣ < 1

m
. (41)

It is surely possible to choose this so that the sequence of integers {nm}∞m=1 is strictly in-

creasing. Define

δn =

1 if n < n1,

am if n ∈ [nm, nm+1).
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We see that for any n ≥ n1 we have that δn = am implies n ≥ nm, meaning that by (41) we

have

δn/hn > m, and
1

δn
sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣ < 1

m
.

As n → ∞, also m → ∞ in the definition of δn, and we see that we get the sequence {δn}∞n=1

as required.

Now, taking δn satisfying (40) one can bound∣∣∣∣gn(x)− g(x)

∫
R
K(y) dy

∣∣∣∣ ≤ 1

hn

∫ δn

−δn

∣∣g(x+ y)− g(x)
∣∣ ∣∣K( y

hn

)∣∣dy︸ ︷︷ ︸
=:An

+
1

hn

∫
y:|y|≥δn

∣∣g(x+ y)− g(x)
∣∣ ∣∣K( y

hn

)∣∣ dy︸ ︷︷ ︸
=:Bn

. (42)

Dealing with An. As g is continuous in the point x

An ≤ sup
y:|y|≤δn

∣∣g(x+ y)− g(x)
∣∣ ∫ δn

−δn

1
hn

∣∣K( y
hn

)∣∣ dy ≤ o(1)

∫
R
|K(t)|dt︸ ︷︷ ︸

<∞; by (B1)

= o(1), (43)

as n → ∞.

Dealing with Bn. Further, one can bound Bn with

Bn ≤ 1

hn

∫
y:|y|≥δn

∣∣g(x+ y)
∣∣∣∣K( y

hn

)∣∣dy︸ ︷︷ ︸
=:B1,n

+
1

hn

∫
y:|y|≥δn

∣∣g(x)∣∣∣∣K( y
hn

)∣∣dy︸ ︷︷ ︸
=:B2,n

. (44)

Using the substitution t = y
hn

and (40) one gets

B2,n =
∣∣g(x)∣∣ ∫

y:|y|≥δn

1
hn

∣∣K( y
hn

)∣∣ dy =
∣∣g(x)∣∣ ∫

t:|t|≥ δn
hn

|K(t)| dt −−−→
n→∞

0. (45)

because δn/hn → ∞ and (B1).

Finally using (40) again, we have

B1,n =

∫
y:|y|≥δn

|y|
hn

∣∣K( y
hn

)∣∣︸ ︷︷ ︸
≤sup

t:|t|≥ δn
hn

|tK(t)|

∣∣g(x+ y)
∣∣

|y|
dy ≤ sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣ ∫

y:|y|≥δn

∣∣g(x+y)
∣∣

|y| dy

≤ 1

δn
sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣ ∫

R

∣∣g(x+ y)
∣∣dy︸ ︷︷ ︸

=
∫

R |g(y)|dy<∞

−−−→
n→∞

0. (46)

Now combining (42), (43), (44), (45) and (46) yields the statement of the theorem.
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Remark 8. Note that:

(i) If K is a density, then
∫

R |K(y)| dy =
∫

R K(y) dy = 1 and assumption (B1) holds.

(ii) Assumption (B2) holds true if K has a bounded support. Further, from the last part of

the proof of Theorem 5 (dealing with B1,n) it follows that for K with bounded support

one can even drop the assumption
∫

R |g(y)| dy < ∞ from Theorem 5. This observation

will be useful later when dealing with kernel regression estimators.

(iii) If K is a density but with unbounded support, then assumption (B2) is satisfied if

there exists a finite constant c > 0 such that K is non-decreasing on (−∞,−c) and

non-increasing on (c,∞).

(iv) A direct modification of the proof of Theorem 5 shows that if g is uniformly continuous,

then the convergence in (38) is uniform.

(v) The kernel K(x) =
∑∞

n=1
1
2n I
{
x ∈ (2n − 1, 2n + 1)

}
meets assumption (B1), but (B2)

is not satisfied.

Theorem 6 (Variance and consistency of f̂n(x)). Let the estimator f̂n(x) be given by (36) and

the function K satisfies (B1) and (B2) introduced in Theorem 5. Further, let
∫

R K(y) dy = 1,

supy∈R |K(y)| < ∞, hn ↘ 0 as n → ∞ and (nhn) → ∞ as n → ∞. Then at each point x ∈ R

of continuity of f :

(i) limn→∞ nhn var
(
f̂n(x)

)
= f(x)

∫
R K2(y) dy;

(ii) f̂n(x)
P−−−→

n→∞
f(x).

Proof. Let x be a point of continuity of f .

Showing (i). Because X1, . . . , Xn are assumed to be independent and identically distributed,

we can calculate

var
(
f̂n(x)

)
= var

[
1

nhn

n∑
i=1

K
(
Xi−x
hn

)]
=

1

nh2n
var
[
K
(
X1−x
hn

)]
=

1

nh2n

[
E K2

(
X1−x
hn

)
−
(
E K

(
X1−x
hn

))2]
. (47)

Now using Theorem 5

1

hn
E K

(
X1−x
hn

)
=

∫
R

1

hn
K
(y−x

hn

)
f(y) dy −−−→

n→∞
f(x)

∫
R
K(y) dy = f(x). (48)

Analogously

1

hn
E K2

(
X1−x
hn

)
=

1

hn

∫
R
K2
(y−x

hn

)
f(y) dy −−−→

n→∞
f(x)

∫
R
K2(y) dy, (49)
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where we have used again Theorem 5 with the kernel K replaced by K2. Assumptions (B1)

and (B2) are satisfied also for K2 as

ad (B1) :

∫
R
|K2(y)| dy ≤ sup

y∈R
|K(y)|︸ ︷︷ ︸
<∞

∫
R
|K(y)| dy︸ ︷︷ ︸

<∞; by (B1) for K

< ∞

and

ad (B2) : lim
|y|→∞

|yK2(y)| ≤ sup
y∈R

|K(y)|︸ ︷︷ ︸
<∞

lim
|y|→∞

|yK(y)|︸ ︷︷ ︸
=0; by (B2) for K

= 0.

Now combining (47), (48) and (49) yields

nhn var
(
f̂n(x)

)
=

1

hn
E K2

(
X1−x
hn

)
︸ ︷︷ ︸
→f(x)

∫
R K2(y) dy

−
[
1

hn
E K

(
X1−x
hn

)]2
︸ ︷︷ ︸

→[f(x)]2

hn −−−→
n→∞

f(x)

∫
R
K2(y) dy. (50)

Showing (ii). With the help of (48)

E f̂n(x) =
1

hn
E K

(
X1−x
hn

)
−−−→
n→∞

f(x). (51)

Now with the help of (i) and (51)

E
[
f̂n(x)− f(x)

]2
= var

[
f̂n(x)

]
+
[
E f̂n(x)− f(x)

]2
−−−→
n→∞

0,

which implies the consistency of f̂n(x) (Kulich and Omelka, 2022, Theorem 3.1).

Remark 9. Note that Theorem 6 implies only point-wise consistency. It is much more difficult

to show that supx∈R

∣∣f̂n(x)−f(x)
∣∣ P−−−→

n→∞
0, see, e.g., Wied and Weißbach (2012, Theorem 2).

Remark 10. It is not possible to prove the consistency of f̂n(x) using the standard law of

large numbers, as one would need a law of large numbers for a triangular array.

In the proof of the following theorem and subsequently in the text, we use the notation

R(K) =
∫

R K2(y) dy for a square-integrable function K : R → R. The letter R stands for

‘roughness’ of K. The end of

lecture 7

(13.11.2024)

Theorem 7 (Asymptotic normality of f̂n(x)). Let the assumptions of Theorem 6 be satisfied

and further let x ∈ R be such that f(x) > 0. Then

f̂n(x)− E f̂n(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1).
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Proof. From Theorem 6 we know that

var
(
f̂n(x)

)
f(x)R(K)

nhn

−−−→
n→∞

1,

where R(K) =
∫

R K2(y) dy. Thus thanks to CS (Omelka, 2023, Theorem 2) it is sufficient to

consider

f̂n(x)− E f̂n(x)√
f(x)R(K)

nhn

=

1√
nhn

∑n
i=1

[
K
(
Xi−x
hn

)
− E K

(
Xi−x
hn

)]√
f(x)R(K)

=
n∑

i=1

Xn,i,

where

Xn,i =
1√
nhn

K
(
Xi−x
hn

)
− E K

(
Xi−x
hn

)√
f(x)R(K)

, i = 1, . . . , n,

are independent and identically distributed random variables (with the distribution depending

on n). Thus, the statement follows from the Lindeberg-Feller central limit theorem (Theo-

rem A11), provided its assumptions are satisfied. To apply it, we have to verify its assump-

tions. We have

E Xn,1 = · · · = E Xn,n = 0.

As for the condition for the variance in Theorem A11, we have by part (i) of Theorem 6 that

nhn var
(
f̂n(x)

)
= nhn var

(
1

nhn

n∑
i=1

K

(
Xi − x

hn

))

=
1

hn
var

(
K

(
X1 − x

hn

))
−−−→
n→∞

f(x)R(K).

Thus,

n∑
i=1

var(Xn,i) =

n∑
i=1

var

(
1√
nhn

K
(
Xi−x
hn

)
− E K

(
Xi−x
hn

)√
f(x)R(K)

)

= n var

(
1√
nhn

K
(
X1−x
hn

)√
f(x)R(K)

)
=

1

hn f(x)R(K)
var

(
K

(
X1 − x

hn

))
−−−→
n→∞

1.

Finally for each ε > 0 for all sufficiently large n it holds that uniformly in i = 1, . . . , n

I
{
|Xn,i| > ε

}
= I

{
1√
nhn

∣∣∣∣∣K
(
Xi−x
hn

)
− E K

(
Xi−x
hn

)√
f(x)R(K)

∣∣∣∣∣ > ε

}
≤ I

{
1√
nhn

2 supy∈R |K(y)|√
f(x)R(K)

> ε

}
= 0,

which implies that the ‘Lindeberg-Feller condition’ from (A108)

lim
n→∞

n∑
i=1

E
[
X2

n,i I
{
|Xn,i| > ε

}]
= 0

is satisfied.
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Remark 11. Note that in Theorem 7, we have in the numerator f̂n(x)− E f̂n(x), but not the

usual expression f̂n(x)− f(x) that one might expect. In fact, Theorem 7 implies

f̂n(x)− f(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1), (52)

only if

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
bias(f̂n(x))√
var
(
f̂n(x)

) −−−→
n→∞

0,

which depends on the rate of hn. We already saw in (50) that var
(
f̂n(x)

)
= O

(
1

nhn

)
. As we

will see later in (55), typically we have bias(f̂n(x)) = O(h2n), which together gives

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
O(h2n)√
O
(

1
nhn

) = O
(√

nh5n

)

and thus limn→∞ nh5n = 0 is needed to show (52). But this would require that hn = o
(
n−1/5

)
which would exclude the optimal bandwidth choice (see the next section).

2.2 Bandwidth choice

Basically, we distinguish two situations:

(i) hn depends on x (on the point where we estimate the density f), then we speak about

the local bandwidth;

(ii) the same hn is used for all x, then we speak about the global bandwidth.

The standard methods of choosing the bandwidth are based on the mean squared error

MSE(f̂n(x)) = var
(
f̂n(x)

)
+
[
bias

(
f̂n(x)

)]2
.

Note that by Theorem 6

var
(
f̂n(x)

)
=

f(x)R(K)

nhn
+ o
(

1
nhn

)
, (53)

where R(K) =
∫

R K2(y) dy.

To approximate the bias, suppose that f is twice differentiable in x that is an interior point

of the support of f . Further, let the kernel K be such that
∫

R K(t) dt = 1,
∫

R tK(t) dt = 0

and
∫

R |t2K(t)|dt < ∞. This is true, e.g., if K is a bounded even function with a bounded
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support. Then, for all sufficiently large n

E f̂n(x) =
1
hn

E K
(
X1−x
hn

)
=

∫
R

1

hn
K
(y−x

hn

)
f(y) dy

=

∫
R
K(t)f(x+ thn) dt =

∫
R
K(t)

[
f(x) + thnf

′(x) + 1
2 t

2 h2n f
′′(x) + o(t2h2n)

]
dt

= f(x) + 1
2 h

2
n f

′′(x)µ2,K + o(h2n),

(54)

where µ2,K =
∫

R y2K(y) dy. Thus one gets

bias
(
f̂n(x)

)
= E f̂n(x)− f(x) = 1

2 h
2
n f

′′(x)µ2,K + o(h2n), (55)

which together with (53) implies

MSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f

′′(x)]2µ2
2,K + o

(
1

nhn

)
+ o
(
h4n
)
. (56)

Ignoring the remainder o(·) terms in (56), AMSE (asymptotic mean squared error) of f̂n(x)

is given by

AMSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f

′′(x)]2µ2
2,K . (57)

We want to minimise (57) to get an optimal bandwidth choice. Taking a derivative of AMSE

with respect to h we get

d

dh
AMSE = −f(x)R(K)

nh2
+ h3 [f ′′(x)]2µ2

2,K .

Setting this equation equal zero and solving for h one gets, provided that f ′′(x) ̸= 0, the

asymptotically optimal local bandwidth (i.e., bandwidth that minimises the AMSE)

h(opt)n (x) = n−1/5

[
f(x)R(K)

[f ′′(x)]2 µ2
2,K

]1/5
. (58)

To get a global bandwidth, it is useful to define (A)MISE - (asymptotic) mean inte-

grated squared error. Introduce

MISE
(
f̂n
)
=

∫
R
MSE

(
f̂n(x)

)
dx =

∫
R
E
[
f̂n(x)− f(x)

]2
dx, (59)

and its asymptotic approximation

AMISE
(
f̂n
)
=

∫
R
AMSE

(
f̂n(x)

)
dx =

∫
R

1
nhn

f(x)R(K) +
[f ′′(x)]2µ2

2,K

4 h4n dx

=
R(K)

nhn
+ h4n

R(f ′′)µ2
2,K

4
, (60)

where R(f ′′) =
∫

R

[
f ′′(x)

]2
dx.
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Minimising (60) one gets the asymptotically optimal global bandwidth (i.e., bandwidth that

minimises the AMISE)

h(opt)n = n−1/5

[
R(K)

R(f ′′)µ2
2,K

]1/5
. (61)

Remark 12. After substitution of the optimal bandwidth (61) into (60) one gets that the

optimal AMISE is given by

5
[
R(f ′′)

]1/5
4n4/5

{[
R(K)

]2
µ2,K

}2/5
.

It can be shown that if we consider kernels that are densities of probability distributions, then[
R(K)

]2
µ2,K is minimised for K being Epanechnikov kernel, as proved by Müller (1984).

Further, note that for K̃(x) =
√
µ2,K K

(√
µ2,K x

)
one has

µ
2,K̃

= 1 and
[
R(K̃)

]4/5
=
[
R(K)

]4/5
µ
2/5
2,K

and the optimal AMISE is the same for K̃ and K. That is why some authors prefer to use the

kernels in a standardised form so that µ2,K = 1. Some of the most common kernels having

this property are summarised in Table 2.

Epanechnikov kernel: K(x) = 3
4
√
5

(
1− x2

5

)
I
{
|x| ≤

√
5
}

Triangular kernel: K(x) = 1√
6
(1− |x|) I

{
|x| ≤

√
6
}

Uniform kernel: K(x) = 1
2
√
3

I
{
|x| ≤

√
3
}

Biweight kernel: K(x) = 15
16

√
7
(1− x2)2 I

{
|x| ≤

√
7
}

Tricube kernel: K(x) = 70
√
243

81
√
35

(1− |x|3)3 I
{
|x| ≤

√
35
243

}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 2: Some kernel functions standardised so that µ2,K = 1.

2.2.1 Normal reference rule

The problem of asymptotically optimal bandwidths given in (58) and (61) is that the quan-

tities f(x), f ′′(x) and R(f ′′) are unknown. Normal reference rule assumes that f(x) =
1
σ φ(x−µ

σ ), where φ(x) is the density of a standard normal distribution.

Then

f ′(x) = 1
σ2φ

′(x−µ
σ

)
, f ′′(x) = 1

σ3φ
′′(x−µ

σ

)
,

where

φ′(x) = 1√
2π
e−

x2

2 (−x) = −x√
2π
e−

x2

2 = −xφ(x),

φ′′(x) = −1√
2π
e−

x2

2 + x2
√
2π
e−

x2

2 = (x2 − 1)φ(x).
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Thus, with the help of (58) one gets

ĥn(x) = n− 1
5

R(K)

µ2
2,K

σ̂−1φ
(
x−µ̂
σ̂

)
σ̂−6

[ (x−µ̂
σ̂

)2
− 1
]2
φ
(x−µ̂

σ̂

)2


1
5

= n− 1
5 σ̂

R(K)

µ2
2,K

1[ (x−µ̂
σ̂

)2
− 1
]2

φ
(x−µ̂

σ̂

)


1
5

,

where µ̂ a σ̂2 are some estimates of the unknown parameters µ and σ2, for instance µ̂ =

Xn, σ̂
2 = 1

n−1

∑n
i=1(Xi −Xn)

2.

For the global bandwidth choice, we need to calculate

R(f ′′) =

∫
R

[
f ′′(x)

]2
dx =

∫
R

{
1

σ3

[(x−µ
σ

)2 − 1
]
φ
(x−µ

σ

)}2

dx

=
1

σ6

∫
R

[(x−µ
σ

)2 − 1
]2

φ2
(x−µ

σ

)
dx

=

∣∣∣∣∣ t = x−µ
σ

dt = dx
σ

∣∣∣∣∣ = 1

σ5

∫
R
(t2 − 1)2φ2(t) dt

=
1

σ5

∫
R
(t4 − 2t2 + 1)

1

2π
e−t2 dt =

1

σ52
√
π

∫
R
(t4 − 2t2 + 1)

1√
π
e−t2︸ ︷︷ ︸

∼N(0, 12)

dt

=
1

2σ5
√
π

E (Y 4 − 2Y 2 + 1) =
1

2σ5
√
π

[
3 ·
(
1
2

)2 − 2 · 1
2 + 1

]
=

3

8σ5
√
π
,

where Y ∼ N
(
0, 12
)
. Thus the asymptotically optimal global bandwidth would be

h(opt)n = σ n−1/5

[
8
√
π R(K)

3µ2
2,K

]1/5
.

Further, if one uses the Gaussian kernel K(y) = 1√
2π
e−

y2

2 , one gets

µ2,K =

∫
R
y2K(y) dy = 1,

R(K) =

∫
R
K2(y) dy = 1

2
√
π

∫
R

1√
π
e−y2 dy = 1

2
√
π
,

which results in

h(opt)n = σ n−1/5

[
4

3

]1/5
.
= 1.06σ n−1/5.

The standard normal reference rule is now given by

hn = 1.06n−1/5 min
{
Sn, ĨQRn

}
, (62)
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where

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄n)2, and ĨQRn =
F̂−1
n (0.75)− F̂−1

n (0.25)

1.34
.

Here, the constant 1.34 approximately equals Φ−1(3/4) − Φ−1(1/4), the inter-quartile range

of the standard normal distribution function Φ. The bandwidth (62) is in R implemented as

the function bw.nrd.

It was found out that the bandwidth selector (62) works well if the true distribution is ‘very

close’ to the normal distribution. But simultaneously, the bandwidth is usually too large for

distributions ‘moderately’ deviating from a normal distribution. That is why some authors

prefer to use

hn = 0.9n−1/5 min
{
Sn, ĨQRn

}
.

This choice is in R implemented as bw.nrd0. See Silverman (1986, page 48) for a more detailed

argumentation. The end of

lecture 8

(20.11.2024)

2.2.2 Least-squares cross-validation∗

Our intention is to find the bandwidth hn by minimising MISE
(
f̂n
)
from (59). That can be

rewritten as

MISE
(
f̂n
)

=

∫
R
E
(
f̂n(x)− f(x)

)2
dx

Fub.
= E

∫
R

[
f̂n(x)

]2
− 2f̂n(x)f(x) + [f(x)]2 dx

= E

∫
R

[
f̂n(x)

]2
dx− 2 E

∫
R
f̂n(x)f(x) dx+

∫
R
[f(x)]2 dx.

An unbiased estimator of E
∫

R

[
f̂n(x)

]2
dx is simply given by

∫
R

[
f̂n(x)

]2
dx. Further, the

term
∫

R [f(x)]2 dx does not depend on hn. Thus it remains to estimate E
∫

R f̂n(x)f(x) dx.

The last formula can be interpreted as E f̂n(X), for X with the same distribution as the

sample variables Xi, but independent from them.

In the sequel we show that an unbiased estimator of An = E f̂n(X) is

Ân =
1

n

n∑
i=1

f̂−i(Xi), (63)

where

f̂−i(x) =
1

(n− 1)hn

n∑
j=1,j ̸=i

K
(Xj−x

hn

)
is the estimate of f(x) that is based the sample without the i-th observation Xi.

∗ ‘cross-validation’ se stř́ıdavě překládá jako metoda kř́ıžového ověřováńı, metoda kř́ıžové validace nebo prostě

jako krosvalidace.
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Overall, using least-squares cross-validation, we choose the global bandwidth as

h(LSCV )
n = argmin

hn>0
L(hn),

where

L(hn) =
∫

R

[
f̂n(x)

]2
dx− 2

n

n∑
i=1

f̂−i(Xi), (64)

with f̂−i(x) as above.

As our first observation, note that the integral in (64) can be computed directly from the

random sample X1, . . . , Xn, as∫
R

[
f̂n(x)

]2
dx =

∫
R

[
1

nhn

n∑
i=1

K

(
Xi − x

hn

)]2
dx

=
1

(nhn)2

n∑
i=1

n∑
j=1

∫
R
K

(
Xi − x

hn

)
K

(
Xj − x

hn

)
dx

=
1

n2 hn

n∑
i=1

n∑
j=1

∫
R
K (u)K

(
u+

Xj −Xi

hn

)
du =

1

n2 hn

n∑
i=1

n∑
j=1

K̃

(
Xi −Xj

hn

)
.

Here, K̃ is the so-called convolution kernel of K. It is given by K̃(t) =
∫

R K(u)K(u− t) du,

which can for K symmetric be written also as

K̃(t) =

∫
R
K(u)K(t− u) du for t ∈ R.

If K is seen as a density of a random variable, K̃ is the density of the sum Z + Z ′ with Z

and Z ′ independent variables with density K. Thus, K̃ is usually easy to calculate explicitly.

It remains to show that Ân from (63) is an unbiased estimator of An =
∫

R f̂n(x)f(x) dx.

For that, we have

E Ân =
1

n

n∑
i=1

E f̂−i(Xi).

Now with the help of (48) and (51)

E f̂−i(Xi) = E

[
1

(n− 1)hn

n∑
j=1,j ̸=i

K
(Xj−Xi

hn

)]
=

1

hn
E K

(
X1−X2

hn

)
=

1

hn

∫
R

∫
R
K
(y−x

hn

)
f(x)f(y) dx dy =

∫
R

[∫
R

1

hn
K
(y−x

hn

)
f(y) dy

]
︸ ︷︷ ︸

=E f̂n(x)

f(x) dx (65)

=

∫
R
E f̂n(x)f(x) dx

Fub.
= E

∫
R
f̂n(x)f(x) dx.

Thus Ân is an unbiased estimator of E
∫

R f̂n(x)f(x) dx and L(hn) is an unbiased estimator

of E
∫

R[f̂n(x)]
2 dx− 2 E

∫
R f̂n(x)f(x) dx.

In R, this method can be found implemented as bw.ucv (unbiased cross-validation).
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Remark 13. Stone (1984) proved that

ISE
(
h
(LSCV )
n

)
minhn ISE(hn)

a.s.−−−→
n→∞

1,

where ISE(hn) =
∫

R(f̂n(x) − f(x))2 dx. But, simulations show that the variance of h
(LSCV )
n

(for not too large sample sizes) is rather large. Thus, this method cannot be used blindly.

2.2.3 Biased cross-validation

This method minimises the AMISE given by (60), that is

AMISE
(
f̂n

)
=

R(K)

nhn
+ h4n

R(f ′′)µ2
2,K

4
.

To estimate AMISE, it is sufficient to estimate R(f ′′). It was found that the straightforward

estimator R
(
f̂ ′′
n

)
is (positively) biased. To correct for the main term in the bias expansion it

is recommended to use R
(
f̂ ′′
n

)
− R(K′′)

nh5
n

instead. That is why in this method the bandwidth is

chosen as

h(BCV )
n = argmin

hn>0
B(hn),

where

B(hn) =
R(K)

nhn
+ 1

4 h
4
n µ

2
2,K

[
R
(
f̂ ′′
n

)
− R(K ′′)

nh5n

]
is the estimated counterpart of AMISE. In R, this method can be found implemented as

bw.bcv (biased cross-validation).

Remark 14. It can be proved that h
(BCV )
n

h
(opt)
n

P−−−→
n→∞

1, where h
(opt)
n is given by (61).

2.3 Higher order kernels

In the same way as when we evaluated the bias of f̂n(x) in (54), a formal application of

Taylor’s expansion (for sufficiently large n, sufficiently smooth f and x an interior point of

the support) one gets

E f̂n(x) =

∫
R
K(t)f(x+ thn) dt

= f(x)

∫
R
K(t) dt+ f ′(x)hn

∫
R
tK(t) dt

+
f ′′(x)

2
h2n

∫
R
t2K(t) dt+

f ′′′(x)

3!
h3n

∫
R
t3K(t) dt+ . . . .

The kernel of order p is such that
∫

R K(t) dt = 1 and∫
R
tj K(t) dt = 0, j = 1, . . . , p− 1, and

∫
R
tpK(t) dt ̸= 0.
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Considering a kernel K of order p > 2, we can thus conclude that for the bias of f̂n(x) we

have

bias
(
f̂n(x)

)
= O(hpn),

which converges to zero faster than O(h2n) that we obtained for bias in (54). Thus, it might

seem that higher-order kernels might be preferable to the standard choice of the second-order

kernel from before.

However, if we have a kernel of order p > 2, then (among others) necessarily
∫

R t2K(t) dt =

µ2,K = 0, which implies that K cannot be non-negative. As a consequence, with a kernel of

order p > 2 it might happen that the estimator f̂n(x) is negative.

One possible modification of a Gaussian kernel to get a kernel of order 4 is given by

K(y) = 1
2 (3− y2) 1√

2π
e−y2/2 for y ∈ R.

2.4 Mirror-reflection

The standard kernel density estimator (36) is usually not consistent at the points where the

density f is not continuous. These might be the boundary points of the support. Even if the

density is continuous at these points, the bias at these points is usually only of order O(hn)

and not O(h2n). There are several ways to improve the performance of f̂n(x) close to the

boundary points. The most straightforward is the mirror-reflection method.

Suppose for simplicity that we know that the support of the distribution with the density f

is [0,∞), and let K be an even function. The modified kernel density estimator that uses

mirror-reflection is given by

f̂ (MR)
n (x) =

{
1

nhn

∑n
i=1K

(
Xi−x
hn

)
+ 1

nhn

∑n
i=1K

(
Xi+x
hn

)
, x ≥ 0,

0, x < 0.
(66)

The first term on the right-hand side of (66) (for x ≥ 0) is the standard kernel density esti-

mator f̂n(x). The second term on the right-hand side of (66) is in fact also a standard kernel

density estimator f̂n(x), but based on the ‘mirror-reflected’ observations −X1, . . . ,−Xn. This

second term is introduced in order to compensate for the mass of the standard kernel density

estimator f̂n(x) that falls outside the support [0,∞). The mirror-reflected density estimator

f̂
(MR)
n (x) can be written also in a more compact form

f̂ (MR)
n (x) =

(
f̂n(x) + f̂n(−x)

)
I
{
x ≥ 0

}
.

2.5 Multivariate kernel density estimation

Suppose now that we observe multivariate (Rd-valued) random vectors X1, . . . ,Xn that are

independent and sampled from a distribution with density f : Rd → [0,∞). The role of a
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kernel is now played by a function K : Rd → R, which is typically chosen to be a d-dimensional

density, e.g., the d-variate standard Gaussian density.

For one-dimensional data, the bandwidth hn was interpreted as a factor multiplying the

random variable Z with density K. Using the random variable Z, we saw in Theorem 6

that the expected value E f̂n(x) could be interpreted as the density of the random variable

X + hn Z for X and Z independent, evaluated at x.

For multivariate data, we proceed analogously. Let K be a density, and let Z be a d-variate

random vector with this density. This time, however, we multiply Z by a matrix of constants

A ∈ Rd×d, obtaining a random variable AZ whose density is

KA(x) =
1

det(A)
K
(
A−1x

)
for x ∈ Rd.

For simplicity, suppose that K is a standard Gaussian density. The kernel KA then corre-

sponds to the d-variate Gaussian distribution with zero mean and variance H = AAT. The

role of the bandwidth is now played by H, which is assumed to be positive definite. A natural

extension of the univariate kernel density estimator to Rd is

f̂n(x) =
1

n

n∑
i=1

1

det(H)1/2
K
(
H−1/2 (Xi − x)

)
for x ∈ Rd.

The reason why we consider as a bandwidth any positive definite matrix H ∈ Rd×d is the

flexibility this choice borrows, see Figure 5. Considering different matrices H, we are not

restricting only to kernels associated with (multiples of) the standard normal distribution Z

(as we see on the left-hand panel of Figure 5), but also kernels of different shapes represented

by H, and associated with the elliptically symmetric distributions H1/2Z (right-hand panel

of Figure 5). On the other hand, the choice of the bandwidth parameters represented by the

matrix H ∈ Rd×d becomes more involved.

Using analysis similar to what we did for d = 1 in Section 2.2, it is possible to show that

for kernel density estimators in Rd, the mean integrated squared error is of order

MISE
(
f̂n
)
=

∫
Rd

MSE
(
f̂n(x)

)
dx = O(h4n) +O

(
1

nhdn

)
, (67)

where hn > 0 measures the “size” of the bandwidth matrix H = hnH0, for some H0 ∈ Rd×d

fixed. In particular, compared to the density estimation with d = 1 and formula (59), the

exponent d in the variance term in (67) says that with growing dimension d, kernel density

estimation becomes much more difficult.

Literature: Wand and Jones (1995, Sections 2.5, 3.2, 3.3), Scott (2015).
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Figure 5: Several contours of two bivariate kernel density estimates withH the identity matrix

(left), and H chosen to be

(
1 0.9

0.9 1

)
(right). As can be seen, the form of the

bandwidth matrix changes the shape of the resulting estimator profoundly.

3 Kernel regression∗

Suppose that one observes independent and identically distributed bivariate random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
. Our primary interest in this section is to estimate the conditional mean

function of Y1 given X1 = x, i.e.

m(x) = E [Y1 |X1 = x] for x ∈ R,

without assuming any parametric form of m(x).

In what follows, it is useful to denote the conditional variance function as

σ2(x) = var [Y1 |X1 = x] for x ∈ R.

3.1 Local polynomial regression

Suppose that the function m is a p-times differentiable function at the point x, then for Xi

‘close’ to x one can approximate m using the Taylor polynomial as

m(Xi)
.
= m(x) +m′(x) (Xi − x) + . . .+ m(p)(x)

p! (Xi − x)p. (68)

∗ Jádrové regresńı odhady
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Thus ‘locally’, one can view and estimate the function m(x) as a polynomial. This motivates

the definition of the local polynomial estimator as

β̂(x) =
(
β̂0(x), . . . , β̂p(x)

)T
= argmin

b0,...,bp∈R

n∑
i=1

[
Yi − b0 − b1(Xi − x)− . . .− bp(Xi − x)p

]2
K
(
Xi−x
hn

)
, (69)

where K is a given kernel function and hn is a smoothing parameter (bandwidth) going to

zero as n → ∞. The end of

lecture 9

(27.11.2024)Comparing (68) and (69) one gets that β̂j(x) estimates m(j)(x)
j! . Often, we are interested

only in m(x) which is estimated by β̂0(x).

Put

Y =


Y1

Y2

. . .

Yn

 , Xp(x) =


1 (X1 − x) . . . (X1 − x)p

1 (X2 − x) . . . (X2 − x)p

. . . . . . . . . . . .

1 (Xn − x) . . . (Xn − x)p


and write W(x) for the diagonal matrix with the i-th element of the diagonal given by

K
(
Xi−x
hn

)
.

The optimisation problem in (69) can be written as a weighted least squares problem

β̂(x) = argmin
b∈Rp+1

{(
Y −Xp(x)b

)T
W(x)

(
Y −Xp(x)b

)}
, (70)

where b = (b0, b1, . . . , bp)
T. This is very similar to the situation with general linear models

considered in Komárek (2021, Chapter 15); the only difference is that here, the matrix of

weights W(x) depends on x. The solution of (70) can be explicitly written as

β̂(x) =
(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x)Y, (71)

provided that the matrix
(
X

T
p (x)W(x)Xp

)
is non-singular.

The estimator of m(x) is β̂0(x), the first element of the vector β̂(x). From (71) we get that

if we denote by (wn,1(x), . . . , wn,n(x))
T ∈ Rn the first row of the matrix

H(x) =
(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x), (72)

then β̂0(x) can be written in the form

β̂0(x) =

n∑
i=1

wn,i(x)Yi.

Because

H(x)Xp(x) =
(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x)Xp(x) = Ip+1
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is the identity matrix of size p+ 1, looking at the first row of the last formula, we get that

n∑
i=1

wn,i(x) = 1,

and
n∑

i=1

wn,i(x) (Xi − x)ℓ = 0 for all ℓ = 1, . . . , p. (73)

In particular, β̂0(x) is a special weighted average of the responses Yi, i = 1, . . . , n.

The following technical lemma will be useful in deriving the properties of the local polyno-

mial estimator.

Lemma 1. Let

• the kernel K be bounded, symmetric around zero, positive on its support (−1, 1), and

such that
∫

R K(t) dt = 1,

• hn → 0 and (nhn) → ∞, and

• suppose that the density fX of X1 is positive and twice differentiable at x.

For ℓ ∈ N ∪ {0} put

Sn,ℓ(x) =
1

n

n∑
i=1

1
hn

K
(
Xi−x
hn

) (
Xi−x
hn

)ℓ
.

Then

Sn,ℓ(x) =

 fX(x)
∫

R K(t) tℓ dt+ h2
n
2 f ′′

X(x)
∫

R K(t) tℓ+2 dt+ o(h2n) +OP

(
1√
nhn

)
, ℓ even,

hn f
′
X(x)

∫
R K(t) tℓ+1 dt+ o(h2n) +OP

(
1√
nhn

)
, ℓ odd.

Proof. For f̂n(x) = Sn,0(x) we proved in Theorems 6 and 7 that

√
nhn (Sn,0(x)− E Sn,0(x))

d−−−→
n→∞

N

(
0, fX(x)

∫
R
K2(t) dt

)
= N (0, fX(x)R(K)) .

For other Sn,ℓ(x) we apply the same theorems, but with kernel functions K̃(t) = K(t) tℓ,

ℓ = 1, 2, . . . . Because we assume that the support of K is bounded, conditions (B1) and (B2)

from Theorem 5 are trivially satisfied for K̃. We can thus apply Theorems 6 and 7 also to

the kernel K̃, and get that√
nhn

(
Sn,ℓ(x)− E Sn,ℓ(x)

) d−−−→
n→∞

N
(
0, σ2(x)

)
,

where

σ2(x) = fX(x)R(K̃) = fX(x)

∫
R
t2ℓK2(t) dt.
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Thus

Sn,ℓ(x) = E Sn,ℓ(x) + (Sn,ℓ(x)− E Sn,ℓ(x)) = E Sn,ℓ(x) +OP

(
1√
nhn

)
and it remains to calculate E Sn,ℓ(x). Using the substitution t = y−x

hn
and the Taylor expansion

of the function fX(x+ t hn) around the point x one gets

E Sn,ℓ(x) = E 1
hn

K
(
X1−x
hn

)(
X1−x
hn

)ℓ
=

∫
R

1
hn

K
(y−x

hn

)(y−x
hn

)ℓ
fX(y) dy

=

∫
R
K(t) tℓ fX(x+ thn) dt

= fX(x)

∫
R
K(t)tℓ dt+ hnf

′
X(x)

∫
R
K(t)tℓ+1 dt+ h2

n
2 f ′′

X(x)

∫
R
K(t)tℓ+2 dt+ o(h2n).

As K is symmetric, we get that
∫

R K(t)tℓ+1 dt = 0 for ℓ even and
∫

R K(t)tℓ+2 dt = 0 for ℓ

odd.

Remark 15. Lemma 1 implies that

Sn,0(x) = fX(x) + h2
n
2 f ′′

X(x)µ2,K + o(h2n) +OP

(
1√
nhn

)
= fX(x) + oP (1), (74)

Sn,1(x) = hn f
′
X(x)µ2,K + o(h2n) +OP

(
1√
nhn

)
= oP (1), (75)

Sn,2(x) = fX(x)µ2,K + oP (1), (76)

Sn,3(x) = hn f
′
X(x)

∫
R
t4K(t) dt+ o(h2n) +OP

(
1√
nhn

)
= oP (1). (77)

The first expression (74) agrees with the bias for the kernel density estimator that we derived

in (54).

3.2 Nadaraya-Watson estimator

For p = 0 the local polynomial estimator given by (69) simplifies to

β̂0(x) = argmin
b0∈R

n∑
i=1

[
Yi − b0

]2
K
(
Xi−x
hn

)
,

and solving this optimisation task one gets

β̂0(x) =

n∑
i=1

wn,i(x)Yi =: m̂NW (x),

where

wn,i(x) =
K
(
Xi−x
hn

)∑n
j=1K

(Xj−x
hn

) =
1

nhn
K
(
Xi−x
hn

)
Sn,0(x)

.

This estimator is in the context of the local polynomial regression also called the locally

constant estimator.
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For each x for which the weights are defined we have

n∑
i=1

wn,i(x) = 1.

Moreover, if the kernel K is a non-negative function then also the weights are non-negative.

Remark 16. Let us consider the kernel with the support [−1, 1]. Then wn,i(x) is zero if

Xi ̸∈ [x − hn, x + hn]. Further, if we assume the uniform kernel, i.e. K(x) = 1
2 I{|x| ≤ 1},

then all the weights wn,i(x) for which Xi ∈ [x − hn, x + hn] are equal. Thus for this kernel,

the Nadaraya-Watson estimator m̂NW (x) is given simply by the sample mean calculated from

those observations Yi for which Xi ∈ [x− hn, x+ hn], i.e.

m̂NW (x) =

∑n
i=1 Yi I{|Xi − x| ≤ hn}∑n
j=1 I{|Xj − x| ≤ hn}

.

Thus one can view m̂NW (x) as a ‘moving average’ in the covariate direction.

To formulate theoretic properties of the estimator m̂NW (x) put X = (X1, . . . , Xn). Further,

let bias
(
m̂NW (x)|X

)
and var

(
m̂NW (x)|X

)
stand for the conditional bias and variance of the

estimator m̂NW (x) given X.

Theorem 8. Suppose that the assumptions of Lemma 1 are satisfied and further suppose that

• (nh3n) −−−→n→∞
∞,

• the function m(·) is twice differentiable at the point x, and

• the function σ2(·) is continuous at the point x.

Then

bias
(
m̂NW (x)|X

)
= h2n µ2,K

(
m′(x) f ′

X(x)

fX(x) + m′′(x)
2

)
+ oP (h

2
n), (78)

var
(
m̂NW (x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (79)

where

R(K) =

∫
R
K2(t) dt and µ2,K =

∫
R
t2K(t) dt. (80)
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Proof. Showing (78). Let us calculate

E [m̂NW (x)|X] =
n∑

i=1

wn,i(x) E [Yi|X] =
n∑

i=1

wn,i(x) E [Yi|Xi] =

n∑
i=1

wn,i(x)m(Xi)

=

n∑
i=1

wn,i(x)
[
m(x) + (Xi − x)m′(x) + (Xi−x)2

2 m′′(x) + (Xi − x)2 R̃(Xi)
]

= m(x)

n∑
i=1

wn,i(x) +m′(x)

n∑
i=1

wn,i(x)(Xi − x) +
m′′(x)

2

n∑
i=1

wn,i(x)(Xi − x)2

+

n∑
i=1

wn,i(x)(Xi − x)2R̃(Xi)

= m(x) +m′(x)An +
m′′(x)

2
Bn + Cn, (81)

where R̃(z) → 0 as z → x and

An =

n∑
i=1

wn,i(x)(Xi−x), Bn =

n∑
i=1

wn,i(x)(Xi−x)2, Cn =

n∑
i=1

wn,i(x)(Xi−x)2R̃(Xi). (82)

Now with the help of (74) and (75)

An =

n∑
i=1

wn,i(x)(Xi − x) =
hn
∑n

i=1
1
hn

K
(
Xi−x
hn

)(
Xi−x
hn

)∑n
j=1

1
hn

K
(Xj−x

hn

) =
hnSn,1(x)

Sn,0(x)

=
hn

[
hnf

′
X(x)µ2,K + o(h2n) +OP

(
1√
nhn

)]
fX(x) + oP (1)

=
h2nf

′
X(x)µ2,K + o(h3n) +OP

(
hn√
nhn

)
fX(x) + oP (1)

=
h2nf

′
X(x)µ2,K

fX(x)
+ oP (h

2
n) +OP

(
h2
n√
nh3

n

)
=

h2nf
′
X(x)µ2,K

fX(x)
+ oP (h

2
n), (83)

as (nh3n) → ∞. Further, with the help of (74) and (76)

Bn =
n∑

i=1

wn,i(Xi − x)2 =
h2nSn,2(x)

Sn,0(x)

=
h2n [fX(x)µ2,K + oP (1)]

fX(x) + oP (1)
= h2nµ2,K + oP (h

2
n). (84)

Concerning Cn, thanks to (84) and the fact that the support of K is (−1, 1) one can bound

|Cn| =

∣∣∣∣∣
n∑

i=1

wn,i(x)(Xi − x)2R̃(Xi)

∣∣∣∣∣ ≤ sup
z:|z−x|≤hn

|R̃(z)|
n∑

i=1

wn,i(x)(Xi − x)2

= o(1)Bn = o(1)OP (h
2
n) = oP (h

2
n). (85)

Now combining (83), (84) and (85) one gets

E [m̂NW (x)|X] = m(x) +m′(x)h2n
f ′
X(x)

fX(x)
µ2,K +

m′′(x)

2
h2n µ2,K + oP (h

2
n),
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which implies (78).

Showing (79). Let us calculate

var[m̂NW (x)|X] =
n∑

i=1

w2
n,i(x) var[Yi|Xi] =

n∑
i=1

w2
n,i(x)σ

2(Xi)

=

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi)[∑n

j=1K
(Xj−x

hn

)]2 =
1

nhn

Vn

[Sn,0(x)]2
,

where Vn = 1
nhn

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi).

Now, completely analogously as in Theorem 6 was proved that f̂n(x)
P−−−→

n→∞
f(x), in the

rest of this proof we will show that

Vn
P−−−→

n→∞
fX(x)σ2(x)R(K), (86)

which combined with (74) implies (79).

Showing (86). First, with the help of Bochner’s theorem (Theorem 5)

E Vn =
1

hn
E
[
K2
(
X1−x
hn

)
σ2(X1)

]
=

∫
R

1

hn
K2
(
z−x
hn

)
σ2(z)fX(z) dz −−−→

n→∞
σ2(x)fX(x)

∫
R
K2(t) dt.

Now it remains to show that var(Vn) −−−→
n→∞

0. Using again Bochner’s theorem (Theorem 5)

var(Vn) =
1

nh2n

[
E K4

(
X1−x
hn

)
σ4(X1)−

(
E K2

(
X1−x
hn

)
σ2(X1)

)2]
=

1

nhn

[
1

hn
E K4

(
X1−x
hn

)
σ4(X1)

]
− 1

n

[
1

hn
E K2

(
X1−x
hn

)
σ2(X1)

]2
=

1

nhn

[
σ4(x)fX(x)

∫
R
K4(t) dt+ o(1)

]
− 1

n

[
σ2(x)fX(x)

∫
R
K2(t) dt+ o(1)

]2
−−−→
n→∞

0.

The end of

lecture 10

(04.12.2024)

3.3 Local linear estimator

For p = 1 the local polynomial estimator given by (69) simplifies to

(
β̂0(x), β̂1(x)

)
= argmin

b0,b1∈R

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
.

To solve this optimisation task, one needs to find the first row of the matrix(
X

T
1 (x)W(x)X1(x)

)−1
X

T
1 (x)W(x) (87)
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from (72) with

X1(x) =


1 (X1 − x)

1 (X2 − x)

. . . . . .

1 (Xn − x)

 ,

and W(x) the diagonal matrix with the i-th element of the diagonal given by K
(
Xi−x
hn

)
. We

have

X
T
1 (x)W(x)X1(x) =

( ∑n
i=1K

(
Xi−x
hn

) ∑n
i=1K

(
Xi−x
hn

)
(Xi − x)∑n

i=1K
(
Xi−x
hn

)
(Xi − x)

∑n
i=1K

(
Xi−x
hn

)
(Xi − x)2

)

= nhn

(
Sn,0(x) hn Sn,1(x)

hn Sn,1(x) h2n Sn,2(x)

)
.

Inverting this matrix and plugging into (87), one gets

β̂0(x) =
n∑

i=1

wn,i(x)Yi =: m̂LL(x),

where the (local linear) weights can be written in the form

wn,i(x) =
1

nhn
K
(
Xi−x
hn

)(
Sn,2(x)− Xi−x

hn
Sn,1(x)

)
Sn,0(x)Sn,2(x)− S2

n,1(x)
, i = 1, . . . , n. (88)

From (73) it follows (see also Remark 17 below) that the weights satisfy (for each x so that

the weights are defined)

n∑
i=1

wn,i(x) = 1,
n∑

i=1

wn,i(x)(Xi − x) = 0. (89)

On the other hand, it might happen that the weights are negative. In practice, this happens

if x is either ‘close’ to the minimal or maximal value of the covariate.

Remark 17. Formula (89) is possible to be seen also directly, as

n∑
i=1

wn,i(x) =
Sn,0(x)Sn,2(x)− S2

n,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= 1

and

n∑
i=1

wn,i(x)(Xi − x) =
1

nhn

∑n
i=1K

(
Xi−x
hn

)
(Xi − x)Sn,2(x)−

∑n
i=1K

(
Xi−x
hn

) (Xi−x)2

hn
Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= hn
Sn,1(x)Sn,2(x)− Sn,2(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= 0.
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Theorem 9. Suppose that the assumptions of Theorem 8 hold. Then

bias
(
m̂LL(x)|X

)
= h2n µ2,K

m′′(x)
2 + oP (h

2
n), (90)

var
(
m̂LL(x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (91)

where R(K) and µ2,K are given in (80).

By Theorem 8 for the Nadaraya-Watson estimator one has

bias
(
m̂NW (x)|X

)
= h2n µ2,K

(
m′(x) f ′

X(x)

fX(x) + m′′(x)
2

)
+ oP (h

2
n),

var
(
m̂NW (x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
.

We see that the main terms in the approximation of the conditional variances of m̂NW (x)

and m̂LL(x) are the same, i.e.

var
(
m̂NW (x)|X

)
= var

(
m̂LL(x)|X

)
+ oP

(
1

nhn

)
.

Also the conditional biases are of the same order. But the conditional bias of m̂LL(x) in com-

parison to m̂NW (x) has ‘a simple structure’, as it does not contain the term h2n µ2,K
m′(x) f ′

X(x)

fX(x) .

This is the reason why the authors usually prefer m̂LL(x) to m̂NW (x).

Proof of Theorem 9. Showing (90). Completely analogously as in the proof of Theorem 8 one

can arrive at (81) with the only difference that now the weights wn,i(x) are given by (88).

Now with the help of (89)

An =
n∑

i=1

wn,i(x)(Xi − x) = 0. (92)

Further using (74), (75), (76) and (77)

Bn =

n∑
i=1

wn,i(x)
(Xi−x)2

h2
n

h2n = h2n
S2
n,2(x)− Sn,3(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= h2n
[fX(x)µ2,K + oP (1)]

2 − oP (1)oP (1)

(fX(x) + oP (1)) [fX(x)µ2,K + oP (1)]− (oP (1))2

= h2n µ2,K + oP (h
2
n). (93)

Thus it remains to show that Cn = oP (h
2
n). Put Dn = Sn,0(x)Sn,2(x)−S2

n,1(x) and note that

with the help of (74)–(76) one gets

Dn = f2
X(x)µ2,K + oP (1). (94)
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Now using (94) and Lemma 1 we can bound

|Cn| ≤ sup
z:|z−x|≤hn

|R̃(z)|h2n
n∑

i=1

|wn,i(x)| (Xi−x)2

h2
n

≤ h2n o(1)
S2
n,2(x) + |Sn,1(x)|

∑n
i=1

1
nhn

K
(
Xi−x
hn

)∣∣Xi−x
hn

∣∣3
|Dn|

= o(h2n)
f2
X(x)µ2

2,K + oP (1) + oP (1)
[
fX(x)

∫
R K(t) |t|3 dt+ oP (1)

]
f2
X(x)µ2,K + oP (1)

= oP (h
2
n),

which together with (82), (92) and (93) yields (90).

Showing (91). With the help of (75), (76), (86) and (94) one can calculate

var[m̂LL(x)|X] =
n∑

i=1

w2
n,i(x)σ

2(Xi)

=
1

D2
n

[
1

n2h2n

n∑
i=1

K2
(
Xi−x
hn

) (
Sn,2(x)− Xi−x

hn
Sn,1(x)

)2
σ2(Xi)

]

=
1

nhn

1

D2
n

[
S2
n,2(x)

1

nhn

n∑
i=1

K2
(
Xi−x
hn

)
σ2(Xi) + oP (1)

]
(95)

=
1

nhn

1

f4
X(x)µ2

2,K + oP (1)

[
f2
X(x)µ2

2,K + oP (1)
] [
fX(x)σ2(x)R(K) + oP (1)

]
,

which implies (91). In the equality (95) above we used the fact that

1

nhn

n∑
i=1

K2
(
Xi−x
hn

) (
Xi−x
hn

)
σ2(Xi) = OP (1)

and
1

nhn

n∑
i=1

K2
(
Xi−x
hn

) (
Xi−x
hn

)2
σ2(Xi) = OP (1).

Both these formulas follow in the same way as

Vn =
1

nhn

n∑
i=1

K2
(
Xi−x
hn

)
σ2(Xi) = OP (1),

that was shown in (86) in the proof of Theorem 8 (that is, using Bochner’s Theorem 5). Now,

by (75) we have Sn,1(x) = oP (1) and by (76) we have Sn,2(x) = OP (1). Thus, we can write

1

nhn

n∑
i=1

K2
(
Xi−x
hn

) (
Xi−x
hn

)
Sn,1(x)Sn,2(x)σ

2(Xi) = oP (1)OP (1) = oP (1),

and
1

nhn

n∑
i=1

K2
(
Xi−x
hn

) (
Xi−x
hn

)2
S2
n,1(x)σ

2(Xi) = oP (1)OP (1) = oP (1),

meaning that our simplification in (95) was correct. This concludes the proof.
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3.4 Locally polynomial regression (general p)

Analogously as for p ∈ {0, 1} one gets the estimator of m(x) in the form

m̂p(x) =
n∑

i=1

wn,i(x)Yi,

where the weights wn,i(x) are given by the first row of the matrix(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x)

and satisfy that by (73) we have

n∑
i=1

wn,i(x) = 1 and
n∑

i=1

wn,i(x)(Xi − x)ℓ = 0, ℓ = 1, . . . , p.

With the help of this property one can show (analogously as in Theorems 8 and 9) that if p

is even then the conditional biases of m̂p(x) and m̂p+1(x) are of the same order OP (h
p+2
n ),

but the bias of m̂p+1(x) has a simpler structure than the bias of m̂p(x).

Further, it can be proved that conditional variances are of the same order for each p and it

holds

var
(
m̂p(x)|X

)
=

Vp σ
2(x)

fX(x)nhn
+ oP

(
1

nhn

)
,

where V0 = V1 < V2 = V3 < V4 = V5 < . . . and so on.

To sum it up, for p even, increasing the order of polynomial to p+1 does not increase the

asymptotic variance but it has the potential to reduce the bias. On the other hand, if p is

odd, then increasing the order of polynomial to p+ 1 increases the asymptotic variance.

That is why, in practice, usually odd choices of p are preferred.

Literature: Fan and Gijbels (1996, Sections 3.1 and 3.2.1).

3.5 Bandwidth selection

3.5.1 Asymptotically optimal bandwidths

In what follows, we will consider p = 1. With the help of Theorem 9, one can approximate

the conditional MSE (mean squared error) of m̂LL(x) as

MSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m

′′(x)]2µ2
2,K + oP

(
1

nhn

)
+ oP

(
h4n
)
. (96)

Ignoring the remainder oP (.) terms in (96), we get that AMSE (asymptotic mean squared

error) of m̂LL(x) is given by

AMSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m

′′(x)]2µ2
2,K . (97)
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Minimising (97) one gets the asymptotically optimal local bandwidth (i.e. bandwidth that

minimises the AMSE)

h(opt)n (x) = n−1/5

[
σ2(x)R(K)

fX(x) [m′′(x)]2 µ2
2,K

]1/5
.

The mean integrated squared error (MISE) is usually defined as

MISE
(
m̂LL |X

)
=

∫
R
MSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx (98)

where w0(x) is a given weight function which is introduced in order to guarantee that the

integral is — hopefully — finite (for instance w0(x) = I{x ∈ [a, b]} can be used).

Now with the help of (97) and (98), the asymptotic mean integrated squared error (AMISE)

is defined as

AMISE
(
m̂LL |X

)
=

∫
R
AMSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx

=
R(K)

nhn

∫
R
σ2(x)w0(x) dx+ 1

4 h
4
n µ

2
2,K

∫
R
[m′′(x)]2w0(x) fX(x) dx. (99)

Minimising (99) one gets the asymptotically optimal global bandwidth (i.e., the bandwidth

that minimises the AMISE)

h(opt)n = n−1/5

[
R(K)

∫
R σ2(x)w0(x) dx

µ2
2,K

∫
R[m

′′(x)]2w0(x) fX(x) dx

]1/5
. (100)

3.5.2 Rule of thumb for bandwidth selection

Suppose that σ2(x) = σ2 > 0 is constant. Then, the asymptotically optimal global band-

width (100) is for m̂LL given by

h(opt)n = n−1/5

[
R(K)σ2

∫
R w0(x) dx

µ2
2,K

∫
R[m

′′(x)]2w0(x) fX(x) dx

]1/5
.

Now let m̃(x) be an estimated mean function fitted by the (global) polynomial regression of

order 4 (generally, p+3 is recommended) through the standard least squares method. In (100),

one replaces the unknown quantity σ2 by σ̃2 = 1
n−5

∑n
i=1

[
Yi− m̃(Xi)

]2
and m′′(x) by m̃′′(x).

Finally the integral
∫

R[m
′′(x)]2w0(x) fX(x) dx = EX [m′′(X)]2w0(X) can be estimated by

1

n

n∑
i=1

[m̃′′(Xi)]
2w0(Xi).

This results in the bandwidth selector

h(ROT )
n = n−1/5

[
R(K) σ̃2

∫
R w0(x) dx

µ2
2,K

1
n

∑n
i=1[m̃

′′(Xi)]2w0(Xi)

]1/5
.

In R, it is implemented in function thumbBw in package locpol. The end of

lecture 11

(11.12.2024)
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3.5.3 Cross-validation

Similarly as for the unbiased cross-validation for the kernel density estimator, we set

h(CV )
n = argmin

hn>0
CV(hn),

where

CV(hn) =
1

n

n∑
i=1

[
Yi − m̂(−i)

p (Xi)
]2

w0(Xi)

with m̂
(−i)
p being the estimator based on a sample that leaves out the i-th observation.

The rationale of the above procedure is that one aims at minimising the estimated integrated

squared error, i.e.

ISE
(
m̂p(x)

)
=

∫
R

(
m̂p(x)−m(x)

)2
fX(x)w0(x) dx

= EX′
(
m̂p(X

′)−m(X ′)
)2

w0(X
′), (101)

where X ′ is independent of observations
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
.

To illustrate that, put εi = Yi −m(Xi) and calculate

CV(hn) =
1

n

n∑
i=1

[
εi +m(Xi)− m̂(−i)

p (Xi)
]2
w0(Xi)

=
1

n

n∑
i=1

ε2i w0(Xi) +
2

n

n∑
i=1

εi

[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi)

+
1

n

n∑
i=1

[
m(Xi)− m̂(−i)

p (Xi)
]2

w0(Xi).

Now 1
n

∑n
i=1 ε

2
i w0(Xi) does not depend on hn and thus it is not interesting.

Further 1
n

∑n
i=1

[
m(Xi) − m̂

(−i)
p (Xi)

]2
w0(Xi) can be considered as a reasonable estimate

of (101). Finally 2
n

∑n
i=1 εi

[
m(Xi)− m̂

(−i)
p (Xi)

]
w0(Xi) does not ‘bias’ the estimate of (101),

as

E
[
εi
[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi)

]
= E

{
E
[
εi
[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi) |X

]}
= E

{
E [εi|Xi] E

[[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi) |X

]}
= 0,

where we have used that E [εi|Xi] = 0 and that εi and
[
m(Xi) − m̂

(−i)
p (Xi)

]
w0(Xi) are

independent conditionally on Xi (and thus also conditionally on X).

Remark 18. It would not make much sense to search for hn that minimises the residual sum of

squares RSS(hn) =
1
n

∑n
i=1

[
Yi − m̂(Xi)

]2
w0(Xi). The reason is that RSS(hn) is minimised

if Yi = m̂(Xi), which would result in a very low bandwidth hn.
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Remark 19. Another view of the cross-validation procedure is that we aim at finding the

bandwidth hn that minimises the prediction error. More precisely, suppose that
(
X′

Y ′

)
is a

random vector that has the same distribution as
(
X1

Y1

)
and that is independent from our

random sample
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
. Then the prediction error (viewed as a function of hn) is

given by

R(hn) = EX′,Y ′
(
Y ′ − m̂p(X

′)
)2
w(X ′),

where the expectation is taken only with respect to the random vector
(
X′

Y ′

)
. Now CV(hn)

presents a natural estimator of R(hn) as
(
Xi
Yi

)
is independent of m̂

(−i)
p .

3.5.4 Nearest-neighbour bandwidth choice

Suppose that the support of the kernel function K is the interval (−1, 1). Then wn,i(x) = 0

if |Xi − x| > hn. The aim of the nearest-neighbour bandwidth choice is to choose such hn so

that for at least k observations we have |Xi − x| ≤ hn. This can be technically achieved as

follows.

Put

d1(x) =
∣∣X1 − x

∣∣, . . . , dn(x) = ∣∣Xn − x
∣∣

for the distances of the observations X1, . . . , Xn from the point of interest x. Let d(1)(x) ≤
. . . ≤ d(n)(x) be the ordered sample of d1(x), . . . , dn(x). Then choose hn as

h(NN)
n (x) = d(k)(x). (102)

Note that (102) presents a local bandwidth choice.

To get an insight into the bandwidth choice (102), let us approximate

1

n

n∑
i=1

I{|Xi − x| ≤ h} .
= F̂n(x+ h)− F̂n(x− h)

.
= FX(x+ h)− FX(x− h)

.
= fX(x)2h. (103)

By plugging h = d(k)(x) = hn(x) into (103), one gets k
n

.
= fX(x)2hn(x) which further implies

that

h(NN)
n (x)

.
=

k

2nfX(x)
.

Remark 20. To derive the asymptotic properties of m̂LL when the bandwidth hn is chosen as

(102), one needs to consider kn → ∞ and kn
n → 0 as n → ∞.

Remark 21. Using h
(NN)
n (x) usually makes the problem more computationally expensive, as

one is using a local bandwidth. Further, there is no guarantee that the estimator m̂p(x) is for

instance continuously differentiable even if K is continuously differentiable. To prevent those

difficulties, some authors recommend transforming the covariates to

X ′
i = F̂n(Xi), i = 1, . . . , n,
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where F̂n(x) = 1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function of the covariates.

Then the transformed covariates are ‘approximately uniformly spread’ on (0, 1)∗ and one

can use a global bandwidth choice (e.g., using the cross-validation procedure described in

Section 3.5.3). As Fn is a consistent estimator of FX , one should keep in mind that when

using the transformed covariates X ′
i, one estimates

E [Y |FX(X) = x] = E [Y |X = F−1
X (x)] = m

(
F−1
X (x)

)
.

3.6 Conditional variance estimation

The most straightforward estimate of the conditional variance σ2(x) = var [Y1 |X1 = x] is

given by

σ̂2
n(x) =

n∑
i=1

wn,i(x)Y
2
i − m̂2

p(x), (104)

where m̂p(x) =
∑n

i=1wn,i(x)Yi is an estimator of m(x) = E
[
Y1 |X1 = x

]
. This estimator is

based on the expression

σ2(x) = E
[
Y 2
1 |X1 = x

]
−
(
E
[
Y1 |X1 = x

])2
.

The estimator (104) is usually preferred in theoretical papers as its properties can be derived

completely analogously as for m̂p(x).

In practice, it is usually recommended to start from

σ2(x) = E
[ (

Y1 − E
[
Y1 |X1 = x

])2 |X1 = x
]
,

and use the following estimator

σ̃2
n(x) =

n∑
i=1

wn,i(x)
(
Yi − m̂p(Xi)

)2
. (105)

If the weights wn,i(x) are not guaranteed to be non-negative, then there is generally no

guarantee that either of the estimators (104) or (105) is positive.

3.7 Robust locally weighted regression (LOWESS)

LOWESS is an algorithm for ‘LOcally WEighted Scatterplot Smoothing’. It is used among

others in regression diagnostics; in R, it is implemented in function lowess in package stats.

The algorithm runs as follows. The end of

lecture 12

(18.12.2024)Literature: Fan and Gijbels (1996, Sections 2.4.1, 3.2.3, 4.2, 4.10.1, 4.10.2).

∗ In case there are no ties in covariate values, one gets {X ′
1, . . . , X

′
n} = { 1

n
, . . . , n

n
}.
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LOWESS: Locally weighted scatterplot smoothing.

Input: A dataset
(
X1

Y1

)
,
(
X2

Y2

)
, . . . ,

(
Xn

Yn

)
.

Output: A robust local linear regression estimator m̂.

0. Set

• K(t) = 70
81

(
1− |t|3

)3
I{|t| ≤ 1} the tricube kernel,

• hn the k-nearest neighbour bandwidth with k = ⌊n f⌋ and f = 2/3, and

• δi = 1 for each i = 1, . . . , n.

1. Fit m̂(x) as a weighted local linear estimator with a kernel K and a bandwidth hn.

That is, m̂(x) = β̂0(x), where

(
β̂0(x), β̂1(x)

)
= argmin

b0,b1∈R

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
δi.

In the fist loop with δi = 1 for all i = 1, . . . , n, we obtain the usual local linear

estimator m̂(x) = m̂LL(x).

2. Consider the residuals ri = Yi − m̂(Xi) of the current fit, i = 1, . . . , n.

3. For B(t) = (1− t2)2 I{|t| ≤ 1}, calculate the ‘measures of outlyingness’

δi = B
(

ri

6med
(
|r1|,...,|rn|

)), i = 1, . . . , n,

that assess how much ‘extreme’ is the residual ri compared to the other residuals.

4. Repeat steps 1–3 three times.

70



Appendix

Stochastic oP and Op symbols

This section is identical to parts of Omelka (2023, Section 1.1).

Definition A9. Let
{
Xn

}∞
n=1

be a sequence of random vectors in Rk and
{
rn
}∞
n=1

a sequence

of positive constants. We write that

(i) Xn = oP
(

1
rn

)
, if (rnXn)

P−−−→
n→∞

0k, where 0k = (0, . . . , 0)T is a zero point in Rk;

(ii) Xn = OP

(
1
rn

)
, if

∀ε > 0 ∃K < ∞ sup
n∈N

P
(
rn ∥Xn∥ > K

)
< ε,

where ∥ · ∥ stands for instance for the Euclidean norm.

When Xn = OP (1) then some authors say that {Xn}∞n=1 is bounded in probability.∗ When

Xn = oP (1) then it is often said that {Xn}∞n=1 is negligible in probability.

Remark 22. Note that

(i) Xn
d−−−→

n→∞
X implies Xn = OP (1) (Prohorov’s theorem, Portmanteau theorem, see e.g.

van der Vaart, 2000, Chapter 2.1);

(ii) Xn
P−−−→

n→∞
0k implies Xn = oP (1);

(iii) (rnXn)
P−−−→

n→∞
X or (rnXn)

d−−−→
n→∞

X implies Xn = OP

(
1
rn

)
.

(iv) If rn → ∞ and Xn = OP

(
1
rn

)
, then Xn = oP (1).

Proof of (iv). It is sufficient to prove that for each ε > 0 and each η > 0 for all sufficiently

large n it holds that P
(
∥Xn∥ > ε

)
< η.

Note that Xn = OP

(
1
rn

)
implies there exists a finite constant K such that

sup
n∈N

P
(
rn ∥Xn∥ > K

)
< ε.

The statement now follows from the fact that

P
(
∥Xn∥ > ε

)
= P

(
rn ∥Xn∥ > ε rn

)
< η

for all n such that ε rn > K.

∗ omezená v pravděpodobnosti
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Suppose that X1,X2, . . . are independent and identically distributed random vectors with

a finite variance matrix. Then the law of large numbers implies

Xn = E X1 + oP (1).

With the help of the central limit theorem one can be even more specific about the remainder

term and show that

Xn = E X1 +OP

(
1√
n

)
.

Remark 23. The calculus with the random quantities oP (1) and OP (1) is analogous to the

calculus with the (deterministic) quantities o(1) and O(1) in mathematical analysis. Thus,

among others it holds that

(i) oP (1) + oP (1) = oP (1);

(ii) oP (1)OP (1) = oP (1);

(iii) oP (1) +OP (1) = OP (1);

(iv) oP (1) + o(1) = oP (1);

(v) OP (1) +O(1) = OP (1).

Proof of (ii). Let {Xn}∞n=1 , {Yn}∞n=1 be such that Xn = OP (1),Yn = oP (1) and YnXn

makes sense. Let ε > 0 be given and consider for instance the Euclidean norm (for other

norms the proof would go through up to a multiplicative constant in some of the arguments).

Then one can find K < ∞ such that supn∈N P
(
∥Xn∥ > K

)
< ε

2 . Thus for all sufficiently

large n ∈ N

P
(
∥YnXn∥ > ε

)
≤ P

(
∥YnXn∥ > ε, ∥Xn∥ ≤ K

)
+ P

(
∥Xn∥ > K

)
≤ P

(
∥Yn∥ > ε

K

)
+ ε

2 ≤ ε,

as Yn = oP (1).

We recommend the reader to prove the remaining statements as an exercise.

For more details about the calculus with oP (1) and OP (1) see for instance Jiang (2010,

Chapter 3.4).

Uniform consistency of the empirical distribution function

The following theorem can be found in Serfling (1980, Section 2.1.4) as Theorem A.
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Theorem A10. (Glivenko-Cantelli theorem) Suppose we observe independent and iden-

tically distributed random vectors X1, . . . ,Xn (in Rk) from a distribution with the cumulative

distribution function F . Let

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x} for x ∈ Rk

be the cumulative empirical distribution function. Then

sup
x∈Rk

∣∣F̂n(x)− F (x)
∣∣ a.s.−−−→

n→∞
0.

Supremum metric and convergence in distribution

Lemma A2. Suppose that Y 1,Y 2, . . . and Y are random vectors (with values in Rk) with

the corresponding distribution functions G1, G2, . . . and G. Further, let the distribution func-

tion G be continuous. Then Yn
d−−−→

n→∞
Y if and only if ρ∞(Gn, G) → 0 as n → ∞.

Proof. We would like to show that

ρ∞(Gn, G) −−−→
n→∞

0 ⇐⇒ Gn
w−−−→

n→∞
G.

The implication ⇒ is straightforward as supy∈Rk |Gn(y) −G(y)| → 0 implies that Gn(y) →
G(y) for each y ∈ Rk.

The implication ⇐ is slightly more difficult. By the continuity of G for each ε > 0 there

exists a finite set of points Bε = {y1, . . . ,yN} such that for each y ∈ Rk one can find

yL,yU ∈ Bε that

yL ≤ y ≤ yU , and G(yU )−G(yL) ≤ ε
2 .

By an inequality of p-dimensional vectors above we mean that the inequality is true for all

their components. For each y ∈ Rk one can bound

Gn(y)−G(y) ≤ Gn(yU )−G(y) ≤ Gn(yU )−G(yL) ≤ Gn(yU )−G(yU ) +
ε
2 (A106)

and analogously also

Gn(y)−G(y) ≥ Gn(yL)−G(y) ≥ Gn(yL)−G(yU ) ≥ Gn(yL)−G(yL)− ε
2 . (A107)

Now combining (A106) and (A107) together with Gn
w−−−→

n→∞
G one gets that for all sufficiently

large n

sup
y∈Rk

∣∣Gn(y)−G(y)
∣∣ ≤ max

y∈Bε

∣∣Gn(y)−G(y)
∣∣+ ε

2 ≤ ε
2 + ε

2 = ε,

which implies the statement of the lemma.
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Linderberg-Feller central limit theorem

The following result is a variant of the classical Linderberg-Feller central limit theorem for

triangular sequences of independent random vectors. It can be found in van der Vaart (2000,

Proposition 2.27).

Theorem A11. For each n = 1, 2, . . . , let Y n,1, . . . ,Y n,kn be independent random vectors

(in Rk) with finite variances such that

kn∑
i=1

E
[
∥Y n,i∥2 I

{
∥Y n,i∥ > ε

}]
−−−→
n→∞

0 for every ε > 0, (A108)

and
kn∑
i=1

var (Y n,i) −−−→
n→∞

Σ,

for a positive definite matrix Σ ∈ Rk×k. Then

kn∑
i=1

(Y n,i − E Y n,i)
d−−−→

n→∞
Nk (0,Σ) .

Equivalence of convergence in distribution and convergence of quantiles

The following result can be found as van der Vaart (2000, Lemma 21.2).

Lemma A3. Let {Xn}∞n=1 be a sequence of random variables and FXn be the cumulative

distribution function of Xn. Then Xn
d−−−→

n→∞
X if and only if F−1

Xn
(u) −−−→

n→∞
F−1
X (u) for each

u ∈ (0, 1).
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