
NMSA332 EXERCISE SESSIONS: QUESTIONS AND ANSWERS

STANISLAV NAGY AND MAREK OMELKA

Week 5: the use of sufficient statistics

Example 40: Geometric distribution.

Question. I don’t understand part (iii). How did we get the exponential function? Why
is it a complete sufficient statistic? How did we get a(θ)?

To show that the estimator is UMVUE∗, we want to use Theorem 6. We know that∑
iXi, or equivalently X̄ is a sufficient statistic for p, and we have an estimator that is a

function of X̄, that is at the same time unbiased. It remains to show that the statistic X̄
is also complete†. For this we typically use Theorem 3 — most of the used distributions
are from exponential systems. We write the density of the geometric distribution in the
form of an exponential system

f(x) = p(1− p)x = p exp(x log(1− p)),
for x a non-negative integer, and see that it is an exponential system, but for parameter
θ = log(1− p). Parameter θ is called the canonical parameter of an exponential system.
We also see (Theorem 3 again) that

∑
Xi (or X̄) is complete sufficient for θ. We express

p as a parametric function of θ

p = a(θ) = 1− exp(θ),

and apply Theorem 6 with this parametric function of the canonical parameter θ. We
get that our estimator u(X̄) is indeed UMVUE for p.

Example 41: Special multinomial distribution.

Question. Part (ii) is not clear. How does it follow that the statistic is sufficient? In
part (iv) I don’t see why the expression is rewritten as an exponential.

This is a multinomial distribution. Its density can be expressed as

(1) f(x) = pI[x=−1](1− 2p)I[x=0]pI[x=1] = pI[x 6=0](1− 2p)1−I[x 6=0]

for x ∈ {−1, 0, 1}, zero elsewhere. The second equality is true because Xi ∈ {−1, 0, 1}
almost surely. We wrote the density only in terms of I [x 6= 0]; if we now take the product
of densities of all Xi, we get

n∏
i=1

f(Xi) = p
∑

I[Xi 6=0](1− 2p)n−
∑

I[Xi 6=0].

By Neyman’s factorization criterion (Theorem 1) the statistic S(X) is sufficient.
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In part (iv) we again need, for the second Lehmann-Scheffé’s theorem, that statistic
S(X) is complete. For that we use Theorem 3 again. We need to write the multinomial
distribution as a member of the exponential system of distributions. For that we use a
common trick that helps to work with the general multinomial distribution, and instead
of the indicators as in (1) I simply write in the solutions x1, x2, and x3 (it’s not correct to
write it like that, I just simplified the notation not to write the indicators everywhere).
For example, by x2 in the solutions I mean I [xi = 0] etc. What we get in the end can be
written as‡

f(x) = exp(I [xi 6= 0] log(p/(1− 2p)))(1− 2p),

meaning that this is an exponential system with canonical parameter θ = log(p/(1−2p)), p
is a parametric function of θ, and S(X) is a complete sufficient statistic for θ (Theorem 3).
By Theorem 5 we now know that our estimator is UMVUE.

Example 44: Normal distribution.

Question. How do I know that Eχn−1 = 1/an? Or is this something else? I don’t see
this from Example 13. I don’t understand part (iii) — how is this computed, and how does
this follow from the L-S theorem (and which L-S theorem)? How do I find the estimator
in part (v)?

The expectation of χn−1-distribution is a known constant§. It can be computed as an
integral, but this is not required from you. In part (iv) of Example 13, in the special case
when µ = 0 (but the computation is the same also for general µ) we showed that for σ̃n
to be unbiased we need to scale it by an.

In part (iii) we can use any Lehmann-Scheffé’s theorem (Theorem 5 or 6). We know
that the conditions of these theorems are satisfied, and from them we know that there
is a unique UMVUE estimator of µ that must be a function of the complete sufficient
statistic. But, the median is clearly not a function of this statistic, therefore it cannot be
UMVUE.

In part (v) you need to find an unbiased estimator of µ2 that is a function of the
complete sufficient statistic. Then Theorem 6 gives you that it must be the unique
UMVUE estimator. Think about how to find such an estimator.

Example 46: Shift in exponential distribution.

Question. In the beginning, how do I see that minXi is sufficient?

This is directly Theorem 1. We know that λ is a known constant, so we just wrote the
density as a function where δ couples with X only in the indicator via minXi.

Example 47: λ in exponential distribution.

Question. How do I know immediately that
∑
Xi is complete sufficient? In part (i) I

found an unbiased estimator. How do I know that it is UMVUE? How did we get the
estimator in part (iii)?

Completeness and sufficiency follow from Theorem 3. We know that our unbiased
estimator is a function of a complete sufficient statistic, so we just use Theorem 6 to get
that it must be UMVUE.

For part (iii) again as in part (v) in Example 44. You need to find an unbiased estimator
of λk that is a function of X̄, and use Theorem 6.

‡The multinomial coefficient in the formula in my solution should not be there, that’s an error.
§https://en.wikipedia.org/wiki/Chi_distribution

https://en.wikipedia.org/wiki/Chi_distribution
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Example 48: θ in uniform distribution.

Question. How did we get xnxn−1 in the formula for the expectation?

Find the distribution function of maxi=1,...,nXi and take a derivative of that. You get
its density. An integral of the density is the expectation.

Example 49: General multinomial distribution.

Question. How did we find the estimator in (i)?

It is not an estimator, it is a complete sufficient statistic. We rewrite the density of
X = (X1, . . . , XK)T (that is, a single K-dimensional random vector with multinomial
distribution M (1; p1, . . . , pK)) as a density from an exponential system

f(x) =
K∏
k=1

pk
xk = exp

(
K∑
k=1

xk log(pk)

)
for x = (x1, . . . , xK)T with xk ∈ {0, 1},

K∑
k=1

xk = 1,

zero elsewhere. Now we want to use Theorem 3, but with parameter (log(p1), . . . , log(pK))T

the condition about a non-degenerate interval in the parametric space is not fulfilled¶ be-
cause pK = 1−

∑K−1
k=1 pk. We rewrite the density further to

f(x) = exp

(
K−1∑
k=1

xk log(pk) +

(
n−

K−1∑
k=1

xk

)
log

(
1−

K−1∑
k=1

pk

))

= exp

(
K−1∑
k=1

xk log

(
pk

1−
∑K−1

j=1 pj

))(
1−

K−1∑
k=1

pk

)n

.

Now we are allowed to use Theorem 3, and we get that a canonical parameter for this

distribution is θ =
(

log
(
p1
pK

)
, . . . , log

(
pK−1

pK

))T
, and the complete sufficient statistic for

θ is a (K − 1)-dimensional vector whose k-th element, k = 1, . . . , K − 1, is the sum of
the k-th elements of the vectors of the random sample.

Week 6: introduction to maximum likelihood

Example 53: Geometric distribution.

Question. In our solution the asymptotic distribution of the MLE of p is N(0, p2(1−p)).
There appears to be a problem with the sign of the second term in the computation of
Jn(p). This problem affects also the result in part (ii).

That’s true, this is a mistake in my solution. Thank you for this.

Example 55: Uniform discrete distribution.

Question. We are able to derive the likelihood function and we see that it is decreasing.
But we do not know how to formally justify that maxXi is the MLE of parameter M .

¶This is also incorrect in my solutions. Think about why the complete vector

(
∑n

i=1 Xi,1, . . . ,
∑n

i=1 Xi,K)
T

is not a complete statistic.
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If the likelihood is not differentiable, as we see here, the MLE is typically found by
simply observing the course of the (log-)likelihood. Here we see that the likelihood L(M)
is non-zero only for integers M that satisfy 1 ≤ miniXi ≤ maxiXi ≤ M , and for these
values, it is decreasing in M . We now consider both miniXi and maxiXi as fixed and
given. Therefore, the likelihood is non-zero only for integers M ≥ maxiXi, and decreasing
in M . Thus, it must be maximized in maxiXi, and this is the MLE of M .

Example 58: Weibull distribution.

Question. In the solutions you write that the derivative of the log-likelihood approaches
−∞ as θ →∞. Is this really true? What if all Xi are smaller than one?

Yes, we need to distinguish two cases. If there is at least one Xi > 1, then the derivative
of the log-likelihood goes to −∞ as θ →∞. If Xi ≤ 1 for all i, then Xθ

i −−−→
θ→∞

0, but also∑n
i=1 log(Xi) < 0, which means that the derivative of the log-likelihood converges to a

negative constant
∑n

i=1 log(Xi) with θ →∞. This is still enough to see that there must
be a unique root of this function, that is a unique MLE.

Week 8: Neyman-Pearson’s lemma and the likelihood ration test

Example 77: Normal distribution.

Question. How do we know in part (i) that σ2 cannot be taken as a fixed number, and
why do we search for two maximum likelihood estimators of σ2?

Our distribution X1 ∼ N (µ, σ2) has a two-dimensional unknown vector parameter

θ = (µ, σ2)
T ∈ Θ =

{
(a, b)T : a ∈ R and b > 0

}
. We test the hypothesis

H0 : µX = µ0 against H1 : µX 6= µ0,

for µ0 given. In the notation for the general likelihood ratio test on p. 30, we have that

Θ0 =
{

(a, b)T : a = µ0 and b > 0
}
⊂ Θ, and Θ1 = Θ \Θ0.

To compute the test statistic of the likelihood ratio test in this situation, we have to first

find (i) the maximum likelihood estimator θ̂n when searched over the whole parametric

space Θ; and (ii) the maximum likelihood estimator θ̃n when we maximize only over the
set Θ0 of parameters that satisfy H0. The unconstrained maximum likelihood estimator

θ̂n is clearly the vector of the average X̄n and σ̂2 = 1
n

∑n
i=1

(
Xi − X̄n

)2
. In the second

step, we need to compute θ̃n, that is we need to maximize the (log-)likelihood of our data
only over Θ0. This is what I compute in the solutions, where I obtain that

θ̃n =
(
µ0, σ̃

2
)T

=

(
µ0,

1

n

n∑
i=1

(Xi − µ0)
2

)T

∈ Θ0.

Therefore, the test statistic takes the form

LRn = 2
(
`n

(
θ̂n

)
− `n

(
θ̃n

))
= n log

(
σ̃2

σ̂2

)
.

From the theory again we know that under H0, LRn has asymptotically χ2-distribution
with dim(Θ)− dim(Θ0) degrees of freedom. Here dim(Θ) = 2 and dim(Θ0) = 1, so that
we reject H0 if and only if LRn exceeds the (1− α)-quantile of χ2

1.
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In general, if your parameter is a vector θ, but you are interested only in a test
about a sub-vector of θ, you cannot “ignore” the nuisance parameter‖, or take it a fixed
value. Because that part of the parameter is unknown, and has to be estimated. The
uncertainty in the estimation of that part of the parameter has to be considered in the
testing procedure. We will see this later in Section 10, where these tests will be considered
in detail.

‖rušivý parameter
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