
Matematický proseminář II AG – lineární útvary

Analytická geometrie lineárních útvarů

bod, vektor, velikost vektoru, lineární kombinace vektorů

1) Jsou dány body A[1;−2; 3], B[2;−3; 4], D[3; 3;−1], A′[4; 4; 6]. Určete souřadnice zbývajících vr-
cholů rovnoběžnostěnu ABCDA′B′C ′D′.

Řešení: Z daných souřadnic určíme souřadnice vektorů
−−→
AB,

−−→
AD a

−−→
AA′. Pro vrcholy rovnoběž-

nostěnu platí např. C = B +
−−→
AD, B′ = B +

−−→
AA′, D′ = D +

−−→
AA′, C ′ = D′ +

−−→
AB (viz obr.).

Tedy:
−−→
AB = B −A = (1;−1; 1),
−−→
AD = D −A = (2; 5;−4),
−−→
AA′ = A′ −A = (3; 6; 3),

C = [4; 2; 0],
B′ = [5; 3; 7],
D′ = [6; 9; 2],
C ′ = [7; 8; 3].

Pro kontrolu lze souřadnice jednotlivých bodů spočítat jako součet souřadnic jiného odpovídají-
cího vrcholu a vektoru, např. je také C = D +

−−→
AB apod.

2) Ukažte, že body A[1; 2; 3], B[−2; 5; 6], C[0;−3; 4] jsou vrcholy trojúhelníku.

Řešení: Z daných bodů sestavíme dva vektory (každý bod využijeme) a prověříme jejich lineární
nezávislost. Tj. např. pro vektory

−−→
AB,

−→
AC musí platit:

∀k ∈ R :
−−→
AB ̸= k ·

−→
AC

Jelikož je
−−→
AB = (−3; 3; 3) a

−→
AC = (−1;−5; 1), je zřejmé, že vektory

−−→
AB,

−→
AC nejsou lineárně

závislé. (Formálně lze argumentovat, že pro spor volíme dle první souřadnice k = 3, avšak pro
druhou souřadnici již neplatí, že 3 = 3 · (−5), a tedy skutečně ∀k platí výše uvedený vztah.)

3) Určete souřadnice těžiště T a délku těžnice na stranu k trojúhelníku KLM , jestliže K[4; 7],
L[−7; 4], M [0;−1].

Řešení: Těžnice trojúhelníku je úsečka spojující vrchol se středem protilehlé strany. Těžnice na
stranu k tedy spojuje vrchol K se středem SLM strany LM . Délka těžnice k je rovna velikosti
vektoru

−−−−→
KSLM a těžiště T získáme jako součet bodu K a 2

3 vektoru
−−−−→
KSLM , neboť těžiště troj-

úhelníku dělí každou těžnici v poměru 2 : 1.

SLM =
1

2
L+

1

2
M =

[
−7

2
;
3

2

]
,

−−−−→
KSLM = SLM −K =

(
−15

2
;−11

2

)
,

||
−−−−→
KSLM || =

√
346

2
, T =

[
−1;

10

3

]
.
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Matematický proseminář II AG – lineární útvary

4) Nechť rovinný útvar ABCDEF je pravidelný šestiúhelník. Vyjádřete vektory
−−→
BE,

−−→
BD,

−−→
BC jako

lineární kombinaci vektorů
−−→
AB a

−→
AF .

Řešení: Využijeme shodnost vektorů plynoucí z vlastností pravidelného šestiúhelníku, jehož střed
dále značíme S.

−−→
BE = 0 ·

−−→
AB + 2 ·

−→
AF , jelikož

−→
AF =

−→
BS =

−→
SE.

−−→
BD = 1 ·

−−→
AB + 2 ·

−→
AF , jelikož

−−→
BD =

−→
AE a opět využijeme

−→
AF =

−→
BS =

−→
SE.

−−→
BC = 1 ·

−−→
AB + 1 ·

−→
AF , jelikož

−−→
BC =

−→
AS a stejně jako v předchozím využijeme, že

−→
AF =

−→
BS.

5) Je dán vektor u⃗ = (2; 3). Určete q ∈ R tak, aby pro vektor v⃗ = (q; 2q) platilo ||4u⃗− v⃗|| =
√
61.

Řešení: 4−→u −−→v = (8− q; 12− 2q), po dosazení do dané rovnice dostáváme:

||(8− q; 12− 2q)|| =
√
61 |2

(8− q)2 + (12− 2q)2 = 61

5q2 − 64q + 147 = 0

q1 =
49

5
, q2 = 3

skalární součin, vektorový součin, smíšený součin

1) Určete souřadnice bodu Y ležícího na ose y tak, aby |∢ABY | = 120◦, jestliže A[5; 2; 10], B[1; 2; 7].

Řešení: Pro vektory
−−→
BA = (4; 0; 3),

−−→
BY = (−1; y − 2;−7), kde Y [0; y; 0], platí:
−−→
BA ·

−−→
BY

||
−−→
BA|| · ||

−−→
BY ||

= cos 120◦.

Po dosazení souřadnic vektorů a úpravě získáme

y2 − 4y − 46 = 0,

odkud y ∈ {2± 5
√
2}, tedy Y1 = [0; 2 + 5

√
2; 0], Y2 = [0; 2− 5

√
2; 0].

2) Jsou dány body A[1; 0], C[3; 6]. Určete souřadnice bodů B, D tak, aby čtyřúhelník ABCD byl
čtverec.

Řešení: Označme S střed čtverce. Pro vektory
−→
SB,

−→
SD platí, že jsou navzájem opačné, mají

stejnou velikost jako vektor
−→
AS a jsou k tomuto vektoru kolmé. Existují dva čtverce ABCD lišící

se pouze orientací popisu vrcholů, dále tedy rozlišujeme čtverec AB1CD1 a AB2CD2, přičemž
B1,2 = D2,1 = S ±−→v , kde −→v je libovolný vektor kolmý k

−→
AS takový, že ||−→v || = ||

−→
AS||.
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Matematický proseminář II AG – lineární útvary

S = [2; 3],
−→
AS = (1; 3), pro −→v = (3;−1) (druhou možností je uvažovat −→v = (−3; 1)) je B1 =

= D2 = [5; 2] a B2 = D1 = [−1; 4].

3) Vypočítejte dvěma různými způsoby (ale bez užití rovnice přímky) obsah trojúhelníku ABC,
jestliže A[4; 7], B[−7; 4], C[0;−1].

Řešení – první způsob: Z daných údajů lze vypočítat délky jednotlivých stran trojúhelníku a ná-
sledně využít Hérónův vzorec.

a = |BC| =
√
(0 + 7)2 + (−1− 4)2 =

√
74

b = |AC| =
√
(0− 4)2 + (−1− 7)2 =

√
80

c = |AB| =
√

(−7− 4)2 + (4− 7)2 =
√
130

S =
√
s(s− a)(s− b)(s− c), kde s =

a+ b+ c

2
, po dosazení a úpravě (která je mimochodem

pěkným cvičením na úpravu číselných výrazů s odmocninami) vyjde S = 38.

Řešení – druhý způsob: Búno můžeme trojúhelník umístit v prostoru do roviny z = 0, tj. A[4; 7; 0],
B[−7; 4; 0], C[0;−1; 0]. Následně vypočteme vektorový součin vektorů

−−→
AB,

−→
AC a využijeme toho,

že jeho velikost je obsahem rovnoběžníku ABQC (viz obr.). Pro hledaný obsah tedy platí:

S =
||
−−→
AB ×

−→
AC||

2
=

||(−11;−3; 0)× (−4;−8; 0)||
2

=
||(0; 0; 76)||

2
=

76

2
= 38.

4) Určete objem rovnoběžnostěnu ABCDA′B′C ′D′ z první úlohy tohoto souboru.

Řešení: Objem rovnoběžnostěnu je roven absolutní hodnotě smíšeného součinu tří vektorů, které
rovnoběžnostěn jednoznačně určují, v případě rovnoběžnostěnu ABCDA′B′C ′D′ tedy uvažujeme
např. vektory

−−→
AB,

−−→
AD,

−−→
AA′.

V = |(
−−→
AB ×

−−→
AD) ·

−−→
AA′| = |[(1;−1; 1)× (2; 5;−4)] · (3; 6; 3)| = |(−1; 6; 7) · (3; 6; 3)| = 54
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Matematický proseminář II AG – lineární útvary

5) Určete souřadnice bodu X ležícího na ose x tak, aby objem čtyřstěnu ABCX, kde A[1;−3; 2],
B[3; 0; 1], C[−1; 1; 3], byl 21.

Řešení: Označme x x-ovou souřadnici bodu X, tedy X = [x; 0; 0]. Objem čtyřstěnu ABCX je
jednou šestinou objemu rovnoběžnostěnu ABCDXB′C ′D′ (viz obr.), jelikož objem čtyřbokého
jehlanu je třetinou objemu hranolu s touž podstavou a čtyřstěn můžeme vnímat jako trojboký
jehlan, tj. jehlan s poloviční podstavou oproti příslušnému čtyřbokému jehlanu. Platí tedy:

1

6
|(
−−→
AB ×

−−→
AD) ·

−−→
AX| = 21

−−→
AB = (2; 3;−1),

−−→
AD =

−−→
BC = (−4; 1; 2),

−−→
AX = (x− 1; 3;−2)

Po dosazení a úpravě získáme 18 = |x− 5|,
odkud x1 = 23, x2 = −13,
tj. X1 = [23; 0; 0], X2 = [−13; 0; 0].

přímka v rovině

1) Jsou dány body A[4; 7], B[−7; 4], C[0;−1]. Zapište:

a) parametrické vyjádření těžnice ta trojúhelníku ABC,
b) parametrické vyjádření polopřímky CB,
c) parametrické vyjádření výšky vc trojúhelníku ABC.

Řešení (a): Těžnice ta je úsečka s krajními body A a SBC , kde SBC je střed strany BC.

SBC =

[
−7

2
;
3

2

]
,
−−−→
ASBC =

(
−15

2
;−11

2

)
Parametrické vyjádření této těžnice můžeme napsat např. následovně:

ta = {[A+ t ·
−−−→
ASBC ]; t ∈ ⟨0; 1⟩} =

{[
[4; 7] + t ·

(
−15

2
;−11

2

)]
; t ∈ ⟨0; 1⟩

}
,

pro jednotlivé souřadnice bodů těžnice ta pak platí

x = 4− 15

2
t,

y = 7− 11

2
t; t ∈ ⟨0; 1⟩.

Pokud bychom namísto vektoru
−−−→
ASBC =

(
−15

2
;−11

2

)
uvažovali např. nabízející se lineárně

závislý vektor (15; 11), museli bychom adekvátně upravit mezní hodnoty parametru t, tj. v tomto

případě t ∈
〈
0;−1

2

〉
.

Řešení (b): Pro parametrické vyjádření polopřímky je nejsnazší uvažovat její počáteční bod
a k němu přičítat nezáporné násobky libovolného směrového vektoru orientovaného stejně jako
je orientace dané polopřímky. Zde tedy:

−→ CB =
{
[C + t ·

−−→
CB], t ∈ ⟨0;∞)

}
= {[[0;−1] + t · (−7; 5)], t ∈ ⟨0;∞)} ,
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Matematický proseminář II AG – lineární útvary

pro jednotlivé souřadnice bodů polopřímky CB pak platí

x = −7t,

y = −1 + 5t; t ∈ ⟨0;∞).

Řešení (c): Výškou vc trojúhelníku ABC rozumíme přímku1 vedenou bodem C kolmo k přímce
AB. Směrovým vektorem této výšky bude libovolný vektor kolmý k vektoru

−−→
AB, tj. libovolný

vektor −→s , pro který platí −→s ·
−−→
AB = 0.

−−→
AB = (−11;−3), například −→s = (3;−11)

Parametrické vyjádření výšky můžeme zapsat následovně:

vc = {[C + t · −→s ], t ∈ R} = {[[0;−1] + t · (3;−11)], t ∈ R},

pro jednotlivé souřadnice bodů výšky vc pak platí

x = 3t,

y = −1− 11t; t ∈ R.

2) Určete vzájemnou polohu přímek p, q. Jsou-li různoběžné, vypočítejte souřadnice jejich průsečíku
a jejich odchylku. Jsou-li rovnoběžné, určete jejich vzdálenost.

a) p : 5x− 2y + 6 = 0
q : x = −1 + 3t, y = 4 + 4t, t ∈ R

b) p : 5x− 12y + 10 = 0
q : x− 2,4y − 4,5 = 0

Přímky v rovině mohou být různoběžné nebo rovnoběžné. V případě rovnoběžných přímek ještě
rozlišujeme, zda jsou, či nejsou totožné. O ne/rovnoběžnosti přímek rozhodneme na základě jejich
směrových, popřípadě normálových vektorů. Přímky jsou rovnoběžné právě tehdy, jsou-li jejich
směrové (normálové) vektory lineárně závislé.

Řešení (a): Normálový vektor −→np přímky p má souřadnice (5;−2). Směrový vektor −→sq přímky q
má souřadnice (3; 4), tj. normálový vektor −→nq přímky q může mít např. souřadnice (4;−3) (musí
platit, že −→nq · −→sq = 0). Vektory −→np, −→nq jsou lineárně nezávislé, tedy přímky p, q jsou různoběžné.

Souřadnice průsečíku R přímek p, q musí vyhovovat všem rovnicím popisujícím dané přímky,
tedy hledáme R[x; y] tak, aby 5x − 2y + 6 = 0, x = −1 + 3t a zároveň y = 4 + 4t. Nejsnazší je
dosadit z parametrického vyjádření přímky q do rovnice přímky p, tedy

5(−1 + 3t)− 2(4 + 4t) + 6 = 0,

odkud t = 1, a tedy R[2; 8].

Pro odchylku φ daných přímek platí:

cosφ =
|−→sp · −→sq |

||−→sp || · ||−→sq ||
, resp. cosφ =

|−→np · −→nq|
||−→np|| · ||−→nq||

.

Po dosazení do druhého z uvedených vztahů a úpravě získáváme cosφ =
26

5
√
29

, tj. φ .
= 15◦04′.

1Pojem výška trojúhelníku může být chápán také jako úsečka či číslo (Moravcová, V. & Hromadová, J.: Základy
planimetrie pro učitelské studium, Matfyzpress, 2021), pokud bychom však zde vnímali výšku jako úsečku, její umístění
by bylo třeba v zadání přesněji specifikovat.

5
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Řešení (b): Normálové vektory −→np = (5;−12), −→nq = (1;−2,4) jsou lineárně závislé, neboť −→np =
= 5−→nq. Přímky p, q jsou tedy rovnoběžné. Vzdálenost přímek je rovna vzdálenosti libovolného
bodu jedné z nich od druhé přímky. Uvažujme např. bod P [10; 5], který náleží přímce p, a určeme
|Pq|. Před výpočtem vzdálenosti je vhodné upravit rovnici přímky q, vynásobíme ji 10, abychom
se zbavili desetinných čísel, tedy dále pracujeme s rovnicí 10x− 24y − 45 = 0.

Pro vzdálenost přímek p, q platí:

|pq| = |Pq| = |10 · 10− 24 · 5− 45|√
102 + (−24)2

=
65

26
=

5

2
.

3) Dokažte, že výšky trojúhelníku náleží jednomu svazku přímek.

Řešení: Obecný trojúhelník ABC vhodně umístíme do kartézské soustavy souřadnic, zapíšeme
rovnice jednotlivých výšek, vyjádříme souřadnice průsečíku V dvou z těchto výšek a ověříme, že
leží také na výšce třetí.

Nechť BÚNO A[0; 0], B[bx; 0], C[cx; cy]. Potom
−−→
BC = (cx − bx; cy) je normálový vektor výšky va

na stranu BC,
−→
AC = (cx; cy) je normálový vektor výšky vb na stranu AC a

−−→
AB = (bx; 0) je

normálový vektor výšky vc na stranu AB.

Výška va prochází bodem A[0; 0], její obecnou rovnicí je tedy (cx − bx)x + cyy = 0. Výška vb
prochází bodem B[bx; 0], její obecnou rovnicí je tedy cxx+ cyy− cxbx = 0. Výška vc procházející
bodem C[cx; cy] má obecnou rovnicí x− cx = 0.

Bod V určíme například jako průsečík výšek vb, vc. Z rovnice výšky vc víme, že x = cx. Dosazením

do rovnice vb za x a úpravou získáme y =
cx(bx − cx)

cy
, tj. V =

[
cx;

cx(bx − cx)

cy

]
.

Dosazením souřadnic bodu V za x, y do rovnice přímky va ověříme, že bod V ∈ va (vyjde 0 = 0),
tj. všechny výšky náleží témuž svazku se středem V .

4) Pro jaké hodnoty reálného parametru k náleží bod K[2; k] trojúhelníku A[−2;−1], B[3;−2],
C[1; 3]?

Řešení: Bod K náleží přímce, jejíž rovnice je x = 2 (jedná se o rovnoběžku s osou y). Pro vymezení
hodnot parametru k je třeba nalézt y-ové souřadnice průsečíků této přímky se stranami AB, BC
trojúhelníku ABC (viz obr.).

Obecná rovnice přímky AB je x + 5y + 7 = 0, obecná rovnice přímky BC je 5x + 2y − 11 = 0.

Bod přímky AB s x-ovou souřadnicí rovnou 2 je
[
2;−9

5

]
, na přímce BC je hledaný mezní bod[

2;
1

2

]
. Tedy k ∈

〈
−9

5
;
1

2

〉
.
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5) Bodem A[3; 1] veďte přímku a, jejíž odchylka od přímky p : 4x− 5 = 0 je rovna π
4 .

Řešení: Přímka p je rovnoběžná s osou y. Z obrázku je patrné, že odchylka α hledané přímky od

kladné poloosy x bude
π

4
nebo

3π

4
. Využijeme směrnicový tvar obecné rovnice přímky, tj. y =

= kx+ q, kde směrnice k je rovna tgα.

Pro α1 =
π

4
je k1 = 1, dosazením souřadnic bodu A do rovnice přímky získáme q = −2,

tj. y = x− 2.

Pro α2 =
3π

4
je k2 = −1, dosazením souřadnic bodu A do rovnice přímky získáme q = 4,

tj. y = −x+ 4.

přímka a rovina v prostoru

1) Napište obecnou rovnici roviny, v níž leží body A[2; 5;−1], B[3; 0; 4] a je rovnoběžná s přímkou
p = {[5− t; 3 + 2t;−4− t]; t ∈ R}.

Řešení: Vektor
−−→
AB = (1;−5; 5) a směrový vektor −→sp = (−1; 2;−1) přímky p jsou směrovými

vektory roviny, jejíž rovnici hledáme. Potřebujeme normálový vektor −→n , který získáme jako vek-
torový součin vektorů −→sp ,

−−→
AB. Vyjde −→n = (5; 4; 3), tedy obecná rovnice roviny bude mít podobu

5x+4y+3z + d = 0. Hodnotu koeficientu d určíme dosazením souřadnic bodu A nebo B, vyjde
d = −27, tedy obecná rovnice roviny je 5x+ 4y + 3z − 27 = 0.

2) Určete vzájemnou polohu rovin α a β, jestliže α: 2x − 5y − 4z − 10 = 0, β: x − y + z − 2 = 0.
Jsou-li roviny různoběžné, zapište parametrické vyjádření jejich průsečnice.

Řešení: Normálové vektory −→nα = (2;−5;−4), −→nβ = (1;−1; 1) daných rovin jsou lineárně nezávislé,
tedy roviny jsou různoběžné. Jejich průsečnicí je přímka, jejíž parametrické vyjádření získáme
řešením soustavy rovnic 2x − 5y − 4z − 10 = 0, x − y + z − 2 = 0. Doporučujeme postupovat
tak, že jednu z proměnných x, y, z položíme rovnou parametru (zde z = t) a zbývající proměnné
vyjádříme v závislosti na tomto parametru.

Parametrické vyjádření průsečnice můžeme zapsat například ve tvaru:

x = −3t,

y = −2t− 2,

z = t, t ∈ R

7
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3) V závislosti na hodnotě a ∈ R diskutujte vzájemnou polohu přímky AB, kde A[3;−1; a], B[2; 1; 3]
a roviny ϱ: 2x− 3y + z − 7 = 0.

Řešení: Přímka AB je rovnoběžná s rovinou ϱ právě tehdy, je-li směrový vektor −→s přímky AB
kolmý k normálovému vektoru −→n roviny ϱ.

Pro zmíněné vektory platí: −→s = (−1; 2; 3− a), −→n = (2;−3; 1).

Vektory jsou kolmé právě tehdy, je-li jejich skalární součin roven 0, tedy:

−1 · 2 + 2 · (−3) + (3− a) · 1 = 0,

odkud a = −5.

Tj. pro a ∈ R\{−5} je přímka AB s rovinou ϱ různoběžná, pro a = −5 je přímka AB s rovinou ϱ
rovnoběžná (a neleží v ní, neboť např. souřadnice bodu B nevyhovují rovnici roviny ϱ).

4) Dokažte, že roviny AFH, CGE určené vrcholy krychle ABCDEFGH jsou navzájem kolmé.

Řešení: Krychli (BÚNO uvažujme s hranou délky 1) umístíme vhodně do kartézské soustavy
souřadnic např. tak, jak je vidět na obrázku. Potom A = [1; 0; 0], F = [1; 1; 1], H = [0; 0; 1], tedy
−→
AF = (0; 1; 1),

−−→
AH = (−1; 0; 1) a pro normálový vektor −→n1 roviny AFH platí −→n1 = (1;−1; 1).

Dále je C = [0; 1; 0], G = [0; 1; 1], E = [1; 0; 1], tedy
−−→
CG = (0; 0; 1),

−−→
CE = (1;−1; 1) a pro

normálový vektor −→n2 roviny CGE platí −→n2 = (1; 1; 0).

Dvě roviny jsou kolmé právě tehdy, jsou-li kolmé jejich normálové vektory, což nastane právě
tehdy, je-li jejich skalární součin roven 0. Jelikož −→n1 · −→n2 = 1 · 1 + (−1) · 1 + 1 · 0 = 0, jsou dané
roviny navzájem kolmé.

5) Vypočtěte odchylku přímky q = {[−1 − 3t;−5 − t;−2t]; t ∈ R} od roviny α zadané obecnou
rovnicí x− 2y + 3z − 4 = 0.

Řešení: Pro odchylku φ′ přímky od normály roviny platí

cosφ′ =
|−→s · −→n |

||−→s || · ||−→n ||
,

kde −→s je směrový vektor přímky a −→n je normálový vektor roviny.

jelikož pro odchylku φ přímky a roviny platí φ+ φ′ =
π

2
, je cosφ′ = sinφ, a tedy

sinφ =
|(−3;−1;−2) · (1;−2; 3)|

||(−3;−1;−2)|| · ||(1;−2; 3)||
=

| − 3 + 2− 6|√
14 ·

√
14

=
1

2
,

odkud φ = 30◦.
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