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A COMPUTATIONAL STUDY OF USING BLACK-BOX QR SOLVERS FOR

LARGE-SCALE SPARSE-DENSE LINEAR LEAST SQUARES PROBLEMS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. Large-scale overdetermined linear least squares problems arise in many practical applications, both as

subproblems of nonlinear least squares problems and in their own right. One popular solution method is based on the

backward stable QR factorization of the system matrix A. This paper focuses on sparse-dense linear least squares problems,

that is, problems where A is sparse except from a small number of rows that are considered to be dense. For large-scale

problems, the direct application of a QR solver will fail because of a lack of memory or will be unacceptably slow. We

study a number of approaches for solving such problems using a sparse QR solver without modification. We consider the

case where the sparse part of A is rank-deficient and show that either preprocessing A using partial matrix stretching or

using regularization and employing a direct-iterative approach can be seamlessly combined with a black-box QR solver.

Furthermore, we propose extending the augmented system formulation with iterative refinement for sparse problems to

sparse-dense problems, and demonstrate experimentally that multi-precision variants can be successfully used.

1. Introduction. In recent years, there has been renewed interest in the development of efficient

and reliable software packages for the solution of large sparse least squares (LS) problems using the QR

algorithm [12, 15]. Although these are general-purpose packages that may be used as “black-box” solvers,

they do not effectively tackle the not uncommon case of the system matrix containing a (small) number

of dense rows (here a row is considered to be dense if it has significantly more entries than the other rows

or leads to a large amount of fill in the R factor but it is not necessarily full). These rows can result in

sparse QR solvers failing because of either a lack of memory or being unacceptably slow; numerical results

included in the study of least squares solution techniques by Gould and Scott [22, 23] demonstrate this.

To introduce our notation, we assume throughout that the rows of the system matrix A that are to

be treated as dense have been permuted to the end. With a conformal partitioning of the vector b (and

omitting the row permutation matrix for simplicity of notation) we have

A =

[
As

Ad

]
, As ∈ Rms×n, Ad ∈ Rmd×n, b =

[
bs
bd

]
, bs ∈ Rms , bd ∈ Rmd , (1.1)

where ms and md denote the number of sparse and dense rows of A, respectively, with m = ms + md,

ms ≥ n and md ≥ 1 is small (md � ms). As and Ad are referred to as the sparse and dense row blocks of

A and the rows of Ad are termed dense rows. The linear LS problem that we are interested in solving is

then

min
x
‖Ax− b‖22 = min

x

∥∥∥∥[As

Ad

]
x−

[
bs
bd

]∥∥∥∥2
2

. (1.2)

We assume that A has full column rank, in which case the solution of (1.2) is unique and is given by the

solution to the system of normal equations

Cx = AT b, C = ATA.

It is well understood that there are a number of possible problems associated with the normal equations.

Firstly, there is a potential loss of information in explicitly computing the n×n symmetric positive definite

normal matrix C and the vector AT b. Secondly, if A contains just a single dense row then C is not sparse

and thus, if n is large, it cannot be stored or factorized by a direct solver that computes a Cholesky

factorization. Then there is the fact that the condition number of C is the square of that of A, so that
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an accurate solution may be difficult to compute if A is poorly conditioned. If A is not full rank, the

Cholesky factorization of C breaks down; near rank degeneracy causes similar numerical problems in finite

precision arithmetic. One way to try and lessen the numerical issues is to avoid computing C and to

obtain its Cholesky factor R directly from A by computing its QR factorization. An orthogonal matrix Q

is computed such that

AP = Q

[
R

0

]
and b = Q

[
c

d

]
, (1.3)

where R ∈ Rn×n is upper triangular (and non singular if A is of full rank) and P ∈ Rn×n is a permutation

matrix that performs column interchanges to limit the fill in R. Since the Euclidean norm is invariant

under orthogonal transformation, the solution to (1.2) may be obtained by solving the system

RPTx = c. (1.4)

Over the years, there has been significant work on QR factorizations for solving large sparse LS problems

(see, for example, the book by Björck [11] and the references therein as well as [4, 12, 15, 44]).

Unfortunately, for large problems of the form (1.2), a straightforward application of the QR algorithm

will fail because, as already observed, the block Ad of dense rows causes the factor R to fill in, limiting

the usefulness of black-box sparse QR solvers.

The difficulties that a (small) number of dense rows presents has been studied in the literature; see,

for example, [2, 5, 11, 21, 25, 36, 37, 38, 39, 40, 41, 42]. The purpose of this paper is to consider how we

can use a black-box QR package to solve such systems both efficiently and robustly. A number of different

approaches are proposed and compared using problems from practical applications. A key challenge is

that the sparse row block As is often rank deficient so that a QR package cannot be applied directly to

it. In Section 2, we recall the use of updating [25] to handle dense rows. Then, in Section 3, we consider

two preprocessing approaches that extend the applicability of updating when As is rank deficient: partial

matrix stretching [39] and regularization [34]. Both avoid break down of the QR algorithm by enlarging

the problem that it is applied to. In Section 4, we discuss using a QR factorization of the sparse row block

combined with an iterative solver. Numerical results are presented in Section 5. These illustrate that

updating works well if As is of full rank, offering significant savings compared to applying the QR solver

with no special handling of dense rows. For rank-deficient As, we show that both preprocessing strategies

are effective. If stretching is used, the solution of the original problem can be directly extracted while if

regularization is used, it can be recovered by employing a preconditioned iterative solver. An alternative

approach based on the augmented system formulation of the LS problem is considered in Section 6. We

extend this approach to sparse-dense LS problems. This extension allows, in particular, the incorporation

of iterative refinement with a preconditioned Krylov subspace solver. We demonstrate how this may be

used, including with the incorporation of multi-precision arithmetic, which reduces the cost of the direct

solver part of the solution process (in terms of memory and potentially time), while still returning the

requested accuracy.

2. The updating approach. Updating procedures are used in least squares applications when new

observations are added to a previously solved problem; they can also handle dense rows by omitting such

rows from the QR factorization and then updating the solution (but not the factorization) to incorporate

the effects of the omitted rows. The approach is described in the 1982 paper of Heath [25]. Assume that

the sparse block As is of full rank and start by computing the QR factorization

AsPs = Qs

[
Rs

0

]
and bs = Qs

[
cs
ds

]
. (2.1)

The solution y of the sparse LS problem

min
y
‖Asy − bs‖22, (2.2)
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is then found by solving

RsP
T
s y = cs. (2.3)

Let the solution of (1.2) be x = y + z; it remains to determine z. Using (2.1) and (2.3),

bs −Asx = bs −AsPs(P
T
s y + PT

s z) = Qs

[
cs
ds

]
−Qs

[
Rs

0

]
(PT

s y + PT
s z) = Qs

[
−RsP

T
s z

ds

]
.

Let rd = bd−Ady. Then bd−Adx = rd−Adz and we see that z is given by the solution of the LS problem

min
z

∥∥∥∥[RsP
T
s

Ad

]
z −

[
0

rd

]∥∥∥∥2
2

. (2.4)

Let KT
d ∈ Rn×md be the solution of the linear system PsR

T
s K

T
d = AT

d . Using the change of variables

u = RsP
T
s z and v = rd − Adz = rd −KdRsP

T
s z = rd −Kdu, problem (2.4) becomes that of finding the

minimum-norm solution of the underdetermined md × (n+md) system

[
Kd Imd

] [u
v

]
= rd. (2.5)

Here, and elsewhere, for k ≥ 1, Ik denotes the k× k identity matrix. This leads to Algorithm 1 for solving

(1.2) (see Algorithm 3 of [25]).

Algorithm 1 QR with updating for solving the sparse-dense LS problem (1.2)

1: Compute the sparse QR factorization AsPs = Qs

[
Rs

0

]
and set

[
cs
ds

]
= QT

s bs.

2: Solve RsP
T
s y = cs.

3: Form rd = bd −Ady.

4: Solve PsR
T
s K

T
d = AT

d .

5: Compute the minimum norm solution of (2.5).

6: Solve RsP
T
s z = u.

7: Set x = y + z.

The sparse triangular factor Rs is used to solve the large linear systems in this algorithm (Steps 2, 4

and 6); once (2.1) is performed, Q is not needed, unless there is a requirement to solve for further vectors b.

Steps 3 and 4 involve dense linear algebra; in particular, the solution of (2.5) can be efficiently computed

using the LAPACK routine getsls.

3. Updating when As has some null columns. In practice, As frequently has one or more null

columns or is close to being rank deficient [39]. In this case, the QR factorization is backward stable

but the computed R factor is ill conditioned. This usually leads to the computed LS solution having a

very large norm. In our case, there will be problems with Steps 2, 4 and 6 of Algorithm 1, leading to an

inaccurate x. This also happens if the R factor is used as a preconditioner for an iterative solver: the

solver terminates after a very few iterations with a solution that has a huge norm. Thus we want to avoid

ill conditioning in R. Avron, Ng and Toledo [5] propose a strategy involving adding singleton rows to the

matrix A. They do this dynamically (during the factorization) and then, once the factorization is finished,

a check is made of the conditioning of R and, if necessary, further rows are added and rotated into R

using Givens rotations. Their aim is to ensure R is not ill conditioned while doing as few modifications

as possible (a low rank modification). Because our objective is to use an existing QR package as a black

box solver (without modification), we are unable to dynamically add rows during the factorization. We

consider two alternative approaches for handling null columns in As that allow us to use an unmodified

QR package: matrix stretching and regularization.
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3.1. Sparse and partial matrix stretching. Matrix stretching aims to split each dense row (that

is, each row of Ad) into a number of sparser rows and to formulate a (larger) modified problem from which

the solution to the original LS problem can be derived. The idea was proposed by Grcar [24] and was

subsequently used in a number of different contexts for solving linear systems [3, 6, 18, 19]. Stretching has

also been applied to LS problems [1, 2]. Stretching treats the dense rows one by one. Standard stretching

splits the row indices of the non zero entries in each dense row into sets of (almost) equal contiguous

segments; an extra row and column is added to the matrix with entries corresponding to each of these sets.

However, this splitting can result in significant fill in the normal matrix for the resulting stretched matrix

(and also in its factors). Simply increasing the number of segments each dense row is split into does not

necessarily alleviate the problem (the stretched system increases in size with the number of parts) and

may adversely effect the conditioning. This led us to introduce a new approach, which we termed sparse

stretching [38]. It aims to choose the splitting so as to limit the fill in the stretched normal matrix. It

does this by considering the pattern of the normal matrix AT
s As corresponding to the sparse row block

and, for each row in Ad, chooses the subsets of row indices so as to minimise the number of entries in the

normal matrix for the stretched matrix. While numerical experiments have shown that sparse stretching

successfully reduces the fill in compared to standard stretching, it can result in the stretched system being

much larger than the original system (particularly in the case where As is highly sparse, for example, close

to diagonal) and the cost of the factorization (in terms of time and memory) may still be prohibitive.

To circumvent this, we recently proposed partial stretching [39]. The idea here is to select a small

subset of the rows of Ad that cause As to have null columns and to apply sparse stretching just to these

rows, adding them to an enlarged sparse row block Âs and moving the remaining dense rows to a block

Âd that has fewer rows than Ad. The result is a partially stretched matrix with no null columns that, in

general, is smaller than would result from stretching all the dense rows. It may still contain some dense

rows and these can be handled by applying the updating Algorithm 1 to the partially stretched problem.

In the event that Âs is rank deficient (or highly ill conditioned) after partial stretching, further rows of

Ad may be stretched before updating is employed.

3.2. Regularization. An alternative approach to handling null columns in As is to use regularization

(see, for example, [34]). This increases the row dimension by replacing (1.2) with the regularized (or

damped) LS problem

min
x
‖Ax− b ‖22 + ‖αx‖22 = min

x

∥∥∥∥∥∥
As

αIn
Ad

x−
bs0
bd

∥∥∥∥∥∥
2

2

= min
x

∥∥∥Ãx− b̃ ∥∥∥2
2
, (3.1)

where α > 0 is the regularization (or damping) parameter. A key advantage of regularization is that

appending αIn to As gives a full rank sparse block and thus Algorithm 1 can be successfully applied

to the regularized problem. The regularized matrix Ã is of size (ms + n) × n, but it involves only n

additional entries compared to the original A. An important issue is how to choose the parameter α: too

little regularization (“small” α) can lead to the QR factorization having numerical difficulties while for

excessive regularization (“large” α), the computed objective value may be unacceptably different from the

optimum for the original problem. Saunders [34] looks at linear programming problems (without dense

rows) from the Netlib test set (http://www.netlib.org/). For these, provided the problem has been

prescaled, he reports that α = 10−4 gives satisfactory solutions. More generally, Saunders recommends

α ≥ 10−5‖A‖2. In Section 5.2, we include results for regularization combined with updating using a range

of values of α.

4. QR with an iterative solver. In their paper on QR factorizations for LS problems, Avron et

al [5] propose ignoring the dense rows and combining the use of a direct solver with an iterative one.

Specifically, they suggest computing the QR factorization of the sparse row block As and then using the

computed R factor as a preconditioner for an iterative method (such as LSQR [31] or LSMR [20]) applied

to the original problem. Again, success of the QR step requires As to be of full rank. If As contains null
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columns, we can extend the applicability of the approach, either by first applying partial stretching or, for

more general rank-deficient As, by employing regularization before the QR step.

In [5], limited numerical experiments are reported and the authors state that the updating approach of

Heath is sometimes more efficient than using their preconditioned solver method but not always. Further

details are not given. If we compare the two approaches under the assumption that As is of full rank then

both compute the QR factorization of As and this is typically the most expensive step. The updating

Algorithm 1 then involves a solve with Rs at Steps 2 and 6 (single right hand side) and a solve with RT
s

at Step 4 with md right-hand sides (recall that md is the number of rows in Ad), thus a total of md + 2

triangular solves are performed. In addition, there is a gemv operation at Step 4 and the application of

the dense routine getsls at Step 5. By comparison, each iteration of an iterative solver with Rs as the

preconditioner requires a matrix-vector product with A and with AT plus a solve with Rs and a solve with

RT
s . Thus, unless the number of iterations required is very small and products with As and AT

s very cheap,

the QR direct-iterative approach of Avron et al. will be more expensive than the updating of Heath. The

QR direct-iterative method is, however, potentially attractive if the LS problem needs to be solved for

different vectors b because it is not necessary to store the Q factor, whereas the Heath approach requires

cs = QT
s bs to be computed for each bs and so sufficient information on Qs must be held to allow this. Note

that because Qs is typically much denser than As, it may be prohibitively expensive to store Qs explicitly.

To avoid this, the Householder transformations used to compute it can be stored.

Using an iterative solver may be necessary for very large problems for which memory limitations mean

a QR factorization of As is not possible but it could possibly be replaced by an incomplete factorization.

There have been a number of approaches to computing a LS preconditioner based on incomplete orthogonal

factorizations (including [7, 8, 9, 27, 28, 32, 33, 43]); no comparisons have been made between them. This

is probably because, with the exception of the MIQR package of Li and Saad [28] there is (as far as we are

aware) no software available (and the implementations are non trivial). In their study of preconditioners for

LS problems, Gould and Scott [22, 23] included MIQR. They reported that it was generally not competitive

with other preconditioners (most notably, the limited memory incomplete Cholesky factorization of the

normal equations available within the HSL mathematical software library [26] as package HSL MI35 [35, 37])

and thus we do not experiment with it here. Developing and implementing an algorithm for efficient and

reliable incomplete orthogonal factorization preconditioners remains an open question.

5. Numerical experiments. In this section, we look at the performance of the approaches that

we have discussed so far when applied to practical applications. The serial HSL QR package MA49

was developed in the 1990s [4]; more recently, there is SuiteSparseQR of Davis [15]1 and qr mumps

of Buttari [12]2. These are general-purpose multifrontal sparse QR packages, and the latter two are

designed to exploit parallelism. It is not our intention to try and compare these codes or to assess their

efficiency for solving general sparse LS problems: our interest is in using an existing sparse QR package

without modification to solve mixed sparse-dense LS problems. In our experiments, unless stated otherwise,

we employ SuiteSparseQR with default settings and COLAMD ordering for sparsity [16]. The Fortran

interface that we use here was also used in [23]. We note that SuiteSparseQR appears in MATLAB as QR

and as x = A\b for rectangular systems and thus is widely used.

We have developed Fortran code for performing sparse and partial stretching. The iterative solver

we use is a Fortran implementation of LSMR [20] with a reverse communication interface3. The initial

solution guess is taken to be x(0) = 0 and, following [23], we require the computed residual r = b−Ax to

satisfy either ‖r‖2 < δ1 or ratio < δ2, where

ratio =
‖AT r‖2/‖r‖2
‖AT b‖2/‖b‖2

. (5.1)

The convergence tolerances δ1 and δ2 are set to 10−8 and 10−6, respectively. The vector b is taken to

1http://faculty.cse.tamu.edu/davis/suitesparse.html
2http://buttari.perso.enseeiht.fr/qr\_mumps/.
3http://stanford.edu/group/SOL/software/lsmr/
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be the vector of 1’s. In our experiments, we prescale A by normalizing each of its columns. That is, we

replace A by AD, where D is the diagonal matrix with entries Dii satisfying D2
ii = 1/‖Aei‖2 (ei denotes

the i-th unit vector). The entries of AD are at most one in absolute value.

Our test problems, which are given in Table 5.1, are from the SuiteSparse Matrix Collection4. If

necessary, the matrix is transposed to give an overdetermined system (m > n). The md dense rows are

identified using the variant of the approach of Meszaros [29] described in [39] (with the density parameter

set to 0.05). nds is the number of null columns in As. In Table 5.1, we report the results of employing

SuiteSparseQR to solve the LS problem with no special handling of the dense rows (for problem PDE1,

the memory requirements cause an error return). The characteristics of the test machine that we use are

summarized in Table 5.2.

Table 5.1

Test examples. m and n are the row and column dimensions of A, md is the number of dense rows, nds is the number

of null columns in As after the removal of the block Ad of md dense rows from A. nnz(R) is the number of entries in the R

factor of A and flops is the number of floating-point operations to compute it. ratio is given by (5.1). The SuiteSparseQR

solution time (denoted Time) is in seconds. NS denotes insufficient memory to perform QR factorization.

Identifier m n md nds nnz(R) flops ‖x‖2 ‖r‖2 ratio Time

lp fit2p 13525 3000 25 0 4.502×106 5.687×1010 1.689×101 1.105×102 3.841×10−9 0.86

sctap1-2b 33858 15390 34 0 8.532×106 7.572×1010 8.171×101 1.237×102 3.375×10−13 1.67

sctap1-2r 63426 28830 34 0 2.952×107 4.973×1011 1.117×102 1.694×102 5.603×10−13 14.0

south31 36321 18425 5 0 1.618×108 3.839×1012 2.748×101 1.881×102 3.008×10−13 48.4

PDE1 271792 270595 1 0 NS

aircraft 7517 3754 17 4 3.108×106 8.287×109 2.000 8.660×101 1.514×10−14 0.15

sc205-2r 62423 35213 8 1 2.331×107 1.374×1011 3.478×102 2.034×102 8.560×10−14 3.00

scagr7-2b 13847 9743 7 1 2.388×106 8.961×109 1.387×102 6.068×101 3.561×10−13 0.05

scagr7-2r 46679 32847 7 1 2.650×107 3.414×1011 5.693×102 1.132×102 1.665×10−12 1.13

scrs8-2r 27691 14364 22 7 2.218×107 1.989×1011 6.436×103 1.354×102 9.289×10−12 6.47

scsd8-2r 60550 8650 50 5 7.900×106 9.999×1010 2.837 2.461×102 1.210×10−14 1.78

Table 5.2

Test machine characteristics

CPU two Intel Core i7-7700 3.6Ghz Quad Core processors

Memory 16 GB

Compiler gfortran version 7.4.0 with options -O3 -fopenmp

BLAS Intel MKL

5.1. As full rank. We first present results for the problems in the top half of Table 5.1 for which As

has no null columns (and so regularization is not employed). We compare three approaches:

• Updating (Algorithm 1).

• Sparse stretching (each row of Ad is stretched).

• The QR direct-iterative method of Section 4.

In our tables of results, these approaches are termed Updating, Stretching, and QR+LSMR, respectively.

Updating and QR+LSMR compute the same QR factorization of As while Stretching computes the QR

factorization of the stretched matrix. In Table 5.3, we report statistics for the QR factorization as well as

the norm of the computed solution ‖x‖2 and residual ‖r‖2 (and for QR+LSMR, the number of iterations

required to achieve convergence is given); timings are presented in Table 5.4. We give timings for each

phase of the solution process together with the total time. For Updating, Solve is the time for solving the

triangular linear systems in Steps 2, 4 and 6 of Algorithm 1 plus the time for solving (2.5). For QR+LSMR,

Solve is the time to run preconditioned LSMR and, for Stretching, it is the time to taken to solve (1.4)

with the R factor for the stretched system.

4https://sparse.tamu.edu/
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Table 5.3

A performance comparison of QR-based approaches when As is full rank. m̃ and ñ are the row and column dimensions

of the matrix that is factorized using SuiteSparseQR. nnz(Rs) is the number of entries in the R factor and flops is the

number of floating-point operations to compute it. its denotes the number of LSMR iterations performed (QR+LSMR only).

ratio is given by (5.1).

Identifier Approach m̃ ñ nnz(Rs) flops its ‖x‖2 ‖r‖2 ratio

lp fit2p Updating 13500 3000 3.000×103 4.050×104 1.689×101 1.105×102 5.570×10−11

Stretching 50284 39759 7.478×106 2.782×1011 1.689×101 1.105×102 3.821×10−9

QR+LSMR 13500 3000 3.000×103 4.050×104 44 1.689×101 1.105×102 9.734×10−8

sctap1-2b Updating 33826 15390 1.111×105 4.063×106 8.171×101 1.237×102 3.348×10−12

Stretching 45172 26704 2.522×106 6.467×109 8.171×101 1.237×102 8.210×10−14

QR+LSMR 33826 15390 1.111×105 4.063×106 43 8.171×101 1.237×102 8.420×10−7

sctap1-2r Updating 63392 28830 2.084×105 7.618×106 1.116×102 1.694×102 1.427×10−11

Stretching 84596 50000 5.571×106 1.943×1010 1.116×102 1.694×102 1.677×10−13

QR+LSMR 63392 28830 2.084×105 7.618×106 40 1.116×102 1.694×102 8.459×10−7

south31 Updating 36317 18425 1.985×106 9.400×108 2.748×101 1.881×102 7.095×10−15

Stretching 36810 18914 5.905×106 1.888×1010 2.748×101 1.881×102 4.675×10−15

QR+LSMR 36317 18425 1.985×106 9.400×108 6 2.748×101 1.881×102 9.704×10−15

PDE1 Updating 271791 270595 1.392×107 7.813×109 4.282×102 3.030×102 1.337×10−11

Stretching 362388 361191 3.349×107 3.336×1010 4.282×102 3.030×102 1.054×10−10

QR+LSMR 271791 270595 1.392×107 7.813×109 2 4.282×102 3.030×102 2.122×10−9

Table 5.4

A comparison timings (in seconds) for QR-based approaches when As is full rank. Stretch denotes the time to

perform stretching. Symbolic and Numeric are the times for the symbolic analysis and numerical factorization phases

of SuiteSparseQR, respectively. Solve is the solution time after the QR factorization has been computed. Total denotes the

total solution time.

Identifier Approach Stretch Symbolic Numeric Solve Total

lp fit2p Updating 0.001 0.001 0.002 0.004

Stretching 0.443 0.055 1.166 0.006 1.670

QR+LSMR 0.001 0.001 0.013 0.015

sctap1-2b Updating 0.005 0.005 0.011 0.021

Stretching 0.397 0.019 0.152 0.003 0.571

QR+LSMR 0.009 0.006 0.048 0.063

sctap1-2r Updating 0.012 0.009 0.025 0.046

Stretching 1.158 0.042 0.460 0.008 1.668

QR+LSMR 0.013 0.010 0.096 0.119

south31 Updating 0.006 0.071 0.018 0.095

Stretching 0.019 0.010 0.397 0.006 0.432

QR+LSMR 0.006 0.069 0.037 0.112

PDE1 Updating 0.150 0.485 0.057 0.692

Stretching 21.17 0.215 1.269 0.035 22.69

QR+LSMR 0.159 0.472 0.103 0.734

We see that each approach is successful in computing x and r with the same norm. As expected,

Updating is faster than QR+LSMR, with the additional cost dependent on the number of LSMR iterations.

For Updating, Solve can account for more than half the total solution time (for example, the sctap1 test

cases) but for problems for which the numerical factorization is expensive, it adds little overhead. Observe,

in particular, problem PDE1 that has only one row that is classified as dense and this is 67% full (which is

much denser than rows in the other examples that are classified as dense). For this example, the majority

of the Updating run time is taken by the QR step whereas for Stretching, the initial stretching of A

dominates the time. In general, Stretching is expensive, both in terms of time and storage requirements

because the stretched matrix can be much larger than the original one. Problem lp fit2p is an extreme

example of this because, in this instance, the sparsity pattern of As is close to diagonal, causing the sparse
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stretching algorithm to split each dense row into a large number of parts, which determines the dimensions

of the stretched system. We note that our software that implements stretching has not been optimised

and it may be possible to improve its efficiency. Nevertheless, the time to stretch the matrix clearly adds

a significant overhead. Overall, our experiments suggest that if As is full rank then using Algorithm 1

(Updating) is the best of the approaches considered and offers very significant savings compared to the

results of Table 5.1 that did not handle the dense rows separately. Note, in particular, the reduction in

the total solution time for problem south31 (which has just 5 dense rows) from 48 seconds to less than 0.1

second.

5.2. As rank deficient. We now move to the more challenging case in which the sparse row block

As is rank deficient. Here and elsewhere, we use Ãs to denote either the sparse row block of the partially

stretched A or the regularized sparse matrix

[
As

αIn

]
and R̃s is its R factor.

Our first experiment compares applying Updating (Algorithm 1) directly to the original problem with

applying it to the problem that results from first performing partial stretching to give a sparse row block

Ãs that has no null columns. Results are given in Table 5.5. Here nds is the number of rows that are

stretched, which is equal to the number of null columns in As. We see that, without stretching, ratio

is large, ‖r‖2 is greater than for partial stretching and ‖x‖2 is very different, confirming that a direct

application of Algorithm 1 does not yield the required result for rank deficient As. Partial stretching

generally leads to a modest increase in the size of the matrix that is factorized (the exception is problem

aircraft because for this example As is highly sparse). The only problem for which partial stretching is

Table 5.5

A performance comparison of approach Updating when As is rank deficient with and without partial stretching. nds

denotes the number of rows that are stretched (nds = 0 denotes no stretching); m̃ and ñ are the row and column dimensions

of the matrix that is factorized using SuiteSparseQR. nnz(R̃s) is the number of entries in R̃s and flops is the number of

floating-point operations needed to compute it. ratio is given by (5.1).

Identifier nds m̃ ñ nnz(R̃s) flops ‖x‖2 ‖r‖2 ratio

aircraft 0 7517 3754 3.750×103 2.250×104 4.964×10−3 8.661×101 3.521×10−4

4 10517 6754 4.719×104 9.333×105 2.000 8.660×101 2.879×10−14

sc205-2r 0 62423 35213 2.704×105 6.394×106 8.770×101 2.038×102 1.877×10−3

1 64023 36813 3.175×105 8.253×106 3.478×102 2.033×102 6.728×10−11

scagr7-2b 0 13847 9743 6.026×104 2.417×106 1.104×102 6.069×101 7.784×10−5

1 15127 11023 1.186×105 5.029×106 1.387×102 6.068×101 8.845×10−12

scagr7-2r 0 46679 32847 2.273×105 7.715×106 1.818×102 1.133×102 8.859×10−5

1 50999 37167 4.673×105 1.881×107 5.693×102 1.132×102 4.343×10−11

scrs8-2r 0 27691 14364 8.200×104 1.171×106 7.961×101 1.459×102 3.966×10−3

7 32820 19493 4.242×105 4.655×107 6.435×103 1.354×102 2.457×10−12

scsd8-2r 0 60550 8650 9.073×104 2.660×107 1.091×10−1 2.461×102 4.055×10−2

5 62710 10810 2.421×105 3.880×107 2.373 2.461×102 2.237×10−3

unsuccessful is scsd8-2r. For this example, As has 5 null columns but its rank deficiency is 6. Thus after

stretching nds = 5 rows, the sparse part Ãs has rank deficiency 1 and Updating leads to large ratio. This

can be remedied by stretching additional rows to make Ãs full rank.

Regularization requires the selection of an appropriate regularization parameter α. Table 5.6 illustrates

that, if regularization is combined with Updating (that is, Algorithm 1 applied to (3.1)), then as α

increases, the deviation of the computed solution from the desired solution may be unacceptable; it is

also unacceptable for very small α. The computed solution is for the regularized problem. However, if we

compute the QR factorization of the regularized sparse matrix, then we can use R̃s as a preconditioner

for LSMR applied to the original system and thus compute the solution of the (unregularized) problem.

That is, within the LSMR algorithm, matrix-vector products are with the original A and the stopping

criteria are applied to the original system. In Figure 5.1, for 10−7 ≤ α ≤ 1 we plot the number of LSMR

iterations for this approach applied to problems scagr7-2b and scrs8-2r. As we expect, the iteration count
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Table 5.6

Results for regularization combined with Updating for a range of values of the regularization parameter α. ratio is given

by (5.1).

α scagr7-2b scrs8-2r

‖x‖2 ‖r‖2 ratio ‖x‖2 ‖r‖2 ratio

1.0×10−11 1.1045×102 6.0686×101 7.7845×10−5 7.9612×101 1.4595×102 3.9660×10−3

1.0×10−10 1.1045×102 6.0686×101 7.7845×10−5 7.9612×101 1.4595×102 3.9660×10−3

1.0×10−9 1.3868×102 6.0677×101 9.8318×10−8 6.4355×103 1.3537×102 3.5548×10−8

1.0×10−8 1.3868×102 6.0677×101 5.8658×10−8 6.4355×103 1.3537×102 5.5789×10−9

1.0×10−7 1.3868×102 6.0677×101 6.9576×10−9 6.4355×103 1.3537×102 5.6097×10−10

1.0×10−6 1.3868×102 6.0677×101 2.4533×10−10 6.4355×103 1.3537×102 5.2442×10−11

1.0×10−5 1.3868×102 6.0677×101 3.0287×10−10 6.4354×103 1.3537×102 1.6714×10−8

1.0×10−4 1.3867×102 6.0677×101 2.9832×10−8 6.4250×103 1.3537×102 1.6677×10−6

1.0×10−3 1.3836×102 6.0677×101 2.9826×10−6 5.5945×103 1.3539×102 1.5535×10−4

1.0×10−2 1.2140×102 6.0679×101 2.9486×10−4 3.1728×103 1.3587×102 1.0847×10−2

1.0×10−1 8.7196×101 6.0969×101 2.7369×10−2 8.9678×102 1.4093×102 1.5157×10−1

1.0 2.8011×101 8.4479×101 5.9665×10−1 1.8850×101 1.5274×102 5.0195

increases with α but, for a range of values, there is little variation in the count; it is only once α > 10−3

that a large number of iterations is needed. The lack of sensitivity is encouraging because it implies that,

provided the problem is well scaled, the precise choice of the regularization parameter is not important.

Fig. 5.1. LSMR iteration counts for a range of values of the regularization parameter α for problems scar7 2b (left)

and scrs8-2r (right).
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We next compare partial stretching (denoted by PStretching) with regularization. Results are given in

Tables 5.7 and 5.8. For approach PStretching, we apply partial stretching, compute the QR factorization

of Ãs, use the R factor R̃s as a preconditioner for LSMR applied to the stretched problem and then

recover the solution of the original problem. For the approach Regular, we perform regularization (with

α = 10−5), and use the computed R factor to precondition LSMR applied to the original problem. In

each case, ratio is for the original problem. We see that both approaches are successful and the iteration

counts are similar. However, ratio is consistently smaller for PStretching. To try to reduce ratio further

for approach Regular, additional LSMR iterations can be performed. But in our experiments we observed

that, in general, Regular was unable to produce values of ratio as small as those obtained with PStretching.

The disadvantages of PStretching are that the number of entries in the R factor and the flop count to

compute it are generally greater and, again, it is expensive to perform the partial stretching.

Finally, we consider how the number of dense rows effects the performance of preconditioned LSMR.

We have already seen in Table 5.4 that the first three problems, which contain more dense rows than the

final two, have a higher iteration count. We now explore varying the number of dense rows using the test

problem south31. If the density threshold is set to 0.01 in the algorithm used for dense row detection, then

381 rows are classified as dense (with varying numbers of entries). We select dense rows in a random order

and solve a modified problem in which we take As to be the matrix with the 381 dense rows discarded and
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Table 5.7

A performance comparison of employing R̃s computed using partial stretching and regularization as a preconditioner

for LSMR when As is rank deficient. m̃ and ñ are the row and column dimensions of the matrix that is factorized using

SuiteSparseQR. nnz(R̃s) is the number of entries in the factor R̃s and flops is the number of floating-point operations

needed to compute it. its denotes the number of LSMR iterations performed. ratio is given by (5.1).

Identifier Approach m̃ ñ nnz(R̃s) flops its ‖x‖2 ‖r‖2 ratio

aircraft PStretching 10517 6754 4.719×104 9.333×105 9 2.000 8.660×101 4.947×10−12

Regularization 11271 3754 3.754×103 3.376×104 7 2.000 8.660×101 5.476×10−7

sc205-2r PStretching 64023 36813 3.175×105 8.253×106 6 3.478×102 2.033×102 9.983×10−9

Regularization 97636 35213 2.704×105 1.209×107 7 3.478×102 2.033×102 1.002×10−8

scagr7-2b PStretching 15127 11023 1.186×105 5.029×106 7 1.387×102 6.068×101 2.129×10−12

Regularization 23590 9743 6.027×104 3.667×106 8 1.387×102 6.068×101 3.979×10−9

scagr7-2r PStretching 50999 37167 4.673×105 1.881×107 7 5.693×102 1.132×102 1.046×10−10

Regularization 79526 32847 2.273×105 1.275×107 8 5.693×102 1.132×102 3.470×10−8

scrs8-2r PStretching 32820 19493 4.242×105 4.655×107 7 6.435×103 1.354×102 3.311×10−12

Regularization 42055 14364 8.200×104 2.835×106 16 6.435×103 1.354×102 3.532×10−7

Table 5.8

A comparison of timings (seconds) of employing R̃s computed using partial stretching and regularization as a

preconditioner for LSMR when As is rank deficient. Stretch denotes the time to perform stretching. Symbolic and Numeric

are the times for the symbolic analysis and numerical factorization phases of SuiteSparseQR, respectively. Solve is the

solution time after the QR factorization has been computed. Total denotes the total solution time.

Identifier Approach Stretch Symbolic Numeric Solve Total

aircraft PStretching 0.058 0.002 0.002 0.004 0.066

Regularization 0.001 0.001 0.001 0.003

sc205-2r PStretching 0.091 0.016 0.011 0.021 0.139

Regularization 0.015 0.010 0.017 0.042

scagr7-2b PStretching 0.017 0.005 0.005 0.006 0.033

Regularization 0.005 0.003 0.007 0.015

scagr7-2r PStretching 0.179 0.016 0.017 0.024 0.236

Regularization 0.017 0.012 0.022 0.051

scrs8-2r PStretching 0.128 0.008 0.016 0.013 0.165

Regularization 0.004 0.004 0.013 0.021

scsd8-2r Regularization 0.010 0.007 0.041 0.058

then choose md to lie in the range 1 to 381 (the other 381 −md rows identified as dense are discarded).

We perform regularization combined with LSMR and, in Table 5.9, we report the number of iterations for

each choice of md. As expected, the number of iterations increases steadily with md, confirming that the

approach is most suited to problems with a limited number of dense rows.

Table 5.9

The LSMR iteration count for the (modified) problem south31 as the number md of dense rows increases.

md 1 10 20 50 100 150 200 250 300 350 381

Iterations 3 11 23 41 44 44 61 137 166 175 181

6. Sparse-dense augmented system approach with iterative refinement. In this section, we

extend the augmented system formulation of LS problems to sparse-dense LS problems. In particular, we

propose a QR-based approach for handling dense rows in A that enables the incorporation of iterative

refinement. As already noted, LS problems can be ill conditioned, and so rounding errors may result

in an insufficiently accurate solution; accuracy may be improved by employing iterative refinement.

Before describing our extension, we recall the standard augmented system LS formulation with iterative

refinement.

The idea was first suggested by Björck [10] in 1967. He proposed applying iterative refinement to the
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mathematically equivalent (m+ n)× (m+ n) augmented system[
Im A

AT 0

] [
r

x

]
=

[
b

0

]
, r = b−Ax. (6.1)

Given an initial solution x(0) and r(0) = b−Ax(0), the (i+ 1)st refinement step proceeds as follows.

1. Compute the residual vector for the augmented system[
f (i)

g(i)

]
=

[
b

0

]
−
[
Im A

AT 0

] [
r(i)

x(i)

]
=

[
b− r(i) −Ax(i)
−AT r(i)

]
. (6.2)

2. Solve for the corrections [
Im A

AT 0

] [
δr(i)

δx(i)

]
=

[
f (i)

g(i)

]
. (6.3)

3. Update the solution to the augmented system[
ri+1

xi+1

]
=

[
δr(i)

δx(i)

]
+

[
r(i)

x(i)

]
. (6.4)

In this way, the solution x(i) and residual r(i) are simultaneously refined. If the QR factorization of A has

been computed, Björck showed that (6.3) can be solved by reusing the factors. To introduce our notation,

consider the augmented system [
Im A

AT 0

] [
u

v

]
=

[
w

t

]
. (6.5)

Using the QR factorization (1.3), we have

[
Im AP

PTAT 0

] [
u

PT v

]
=

[
Q

In

] In 0 R

0 Im−n 0

RT 0 0

[QT

In

] [
u

PT v

]
=

[
w

PT t

]
,

so that  In 0 R

0 Im−n 0

RT 0 0

 e

f

PT v

 =

 c

d

PT t

 ,
where [

c

d

]
= QTw and u = Q

[
e

f

]
= Q

[
e

d

]
.

The component e is found by solving

PRT e = t,

and finally v is the solution of

RPT v = c− e.

Thus a solve with R and with RT plus one multiplication with Q and one with QT are required. The

augmented system approach has been used by Demmel, Hida, Riedy, and Li [17] and, very recently, by

Carson, Higham and Pranesh [14] in their work on multi-precision iterative refinement algorithm for LS

problems.
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Consider now the sparse-dense LS problem in which A is of the form (1.1). Assume a conformal

partitioning of u and w. After block permuting, the augmented system (6.5) becomesIms
As 0

AT
s 0 AT

d

0 Ad Imd

usv
ud

 =

ws

t

wd

 . (6.6)

Using the QR factorization (2.1) of the sparse block As, we obtain
In 0 Rs 0

0 Ims−n 0 0

RT
s 0 0 PT

s A
T
d

0 0 AdPs Imd



es
fs
PT
s v

ud

 =


cs
ds
PT
s t

wd

 , (6.7)

where Ps is the permutation from (2.1) and[
cs
ds

]
= QT

s ws and us = Qs

[
es
fs

]
= Qs

[
es
ds

]
.

Thus to solve (6.5) when A contains dense rows, we need to compute es, v and ud. It is convenient to

rewrite the system (6.7) as [
R̂s ÂT

d

Âd Imd

] [
v̂

ud

]
=

[
t̂

wd

]
, (6.8)

with

R̂s =

 In 0 Rs

0 Ims−n 0

RT
s 0 0

 , (6.9)

and

Âd =
[
0 0 AdPs

]
, v̂ =

 es
fs
PT
s v

 t̂ =

 cs
ds
PT
s t

 . (6.10)

Consider the block factorization[
R̂s ÂT

d

Âd Imd

]
=

[
Ims+n 0

B Imd

] [
R̂s 0

0 S

] [
Ims+n BT

0 Imd

]
=

[
R̂s R̂sB

T

BR̂s S +BR̂sB
T

]
. (6.11)

Equating terms yields

R̂sB
T = ÂT

d (6.12)

and

S = Imd
−BR̂sB

T . (6.13)

Let B =
[
B1 B2 B3

]
with B1, B3 ∈ Rmd×n and B2 ∈ Rmd×ms−n. Then from (6.10) and (6.12), we see

that BT
1 is the solution of the system

PsR
T
s B

T
1 = AT

d , (6.14)

B2 = 0, and B3 satisfies

BT
1 +RsB

T
3 = 0. (6.15)
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It follows that

S = Imd
−B3P

T
s A

T
d = Imd

−B3R
T
s B

T
1 = Imd

+B1B
T
1 . (6.16)

Using the block factorization (6.11), we can solve (6.8) by solving the lower triangular system[
Ims+n 0

B Imd

] [
ŷ

z

]
=

[
t̂

wd

]
, (6.17)

followed by [
R̂s 0

0 S

] [
p̂

q

]
=

[
ŷ

z

]
, (6.18)

and finally the upper triangular system[
Ims+n BT

0 Imd

] [
v̂

ud

]
=

[
p̂

q

]
. (6.19)

From (6.17), ŷ = t̂ and using (6.10) and (6.15),

z = wd −Bt̂ = wd − (B1cs +B3P
T
s t) = wd −B1(cs − t∗)

where

RT
s t

∗ = PT
s t. (6.20)

From (6.18), if p̂T =
[
pT1 pT2 pT3

]
with p1, p3 ∈ Rn and p2 ∈ Rms−n, In 0 Rs

0 Ims−n 0

RT
s 0 0

p1p2
p3

 =

 cs
ds
PT
s t

 , (6.21)

so that p2 = ds and RT
s p1 = PT

s t. It follows from (6.20) that t∗ = p1 and so

z = wd −B1(cs − p1)

Employing (6.18) and (6.19), ud is the solution of the md ×md symmetric positive definite system

Sud = z.

Finally, from (6.19),

v̂ +BTud = p̂.

That is,  es
fs
PT
s v

+

BT
1

0

BT
3

ud =

p1ds
p3

 .
Thus we have

es = p1 −BT
1 ud

and

PT
s v = p3 −BT

3 ud.
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Premultiplying by Rs, using (6.15) and since from (6.21) Rsp3 = cs − p1, it follows that v is the solution

of the permuted triangular system

RsP
T
s v = cs − p1 +BT

1 ud = cs − es.

We summarize the solution steps needed to solve the sparse-dense augmented systemIms
0 As

0 Imd
Ad

AT
s AT

d 0

usud
v

 =

ws

wd

t

 , (6.22)

as Algorithm 2. The algorithm requires one solve with Rs, md + 1 solves with RT
s plus one multiplication

Algorithm 2 Solve the sparse-dense augmented system (6.22)

1: Compute the sparse QR factorization AsPs = Qs

[
Rs

0

]
and set

[
cs
ds

]
= QT

s ws.

2: Solve PsR
T
s p1 = t.

3: Solve PsR
T
s B

T
1 = AT

d .

4: Form z = wd −B1(cs − p1).

5: Form S = Imd
+B1B

T
1 and factorize it.

6: Use the factors of S to solve Sud = z.

7: Form es = p1 −BT
1 ud.

8: Solve RsP
T
s v = cs − es.

9: Set us = Qs

[
es
ds

]
.

10: Return us, ud and v.

with Qs and one with QT
s . Thus the main additional costs compared to the case when A has no dense

rows are md solves with RT
s plus dense linear algebra operations that also depend on md. In the special

case of the sparse-dense LS augmented system, the system is

Aaugy = baug, (6.23)

where

Aaug =

Ims
0 As

0 Imd
Ad

AT
s AT

d 0

 , y =

rsrd
x

 , baug =

bsbd
0

 , (6.24)

and Algorithm 2 simplifies to Algorithm 3, which reduces the number of solves with RT
s to md. Observe

that Step 2 of Algorithm 3 (the computation of B1) and Step 4 (the computation and factorization of

S) are independent of the right-hand side vector. Thus if Algorithm 3 is used to compute an initial LS

solution x(0) and then Algorithm 2 is employed at each refinement iteration to compute the corrections

δx(i) and δr(i), Steps 3 and 5 of Algorithm 2 have already been performed. The additional work for each

refinement step is thus one solve with Rs, one with RT
s plus one multiplication with Qs and one with QT

s ,

together with the dense linear algebra operations in Steps 4, 6 and 7 of Algorithm 2. For small md it is

clear that the work per refinement iteration for the sparse-dense case is essentially the same as for A with

no dense rows.

A comparison of Algorithm 3 with the updating approach Algorithm 1 shows that B1 = Kd. The

factorization of S and subsequent solve in Algorithm 3 can be performed using the LAPACK routines

potrf and potrs.
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Algorithm 3 Solve the sparse-dense LS problem (1.2) using the augmented system (6.23)

1: Compute the sparse QR factorization AsPs = Qs

[
Rs

0

]
and set

[
cs
ds

]
= QT

s bs.

2: Solve PsR
T
s B

T
1 = AT

d .

3: Form z = bd −B1cs.

4: Form S = Imd
+B1B

T
1 and factorize it.

5: Use the factors of S to solve Srd = z.

6: Form es = −BT
1 rd.

7: Solve RsP
T
s x = cs − es.

8: Set rs = Qs

[
es
ds

]
.

9: Return rs, rd and x.

6.1. Augmented approach with Krylov subspace refinement. When As is rank deficient, we

can use the computed R factor (R̃s) of the regularized sparse matrix Ãs to construct a preconditioner

for a Krylov subspace solver such as GMRES or MINRES that we apply to the unregularized augmented

system (6.23) to obtain the solution of the original problem. A straightforward choice is the simple R̃s-block

diagonal preconditioner [
Im 0

0 R̃T
s R̃s

]
=

[
Im 0

0 R̃T
s

] [
Im 0

0 R̃s

]
= MTM. (6.25)

This could be used for left preconditioning or, using it as a split preconditioner to retain symmetry, gives

the preconditioned augmented matrix

M−T

[
Im A

AT 0

]
M−1 =

[
Im AR̃−1

s

R̃−T
s AT 0

]
. (6.26)

In the case of no dense rows (md = 0), (6.26) has three distinct non zero eigenvalues, 1 and 1
2 (1±

√
5) [30].

Each application of the preconditioner (and thus each iteration of the Krylov subspace solver) requires a

solve with R̃s and with R̃T
s .

An alternative approach is to use a hybrid method that first solves the augmented system corresponding

to the regularized LS problem (Algorithm 3) and then uses a preconditioned Krylov subspace solver as a

refinement algorithm to recover the solution of the original system. This is summarized as Algorithm 4,

where we use the notation (6.24) and define

y(i) =

r
(i)
s

r
(i)
d

x(i)

 , δy(i) =

δr
(i)
s

δr
(i)
d

δx(i)

 , s(i) =

f
(i)
s

f
(i)
d

g(i)

 . (6.27)

Observe that the Q factor need not be retained for the refinement.

In Table 6.1, results are presented for our test problems for which As is rank deficient. Results are

given for split preconditioned GMRES and MINRES applied to the augmented system (6.23) with initial

solution x(0) = 0 and for Algorithm 4 (with GMRES and MINRES as the iterative refinement solver). For

the latter, we give the ratio (5.1) before refinement, that is,

ratioinit =
‖AT r(0)‖2/‖r(0)‖2
‖AT b‖2/‖b‖2

, (6.28)

and after a single refinement step (itmax = 1). The GMRES and MINRES implementations from the HSL

mathematical software library [26] are used with the convergence tolerance set to 10−7. Timings are given

in Table 6.2. Here “Augmented” denotes the time within Algorithm 4 for solving the augmented system
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Algorithm 4 Solve the sparse-dense LS problem (1.2) using the augmented system approach with

regularization and Krylov solver refinement

1: Apply Algorithm 3 to the regularized sparse-dense LS problem minx

∥∥∥∥∥∥
As

αIn
Ad

x−
bs0
bd

∥∥∥∥∥∥
2

2

.

Store the computed R factor R̃s and the solution xaug.

2: Set x(0) = xaug and compute

[
r
(0)
s

r
(0)
d

]
=

[
bs −Asx

(0)

bd −Adx
(0)

]
. Set y(0) =

r
(0)
s

r
(0)
d

x(0)

.

3: for i = 0 : itmax − 1 do

4: Compute the residual vector s(i) = baug −Aaugy
(i).

5: Use the Krylov subspace solver with the R̃s-block diagonal preconditioner to solve the correction

system Aaugδy
(i) = s(i).

6: Set y(i+1) = y(i) + δy(i).

7: if converged then

8: Return x = x(i+1), r =

[
r
(i+1)
s

r
(i+1)
d

]
stop

9: end if

10: end for

(6.23) using the computed QR factorization of the regularized problem (that is, it is the time for steps 2

to 8 of Algorithm 3). Each approach is successful (the computed ‖x‖ and ‖r‖ are consistent with those

given in Table 5.7), with the GMRES iteration counts being smaller than those for MINRES, resulting in

lower times (the latter offers the advantage of requiring less memory). As we would expect, in general the

iteration counts are higher for a larger regularization parameter α. Observe that, for α = 10−5 (the results

given in the lower half of Table 6.1), the stopping criterion that we employed in Section 5 for tests with

LSMR (namely, ratio < δ2 with δ2 = 10−6) is satisfied by ratioinit for all the examples except scsd8-2r.

Thus, with the exception of this problem, refinement of the solution xaug of the augmented system for the

regularized problem is only required if we want to reduce ratio further. Note also that the most expensive

part of the solution process is the Krylov solver; the time could potentially be reduced by optimising the

implementation of the matrix-vector products.

6.2. Augmented approach with multi-precision refinement. Motivated by the emergence

of multi-precision capabilities in hardware, Carson, Higham and Pranesh [14] have recently studied

multi-precision iterative refinement for LS problems using the augmented system formulation (6.1) [10].

They propose reducing the overall solution cost by performing the QR factorization using low precision

arithmetic. Their GMRES-LSIR algorithm then solves (6.1) using GMRES preconditioned by a matrix

based on the low precision QR factors to obtain the LS solution to working precision. Extending their

work on multi-precision for square linear systems [13], they employ three precisions: uf for the matrix

factorization, u for the working precision, and ur for the computation of residuals. Results are presented

for uf equal to half and to single precision, u equal to single or double precision and ur equal to single,

double or quad precision such that uf ≥ u ≥ ur. The reported numerical experiments [14] demonstrate

that, provided the condition number of the system matrix is not too large, three-precision refinement

using GMRES is able to solve a range of problems. Algorithm 5 extends the approach to sparse-dense LS

problems with As of full rank. The notation is as defined in (6.24) and (6.27). As before, MINRES could

be used in place of GMRES. If As is rank deficient, we can derive a multi-precision version of Algorithm 4

by choosing a regularization parameter α and replacing Steps 1 and 2 of Algorithm 5 as follows:
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Table 6.1

A performance comparison of split-preconditioned GMRES and MINRES used directly to solve the augmented system

(6.23) and for refinement (Algorithm 4 using GMRES and MINRES with itmax = 1). In each case, the sparse block As is

rank deficient and the QR factorization of the regularized sparse matrix Ãs is computed. Results in the upper (respectively,

lower) half of the table are for the regularization parameter α = 10−2 (respectively, α = 10−5). its denotes the number of

GMRES or MINRES iterations performed. ratio is given by (5.1) and ratioinit by (6.28).

Identifier Approach its ratioinit ratio

aircraft GMRES / MINRES 18 / 24 1.058×10−14 / 4.682×10−9

Algorithm 4+GMRES / MINRES 18 / 22 1.274×10−7 3.659×10−16 / 1.751×10−13

sc205-2r GMRES / MINRES 20 / 28 4.658×10−9 / 1.376×10−8

Algorithm 4+GMRES / MINRES 20 / 30 2.240×10−4 1.602×10−12 / 1.835×10−12

scagr7-2b GMRES / MINRES 22 / 40 8.761×10−11 / 1.060×10−10

Algorithm 4+GMRES / MINRES 22 / 40 2.949×10−4 8.961×10−13 / 1.391×10−13

scagr7-2r GMRES / MINRES 22 / 40 3.151×10−10 / 1.824×10−9

Algorithm 4+GMRES / MINRES 22 / 40 3.181×10−4 4.492×10−11 / 3.442×10−11

scrs8-2r GMRES / MINRES 38 / 42 3.229×10−8 / 3.270×10−8

Algorithm 4+GMRES / MINRES 42 / 98 1.246×10−3 2.999×10−12 / 1.268×10−11

scsd8-2r GMRES / MINRES 38 / 70 1.924×10−9 / 2.706×10−8

Algorithm 4+GMRES / MINRES 40 / 88 1.070×10−4 3.220×10−14 / 3.264×10−11

aircraft GMRES / MINRES 18 / 20 8.033×10−15 / 2.437×10−9

Algorithm 4+GMRES / MINRES 20 / 24 1.298×10−13 1.022×10−17 / 1.010×10−17

sc205-2r GMRES / MINRES 14 / 30 2.445×10−9 / 2.404×10−9

Algorithm 4+GMRES / MINRES 16 / 30 4.514×10−7 1.635×10−12 / 1.635×10−12

scagr7-2b GMRES / MINRES 16 / 28 3.425×10−9 / 7.308×10−9

Algorithm 4+GMRES / MINRES 18 / 38 2.985×10−10 1.282×10−12 / 1.282×10−12

scagr7-2r GMRES / MINRES 16 / 28 1.943×10−8 / 5.031×10−8

Algorithm 4+GMRES / MINRES 18 / 46 3.594×10−10 6.906×10−12 / 6.905×10−12

scrs8-2r GMRES / MINRES 30 / 44 1.958×10−9 / 4.654×10−8

Algorithm 4+GMRES / MINRES 30 / 48 2.429×10−9 4.039×10−12 / 4.039×10−12

scsd8-2r GMRES / MINRES 36 / 98 6.843×10−13 / 7.359×10−8

Algorithm 4+GMRES / MINRES 36 / 100 2.685×10−6 1.793×10−14 / 8.231×10−14

Table 6.2

Timings (in seconds) for split-preconditioned GMRES and MINRES used directly to solve the augmented system (6.23)

and for refinement (Algorithm 4 using GMRES and MINRES with itmax = 1). Symbolic and Numeric are the times for

the symbolic analysis and numerical factorization phases of SuiteSparseQR, respectively. Augmented is the time within

Algorithm 4 after the QR factorization has been computed to solve the augmented system (6.23) and Iterative is the time

for GMRES or MINRES. Total denotes the total solution time. The regularization parameter is α = 10−5.

Identifier Approach Symbolic Numeric Augmented Iterative Total

aircraft GMRES / MINRES 0.001 0.001 0.006 / 0.006 0.008 / 0.008

Algorithm 4+GMRES / MINRES 0.001 0.001 0.003 0.007 / 0.007 0.012 / 0.013

sc205-2r GMRES / MINRES 0.013 0.010 0.037 / 0.086 0.060 / 0.106

Algorithm 4+GMRES / MINRES 0.013 0.009 0.020 0.050 / 0.087 0.092 / 0.125

scagr7-2b GMRES / MINRES 0.003 0.003 0.008 / 0.018 0.014 / 0.025

Algorithm 4+GMRES / MINRES 0.004 0.003 0.008 0.012 / 0.023 0.027 / 0.040

scagr7-2r GMRES / MINRES 0.014 0.012 0.045 / 0.082 0.071 / 0.107

Algorithm 4+GMRES / MINRES 0.014 0.011 0.028 0.049 / 0.132 0.102 / 0.185

scrs8-2r GMRES / MINRES 0.005 0.004 0.034 / 0.049 0.043 / 0.057

Algorithm 4+GMRES / MINRES 0.005 0.004 0.011 0.031 / 0.065 0.051 / 0.094

scsd8-2r GMRES / MINRES 0.008 0.007 0.079 / 0.180 0.094 / 0.195

Algorithm 4+GMRES / MINRES 0.008 0.007 0.009 0.072 / 0.199 0.097 / 0.223

1: Apply Algorithm 3 to the regularized sparse-dense LS problem minx

∥∥∥∥∥∥
As

αIn
Ad

x−
bs0
bd

∥∥∥∥∥∥
2

2

using

precision uf . Store the computed R factor R̃s using precision uf and the solution xaug using precision u.
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2: Set x(0) = xaug and compute

[
r
(0)
s

r
(0)
d

]
=

[
bs −Asx

(0)

bd −Adx
(0)

]
. Set y(0) =

r
(0)
s

r
(0)
d

x(0)

 using precision u.

Algorithm 5 Solve the sparse-dense LS problem (1.2) using GMRES-based iterative refinement with

precisions uf ≥ u ≥ ur. As is assumed to be full rank.

1: Apply Algorithm 3 to the sparse-dense LS problem (1.2) using precision uf . Store the computed R

factor Rs using precision uf , and store the solution xaug and residual raug using precision u.

2: Set y(0) =

[
raug
xaug

]
using precision u.

3: for i = 0 : itmax − 1 do

4: Compute the residual vector s(i) = baug −Aaugy
(i) using precision ur; round s(i) to precision u.

5: Use GMRES with the Rs-block diagonal preconditioner to solve the correction system

Aaugδy
(i) = s(i) using precision u, with matrix-vector products computed using precision ur.

6: Set y(i+1) = y(i) + δy(i) using precision u.

7: if converged then

8: Return x = x(i+1), r =

[
r
(i+1)
s

r
(i+1)
d

]
stop

9: end if

10: end for

To illustrate the use of multi-precision arithmetic, we set uf to single precision and u = ur to double

precision. We employ the HSL code MA49 for computing the QR factorization of As (or Ãs) because it is

available in both double and single precision versions. Results are presented in Table 6.3 for itmax = 1. In

the upper part of the table, results are for the test problems for which As is of full rank and in the lower

part, As is rank deficient and we set the regularization parameter to 10−3. We found that for smaller

values of α, Algorithm 3 can break down at Step 4 because S is found to be indefinite. The results show

that the multi-precision approach is successful and offers another option.

Table 6.3

Multi precision results (Algorithm 5). The problems in the upper part do not use regularization while those in the lower

part use regularization with α = 10−3. its denotes the number of GMRES iterations performed. itmax = 1. ratio is given

by (5.1) and ratioinit by (6.28).

Identifier its ‖x‖ ‖r‖ ratioinit ratio

lp fit2p 65 1.689×10 1.105×102 9.529×10−3 1.023×10−12

sctap1-2b 93 8.171×10 1.237×102 2.210×10−3 1.068×10−14

sctap1-2r 93 1.117×102 1.694×102 3.684×10−3 4.780×10−14

south31 48 2.748×10 1.881×102 2.675×10−6 4.259×10−15

aircraft 32 2.000 8.660×10 1.641×10−6 6.739×10−17

sc205-2r 32 3.478×102 2.034×102 1.049×10−2 2.099×10−11

scagr7-2b 34 1.387×102 6.068×10 1.045×10−3 5.559×10−16

scagr7-2r 33 5.693×102 1.132×102 1.843×10−2 5.268×10−11

scrs8-2r 63 6.436×103 1.354×102 1.334×10−3 4.621×10−13

scsd8-2r 70 2.837 2.461×102 1.686×10−1 6.070×10−12

7. Concluding remarks. This computational study has explored how to employ black-box sparse

QR solvers to efficiently and robustly solve sparse-dense LS problems. Particular emphasis has been

on problems in which the sparse part As of the system matrix A is rank deficient. In this case, we

propose combining basic approaches for sparse-dense LS problems with either partial matrix stretching

or regularization. For the former, the solution of the original system can be obtained directly using the

sparse QR solver combined with updating. However, when regularization is used, it may be necessary to
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use a direct-iterative approach to achieve the required accuracy for the original problem. Alternatively, a

preconditioned Krylov solver can be applied to the augmented system formulation of the LS problem. We

have demonstrated that, using this formulation, there is a significant potential for multi-precision solvers.

While partial matrix stretching offers an attractive way forward, more efficient implementations of the

algorithm that performs the stretching are needed to make it really viable. When there is more than one

row that requires stretching, in the future we plan to develop novel block stretching strategies in which

rows in Ad with similar sparsity patterns are handled together. This could potentially significantly reduce

the computational cost.

Finally, we observe that while we have focused our experiments on LS problems where Ad corresponds

to dense rows in A, the proposed algorithms can also be applied when Ad represents rows (either sparse

or dense) that are added to A after an initial QR factorization has been performed.

Acknowledgements. We are grateful to our colleagues Nick Gould for providing us with the Fortran
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[6] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rectangular matrices into singly-bordered block-diagonal

form for parallel solution of LP problems. Technical Report BU-CE-0203, Computer Engineering Department,

Bilkent Univeristy, Ankara, Turkey, 2002.

[7] Z.-Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization methods. I: Methods and theories.

BIT Numerical Mathematics, 41(1):53–70, 2001.

[8] Z.-Z. Bai, I. S. Duff, and J.-F. Yin. Numerical study on incomplete orthogonal factorization preconditioners. J. Comput.

Appl. Math., 226(1):22–41, 2009.

[9] Z.-Z. Bai and J.-F. Yin. Modified incomplete orthogonal factorization methods using Givens rotations. Computing,

86(1):53–69, 2009.
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