Solution of problem 11, establish existence or non-existence of periodic orbits for the van der Pol
equation 2 + p(22 — )2’ + 2 =0, p > 0.
Step 1. Rewrite as a system of first -order equations,

' =y,
y' = —z—p(a® - 1)y.
Step 2. Qualitative analysis leads to the following picture:
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Figure 1: Qualitative analysis leads to the following distrivution of signs

Step 3. The orbital derivative of the function V = 22 4+ 32, is V = 2za2’ + 2yy/ = 22y + 2y(—x —
(22 — 1)y) = 24%(1 — 2?), i.e. the distance from the origin increases inside the strip —1 < # < 1 and
decreases outside that strip.
Step 4. Linearization or the previous step shows that the origin is repulsive, i.e. a trajectory cannot
enter a circle 22 +y? = 2 of a sufficiently small radius € > 0 from outside (due to the orbital derivative
of the function V, we see that the radius can be taken up to e = 1).
Step 5. To show the existence of a periodic solution, we want to use Poincaré-Bendixson theorem,
and to do so we need to contstruct a trapping region. There is no obvious choice of a trapping region,
so we need to make a special construction. To this end, take a trajectory that passes through a point
A(=1,y4 > 0). From the qualitative analysis it is clear that the trajectory must subsequently pass
through the following points: B(1,yg > 0), C(1,yc < 0), D(—1,yp < 0), F(=1,yr > 0).

The question is whether yr bigger than y4 (Figure 1, left) or smaller (Figure 1, right). In the
latter case we have a trapping region, in the former we do not.

We want to prove that the situation in Figure 1, on the right, is possible, and we will prove this
by contradiction. That is, assume that always yp > ya.

Note that the trajectory in the domain 2 < —1,% > 0 must lie in the region where 2+ (2% —1)y < 0,
i.e. it is squeezed between the line x = —1 and the above mentioned curve. This allows us to estimate
yr from above.

Indeed, taking ya sufficiently large (for us it sufficies to take y4 > 1), we ensure that there is a
point F(xg,1) between the points D and I

On the trajectory EF'F, the y and z increase, and hence y can be represented as an increasing
function of x.

Integrating along the trajectory F'F', we obtain

F dy
Yr =YE +/ ﬁdfﬁ-
TE

Using the rule of differentiation of a composed function, we have
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On the part EF of trajectory we have y > 1, z < —1 and 22 — 1 > 0, hence the above derivative
admits an estimate

dy < —x

dr — 7

Substituting that in the formula for yz, we obtain

—1
ypgl—l—/ —xdwzl—ﬁ—%(x%—l).
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It remains to establish a lower bound for xz (and hence an upper bound for z%). Since the point
E(xg,1) lies in the region z 4+ u(2? — 1)y < 0, then xx > x1, where z; is the negative solution of the
quadratic equation x + p(x% — 1) = 0, i.e.
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Then 2% < 2%, and the final estimate for yp reads

1 —X1
<l4+z(@-1)=1+—.
ypsltg@m-l =1+
Further interesting things about the van der Pol oscillator.
Strongly nonlinear regime p — +00. For large positive p, one can use Liénard substitution: the
original equation can be written in the form

!

3 r_ Yalt ~. 3
x4+ ,u(x— —z)| +2=0, ie. qi pE (@) +10, where F'(z) = T ,
3 W = -z, 3
—— ’
=:0

or, making another substitution w = pw, as

{;1;’ = pu(w — F(2)),

w = =2,

"

For large u, heuristic/qualitative analysis considerations allow to conclude that trajectories “converge”

to a limiting cycle, where travelling along some pieces of trajectories is fast (takes o(1) time), and is

slow on another pieces (takes O(u) time). The overall period of oscillations is of the order .
Physically this represents a relazation oscillator, since tensions in the system, which build up

slowly, are released fast (earthquakes).

‘Weakly nonlinear regime p — +0. For small positive u, arguing heuristically that the periodic
trajectory takes the form x(t) = (A + O(u))(cos(t — to) + O(u)), one can find that |[A| = 2.

Oscillations in an electric circuit.

Damped oscillations in an electric circuit. Take an electric circuit consisting of an electromotive
force E(t), resistor with resistance R, capacitor with capacitance C and inductor with inductance L,
connected in series. The laws that connect the voltage drop and the electric current in resistor,
inductor and capacitor are

dve(t) 1 Al (t) 1

Valt) = RIn(), =S = Zro@), SR = 2w,

Since the current passing through all components has the same value, adding up voltage drops we
obtain the following equation:

B = R 1() + /Ot I(t)ds + L%t).

Assuming that the electromotive force is constant (battery), E(t) = const, and differentiating, we
obtain damped oscillations

LI"(t) + RI'(t) + é[( 1 =0

Here the term R is responsible for damping.

Van der Pol oscillations. Changing the resistor to a semiconductor, which has the following law
connecting voltage and current:

Vie(t) = Lsc()(I2() — ),
leads to the equation

LI" + (I(I* — a®)" + %I =0,

which, after the substitutions I = fx and z(t) = Z(t+/c), takes the form of the van der Pol oscillator
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—— (@ =12 +a=0.

Physically, the semiconductor works as a resistor when the current is large (|z] € (1,2)), but instead
of dispersing the energy it slowly accumulates it. When the current drops behind a certain value
(Jz] < 1), the semiconductor quickly pumps energy back into the system.
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