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Thus it follows that
B 1 Ty(z)

A—a)(Py @)} 1-a* (P @)’

or
B={P,(x)}*+(2*—1)T ().
Let x=1, then, since P,(1)=1 and T,(1) is finite, it follows that B=1.
Consequently ¥
x+1 2n—4r+38

Qn(2) = 3Pp(x) log ~— — >

In particular,

r_lié:i)_(n—r+l)P”_2'+l(m)'

z-+1 z+1
Qo(w) = %log li'_l; Ql(w) =%ﬂ'/‘ log ;‘:_—1 —1;

x+1 r+1
Q@) =3Py@) log - — iz Qu@)=3Py(2) log —— —32* + N

7-3. The Point at Infinity as an Irregular Singular Point.—Equations
whose solutions are irregular at infinity are of frequent occurrence ; linear
equations with constant coefficients furnish a case in point. To study the
behaviour of solutions of such equations for numerically large values of 2
is therefore a problem of some importance, a problem, however, which cannot
be fully treated except with the aid of the theory of functions of a complex
variable.*

It is, however, possible to give some rather crude indications of the
behaviour of solutions which are irregular at infinity, which, crude as they
are, will be found to be not without value in their applications.

Consider the equation of the second order,

dz d

in which at least one of the conditions for a regular singularity at infinity,
namely,
p(z)=0(z71), q(z)=0(z ?)
as x-> , is violated. It will be supposed that the coefficients p(z) and
¢(z) can be developed as series of descending powers of , thus
p@)=pe*+ . . » @)=+ . . .
then since the point at infinity is irregular, one or both of the inequalities
a>—1, B>-—2
must be satisfied.
Now consider the possibility of satisfying the equation by a function
which, for large values of z, is of the form
z7eP@y(z),
where P(z) is a polynomial in # and v(z)=O0(1) as z~>. Let Az¥ be the
leading term in P(z), then on substituting the above expression in the
equation and extracting the dominant part of each term it is found that
A2v2a}29—2+po,\yxv+a—1+qom§=0.
Thus v is given by
v=a+1 or 2v=p42,

whichever furnishes the greater value of v. Thus 2v» is a positive integer,
for simplicity it will be supposed that » is a positive integer also.
Then a solution of the form

Y= +r Tl L rmegey(g)
* See Chaps. XVIL-XIX.



SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 169
is assumed, where
o(z)=1 42 4+ 22
=1+ 2+ 2+,

and the constants A, &, . . ., w. o, a;, ag, . . . determined in succession.

When a solution of this type exists, it is said to be normal and of rank
v.  Unfortunately, however, when the series v(z) does not terminate, it
diverges in general, and therefore the solution is illusory. Nevertheless
it can be shown that the series, though divergent, is asymptotic,* and
therefore is of value in practical computation. It will now be shown, by
an application of the process of successive approximation, how it is that the
divergent series are of practical value, and an illustration will be taken from
the theory of Bessel functions.

7-31. Asymptotic Development of Solutions.— Consider the linear cquation
of the second order

d*y dy
dx2 +p(w)dx +’I(“')Z/ =0,

in which p and ¢ are real and finite at infinity ; let p and ¢ be developed in
the convergent scries
p@)=pot+p1x 14px 2+ . . .,
9(z)=go+ @1z 1 +qox "2+ . . .
The substitution y=e*v transforms the equation into

d2 d
E{Z +(2A+p) dz; +(A2+Ap+qv=0;

if A is a root of the equation

A2 +)‘Po +90 =0a
the constant term in the coefficient of v disappears and the equation takes the
form

d2 d
¢£+(Wo+wlw—1+ .. )d.:' +(pr@~14poz—2+4 . . Jv==0.

Now let
v=0°u,
then if
Weo +P1:0’
the term in -1 in the coefficient of v disappears.
dv
dx
will be supposed that m is negative, then multiplication of the independent
variable by the positive number (—wm,) ! replaces @, by —1.
The equation thus becomes

d2u ay du bz b3 .

dm2+§ I I R §¢x+{w2+w3+ - gu.«(),
a solution will be found which assumes the value n when z=:4wo. Let
u;=n and define the sequence of functions (u,) by the relations

The leading term in the coefficient of |~ is w, and is real if A is real. It

d*uy  duy e }‘L“l by , bs -

dx2 dz {a: zz ' dx {w“ s ' e }u,,

Jzu" .du,, . a_i az. ' %&u,,_l' bz 1{3 . ?

a2z dz gw Tt {x2+w3+ R Rt

* Whittaker and Watson, Modern Analysis, Chap. VIII.
* The case in which o, is positive and that in which A is imnfinary may be left to the
reader. An example of the latter circumstance is given in the following section.
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Then *

u,.=n+f:(ez-¢—1)§‘f; . %d?‘-"gf-(—‘)dt

+fj(ex—'—1)gf§—+f§+ cee §un—1(t)dt

=+ [:e’-'{‘-’t—‘+§;+ e }uﬂ_l(t)dt{[rg%%%% S 0
where a;, ay, . . ., Bs, B3, . . . are expressible in terms of ay, a,, . . .,
> lﬁ’ follows that

“n—‘“n—1=f:ez"{? +(t‘1.;2+ ce §{u'z—1(t)—un—2(t)§dt

+ BB w0

Let it be supposed that | u, _; —u,_5 | is bounded for #>a, and that its upper
bound is M,,_;. Then |u,—w,_, |is bounded in the same range and its upper
bound M, satisfies the inequality

K
Mn< .Z‘ Mn—b

where K is a constant, independent of n. Now M, is bounded for sufficiently
large values of z; consequently the inequality holds for all values of n.
It follows by comparison that the series

u=uy+(uog—u)+ . . . F(Up—Up—1)+ . . .

is convergent for sufficiently large values of 2. Moreoverits sum is a solution
of the differential equation in w.

Now
— =°°z__za1 a (B2 | Bs %
g —ty Le §t+t2+ Ce gndt+J,{t2+t3 + ... lnat
Ay Ay, Ay | Alpte
=? +‘a:2 + ... +mel—+—'“’;r,
where €;—>0 as 2—>® .
Similarly
Az, A2, | A%, +te
“3—'1112:1‘—22-*- .« . +,‘im"i,i1+ - wm s
and finally, if m>n,
% Lt An—-1 A1 e,
Un—Un—1= " n ' -+ ';z;,’.';l'“"l-i- _m’;‘{— 2,
where €,_,—>0 as z=>» .
Consequently,
Uyt —u)+ . . o F(Up—Up—)
C C2 C - C +€
=+ T+ S

* The solution of
du du
& " da =
which reduces to » when 2=+ is
u=n+[2(—t-1)f(0)at,
provided that the integral exists.
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where ¢=>0 as »~>®© . On the other hand
| (Upt1—Un)H(Upto—Ups1)+ . l
<M ( +5 4

where H is a constant, for sufficiently large values of-z.
It follows that

_-,’+ + + +Q"ff‘ _|_C",i'7_’.”,

an-1 "

<EE;‘.

where y,->0 as 2=> .

Consequently the given differential equation admits of a solution of the
form

¢, C Cuntyn
y=e"zw"§'r)+;l+;§2+ - +w" 1y ety +" %

The series EC,w -’ may terminate, in which case the representation is exact.

But when the series does not terminate, it in general diverges.* Never-
theless if m is fixed, and §,, denotes the sum of the series

m
e“x"g'r)+ ;-{- e +ni'i
then if € is arbitrarily small,
| 2™(y—Sm) |<e
for sufficiently large values of ]wl Consequently the series furnishes an

asymptotic representation of the solution, and the sign of equality is replaced
by the sign of asymptotic equivalence, thus :

T (11 C"

y~e'\”wgr;+$ + ... +w"+ RN E

7-32. The Bessel Equation.—When = is not an integer, the Bessel equation }
dz d
e @2 —nty=0

is satisfied by the two distinct solutions

Y1 :J"({c), Yo =J...,,(.2}),
where

N P 1 !
" en N(n4-1) 22.1!.(n+1) Toilal. (n41)(nt2)” " §
When 7 is an integer these two solutions cease to be independent. The
second solution, when 7 is an integer, is of the logarithmic type.t

Now consider solutions appropriate to the irregular singularity at infinity.§
The substitution

y:z—iu
removes the second term from the equation, which becomes

- +Hi+ i;'ig§u=o.

* This can be verified by considering the simple equation

t Bessel, Abh. dkad. Wiss. Berlin, 1824, p. 84. An account of the early history of
this and allied equations is given by Wateon, Bessel Functions, Chap. I.

This solution will be given explicitly in a later section (§ 16-82).

For a complete discussion of the problem, see Watson, Bessel Functions, Chap. VII.
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For large values of | 2| this equation becomes effectively «”4u=0, which
suggests the substitution * .
u=e"v.
The equation now becomes
d2v  _.dv  }-—n?
inTham T 2

This equation is formally satisfied by a series of descending powers of «,

v=0.

namely
bt (m)aond) | (BnE—md)(E—n),
Tz ' 2T.2l.zr T 23.30.a8
L A=) ) )
2¢.4!. 2%

This series is divergent for all values of 2, but it is of asymptotic type.
In fact, if |z | is large, the earlier terms diminish rapidly with increasing rank,
and as will be seen later the series furnishes a valuable method for computing
J .(z) when z is large.

By combining the series obtained with that obtained by changing i
into —7 two asymptotic relations are obtained, namely

y1~2~HU cos x4V sin z),
yo ~ &~ U sin z—V cos z),
where U and V stand respectively for the even and odd series

1 @G =n?) | ()G —nt)E et —n?)

22,21, 22 24 .4 x4
and ’
1—n2  (3—n2)(;—n2)(3—n?)
Tow T 93.81.a8 T

The coniiection between the function Jy(z) and the corresponding asym-
ptotic series may be derived from the relation,t

mdo(z)= f :cos (z cos 6)db.

Let
Jo(z)=Ay1+By,,
then as 2>
lim atJy(2)=A4 cos 24-B sin z,
lim a#Jy'(z)=—A sin x+B cos z.

Thus
A =lim a¥{Jy(z) cos z—J,'(z) sin a}
= lim:—';-}f" {cos & cos (z cos 0)+ sin z cos @ sin (z cos 6)}df
0
t 7
=lim :’— f cos (22 sin246) cos216d8
0
+ lim‘{i'i / b cos (2z cos?30) sin236d6.
mro
Let

1/(2z) sin $0=4¢,

* For an alternative method of procedure when n=0, see Stokes, Trans. Camb. Phil.
Soc. 9 (1850), p. 182 ; !Ma!h. and Phys. Papers, 2, p. 850].
t An equivalent relation will be established in the following chapter, § 8-22,
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then
. ah . . ot fven P2\t
2 2 2 — lim =~ & 2
lunﬂjocos (2 sin?}6) cos240d0 hmﬂ'[0 (1 2.2:) cos ¢2dg
t o
= ?—] cos Pp2dd=3m—t.
mJo
The second integral has the same limit and therefore

A=m-t,
Similarly B=#—1, and thus

2\t 12,82 12,82.52,72
o)~ (2N - g+ it = - ) eos@—im)

12 12,.82,52 ) .
+ 93 78 29—.—3!'@34— .« .)sin (@—}m).

7-321. Use of the Asymptotic Series in Numerical Calculations.—The value
of the asymptotic series may be illustrated by computing particular values of
Jo(z). If the ascending series
2 x4 26 28 210
9T g8 Tpegetow grar g g st
is used to evaluate J(2). and the last term taken is that in 2'¢, the value

J(2) =0-228 890 779 14

correct to eleven places is obtained. But if =6, and terms up to and including
that in 2% are taken, the value obtained is
Jy(6)=015067,
which is correct to four places only ; in fact the last term used has the value 0°00026
which affects the fourth decimal place. Thus for even comparatively small values
of x the ascending series is useless for practical calculations.
Now consider the asymptotic representation of Jy(8) ; it is found that

Jo(2)=1—

Jy(6) = 1 {(sin 6 + cos 6)U +(sin 6 — cos 6)V},

V(8n)
where
12,82 12.32.52,72  12.3%2.5%.7%2.92.11%
U=1————-—— 4 = S—
26.,2!1.62 212 41,64 218 ¢!.6¢
=1-—0"00195 4000009 —0-00001 + . . .
=0-99812,
and

12 12.82.5% 1%2.8%2.52.7%.92
g6 2.81.69 " 21.51.68
= 002083 —0-00034 --0-00003
= 0"02052.
Since 2x —6=0'28318, it is found from Burrau’s tables that
sin 6 =—0°27941, cos 6=096017,
and therefore

Jo(6)=0-23033 (0-67948 —0°02544)
=0"15064,
correct to five places of decimals. Thus by the use of the asymptotic series a more
correct result is obtained with far less labour than in using the convergent ascending
series.

7-322. The Large Zeros of the Bessel Functions.—It may be proved, as in
§ 7-82, that

2\t .
Jp(x) ~(n_:c) {U,, cos8 (x —4nn —in) - V,, sin (& —}nzx —}n)},



