Mathematics II

Mathematics II

• Functions of several variables

• Functions of several variables

Matrix calculus

- Functions of several variables
- Matrix calculus
- Antiderivative and the Riemann Integral

V.1. \mathbb{R}^n as a linear and metric space

V.1. \mathbb{R}^n as a linear and metric space

V.1. \mathbb{R}^n as a linear and metric space

Definition

The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered *n*-tuples of real numbers, i.e.

$$\mathbb{R}^n = \{ (x_1, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R} \}.$$

V.1. \mathbb{R}^n as a linear and metric space

Definition

F

The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered *n*-tuples of real numbers, i.e.

$$\mathbb{R}^n = \{ (x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R} \}.$$

For $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$
we set

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n), \qquad \alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_n).$$

Further, we denote $\boldsymbol{o} = (0, \dots, 0)$ – the origin.

Properties of $+, \cdot$

1. $\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ (commutativity)

2.
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$
 (associativity)

- 3. $\exists \boldsymbol{o} \in \mathbb{R}^n \ \forall \boldsymbol{x} \in \mathbb{R}^n : \quad \boldsymbol{x} + \boldsymbol{o} = \boldsymbol{x}$ (existence of neutral element)
- 4. $\forall x \in \mathbb{R}^n \exists (-x) \in \mathbb{R}^n : x + (-x) = \boldsymbol{o}$ (existence of opposite element)

5.
$$\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$$
, for any $\alpha, \beta \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$

Comment

Properties 1- 4 tells that \mathbb{R}^n is a group with respect to the operation +

Definition The Euclidean metric (distance) on \mathbb{R}^n is the function $\rho \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(\mathbf{x}, \mathbf{y})$ is called the distance of the point \mathbf{x} from the point \mathbf{y} .

Theorem 1 (properties of the Euclidean metric) The Euclidean metric ρ has the following properties: (i) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$: $\rho(\mathbf{x}, \mathbf{y}) = \mathbf{0} \Leftrightarrow \mathbf{x} = \mathbf{y}$,

(i)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{0} \Leftrightarrow \boldsymbol{x} = \boldsymbol{y},$$

(ii)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{y}, \boldsymbol{x}),$$
 (symmetry)

(i)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{0} \Leftrightarrow \boldsymbol{x} = \boldsymbol{y},$$

(ii)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{y}, \boldsymbol{x}),$$
 (symmetry)

(iii)
$$\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n : \rho(\mathbf{x}, \mathbf{y}) \le \rho(\mathbf{x}, \mathbf{z}) + \rho(\mathbf{z}, \mathbf{y}),$$

(triangle inequality)

(i)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{0} \Leftrightarrow \boldsymbol{x} = \boldsymbol{y}$$
,

(ii)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{y}, \boldsymbol{x}),$$
 (symmetry)

(iii)
$$\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) \le \rho(\boldsymbol{x}, \boldsymbol{z}) + \rho(\boldsymbol{z}, \boldsymbol{y}),$$

(triangle inequality)

(iv)
$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \forall \lambda \in \mathbb{R} : \rho(\lambda \mathbf{x}, \lambda \mathbf{y}) = |\lambda| \rho(\mathbf{x}, \mathbf{y}),$$

(homogeneity)

(i)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{0} \Leftrightarrow \boldsymbol{x} = \boldsymbol{y}$$
,

(ii)
$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{y}, \boldsymbol{x}),$$
 (symmetry)

(iii)
$$\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n : \rho(\boldsymbol{x}, \boldsymbol{y}) \le \rho(\boldsymbol{x}, \boldsymbol{z}) + \rho(\boldsymbol{z}, \boldsymbol{y}),$$

(triangle inequality)

- (iv) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \forall \lambda \in \mathbb{R} : \rho(\lambda \mathbf{x}, \lambda \mathbf{y}) = |\lambda| \rho(\mathbf{x}, \mathbf{y}),$ (homogeneity)
- (v) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n$: $\rho(\boldsymbol{x} + \boldsymbol{z}, \boldsymbol{y} + \boldsymbol{z}) = \rho(\boldsymbol{x}, \boldsymbol{y})$. (translation invariance)

Remark

Definition Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^{n}$. We say that a sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector **x** is called the limit of the sequence $\{x^i\}_{i=1}^{\infty}$.

Definition Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^{n}$. We say that a sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{i\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=\boldsymbol{0}.$$

The vector **x** is called the limit of the sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$. The sequence $\{\mathbf{y}^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $\mathbf{y} \in \mathbb{R}^n$ such that $\{\mathbf{y}^j\}_{i=1}^{\infty}$ converges to \mathbf{y} .

Definition Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^{n}$. We say that a sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{i\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=\boldsymbol{0}.$$

The vector \mathbf{x} is called the limit of the sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$. The sequence $\{\mathbf{y}^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $\mathbf{y} \in \mathbb{R}^n$ such that $\{\mathbf{y}^j\}_{i=1}^{\infty}$ converges to \mathbf{y} .

Remark

The sequence $\{\boldsymbol{x}^j\}_{j=1}^\infty$ converges to $\boldsymbol{x} \in \mathbb{R}^n$ if and only if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists j_0 \in \mathbb{N} \; \forall j \in \mathbb{N}, j \ge j_0 \colon \mathbf{x}^j \in U(\mathbf{x}, \varepsilon).$$

Theorem 2 (convergence is coordinatewise) Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^{n}$. The sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_{i}^{j}\}_{j=1}^{\infty}$ converges to the real number x_{i} . Theorem 2 (convergence is coordinatewise) Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^{n}$. The sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_{i}^{j}\}_{j=1}^{\infty}$ converges to the real number x_{i} .

Remark

Theorem 2 says that the convergence in the space \mathbb{R}^n is the same as the "coordinatewise" convergence.

Theorem 2 (convergence is coordinatewise) Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^{n}$. The sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_{i}^{j}\}_{j=1}^{\infty}$ converges to the real number x_{i} .

Remark

Theorem 2 says that the convergence in the space \mathbb{R}^n is the same as the "coordinatewise" convergence. It follows that a sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ has at most one limit. If it exists, then we denote it by $\lim_{j\to\infty} \mathbf{x}^j$. Sometimes we also write simply $\mathbf{x}^j \to \mathbf{x}$ instead of $\lim_{j\to\infty} \mathbf{x}^j = \mathbf{x}$.

Definition Let $\mathbf{x} \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set $U(\mathbf{x}, r)$ defined by $U(\mathbf{x}, r) = \{\mathbf{y} \in \mathbb{R}^n; \ \rho(\mathbf{x}, \mathbf{y}) < r\}$

is called an open ball with radius r centred at x or the r-neighbourhood of x.

Another notations for $U(\mathbf{x}, r)$: $U_r(\mathbf{x}), B(\mathbf{x}, r)$.

Let $M \subset \mathbb{R}^n$. We say that $\mathbf{x} \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $U(\mathbf{x}, r) \subset M$.

Let $M \subset \mathbb{R}^n$. We say that $\mathbf{x} \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $U(\mathbf{x}, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

Let $M \subset \mathbb{R}^n$. We say that $\mathbf{x} \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $U(\mathbf{x}, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if M = Int M.

Let $M \subset \mathbb{R}^n$. We say that $\mathbf{x} \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $U(\mathbf{x}, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if M = Int M.

The system of all open sets are denoted $\mathfrak{G}(\mathbb{R}^n)$.

Let $M \subset \mathbb{R}^n$. We say that $\mathbf{x} \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $U(\mathbf{x}, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if M = Int M.

The system of all open sets are denoted $\mathfrak{G}(\mathbb{R}^n)$.

Exterior of *M* is Ext $M = Int(M^C)$, where $M^C = \mathbb{R}^n \setminus M$ is the complement of *M*.

Theorem 3 (properties of open sets)

(i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .

Remark

Theorem 3 (properties of open sets)

(i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .

(ii) Let $G_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^{n} . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^{n} .

Remark

(ii) A union of an arbitrary system of open sets is an open set.

Theorem 3 (properties of open sets)

- (i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .
- (ii) Let $G_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^{n} . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^{n} .
- (iii) Let $G_i \subset \mathbb{R}^n$, i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Remark

(ii) A union of an arbitrary system of open sets is an open set.

(iii) An intersection of a finitely many open sets is an open set.

 $U(\mathbf{x},r) \cap M \neq \emptyset$ and $U(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

 $U(\mathbf{x},r) \cap M \neq \emptyset$ and $U(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of *M* is the set of all boundary points of *M* (notation $F_r(M)$ or H(M) or bd *M*).

 $U(\mathbf{x},r) \cap M \neq \emptyset$ and $U(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of *M* is the set of all boundary points of *M* (notation $F_r(M)$ or H(M) or bd *M*).

The closure of *M* is the set $M \cup \text{bd } M$ (notation \overline{M}).

 $U(\mathbf{x},r) \cap M \neq \emptyset$ and $U(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of *M* is the set of all boundary points of *M* (notation $F_r(M)$ or H(M) or bd *M*).

The closure of *M* is the set $M \cup bd M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if bd $M \subset M$, or in other words if $\overline{M} = M$.

Proposition

 $x \in \operatorname{bd} M$ iff $x \notin \operatorname{Int} M$ and $x \notin \operatorname{Ext} M$.

Consequence

 $\mathbb{R}^n = \operatorname{Int} M \sqcup \operatorname{Ext} M \sqcup \operatorname{bd} M$ (here $A \sqcup B = A \cup B, A \cap B = \emptyset$ is disjoint union).

 $\mathsf{bd}\,M=\mathsf{bd}\,M^C.$

Theorem 4 (characterisation of closed sets) Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) *M* is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $\mathbf{x} \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Theorem 5 (properties of closed sets)

(i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .

Remark

Theorem 5 (properties of closed sets)

- (i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let $F_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^{n} . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^{n} .

Remark

(ii) An intersection of an arbitrary system of closed sets is closed.

Theorem 5 (properties of closed sets)

- (i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let $F_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^{n} . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^{n} .
- (iii) Let $F_i \subset \mathbb{R}^n$, i = 1, ..., m, be closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .

Remark

(ii) An intersection of an arbitrary system of closed sets is closed.

(iii) A union of finitely many closed sets is closed.

Lemma 6

- (i) For any set M we have $\overline{M} = \operatorname{Int} M \sqcup \operatorname{bd} M$.
- (ii) If $M \subset \mathbb{R}^n$ is closed, then $M = \operatorname{Int} M \sqcup \operatorname{bd} M$.

Theorem 7

Let $M \subset \mathbb{R}^n$. Then the following holds:

- (i) The set $\operatorname{Int} M$ is open in \mathbb{R}^n (i.e. $\operatorname{Int}(\operatorname{Int} M) = \operatorname{Int} M$).
- (ii) The set \overline{M} is closed in \mathbb{R}^n (i.e. $\overline{\overline{M}} = \overline{M}$).

Lemma 6

- (i) For any set M we have $\overline{M} = \operatorname{Int} M \sqcup \operatorname{bd} M$.
- (ii) If $M \subset \mathbb{R}^n$ is closed, then $M = \operatorname{Int} M \sqcup \operatorname{bd} M$.

Theorem 7

Let $M \subset \mathbb{R}^n$. Then the following holds:

(i) The set $\operatorname{Int} M$ is open in \mathbb{R}^n (i.e. $\operatorname{Int}(\operatorname{Int} M) = \operatorname{Int} M$).

(ii) The set \overline{M} is closed in \mathbb{R}^n (i.e. $\overline{\overline{M}} = \overline{M}$).

Remark

We have $\operatorname{Int} M \subset M \subset \overline{M}$. Moreover, the set $\operatorname{Int} M$ is the largest open set contained in M in the following sense: If G is a set open in \mathbb{R}^n and satisfying $G \subset M$, then $G \subset \operatorname{Int} M$.

Lemma 6

- (i) For any set M we have $\overline{M} = \operatorname{Int} M \sqcup \operatorname{bd} M$.
- (ii) If $M \subset \mathbb{R}^n$ is closed, then $M = \operatorname{Int} M \sqcup \operatorname{bd} M$.

Theorem 7

Let $M \subset \mathbb{R}^n$. Then the following holds:

(i) The set $\operatorname{Int} M$ is open in \mathbb{R}^n (i.e. $\operatorname{Int}(\operatorname{Int} M) = \operatorname{Int} M$).

(ii) The set \overline{M} is closed in \mathbb{R}^n (i.e. $\overline{\overline{M}} = \overline{M}$).

Remark

We have $\operatorname{Int} M \subset M \subset \overline{M}$. Moreover, the set $\operatorname{Int} M$ is the largest open set contained in M in the following sense: If G is a set open in \mathbb{R}^n and satisfying $G \subset M$, then $G \subset \operatorname{Int} M$. Similarly \overline{M} is the smallest closed set containing M.

Lemma 8 (monotonicity of taking interior and closure) If $A \subset B \subset \mathbb{R}^n$, then (i) Int $A \subset \text{Int } B$,

(ii) $\overline{A} \subset \overline{B}$.

Exercise 1
Let
$$A \sqcup B = \mathbb{R}^n$$
. Then
(a) Int $A = \mathbb{R}^n \setminus \overline{B}$, (b) $\overline{A} = \mathbb{R}^n \setminus \operatorname{Int} B$.

Exercise 2

Let $A, B \subset \mathbb{R}^2$. Prove that (a) $\overline{bd A} = bd A$; (b) $\overline{A} = \operatorname{Int} A \Longrightarrow ((A = \mathbb{R}^2) \lor (A = \emptyset))$; (c) disprove the equality $\overline{A \cap B} = \overline{A} \cap \overline{B}$, change the equality sign to a correct inclusion and prove the latter.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset U(\boldsymbol{o}, r)$.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset U(\boldsymbol{o}, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset U(\boldsymbol{o}, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

Theorem 9

A set $M \subset \mathbb{R}^n$ is bounded if and only if its closure \overline{M} is bounded.

We say that a point $\mathbf{a} \in \mathbb{R}^n$ is an accumulation point (or condensation point) of a function $f : D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, if every neighborhood of \mathbf{a} contains at least one point of D_f , not equal to \mathbf{a} . The point \mathbf{a} might be or might not be a point of D_f .

Definition

We say that a function f of n variables has a limit at a point $\mathbf{a} \in \mathbb{R}^n$ equal to $A \in \mathbb{R}^*$ if \mathbf{a} is an accumulation point of D_f and

$$\forall \varepsilon > \mathbf{0} \ \exists \delta > \mathbf{0} \ \forall \mathbf{x} \in U(\mathbf{a}, \delta) \cap D_{f} \setminus \{\mathbf{a}\} \colon f(\mathbf{x}) \in U(\mathbf{A}, \varepsilon).$$

Remark

Each function has at a given point at most one limit.
 We write lim_{x→a} f(x) = A.

Remark

- Each function has at a given point at most one limit.
 We write lim_{x→a} f(x) = A.
- For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Theorem 10

Let $r, s \in \mathbb{N}$, $\boldsymbol{a} \in \mathbb{R}^{s}$, and let $\varphi_{1}, \ldots, \varphi_{r}$ be functions of s variables such that $\lim_{\boldsymbol{x}\to\boldsymbol{a}}\varphi_{j}(\boldsymbol{x}) = b_{j}$, $j = 1, \ldots, r$. Denote $\boldsymbol{b} = (b_{1}, \ldots, b_{r})$. Let f be a function of r variables which is continuous at the point \boldsymbol{b} . If we define a compound function F of s variables by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})),$$

then $\lim_{\boldsymbol{x}\to\boldsymbol{a}}F(\boldsymbol{x})=f(\boldsymbol{b}).$

V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

Definition Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, and $f: M \to \mathbb{R}$. We say that f is continuous at \mathbf{x} with respect to M, if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \boldsymbol{y} \in \boldsymbol{U}(\boldsymbol{x}, \delta) \cap \boldsymbol{M}: \ \boldsymbol{f}(\boldsymbol{y}) \in \boldsymbol{U}(\boldsymbol{f}(\boldsymbol{x}), \varepsilon).$

V.2. Continuous functions of several variables

Definition Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, and $f \colon M \to \mathbb{R}$. We say that f is continuous at \mathbf{x} with respect to M, if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > \mathbf{0} \ \exists \delta \in \mathbb{R}, \delta > \mathbf{0} \ \forall \mathbf{y} \in U(\mathbf{x}, \delta) \cap M: \ f(\mathbf{y}) \in U(f(\mathbf{x}), \varepsilon).$

We say that f is continuous at the point \boldsymbol{x} if it is continuous at \boldsymbol{x} with respect to a neighbourhood of \boldsymbol{x} , i.e.

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > \mathbf{0} \ \exists \delta \in \mathbb{R}, \delta > \mathbf{0} \ \forall \mathbf{y} \in U(\mathbf{x}, \delta) \colon f(\mathbf{y}) \in U(f(\mathbf{x}), \varepsilon).$

Remark

If **a** is an accumulation point of D_f , then the function f is continuous at **a** if and only if $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$.

Other neighborhoods

In the definition of continuity, the circle $U(x, \delta)$ can be changed with the cube $A(x, \delta)$, where $A(x, r) = \{y = (y_1, \dots, y_n) \in \mathbb{R}^n : |y_j - x_j| < r\}.$ We have $U(x, r) \subset A(x, r) \subset U(x, r\sqrt{n}).$

Theorem 11 (Heine)

Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, and $f : M \to \mathbb{R}$. Then the following are equivalent.

- (i) The function f is continuous at \mathbf{x} with respect to M.
- (ii) $\lim_{j\to\infty} f(\mathbf{x}^j) = f(\mathbf{x})$ for each sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ such that $\mathbf{x}^j \in M$ for $j \in \mathbb{N}$ and $\lim_{j\to\infty} \mathbf{x}^j = \mathbf{x}$.

Examples

1.
$$f(x, y) = \begin{cases} \frac{x}{y}, & y \neq 0, \\ 0, & y = 0. \end{cases}$$

 $M_1 = \mathbb{R}^2; & M_2 = \mathbb{R} \times \{0\}; & M_3 = \{0\} \times \mathbb{R};$
 $M_4 = \{(x, x) : x \in \mathbb{R}\}.$
2. $f(x, y) = \frac{xy}{x^2 + y^2}.$
3. $f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}; & f(x, y) = \frac{x^2 y}{x^2 + y^2} \end{cases}$

Repeated limits

 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)\neq \lim_{x\to x_0}\lim_{y\to y_0}f(x,y)\neq \lim_{y\to y_0}\lim_{x\to x_0}f(x,y).$

Example $f(x, y) = \frac{x-y+x^2+y^2}{x+y}$.