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V.1. Rn as a linear and metric space

V.1. Rn as a linear and metric space

Definition
The set Rn, n ∈ N, is the set of all ordered n-tuples of real
numbers, i.e.

Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R}.

For x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn and α ∈ R
we set

x + y = (x1 + y1, . . . , xn + yn), αx = (αx1, . . . , αxn).

Further, we denote o = (0, . . . ,0) – the origin.
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V.1. Rn as a linear and metric space

Properties of +, ·
1. x + y = y + x , for any x ,y ∈ Rn (commutativity)
2. (x + y) + z = x + (y + z) (associativity)
3. ∃o ∈ Rn ∀x ∈ Rn : x + o = x (existence of neutral

element)
4. ∀x ∈ Rn ∃(−x) ∈ Rn : x + (−x) = o (existence of

opposite element)
5. α(βx) = (αβ)x , for any α, β ∈ R and x ∈ Rn

Comment
Properties 1- 4 tells that Rn is a group with respect to the
operation +
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V.1. Rn as a linear and metric space

Definition
The Euclidean metric (distance) on Rn is the function
ρ : Rn × Rn → [0,+∞) defined by

ρ(x ,y) =

√√√√ n∑
i=1

(xi − yi)2 .

The number ρ(x ,y) is called the distance of the point x
from the point y .
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V.1. Rn as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric ρ has the following properties:

(i) ∀x ,y ∈ Rn : ρ(x ,y) = 0⇔ x = y ,

(ii) ∀x ,y ∈ Rn : ρ(x ,y) = ρ(y ,x), (symmetry)
(iii) ∀x ,y , z ∈ Rn : ρ(x ,y) ≤ ρ(x , z) + ρ(z ,y),

(triangle inequality)
(iv) ∀x ,y ∈ Rn,∀λ ∈ R : ρ(λx , λy) = |λ|ρ(x ,y),

(homogeneity)
(v) ∀x ,y , z ∈ Rn : ρ(x + z ,y + z) = ρ(x ,y).

(translation invariance)

Remark
Properties I-III make the pair (Rn, ρ) a metric space.
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V.1. Rn as a linear and metric space

Definition
Let x j ∈ Rn for each j ∈ N and x ∈ Rn. We say that a
sequence {x j}∞j=1 converges to x , if

lim
j→∞

ρ(x ,x j) = 0.

The vector x is called the limit of the sequence {x j}∞j=1.

The sequence {y j}∞j=1 of points in Rn is called convergent
if there exists y ∈ Rn such that {y j}∞j=1 converges to y .

Remark
The sequence {x j}∞j=1 converges to x ∈ Rn if and only if

∀ε ∈ R, ε > 0 ∃j0 ∈ N ∀j ∈ N, j ≥ j0 : x j ∈ U(x , ε).
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V.1. Rn as a linear and metric space

Theorem 2 (convergence is coordinatewise)
Let x j ∈ Rn for each j ∈ N and let x ∈ Rn. The sequence
{x j}∞j=1 converges to x if and only if for each i ∈ {1, . . . ,n}
the sequence of real numbers {x j

i }∞j=1 converges to the
real number xi .

Remark
Theorem 2 says that the convergence in the space Rn is
the same as the “coordinatewise” convergence. It follows
that a sequence {x j}∞j=1 has at most one limit. If it exists,
then we denote it by limj→∞ x j . Sometimes we also write
simply x j → x instead of limj→∞ x j = x .
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V.1. Rn as a linear and metric space

Definition
Let x ∈ Rn, r ∈ R, r > 0. The set U(x , r) defined by

U(x , r) = {y ∈ Rn; ρ(x ,y) < r}

is called an open ball with radius r centred at x or the
r -neighbourhood of x .

Another notations for U(x , r): Ur (x),B(x , r).
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V.1. Rn as a linear and metric space

Definition
Let M ⊂ Rn. We say that x ∈ Rn is an interior point of M, if
there exists r > 0 such that U(x , r) ⊂ M.

The set of all interior points of M is called the interior of M
and is denoted by IntM.

The set M ⊂ Rn is open in Rn, if each point of M is an
interior point of M, i.e. if M = IntM.

The system of all open sets are denoted G(Rn).

Exterior of M is ExtM = Int(MC), where MC = Rn \M is
the complement of M.
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V.1. Rn as a linear and metric space

Theorem 3 (properties of open sets)
(i) The empty set and Rn are open in Rn.

(ii) Let Gα ⊂ Rn, α ∈ A 6= ∅, be open in Rn. Then⋃
α∈A Gα is open in Rn.

(iii) Let Gi ⊂ Rn, i = 1, . . . ,m, be open in Rn. Then⋂m
i=1 Gi is open in Rn.

Remark

(ii) A union of an arbitrary system of open sets is an open
set.
(iii) An intersection of a finitely many open sets is an open
set.
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V.1. Rn as a linear and metric space

Definition
Let M ⊂ Rn and x ∈ Rn. We say that x is a boundary
point of M if for each r > 0

U(x , r) ∩M 6= ∅ and U(x , r) ∩ (Rn \M) 6= ∅.

The boundary of M is the set of all boundary points of M
(notation Fr (M) or H(M) or bdM).

The closure of M is the set M ∪ bdM (notation M).

A set M ⊂ Rn is said to be closed in Rn if it contains all its
boundary points, i.e. if bdM ⊂ M, or in other words if
M = M.
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V.1. Rn as a linear and metric space

Proposition
x ∈ bdM iff x /∈ IntM and x /∈ ExtM.

Consequence
Rn = IntM t ExtM t bdM (here A t B = A ∪ B,A ∩ B = ∅
is disjoint union).

bdM = bdMC .
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V.1. Rn as a linear and metric space

Theorem 4 (characterisation of closed sets)
Let M ⊂ Rn. Then the following statements are equivalent:

(i) M is closed in Rn.
(ii) Rn \M is open in Rn.
(iii) Any x ∈ Rn which is a limit of a sequence from M

belongs to M.

Mathematics II V. Functions of several variables



V.1. Rn as a linear and metric space

Theorem 5 (properties of closed sets)
(i) The empty set and the whole space Rn are closed

in Rn.

(ii) Let Fα ⊂ Rn, α ∈ A 6= ∅, be closed in Rn. Then⋂
α∈A Fα is closed in Rn.

(iii) Let Fi ⊂ Rn, i = 1, . . . ,m, be closed in Rn. Then⋃m
i=1 Fi is closed in Rn.

Remark

(ii) An intersection of an arbitrary system of closed sets is
closed.
(iii) A union of finitely many closed sets is closed.
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V.1. Rn as a linear and metric space

Lemma 6
(i) For any set M we have M = IntM t bdM.
(ii) If M ⊂ Rn is closed, then M = IntM t bdM.

Theorem 7
Let M ⊂ Rn. Then the following holds:

(i) The set IntM is open in Rn (i.e. Int(IntM) = IntM).

(ii) The set M is closed in Rn (i.e. M = M).

Remark
We have IntM ⊂ M ⊂ M. Moreover, the set IntM is the
largest open set contained in M in the following sense:
If G is a set open in Rn and satisfying G ⊂ M, then
G ⊂ IntM. Similarly M is the smallest closed set
containing M.
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V.1. Rn as a linear and metric space

Lemma 8 (monotonicity of taking interior and
closure)
If A ⊂ B ⊂ Rn, then

(i) IntA ⊂ IntB,
(ii) A ⊂ B.

Exercise 1
Let A t B = Rn. Then

(a) IntA = Rn \ B, (b) A = Rn \ IntB.

Exercise 2
Let A,B ⊂ R2. Prove that (a) bdA = bdA;
(b) A = IntA =⇒ ((A = R2) ∨ (A = ∅)); (c) disprove the
equality A ∩ B = A ∩ B, change the equality sign to a
correct inclusion and prove the latter.
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V.1. Rn as a linear and metric space

Definition
We say that the set M ⊂ Rn is bounded if there exists
r > 0 such that M ⊂ U(o, r).

A sequence of points in Rn is
bounded if the set of its members is bounded.

Theorem 9
A set M ⊂ Rn is bounded if and only if its closure M is
bounded.
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V.2. Continuous functions of several variables

Definition
We say that a point a ∈ Rn is an accumulation point (or
condensation point) of a function f : Df → R, Df ⊂ Rn, if
every neighborhood of a contains at least one point of Df ,
not equal to a. The point a might be or might not be a
point of Df .

Definition
We say that a function f of n variables has a limit at a
point a ∈ Rn equal to A ∈ R∗ if a is an accumulation point
of Df and

∀ε > 0 ∃δ > 0 ∀x ∈ U(a, δ) ∩ Df \ {a} : f (x) ∈ U(A, ε).
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V.2. Continuous functions of several variables

Remark
Each function has at a given point at most one limit.
We write limx→a f (x) = A.

For limits of functions of several variables one can
prove similar theorems as for limits of functions of
one variable (arithmetics, the sandwich theorem, . . . ).
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V.2. Continuous functions of several variables

Theorem 10
Let r , s ∈ N, a ∈ Rs, and let ϕ1, . . . , ϕr be functions of s
variables such that limx→a ϕj(x) = bj , j = 1, . . . , r . Denote
b = (b1, . . . ,br ). Let f be a function of r variables which is
continuous at the point b. If we define a compound
function F of s variables by

F (x) = f (ϕ1(x), ϕ2(x), . . . , ϕr (x)),

then limx→a F (x) = f (b).
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V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and f : M → R. We say that f is
continuous at x with respect to M, if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ U(x , δ)∩M : f (y) ∈ U(f (x), ε).

We say that f is continuous at the point x if it is
continuous at x with respect to a neighbourhood of x , i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ U(x , δ) : f (y) ∈ U(f (x), ε).

Remark
If a is an accumulation point of Df , then the function f is
continuous at a if and only if limx→a f (x) = f (a).
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V.2. Continuous functions of several variables

Other neighborhoods
In the definition of continuity, the circle U(x , δ) can be
changed with the cube A(x , δ), where
A(x , r) = {y = (y1, . . . , yn) ∈ Rn : |yj − xj | < r} .
We have U(x , r) ⊂ A(x , r) ⊂ U(x , r

√
n).
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V.2. Continuous functions of several variables

Theorem 11 (Heine)
Let M ⊂ Rn, x ∈ M, and f : M → R. Then the following are
equivalent.

(i) The function f is continuous at x with respect to M.
(ii) lim

j→∞
f (x j) = f (x) for each sequence {x j}∞j=1 such that

x j ∈ M for j ∈ N and lim
j→∞

x j = x .
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V.2. Continuous functions of several variables

Examples

1. f (x , y) =

{
x
y , y 6= 0,
0, y = 0.

M1 = R2; M2 = R× {0} ; M3 = {0} × R;
M4 = {(x , x) : x ∈ R} .

2. f (x , y) = xy
x2+y2 .

3. f (x , y) = x2−y2

x2+y2 ; f (x , y) = x2y
x2+y2

Repeated limits
lim

(x ,y)→(x0,y0)
f (x , y) 6= lim

x→x0
lim

y→y0
f (x , y) 6= lim

y→y0
lim

x→x0
f (x , y).

Example
f (x , y) = x−y+x2+y2

x+y .
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