Limits of sequences 2
Exercises: reference limits
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Bonus exercises: Sequences given recurrently.

Find the limit of a sequence a,, given recurrently
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an +3 1 S
11. a1 =0, apy1 = 1 14. 01 = 3 (xn + ) , 1 > 0 arbitrary, S > 0 fixed.
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an —2 15. x =—x +ix>0 S > 0 fixed
12. a1 = 42, Ap41 = 5 . c Antl 3 n 31:%7 1 s .
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13. a1 = V2, apnt1 = V2 + ay. 6. Tpy1 = 3%n + 322 z1 > 0,5 > 0 fixed.
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3. Hint: 2k +1=(2k—1)+2. Then S, =3+ (3 + & + ...+ 555) + 31
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1. We want to use a theorem about the limit of a monotone sequence.
We have

Ap41 — Qp = 1(1 - an)a 1-— Ap41 = g(anqu - an)a

hence 0 < a, < ant+1 < 1, and there exists a limit a of a,,. Taking the limit in the recurrent relation, we
obtain a = ia + %.

lim /2™ + 4™. Here we will use the Theorem about two policiemen. The idea is that 2™ is negligible
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compared to 4™, so the limit will be 4. It remains to find two cops. For every n € N, it holds that
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Apparently lim /47 = lim 4 = 4. And thanks to Theorem of Arithmetics of limits,
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where we used the known limit. So we have two cops, they both go to the same constant, and thus
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, a >b> 0. Here, similar to exercise 17, we use two cops. It holds for every n € N that
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Since lim —%- = lim %2 = %, then also lim ——— = =
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lim (\/n +1- \/ﬁ) . In this type of example, we will use a trick that we will call standard procedure from
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now on. Namely, we will use the relation (a — b)(a + b) = (a? — b?), and we multiply our sequence by the
so-called “smart one™
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We used (several times) Theorem of arithmetics of limits, theorem that the limit of (square) roots is the
(square) root of the limit.
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lim ({”/n +1-— \?/ﬁ) Here, as in previous cases, we need to transform the expression using the formula
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a® — b = (a — b) (Va2 + Vab + Vb?). Then
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We used (several times) Theorem of arithmetics of limits, theorem that the limit of (third) roots is the (third)
root of the limit.
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and denominator. The answer is 1.
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the formula a* — b* = (a — b)(a® + a?b + ab® + b?), and in the denominator we use the formula a® — b* =
(a — b)(a® + ab + b?). After substituting and cancelling the largest factor, we get the result 0.
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This limit does not exist. First, observe that lim /n (vn+1—/n) =
n— oo

. We need to transform the expression, as in the previous example, both in numerator

. Again, we need to transform the expression, as in the previous example, both in

. Here it is just as simple, although a little more laborious. In the numerator we use

%. Now we can select two subse-
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quences: with n odd and n even, and they have different limits, namely — 5 and 3



