## Mathematics I - Introduction

2024/2025

Mathematics I - Introduction

1/50

# Why study Math?

Mathematics I - Introduction

≥ / 50

æ

1. Excellent for your brain

- 1. Excellent for your brain
- 2. Real-world applications

- 1. Excellent for your brain
- 2. Real-world applications
- 3. Better problem-solving skills

- 1. Excellent for your brain
- 2. Real-world applications
- 3. Better problem-solving skills
- 4. Helps almost every career

- 1. Excellent for your brain
- 2. Real-world applications
- 3. Better problem-solving skills
- 4. Helps almost every career
- 5. Helps understand the world better

- 1. Excellent for your brain
- 2. Real-world applications
- 3. Better problem-solving skills
- 4. Helps almost every career
- 5. Helps understand the world better
- 6. It is the universal language

At the end of the course students should be able to

• Training of logical thinking and mathematical exactness At the end of the course students should be able to

• Training of logical thinking and mathematical exactness At the end of the course students should be able to

• compute limits and derivatives and investigate functions

• Training of logical thinking and mathematical exactness At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)

• Training of logical thinking and mathematical exactness At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)
- perform mathematical proofs, give mathematically exact arguments, write mathematical formulae, use quantifiers

- Introduction
- Limit of a sequence
- Mappings
- Functions of one real variable

## Textbooks

#### • Hájková et al: Mathematics 1

- Trench: Introduction to real analysis
- Ghorpade, Limaye: A course in calculus and real analysis
- Zorich: Mathematical analysis I
- Rudin: Principles of mathematical analysis
- Fikhtengoltz: The fundamentals of Mathematical Analysis.

(日)

590

æ

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

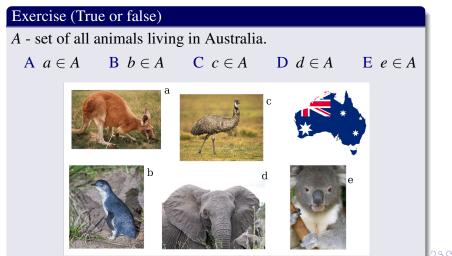
•  $x \in A \dots x$  is an element (or member) of the set A

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

•  $x \in A \dots x$  is an element (or member) of the set A

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

•  $x \in A \dots x$  is an element (or member) of the set A



#### • $x \notin A \dots x$ is not a member of the set A

-

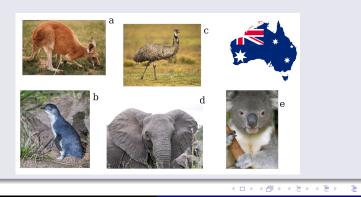
æ

#### • $x \notin A \dots x$ is not a member of the set A

#### Exercise (True or false)

#### A - set of all animals living in Australia.

A  $a \notin A$  B  $b \notin A$  C  $c \notin A$  D  $d \notin A$  E  $e \notin A$ 



#### • $A^c$ ... the complement of the set A

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set
- $A \cup B \dots$  the union of the sets A and B

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set
- $A \cup B \dots$  the union of the sets A and B
- $A \cap B$ ... the intersection of the sets A and B

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set
- $A \cup B \dots$  the union of the sets A and B
- $A \cap B$ ... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if  $A \cap B = \emptyset$

- $A^c$  ... the complement of the set A
- $B \subset A$ ...the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set
- $A \cup B \dots$  the union of the sets A and B
- $A \cap B$ ... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if  $A \cap B = \emptyset$
- $A \setminus B = \{x \in A : x \notin B\} \dots$  difference of the sets A and B

- $A^c$  ... the complement of the set A
- $B \subset A$ ... the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia:  $B \subset A$ .
- A = B... the sets A and B have the same elements; the following holds:  $A \subset B$  and  $B \subset A$
- $\emptyset$  . . . an empty set
- $A \cup B \dots$  the union of the sets A and B
- $A \cap B$ ... the intersection of the sets A and B
- disjoint sets . . . A and B are disjoint if  $A \cap B = \emptyset$
- $A \setminus B = \{x \in A : x \notin B\} \dots$  difference of the sets A and B
- $A_1 \times \cdots \times A_m = \{(a_1, \dots, a_m) : a_1 \in A_1, \dots, a_m \in A_m\}$ ... the Cartesian product

## Sets - questions

#### Exercise

Let  $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7, 9\}$  and  $B = \{1, 2, 3, 4, 5\}$ . Find

| 1. $A \cup B$         | 3. $A^{c}$          | 5. $A \setminus B$ |
|-----------------------|---------------------|--------------------|
| <b>2</b> . $A \cap B$ | <b>4.</b> $(B^c)^c$ | 6. $B \setminus A$ |

Э

# Sets - questions

#### Exercise

Let 
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7, 9\}$$
 and  $B = \{1, 2, 3, 4, 5\}$ . Find

| 1. $A \cup B$        | 3. $A^{c}$   | 5. $A \setminus B$ |
|----------------------|--------------|--------------------|
| <b>2.</b> $A \cap B$ | 4. $(B^c)^c$ | 6. $B \setminus A$ |

#### Exercise (True or false)

Let A be a set.

 $\begin{array}{l} \mathbf{A} \quad \emptyset \in \mathbf{A} \\ \mathbf{B} \quad \emptyset \subset \mathbf{A} \\ \mathbf{C} \quad \mathbf{0} = \emptyset \end{array}$ 

 $\mathbf{D} \ \{x\} \in \{x, y, z\}$ 

$$\mathsf{E} \ x \in \{x, y, z\}$$

# $A_1 \times \cdots \times A_m = \{(a_1, \dots, a_m) : a_1 \in A_1, \dots, a_m \in A_m\} \dots$ the Cartesian product

 $A_1 \times \cdots \times A_m = \{(a_1, \dots, a_m) : a_1 \in A_1, \dots, a_m \in A_m\} \dots$  the Cartesian product

#### Exercise

| Let $A =$ them. | $\{1, 2,$ | 3}, <i>B</i> = | = {2,4 | }. | Find $A \times B$ , $B \times B$ and sketch |
|-----------------|-----------|----------------|--------|----|---------------------------------------------|
| 3               |           |                |        |    |                                             |
| 2               |           |                |        |    |                                             |
| 1               |           |                |        |    |                                             |
| 0               | 1         | 2              | 3      | 4  |                                             |

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

∪ A<sub>α</sub>... the set of all elements belonging to at least one of the sets A<sub>α</sub>

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

- ∪<sub>α∈I</sub> A<sub>α</sub> ... the set of all elements belonging to at least one of the sets A<sub>α</sub>
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$  the set of all elements belonging to every  $A_{\alpha}$

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

- ∪<sub>α∈I</sub> A<sub>α</sub> ... the set of all elements belonging to at least one of the sets A<sub>α</sub>
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$  the set of all elements belonging to every  $A_{\alpha}$

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

- $\bigcap_{\alpha \in I} A_{\alpha} \dots$  the set of all elements belonging to every  $A_{\alpha}$

Example.

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

- $\bigcap_{\alpha \in I} A_{\alpha}$  ... the set of all elements belonging to every  $A_{\alpha}$

#### Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to  $\bigcup_{i=1}^3 A_i$ , and also to  $\bigcup_{i \in \{1,2,3\}} A_i$ .

Let *I* be a non-empty set of indices and suppose we have a system of sets  $A_{\alpha}$ , where the indices  $\alpha$  run over *I*.

- $\bigcap_{\alpha \in I} A_{\alpha} \dots$  the set of all elements belonging to every  $A_{\alpha}$

#### Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to  $\bigcup_{i=1}^3 A_i$ , and also to  $\bigcup_{i \in \{1,2,3\}} A_i$ .  
Infinitely many sets:  $A_1 \cup A_2 \cup A_3 \cup \dots$  is equivalent to  $\bigcup_{i=1}^\infty A_i$ , and also to  $\bigcup_{i \in \mathbb{N}} A_i$ .

#### Exercise

Let 
$$A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$$
. Find  
1.  $\bigcup_{i=1}^{3} A_i$   
2.  $\bigcap_{i \in \{1, 2, 3\}} A_i$ 

Mathematics I - Introduction

12/50

■ \_ \_ のへ(?)

◆□ > ◆□ > ◆豆 > ◆豆 > →

#### de Morgan's laws

Let  $S, A_{\alpha}, \alpha \in I \neq \emptyset$  be some sets. Then

$$S\setminus igcup_{lpha\in I} A_lpha = igcap_{lpha\in I} (S\setminus A_lpha)$$

and

$$S \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (S \setminus A_{\alpha}).$$

< ≣ ► 13/50

# Logic

æ

590

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

A statement (or proposition) is a sentence which can be declared to be either true or false.

A statement (or proposition) is a sentence which can be declared to be either true or false.

#### Exercise

Find statements.

- A Let it be!
- B We all live in a yellow submarine.
- C Is there anybody out there?
- D We don't need any education.

## Statements

- $\neg$ , also  $\overline{\cdots}$ , non ... negation
- & (also  $\land$ )...conjunction, logical "and"
- || (also ∨) ... disjunction (alternative), logical "or"
- $\Rightarrow$  ... implication
- $\Leftrightarrow \dots$  equivalence; "if and only if"

#### Exercise

- 1. Alice does not like chocolate ice cream.
- 2. Alice likes chocolate and lemon ice cream.
- 3. Alice likes chocolate or lemon ice cream.
- 4. If it will be raining tomorrow, we will play board games.
- 5. We will play board games tomorrow if and only if it will be raining.

Sac

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

16/50

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

 $V(x), x \in M$ 

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

 $V(x), x \in M$ 

$$V(x_1,\ldots,x_n), x_1 \in M_1,\ldots,x_n \in M_n$$

#### Example

V(x): x is even $M = \{1, 2, 3, 4, 5\}$ V(3) false, V(4) true. $V(x_1, x_2): x_1 \cdot x_2 = 1$  $M = \{2, \frac{1}{2}, 3, 4\}$  $V(2, \frac{1}{2}) \text{ true, } V(2, 3) \text{ false.}$ 

Sac

 $\forall x \in M \colon A(x).$ 

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

 $\exists x \in M : A(x).$ 

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M \colon A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

 $\exists !x \in M \colon A(x).$ 

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M \colon A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

$$\exists !x \in M \colon A(x).$$



If A(x),  $x \in M$  and B(x),  $x \in M$  are predicates, then

 $\forall x \in M, B(x) : A(x) \text{ means } \forall x \in M : (B(x) \Rightarrow A(x)),$ 

18/50

Sac

If A(x),  $x \in M$  and B(x),  $x \in M$  are predicates, then

 $\forall x \in M, B(x) : A(x) \text{ means } \forall x \in M : (B(x) \Rightarrow A(x)),$ 

 $\exists x \in M, B(x) : A(x)$  means  $\exists x \in M : (A(x) \& B(x)).$ 

#### Example

$$orall x \in \mathbb{R}, x \ge -1: 1 + 2x \le (1+x)^2$$
  
 $\exists x \in \mathbb{R}, x \ge 0: x \ge x^2$ 

Negations of the statements with quantifiers:

 $\neg(\forall x \in M : A(x))$  is the same as  $\exists x \in M : \neg A(x)$ ,

< ≣ → 19/50 э

Negations of the statements with quantifiers:

$$\neg(\forall x \in M : A(x))$$
 is the same as  $\exists x \in M : \neg A(x)$ ,

 $\neg(\exists x \in M : A(x))$  is the same as  $\forall x \in M : \neg A(x)$ .

#### Example

Find negation

$$\forall x \in \mathbb{R}, x \ge -1 : 1 + 2x \le (1+x)^2$$
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \ge 0, y \ge 0 : \frac{x+y}{2} \ge \sqrt{xy}$$
$$\exists x \in \mathbb{R}, x \ge 0 : x \ge x^2$$

Sac

# Methods of proofs

< ≣ →</li>20/50

- direct proof
- indirect proof (proof by contrapositive)
- proof by contradiction
- mathematical induction

# Methods of proofs

21/50

- direct proof ( $A \Rightarrow B$  follows from  $A \Rightarrow C_1 \Rightarrow C_2 \Rightarrow B$ )
- indirect proof (proof by contrapositive) (A ⇒ B is equivalent to ¬B ⇒ ¬A)
- proof by contradiction  $(A \Rightarrow B \text{ is equivalent to } \neg (A \land \neg B))$
- mathematical induction (base and step of induction)

# Methods of proof

#### Exercise (direct proof) (Cauchy inequality)

$$\left(\sum_{j=1}^n a_j b_j\right)^2 \leq \left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right).$$

#### Exercise (proof by contrapositive)

For a integer n, if  $n^2$  is even, then n is also even.

#### Exercise (proof by contradiction)

The number  $\sqrt{2}$  is irrational.

#### Exercise (proof by induction)

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Mathematics I - Introduction

• The set of natural numbers

• The set of natural numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

#### • The set of rational numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

#### • The set of rational numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

#### • The set of rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\},$$

where  $\frac{p_1}{q_1} = \frac{p_2}{q_2}$  if and only if  $p_1 \cdot q_2 = p_2 \cdot q_1$ .

# Real numbers

By the set of real numbers  $\mathbb{R}$  we will understand a set on which there are operations of addition and multiplication (denoted by + and  $\cdot$ ), and a relation of ordering (denoted by  $\leq$ ), such that it has the following three groups of properties.

- I. The properties of addition and multiplication and their relationships.
- II. The relationships of the ordering and the operations of addition and multiplication.
- III. The infimum axiom.

24/50

# The properties of addition and multiplication and their relationships:

ъ

æ

SAC

# The properties of addition and multiplication and their relationships:

- $\forall x, y \in \mathbb{R} : x + y = y + x$  (commutativity of addition),
- $\forall x, y, z \in \mathbb{R}$ : x + (y + z) = (x + y) + z (associativity),
- There is an element in ℝ (denoted by 0 and called a zero element), such that x + 0 = x for every x ∈ ℝ,
- ∀x ∈ ℝ ∃y ∈ ℝ: x + y = 0 (y is called the negative of x, such y is only one, denoted by -x),
- $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$  (commutativity),
- $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$  (associativity),
- There is a non-zero element in ℝ (called identity, denoted by 1), such that 1 · x = x for every x ∈ ℝ,
- $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1 \text{ (such } y \text{ is only one, } denoted by <math>x^{-1} \text{ or } \frac{1}{x}$ ),
- $\forall x, y, z \in \mathbb{R} : (x + y) \cdot z = x \cdot z + y \cdot z$  (distributivity).

# The relationships of the ordering and the operations of addition and multiplication:

# The relationships of the ordering and the operations of addition and multiplication:

- $\forall x, y, z \in \mathbb{R} : (x \le y \& y \le z) \Rightarrow x \le z$  (transitivity),
- $\forall x, y \in \mathbb{R} : (x \le y \& y \le x) \Rightarrow x = y$  (weak antisymmetry),
- $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$ ,
- $\forall x, y, z \in \mathbb{R} : x \le y \Rightarrow x + z \le y + z$ ,
- $\forall x, y \in \mathbb{R} : (0 \le x \& 0 \le y) \Rightarrow 0 \le x \cdot y.$

We say that the set  $M \subset \mathbb{R}$  is bounded from below if there exists a number  $a \in \mathbb{R}$  such that for each  $x \in M$  we have  $x \ge a$ .

naa

We say that the set  $M \subset \mathbb{R}$  is bounded from below if there exists a number  $a \in \mathbb{R}$  such that for each  $x \in M$  we have  $x \ge a$ . Such a number *a* is called a lower bound of the set *M*.

We say that the set  $M \subset \mathbb{R}$  is bounded from below if there exists a number  $a \in \mathbb{R}$  such that for each  $x \in M$  we have  $x \ge a$ . Such a number *a* is called a lower bound of the set *M*. Analogously we define the notions of a set bounded from above and an upper bound.

27/50

We say that the set  $M \subset \mathbb{R}$  is bounded from below if there exists a number  $a \in \mathbb{R}$  such that for each  $x \in M$  we have  $x \ge a$ . Such a number a is called a lower bound of the set M. Analogously we define the notions of a set bounded from above and an upper bound. We say that a set  $M \subset \mathbb{R}$  is bounded if it is bounded from above and below.

#### Exercise

Which sets are bounded from below? Bounded from above? Bounded?

A N  
B 
$$\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ...\}$$
  
C  $\mathbb{R} \setminus \mathbb{Q} \cap (-3, 2]$   
D  $\{x \in \mathbb{R} : x < \pi\}$   
E  $(-\infty, -1) \cup \{0\} \cup [1, \infty)$ 

## The infimum axiom:

Let *M* be a non-empty set bounded from below. Then there exists a unique number  $g \in \mathbb{R}$  such that

(i)  $\forall x \in M : x \ge g$ ,

## The infimum axiom:

Let *M* be a non-empty set bounded from below. Then there exists a unique number  $g \in \mathbb{R}$  such that

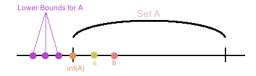
(i)  $\forall x \in M : x \ge g$ , (ii)  $\forall g' \in \mathbb{R}, g' > g \exists x \in M : x < g'$ .

## The infimum axiom:

Let *M* be a non-empty set bounded from below. Then there exists a unique number  $g \in \mathbb{R}$  such that

(i)  $\forall x \in M : x \ge g$ , (ii)  $\forall g' \in \mathbb{R}, g' > g \exists x \in M : x < g'$ .

The number g is denoted by  $\inf M$  and is called the infimum of the set M.



1) The infimum of A is the greater lower bound of the set A. All other lower bounds are smaller than inf(A).

2) Furthermore if b is greater than inf(A) then there exists an a contained in the set A such that a < b.

Figure: https://mathspandorabox.wordpress.com/2016/03/11/the-differencebetween-supremum-and-infimum-equivalent-and-equal-set

Mathematics I - Introduction

28/50

Sac

## Remark

• The infimum axiom says that every non-empty set bounded from below has infimum.

## Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.

### Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.
- The real numbers exist and are uniquely determined by the properties I–III.

# The following hold: (i) $\forall x \in \mathbb{R} : x \cdot 0 = 0 \cdot x = 0$ , (ii) $\forall x \in \mathbb{R} : -x = (-1) \cdot x$ , (iii) $\forall x, y \in \mathbb{R} : xy = 0 \Rightarrow (x = 0 \lor y = 0)$ , (iv) $\forall x \in \mathbb{R} \forall n \in \mathbb{N} : x^{-n} = (x^{-1})^n$ , (v) $\forall x, y \in \mathbb{R} : (x > 0 \land y > 0) \Rightarrow xy > 0$ , (vi) $\forall x \in \mathbb{R}, x \ge 0 \forall y \in \mathbb{R}, y \ge 0 \forall n \in \mathbb{N} : x < y \Leftrightarrow x^n < y^n$ .

Let  $a, b \in \mathbb{R}$ ,  $a \leq b$ . We denote:

- An open interval  $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- A closed interval  $[a, b] = \{x \in \mathbb{R} : a \le x \le b\},\$
- A half-open interval  $[a, b) = \{x \in \mathbb{R} : a \le x < b\},\$
- A half-open interval  $(a, b] = \{x \in \mathbb{R} : a < x \le b\}.$

Let  $a, b \in \mathbb{R}$ ,  $a \leq b$ . We denote:

- An open interval  $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- A closed interval  $[a, b] = \{x \in \mathbb{R} : a \le x \le b\},\$
- A half-open interval  $[a, b) = \{x \in \mathbb{R} : a \le x < b\},\$
- A half-open interval  $(a, b] = \{x \in \mathbb{R} : a < x \le b\}.$

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Let  $a, b \in \mathbb{R}$ ,  $a \leq b$ . We denote:

- An open interval  $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- A closed interval  $[a, b] = \{x \in \mathbb{R} : a \le x \le b\},\$
- A half-open interval  $[a, b) = \{x \in \mathbb{R} : a \le x < b\},\$
- A half-open interval  $(a, b] = \{x \in \mathbb{R} : a < x \le b\}.$

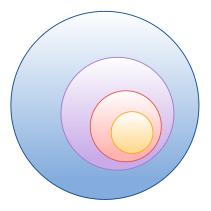
The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Unbounded intervals:

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}, \quad (-\infty, a) = \{x \in \mathbb{R} : x < a\},\$$

analogically  $(-\infty, a]$ ,  $[a, +\infty)$  and  $(-\infty, +\infty)$ .

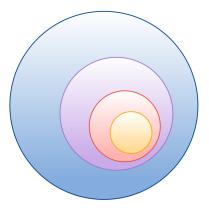
Label the Venn diagram with  $\mathbb{N}$ ,  $\mathbb{Q}$ ,  $\mathbb{Z}$ ,  $\mathbb{R}$ ,  $\mathbb{R} \setminus \mathbb{Q}$ .



< ≣ ▶

590

Label the Venn diagram with  $\mathbb{N}$ ,  $\mathbb{Q}$ ,  $\mathbb{Z}$ ,  $\mathbb{R}$ ,  $\mathbb{R} \setminus \mathbb{Q}$ .



We have  $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ . If we transfer the addition and multiplication from  $\mathbb{R}$  to the above sets, we obtain the usual operations on these sets.

A real number that is not rational is called irrational. The set  $\mathbb{R} \setminus \mathbb{Q}$  is called the set of irrational numbers.

#### Definition

Let  $M \subset \mathbb{R}$ . A number  $G \in \mathbb{R}$  satisfying

(i)  $\forall x \in M : x \leq G$ ,

(ii)  $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$ 

is called a supremum of the set M.

#### Definition

Let  $M \subset \mathbb{R}$ . A number  $G \in \mathbb{R}$  satisfying

(i)  $\forall x \in M : x \leq G$ ,

(ii)  $\forall G' \in \mathbb{R}, G' < G \exists x \in M \colon x > G',$ 

is called a supremum of the set M.

#### Theorem 1 (Supremum theorem)

Let  $M \subset \mathbb{R}$  be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

#### Definition

Let  $M \subset \mathbb{R}$ . A number  $G \in \mathbb{R}$  satisfying

(i)  $\forall x \in M : x \leq G$ ,

(ii)  $\forall G' \in \mathbb{R}, G' < G \exists x \in M \colon x > G',$ 

is called a supremum of the set M.

#### Theorem 1 (Supremum theorem)

Let  $M \subset \mathbb{R}$  be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by  $\sup M$ .

#### Definition

Let  $M \subset \mathbb{R}$ . A number  $G \in \mathbb{R}$  satisfying

(i)  $\forall x \in M : x \leq G$ ,

(ii)  $\forall G' \in \mathbb{R}, G' < G \exists x \in M \colon x > G',$ 

is called a supremum of the set M.

#### Theorem 1 (Supremum theorem)

Let  $M \subset \mathbb{R}$  be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set *M* is denoted by  $\sup M$ . The following holds:  $\sup M = -\inf(-M)$ .

Let  $M \subset \mathbb{R}$ . We say that *a* is a maximum of the set *M* (denoted by  $\max M$ ) if *a* is an upper bound of *M* and  $a \in M$ . Analogously we define a minimum of *M*, denoted by  $\min M$ .

#### Exercise

Find infimum, minimum, maximum and supremum:

| 1. $\{1, 2, 3, 4\}$        | 6. $(-7, -0) \cup (1, 2)$                                 |
|----------------------------|-----------------------------------------------------------|
| 2. $[-2,3]$                | 7. $[0,\infty)$                                           |
| 3. $(-2,3)$                |                                                           |
| 4. (-2,3]                  | 8. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ |
| 5. $[-2, -1) \cup (0, 25]$ | 9. ℕ                                                      |

## Theorem 2 (Archimedean property)

## *For every* $x \in \mathbb{R}$ *there exists* $n \in \mathbb{N}$ *satisfying* n > x.

#### Theorem 2 (Archimedean property)

*For every*  $x \in \mathbb{R}$  *there exists*  $n \in \mathbb{N}$  *satisfying* n > x.

#### Theorem 3 (existence of an integer part)

For every  $r \in \mathbb{R}$  there exists an integer part of r, i.e. a number  $k \in \mathbb{Z}$  satisfying  $k \leq r < k + 1$ . The integer part of r is determined uniquely and it is denoted by [r].

#### Theorem 4 (*n*th root)

For every  $x \in [0, +\infty)$  and every  $n \in \mathbb{N}$  there exists a unique  $y \in [0, +\infty)$  satisfying  $y^n = x$ .

36/50

Sac

#### Theorem 4 (*n*th root)

For every  $x \in [0, +\infty)$  and every  $n \in \mathbb{N}$  there exists a unique  $y \in [0, +\infty)$  satisfying  $y^n = x$ .

### Theorem 5 (density of $\mathbb{Q}$ and $\mathbb{R} \setminus \mathbb{Q}$ )

Let  $a, b \in \mathbb{R}$ , a < b. Then there exist  $r \in \mathbb{Q}$  satisfying a < r < band  $s \in \mathbb{R} \setminus \mathbb{Q}$  satisfying a < s < b.

# II. Limit of a sequence

900

Suppose that to each natural number  $n \in \mathbb{N}$  we assign a real number  $a_n$ . Then we say that  $\{a_n\}_{n=1}^{\infty}$  is a sequence of real numbers.

Suppose that to each natural number  $n \in \mathbb{N}$  we assign a real number  $a_n$ . Then we say that  $\{a_n\}_{n=1}^{\infty}$  is a sequence of real numbers. The number  $a_n$  is called the *n*th member of this sequence.

Suppose that to each natural number  $n \in \mathbb{N}$  we assign a real number  $a_n$ . Then we say that  $\{a_n\}_{n=1}^{\infty}$  is a sequence of real numbers. The number  $a_n$  is called the *n*th member of this sequence.

A sequence  $\{a_n\}_{n=1}^{\infty}$  is equal to a sequence  $\{b_n\}_{n=1}^{\infty}$  if  $a_n = b_n$  holds for every  $n \in \mathbb{N}$ .

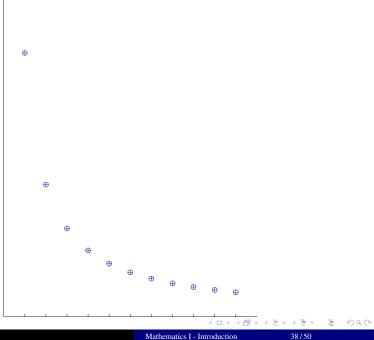
Suppose that to each natural number  $n \in \mathbb{N}$  we assign a real number  $a_n$ . Then we say that  $\{a_n\}_{n=1}^{\infty}$  is a sequence of real numbers. The number  $a_n$  is called the *n*th member of this sequence.

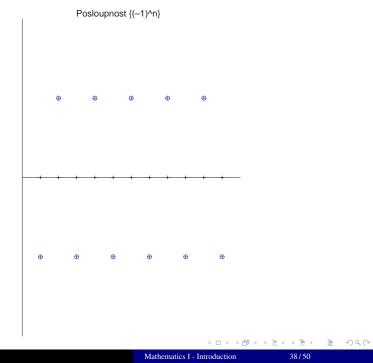
A sequence  $\{a_n\}_{n=1}^{\infty}$  is equal to a sequence  $\{b_n\}_{n=1}^{\infty}$  if  $a_n = b_n$  holds for every  $n \in \mathbb{N}$ .

By the set of all members of the sequence  $\{a_n\}_{n=1}^{\infty}$  we understand the set

$$\{x \in \mathbb{R} : \exists n \in \mathbb{N} \colon a_n = x\}.$$

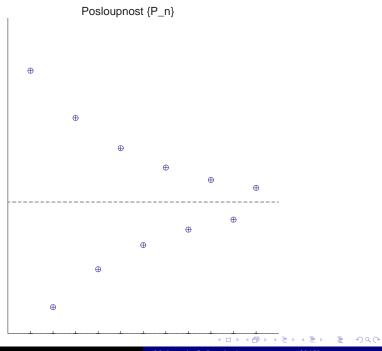
Posloupnost {1/n}







38750



We say that a sequence  $\{a_n\}$  is

• bounded from above if the set of all members of this sequence is bounded from above,

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,
- bounded if the set of all members of this sequence is bounded.

We say that a sequence  $\{a_n\}$  is

• increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,

- increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- decreasing if  $a_n > a_{n+1}$  for every  $n \in \mathbb{N}$ ,

- increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- decreasing if  $a_n > a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-decreasing if  $a_n \leq a_{n+1}$  for every  $n \in \mathbb{N}$ ,

- increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- decreasing if  $a_n > a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-decreasing if  $a_n \leq a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-increasing if  $a_n \ge a_{n+1}$  for every  $n \in \mathbb{N}$ .

We say that a sequence  $\{a_n\}$  is

- increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- decreasing if  $a_n > a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-decreasing if  $a_n \leq a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-increasing if  $a_n \ge a_{n+1}$  for every  $n \in \mathbb{N}$ .

A sequence  $\{a_n\}$  is monotone if it satisfies one of the conditions above.

We say that a sequence  $\{a_n\}$  is

- increasing if  $a_n < a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- decreasing if  $a_n > a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-decreasing if  $a_n \leq a_{n+1}$  for every  $n \in \mathbb{N}$ ,
- non-increasing if  $a_n \ge a_{n+1}$  for every  $n \in \mathbb{N}$ .

A sequence  $\{a_n\}$  is monotone if it satisfies one of the conditions above. A sequence  $\{a_n\}$  is strictly monotone if it is increasing or decreasing.

Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers.

• By the sum of sequences  $\{a_n\}$  and  $\{b_n\}$  we understand a sequence  $\{a_n + b_n\}$ .

Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers.

- By the sum of sequences  $\{a_n\}$  and  $\{b_n\}$  we understand a sequence  $\{a_n + b_n\}$ .
- Analogously we define a difference and a product of sequences.

Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers.

- By the sum of sequences  $\{a_n\}$  and  $\{b_n\}$  we understand a sequence  $\{a_n + b_n\}$ .
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence {b<sub>n</sub>} are non-zero. Then by the quotient of sequences {a<sub>n</sub>} and {b<sub>n</sub>} we understand a sequence {<sup>a<sub>n</sub></sup>/<sub>b<sub>n</sub></sub>}.

Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers.

- By the sum of sequences  $\{a_n\}$  and  $\{b_n\}$  we understand a sequence  $\{a_n + b_n\}$ .
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence {b<sub>n</sub>} are non-zero. Then by the quotient of sequences {a<sub>n</sub>} and {b<sub>n</sub>} we understand a sequence {<sup>a<sub>n</sub></sup>/<sub>b<sub>n</sub></sub>}.
- If λ ∈ ℝ, then by the λ-multiple of the sequence {a<sub>n</sub>} we understand a sequence {λa<sub>n</sub>}.

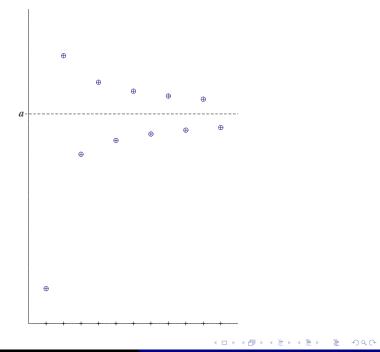
We say that a sequence  $\{a_n\}$  has a limit which equals to a number  $A \in \mathbb{R}$  if to every positive real number  $\varepsilon$  there exists a natural number  $n_0$  such that for every index  $n \ge n_0$  we have  $|a_n - A| < \varepsilon$ , i.e.

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < \varepsilon.$ 

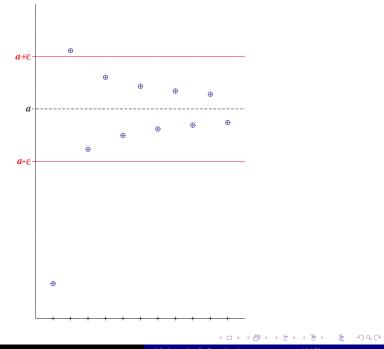
We say that a sequence  $\{a_n\}$  has a limit which equals to a number  $A \in \mathbb{R}$  if to every positive real number  $\varepsilon$  there exists a natural number  $n_0$  such that for every index  $n \ge n_0$  we have  $|a_n - A| < \varepsilon$ , i.e.

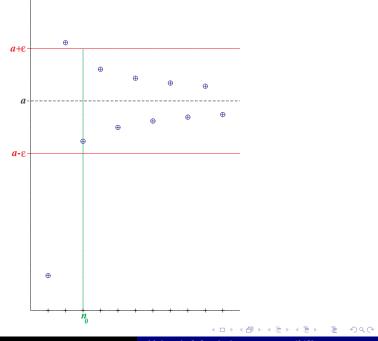
$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < \varepsilon.$$

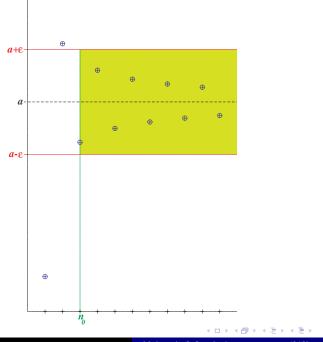
We say that a sequence  $\{a_n\}$  is convergent if there exists  $A \in \mathbb{R}$  which is a limit of  $\{a_n\}$ .



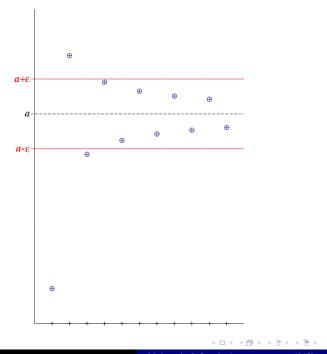
Mathematics I - Introduction



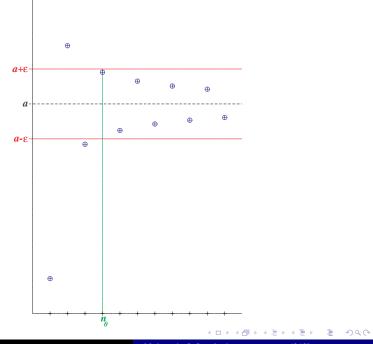


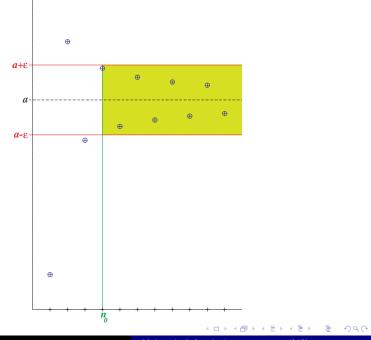


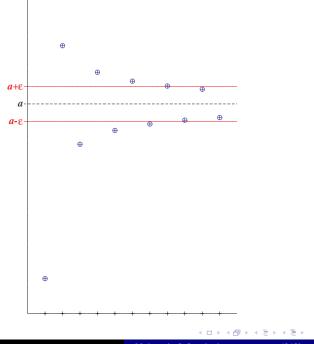
43/50



Mathematics I - Introduction

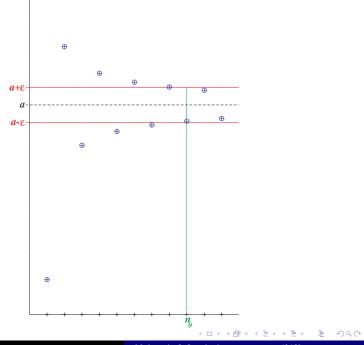




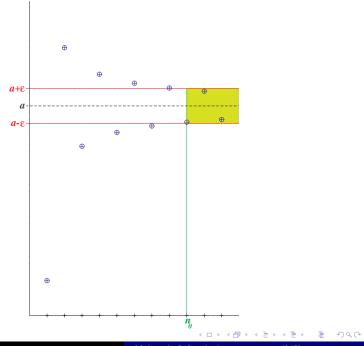


Mathematics I - Introduction

5 na (~



Mathematics I - Introduction



## Theorem 6 (uniqueness of a limit)

Every sequence has at most one limit.

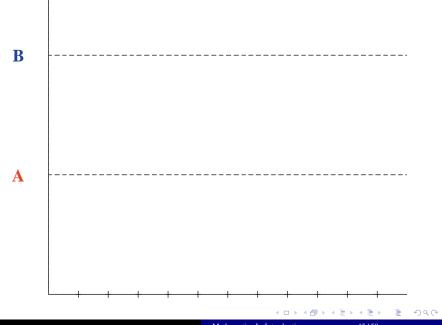
500

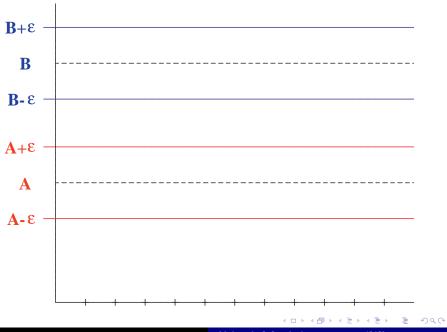
#### Theorem 6 (uniqueness of a limit)

Every sequence has at most one limit.

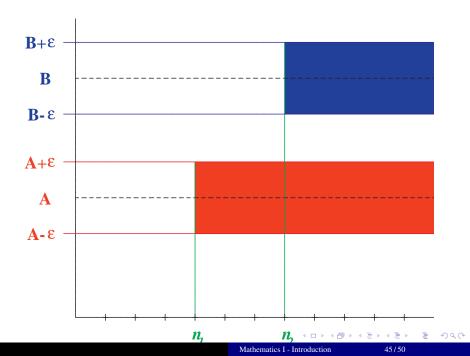
We use the notation  $\lim_{n\to\infty} a_n = A$  or simply  $\lim a_n = A$ .

Mathematics I - Introduction









#### Remark

Let  $\{a_n\}$  be a sequence of real numbers and  $A \in \mathbb{R}$ . Then  $\lim a_n = A \Leftrightarrow \lim (a_n - A) = 0 \Leftrightarrow \lim |a_n - A| = 0.$ 

46/50

Sac

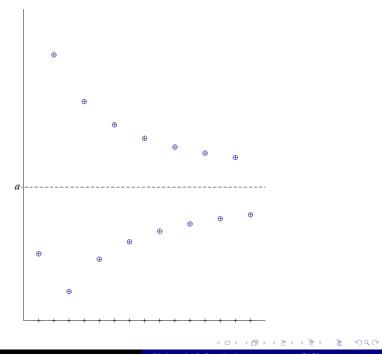
### Remark

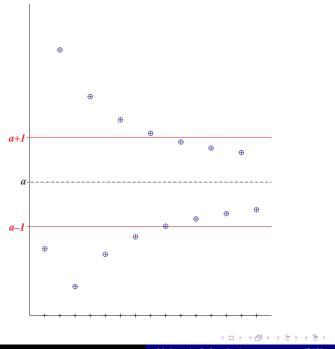
Let  $\{a_n\}$  be a sequence of real numbers and  $A \in \mathbb{R}$ . Then

$$\lim a_n = A \Leftrightarrow \lim (a_n - A) = 0 \Leftrightarrow \lim |a_n - A| = 0.$$

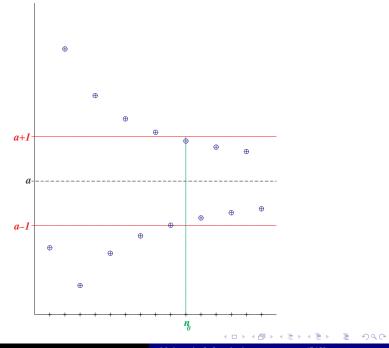
## Theorem 7

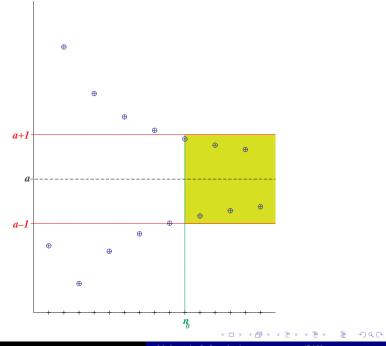
Every convergent sequence is bounded.

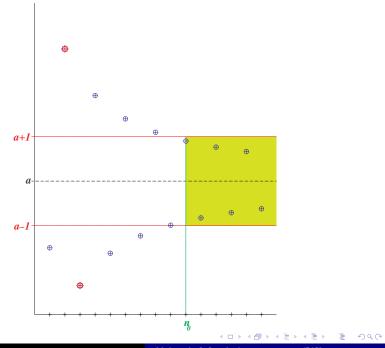


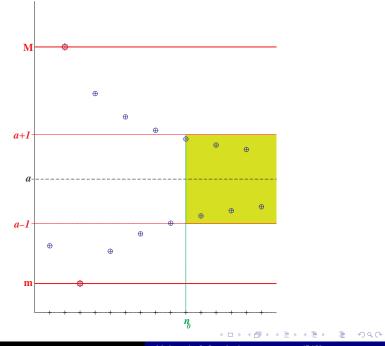


47/50









#### Definition

Let  $\{a_n\}_{n=1}^{\infty}$  be a sequence of real numbers. We say that a sequence  $\{b_k\}_{k=1}^{\infty}$  is a subsequence of  $\{a_n\}_{n=1}^{\infty}$  if there is an increasing sequence  $\{n_k\}_{k=1}^{\infty}$  of natural numbers such that  $b_k = a_{n_k}$  for every  $k \in \mathbb{N}$ .

#### Definition

Let  $\{a_n\}_{n=1}^{\infty}$  be a sequence of real numbers. We say that a sequence  $\{b_k\}_{k=1}^{\infty}$  is a subsequence of  $\{a_n\}_{n=1}^{\infty}$  if there is an increasing sequence  $\{n_k\}_{k=1}^{\infty}$  of natural numbers such that  $b_k = a_{n_k}$  for every  $k \in \mathbb{N}$ .

#### Theorem 8 (limit of a subsequence)

Let 
$$\{b_k\}_{k=1}^{\infty}$$
 be a subsequence of  $\{a_n\}_{n=1}^{\infty}$ . If  $\lim_{n\to\infty} a_n = A \in \mathbb{R}$ , then also  $\lim_{k\to\infty} b_k = A$ .

## Remark

Let  $\{a_n\}_{n=1}^{\infty}$  be a sequence of real numbers,  $A \in \mathbb{R}$ ,  $K \in \mathbb{R}$ , K > 0. If

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < K\varepsilon,$ 

then  $\lim a_n = A$ .

# Theorem 9 (arithmetics of limits)

Suppose that  $\lim a_n = A \in \mathbb{R}$  and  $\lim b_n = B \in \mathbb{R}$ . Then (i)  $\lim(a_n + b_n) = A + B$ ,

Sac

э

# Theorem 9 (arithmetics of limits)

Suppose that  $\lim a_n = A \in \mathbb{R}$  and  $\lim b_n = B \in \mathbb{R}$ . Then (i)  $\lim(a_n + b_n) = A + B$ , (ii)  $\lim(a_n \cdot b_n) = A \cdot B$ ,

Sac

э

### Theorem 9 (arithmetics of limits)

Suppose that  $\lim a_n = A \in \mathbb{R}$  and  $\lim b_n = B \in \mathbb{R}$ . Then (i)  $\lim(a_n + b_n) = A + B$ , (ii)  $\lim(a_n \cdot b_n) = A \cdot B$ , (iii) if  $B \neq 0$  and  $b_n \neq 0$  for all  $n \in \mathbb{N}$ , then  $\lim(a_n/b_n) = A/B$ .