24/25

Mathematics I - Functions

< ≣ ► 1/49

Limit of a function

Definition

- Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define
 - a neighbourhood of a point c with radius ε by $B(c, \varepsilon) = (c \varepsilon, c + \varepsilon)$,

Limit of a function

Definition

- Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define
 - a neighbourhood of a point c with radius ε by $B(c, \varepsilon) = (c \varepsilon, c + \varepsilon)$,

• a punctured neighbourhood of a point *c* with radius ε by $P(c, \varepsilon) = (c - \varepsilon, c + \varepsilon) \setminus \{c\}.$

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$

Theorem 1 (uniqueness of a limit)

Let f *be a function and* $c \in \mathbb{R}$ *. Then* f *has a most one limit* $A \in \mathbb{R}$ *at* c*.*

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by $\lim_{x \to c} f(x) = A$. https://www.geogebra.org/m/tCnmrWg2 https://www.geogebra.org/m/wfdvtRTb

4/49

æ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

4/49

æ

・ロト ・四ト ・ヨト ・ヨト

4/49

æ

◆□▶ ◆舂▶ ◆注▶ ◆注▶

4/49

æ

イロト イ理ト イヨト イヨト

æ

イロト イ理ト イヨト イヨト

4/49

æ

・ロト ・御 ト ・ ヨト ・ ヨト

4/49

æ

▲□▶ ▲舂▶ ▲臣▶ ▲臣▶

4/49

æ

▲□▶ ▲舂▶ ▲臣▶ ▲臣▶

Mathematics I - Functions

< □ > < A → >

ł

Find $\lim_{x\to 0} f(x)$

A -3 B 0 C 5 D 7 E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Mathematics I - Functions

6/49

Find $\lim_{x\to 2} f(x)$ A ∞ C 2 B 3 D 0

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Mathematics I - Functions

E does not exist

200

Find $\lim_{x\to 4} f(x)$

A 4C 0E doesexistsB 8 $D \infty$ not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Mathematics I - Functions

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon,+\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty,-1/\varepsilon).$$

Example

$$P\left(+\infty, \frac{1}{10}\right) = B\left(+\infty, \frac{1}{10}\right) = (10, +\infty),$$
$$P\left(-\infty, \frac{1}{200}\right) = B\left(-\infty, \frac{1}{200}\right) = (-\infty, -200).$$

Mathematics I - Functions

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon,+\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty,-1/\varepsilon).$$

Definition

We say that $A \in \mathbb{R}^*$ is a limit of a function f at $c \in \mathbb{R}^*$ if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon,+\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty,-1/\varepsilon).$$

Definition

We say that $A \in \mathbb{R}^*$ is a limit of a function f at $c \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$$

Theorem 1 holds also for $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$, so we can again use the notation $\lim_{x\to c} f(x) = A$.

https: //www.geogebra.org/calculator/xjkuxemz

Mathematics I - Functions

æ

イロト イ理ト イヨト イヨト

12/49

æ

▲□▶ ▲圖▶ ▲温▶ ▲温▶

12/49

æ

◆□>

12/49

æ

◆□→ ◆舂→ ◆差→ ◆差→

12/49

æ

◆□→ ◆舂→ ◆差→ ◆差→

12/49

æ

□▶★□▶★■▶

12/49

æ

録▶★注▶★注▶

12/49

æ

(日)

12/49

æ

▲□▶ ▲舂▶ ▲臣▶ ▲臣▶

◆□▶ < 畳▶ < 置▶ < 置▶ 呈 のへで mctions 13/49

13/49

◆□→ ◆課→ ◆注→ ◆注→

æ

13/49

◆□→ ◆課→ ◆注→ ◆注→

æ

14/49

Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

• a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,

ㅋ ㅋ ㅋ

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon) = (c \varepsilon, c]$,

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by P⁺(c, ε) = (c, c + ε),

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by P⁺(c, ε) = (c, c + ε),
- a left punctured neighbourhood of c by $P^{-}(c, \varepsilon) = (c \varepsilon, c),$

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by P⁺(c, ε) = (c, c + ε),
- a left punctured neighbourhood of c by
 P[−](c, ε) = (c − ε, c),
- a left neighbourhood and left punctured neighbourhood of +∞ by B⁻(+∞, ε) = P⁻(+∞, ε) = (1/ε, +∞),

Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by P⁺(c, ε) = (c, c + ε),
- a left punctured neighbourhood of c by P[−](c, ε) = (c − ε, c),
- a left neighbourhood and left punctured neighbourhood of $+\infty$ by $B^-(+\infty, \varepsilon) = P^-(+\infty, \varepsilon) = (1/\varepsilon, +\infty)$,
- a right neighbourhood and right punctured neighbourhood of $-\infty$ by $B^+(-\infty, \varepsilon) = P^+(-\infty, \varepsilon) = (-\infty, -1/\varepsilon)$.

・ロト ・ 行 ト ・ 日 ト ・ 日 ト

Let $A \in \mathbb{R}^*$, $c \in \mathbb{R} \cup \{-\infty\}$. We say that a function *f* has a limit from the right at *c* equal to $A \in \mathbb{R}^*$ (denoted by $\lim_{x \to c^+} f(x) = A$) if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P^+(c, \delta) \colon f(x) \in B(A, \varepsilon).$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup \{+\infty\}$ and we use the notation $\lim_{x\to c-} f(x)$.

Let $A \in \mathbb{R}^*$, $c \in \mathbb{R} \cup \{-\infty\}$. We say that a function *f* has a limit from the right at *c* equal to $A \in \mathbb{R}^*$ (denoted by $\lim_{x \to c^+} f(x) = A$) if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P^+(c, \delta) \colon f(x) \in B(A, \varepsilon).$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup \{+\infty\}$ and we use the notation $\lim_{x\to c-} f(x)$.

Remark

Let $c \in \mathbb{R}$, $A \in \mathbb{R}^*$. Then

$$\lim_{x \to c} f(x) = A \Leftrightarrow \left(\lim_{x \to c+} f(x) = A \And \lim_{x \to c-} f(x) = A \right).$$

Exercise

Find $\lim_{x\to 2-} f(x)$. Find $\lim_{x\to 2+} f(x)$.

A 0 C 2 B 1 D 3

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

2

4

-2

x

17/49

We say that a function f is continuous at a point $c \in \mathbb{R}$ if

$$\lim_{x \to c} f(x) = f(c).$$

18/49

Let $c \in \mathbb{R}$. We say that a function f is continuous at c from the right (from the left, resp.) if $\lim_{x\to c+} f(x) = f(c)$ $(\lim_{x\to c-} f(x) = f(c), \text{ resp.}).$

Theorem 2

Let f has a finite limit at $c \in \mathbb{R}^*$. Then there exists $\delta > 0$ such that f is bounded on $P(c, \delta)$.

Theorem 3 (arithmetics of limits)

Let $c \in \mathbb{R}^*$, $\lim_{x\to c} f(x) = A \in \mathbb{R}^*$ and $\lim_{x\to c} g(x) = B \in \mathbb{R}^*$. *Then*

- (i) $\lim_{x\to c} (f(x) + g(x)) = A + B$ if the expression A + B is defined,
- (ii) lim_{x→c} f(x)g(x) = AB if the expression AB is defined,
 (iii) lim_{x→c} f(x)/g(x) = A/B if the expression A/B is defined.

Exercise

 $\mathbf{2}$

0

Figure: Calculus: Single and Multivariable, Hughes-Hallet

x

2

1

2

0

Mathematics I - Functions

æ

x

g(x)

2

イロト イポト イヨト イヨト

(1, 1)

1

Exercise

Find $\lim_{x \to 1^-} f(x)g(x)$

A	20	C	4
В	15	D	3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Mathematics I - Functions

æ

イロト イポト イヨト イヨト

E does not exist

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f + g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f + g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Exercise

Which functions are continuous at \mathbb{R} ?

A
$$x^3 + \sin(4-x)$$
 C $\frac{2+x}{e^x}$
B $\frac{e^x}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

$$E \ln(2+x^2)$$

Theorem 4

Let $c \in \mathbb{R}^*$, $\lim_{x\to c} g(x) = 0$, $\lim_{x\to c} f(x) = A \in \mathbb{R}^*$ and A > 0. If there exists $\eta > 0$ such that the function g is positive on $P(c, \eta)$, then $\lim_{x\to c} (f(x)/g(x)) = +\infty$.

Mathematics I - Functions

26/49

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

 $\forall x \in P(c, \delta) \colon f(x) > g(x).$

Mathematics I - Functions

27/49

H b

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

 $\forall x \in P(c, \delta) : f(x) > g(x).$

(ii) If there exists $\delta > 0$ such that $\forall x \in P(c, \delta) : f(x) \leq g(x)$, then

 $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$

Mathematics I - Functions

27/49

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

$$\forall x \in P(c, \delta) \colon f(x) > g(x).$$

(ii) If there exists $\delta > 0$ such that $\forall x \in P(c, \delta) : f(x) \le g(x)$, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

(iii) (two policemen/sandwich theorem) Suppose that there exists $\eta > 0$ such that

 $\forall x \in P(c,\eta) : f(x) \le h(x) \le g(x).$

If moreover $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = A \in \mathbb{R}^*$, then the limit $\lim_{x\to c} h(x)$ also exists and equals A.

https: //www.geogebra.org/calculator/dvqdpqag

Mathematics I - Functions

28/49

Corollary

Let $c \in \mathbb{R}^*$, $\lim_{x\to c} f(x) = 0$ and suppose there exists $\eta > 0$ such that g is bounded on $P(c, \eta)$. Then $\lim_{x\to c} (f(x)g(x)) = 0$.

Example

 $\lim_{x\to 0} (\sin x) (\operatorname{sgn} x)$

Mathematics I - Functions

Image: A matrix and a matrix

29/49

프 🖌 🗆 프

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^*$, $\lim_{x\to c} g(x) = A$, $\lim_{y\to A} f(y) = B$ and at least one of the following conditions is satisfied:

(I)
$$\exists \eta \in \mathbb{R}, \eta > 0 \ \forall x \in P(c, \eta) \colon g(x) \neq A$$
,

(C) the function f is continuous at A.

Then

$$\lim_{x\to c} f(g(x)) = B.$$

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^*$, $\lim_{x\to c} g(x) = A$, $\lim_{y\to A} f(y) = B$ and at least one of the following conditions is satisfied:

(I)
$$\exists \eta \in \mathbb{R}, \eta > 0 \ \forall x \in P(c, \eta) \colon g(x) \neq A$$
,

(C) the function f is continuous at A.

Then

$$\lim_{x\to c} f(g(x)) = B.$$

Corollary

Suppose that the function g is continuous at $c \in \mathbb{R}$ and the function f is continuous at g(c). Then the function $f \circ g$ is continuous at c.

Proof

Step 1.: definition of lim of f: $\forall \varepsilon > 0 \exists \delta > 0 \forall y \in \mathring{U}_{\delta}(A) : f(y) \in U_{\varepsilon}(B).$ Step 2: definition of lim of g. We use it for δ from the definition of lim f. For that δ , there exists $\sigma > 0$ such that ... : $\exists \sigma > 0 \forall x \in \mathring{U}_{\sigma}(c) : g(x) \in U_{\delta}(A).$

Proof

Step 1.: definition of lim of f: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathring{U}_{\delta}(A) : f(y) \in U_{\varepsilon}(B).$ Step 2: definition of lim of g. We use it for δ from the definition of lim f. For that δ , there exists $\sigma > 0$ such that ... : $\exists \sigma > 0 \ \forall x \in \mathring{U}_{\sigma}(c) : g(x) \in U_{\delta}(A).$ We want to combine these definitions. if $g(x) \in \mathring{U}_{\delta}(A)$ then for y := g(x) we have $f(y) = f(g(x)) \in U_{\varepsilon}(B).$

Proof

Step 1.: definition of lim of f: $\forall \varepsilon > \mathbf{0} \; \exists \delta > \mathbf{0} \; \forall \mathbf{y} \in \overset{\bullet}{\boldsymbol{U}}_{\delta}(\boldsymbol{A}) : \quad f(\mathbf{y}) \in \boldsymbol{U}_{\varepsilon}(\boldsymbol{B}).$ **Step 2: definition of lim of** g. We use it for δ from the definition of $\lim f$. For that δ , there exists $\sigma > 0$ such that ... : $\exists \sigma > 0 \ \forall x \in \mathring{U}_{\sigma}(c) : g(x) \in U_{\delta}(A).$ We want to combine these definitions. if $g(x) \in U_{\delta}(A)$ then for y := g(x) we have $f(\mathbf{y}) = f(g(\mathbf{x})) \in U_{\varepsilon}(B).$ The problem is the mismatch between $U_{\delta}(A)$ and $U_{\delta}(A)$. Can we guarantee that $g(x) \in \check{U}_{\delta}(A)$ in the definition of $\lim g$?
Proof

Step 1.: definition of lim of f: $\forall \varepsilon > \mathbf{0} \; \exists \delta > \mathbf{0} \; \forall \mathbf{y} \in \overset{\bullet}{\boldsymbol{U}}_{\delta}(\boldsymbol{A}) : \quad f(\mathbf{y}) \in \boldsymbol{U}_{\varepsilon}(\boldsymbol{B}).$ **Step 2: definition of lim of** g. We use it for δ from the definition of $\lim f$. For that δ , there exists $\sigma > 0$ such that ... : $\exists \sigma > 0 \ \forall x \in \mathring{U}_{\sigma}(c) : g(x) \in U_{\delta}(A).$ We want to combine these definitions. if $g(x) \in U_{\delta}(A)$ then for y := g(x) we have $f(\mathbf{y}) = f(g(\mathbf{x})) \in U_{\varepsilon}(B).$ The problem is the mismatch between $U_{\delta}(A)$ and $U_{\delta}(A)$. Can we guarantee that $g(x) \in \check{U}_{\delta}(A)$ in the definition of $\lim g$? Yes, our condition (I) guarantees that $g(x) \neq A$ for sufficiently small σ . (if needed, σ can be decreased to satisfy both condition (I) and definition of lim *g*).

What about the (C) case? In that case we do not need to exclude *A* in the definition of $\lim f$. $\forall \varepsilon > 0 \exists \delta > 0 \forall y \in U_{\delta}(A) : f(y) \in U_{\varepsilon}(B).$

Why in the definition of a limit we require punctured neighborhoods?

≣⊳

Why in the definition of a limit we require punctured neighborhoods? Function may not be defined exactly at the point of interest.

Remarkable limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \qquad \qquad \lim_{x \to 0} \frac{\log(1+x)}{x} = 1.$$

https://math.stackexchange.com/questions/ 98998/why-x-tanx-while-0x-frac-pi2

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

æ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

Exercise		
	$\lim_{x\to -\infty}\cos\frac{1}{x}$	
A 0	C π	E does not exist
B 1	$D -\infty$	

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

Exercise		
	$\lim_{x\to -\infty}\cos\frac{1}{x}$	
A 0	C π	E does not exist
B 1	D $-\infty$	

Exercise

A 0 B 1 C
$$\frac{\pi}{2}$$
 D $-\frac{\pi}{4}$ E ∞

Mathematics I - Functions

Theorem 7 (Heine)

Let $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$ and the function f satisfies $\lim_{x\to c} f(x) = A$. If the sequence $\{x_n\}$ satisfies $x_n \in D_f$, $x_n \neq c$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} x_n = c$, then $\lim_{n\to\infty} f(x_n) = A$.

Example

$$\lim_{n \to \infty} \ln\left(\frac{n + \sin n}{n - \cos n}\right)$$
$$\lim_{n \to \infty} \cos\left(\sin\left(\frac{\pi}{2}\frac{1}{n^2}\right)\right)$$

Theorem 8 (limit of a monotone function)

Let $a, b \in \mathbb{R}^*$, a < b. Suppose that f is a function monotone on an interval (a, b). Then the limits $\lim_{x\to a+} f(x)$ and $\lim_{x\to b-} f(x)$ exist. Moreover,

- *if f is non-decreasing on* (a, b), *then* $\lim_{x\to a+} f(x) = \inf f((a, b))$ and $\lim_{x\to b-} f(x) = \sup f((a, b));$
- *if f is non-increasing on* (a, b)*, then* $\lim_{x\to a+} f(x) = \sup f((a, b))$ *and* $\lim_{x\to b-} f(x) = \inf f((a, b))$.

Figure: https://www.geogebra.org/calculator/bfutkyne

Mathematics I - Functions

38/49

Definition

Let $J \subset \mathbb{R}$ be a non-degenerate interval (i.e. it contains infinitely many points). A function $f: J \to \mathbb{R}$ is continuous on the interval J if

- f is continuous at every inner point J,
- *f* is continuous from the right at the left endpoint of *J* if this point belongs to *J*,
- *f* is continuous from the left at the right endpoint of *J* if this point belongs to *J*.

Theorem 9 (continuity of the compound function on an interval)

Let I and J be intervals, $g: I \to J, f: J \to \mathbb{R}$, let g be continuous on I and let f be continuous on J. Then the function $f \circ g$ is continuous on I.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a, b] and suppose that f(a) < f(b). Then for each $C \in (f(a), f(b))$ there exists $\xi \in (a, b)$ satisfying $f(\xi) = C$.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a, b] and suppose that f(a) < f(b). Then for each $C \in (f(a), f(b))$ there exists $\xi \in (a, b)$ satisfying $f(\xi) = C$.

Figure: https://www.mathsisfun.com/algebra/ intermediate-value-theorem.html

Theorem 11 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a, b] and suppose that f(a) < f(b). Then for each $C \in (f(a), f(b))$ there exists $\xi \in (a, b)$ satisfying $f(\xi) = C$.

Exercise

Is there a solution between 0 and 2?

•
$$x^5 - 2x - 1 = 0$$

•
$$x^3 - 4x^2 + 4x + 1 = 0$$

•
$$5x^3 - 15x^2 + 10x + 1 = 0$$

https:

//www.geogebra.org/calculator/pqbtmk54

Theorem 12 (an image of an interval under a continuous function)

Let J be an interval and let $f: J \to \mathbb{R}$ be a function continuous on J. Then f(J) is an interval.

Exercise

Find the image of the interval (-1, 2] under the functions

- *x*²
- $\operatorname{sgn} x$

Definition

Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that f attains its maximum (resp. minimum) on M at $x \in M$ if

 $\forall y \in M : f(y) \le f(x) \quad (\text{resp. } \forall y \in M : f(y) \ge f(x)).$

The point *x* is called the point of maximum (resp. minimum) of the function *f* on *M*. The symbol $\max_M f$ (resp. $\min_M f$) denotes the maximal (resp. minimal) value of *f* on *M* (if such a value exists). The points of maxima or minima are collectively called the points of extrema.

Definition

Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that the function f has at x

- a local maximum with respect to M if there exists δ > 0 such that ∀y ∈ B(x, δ) ∩ M: f(y) ≤ f(x),
- a local minimum with respect to M if there exists δ > 0 such that ∀y ∈ B(x, δ) ∩ M: f(y) ≥ f(x),
- a strict local maximum with respect to *M* if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M : f(y) < f(x)$,
- a strict local minimum with respect to *M* if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M : f(y) > f(x)$.

The points of local maxima or minima are collectively called the points of local extrema.

Find local extrema:

Figure: https: //math24.net/local-extrema-functions.html

Mathematics I - Functions

46/49

æ

イロト イポト イヨト イヨト

Theorem 13 (boundedness of a continuous function)

Let f be a function continuous on an interval [a, b]. Then f is bounded on [a, b].

Theorem 14 (extrema of continuous functions)

Let f be a function continuous on an interval [a, b]. Then f attains its maximum and minimum on [a, b].

Theorem 13 (boundedness of a continuous function)

Let f be a function continuous on an interval [a, b]. Then f is bounded on [a, b].

Theorem 14 (extrema of continuous functions)

Let f be a function continuous on an interval [a, b]. Then f attains its maximum and minimum on [a, b].

Mathematics I - Functions

Proof of existence of extrema

Let $M = \sup_{[a,b]} f$. Then $\forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in [a,b] : f(x) > M - \varepsilon$. Choose consequently $\varepsilon = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ Then we obtain a sequence $x_n \in [a,b]$ such that $f(x_n) > M - \frac{1}{n}$ (and also $f(x_n) \le M$). Hence, $\exists \lim_{n \to \infty} f(x_n) = M$. Next, every bounded sequence has a convergent subsequence (Bolzano-Weierstrass). This subsequence x_{n_k} will converge to some point $c \in [a,b]$, and $f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = M$.

Theorem 15 (continuity of an inverse function)

Let f be a continuous function that is increasing (resp. decreasing) on an interval J. Then the function f^{-1} is continuous and increasing (resp. decreasing) on the interval f(J).

Corollary 16

Functions nth root, exponential, general power, arcsin, arccos, arctg, arccotg are continuous on their domains.

Mathematics I - Functions