Mathematics I - Functions

24/25

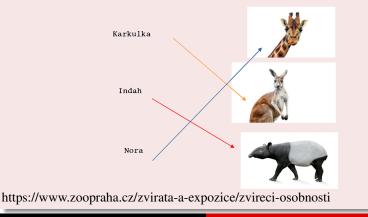
Mathematics I - Functions

< • • • **•**

< ≣ ▶1/27

Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x).

Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x). The element *y* is called an image of *x* and the element *x* is called a pre-image of *y*.



Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x). The element *y* is called an image of *x* and the element *x* is called a pre-image of *y*.

By f: A → B we denote the fact that f is a mapping from A to B.

Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x). The element *y* is called an image of *x* and the element *x* is called a pre-image of *y*.

- By f: A → B we denote the fact that f is a mapping from A to B.
- By f: x → f(x) we denote the fact that the mapping f assigns f(x) to an element x.

Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x). The element *y* is called an image of *x* and the element *x* is called a pre-image of *y*.

- By f: A → B we denote the fact that f is a mapping from A to B.
- By f: x → f(x) we denote the fact that the mapping f assigns f(x) to an element x.
- The set *A* from the definition of the mapping *f* is called the domain of *f* and it is denoted by *D*_{*f*}.

Let *A* and *B* be sets. A mapping *f* from *A* to *B* is a rule which assigns to each member *x* of the set *A* a unique member *y* of the set *B*. This element *y* is denoted by the symbol f(x). The element *y* is called an image of *x* and the element *x* is called a pre-image of *y*.

Example

- students in the classroom \mapsto their date of birth
- f assigns rectangles their area
- countries \rightarrow flag

•
$$x \mapsto \sqrt[4]{x}, f : [0, \infty) \to [0, \infty)$$

Let $f: A \to B$ be a mapping.

The subset G_f = {[x, y] ∈ A × B; x ∈ A, y = f(x)} of the Cartesian product A × B is called the graph of the mapping *f*.

O > <
 O >

Let $f: A \to B$ be a mapping.

- The subset G_f = {[x, y] ∈ A × B; x ∈ A, y = f(x)} of the Cartesian product A × B is called the graph of the mapping *f*.
- The image of the set $M \subset A$ under the mapping f is the set

$$f(M) = \{ y \in B; \ \exists x \in M : f(x) = y \} \quad (= \{ f(x); \ x \in M \}).$$

Let $f: A \to B$ be a mapping.

- The subset G_f = {[x, y] ∈ A × B; x ∈ A, y = f(x)} of the Cartesian product A × B is called the graph of the mapping *f*.
- The image of the set $M \subset A$ under the mapping f is the set

$$f(M) = \{ y \in B; \ \exists x \in M : f(x) = y \} \quad (= \{ f(x); \ x \in M \}).$$

• The set f(A) is called the range of the mapping f, it is denoted by R_f .

Let $f: A \to B$ be a mapping.

- The subset G_f = {[x, y] ∈ A × B; x ∈ A, y = f(x)} of the Cartesian product A × B is called the graph of the mapping *f*.
- The image of the set $M \subset A$ under the mapping f is the set

$$f(M) = \{ y \in B; \ \exists x \in M : f(x) = y \} \quad (= \{ f(x); \ x \in M \}).$$

- The set f(A) is called the range of the mapping f, it is denoted by R_f .
- The pre-image of the set $W \subset B$ under the mapping f is the set

$$f_{-1}(W) = \{ x \in A; f(x) \in W \}.$$

Find the domain and range for the following mappings:

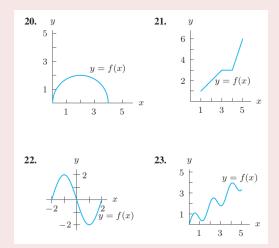


Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

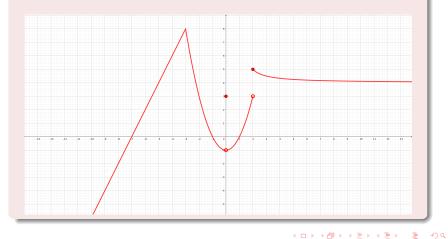
Which of the following functions has its domain the same as its range?

A x^2 **B** \sqrt{x} **C** x^3 **D** |x| **E** 2x-3

(Inspired by: Active Calculus & Mathematical Modeling, Carroll College Mathematics Department)

Find the image:

A [-6, -2] **B** [-1, 1) **C** [0, 2) **D** $[2, \infty)$



Mathematics I - Functions

8/27

Find the preimage:

A $\{-1\}$ **B** [2,3] **C** [0,1] **D** [0,1)

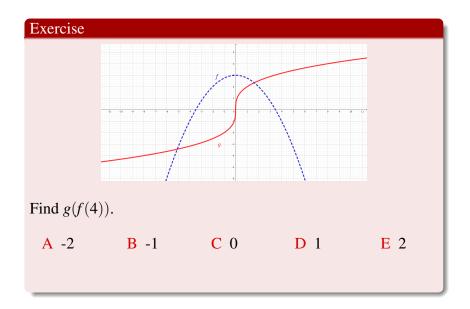
Mathematics I - Functions

9/27

Let $f : A \to B$ and $g : B \to C$ be two mappings. The symbol $g \circ f$ denotes a mapping from *A* to *C* defined by

 $(g \circ f)(x) = g(f(x)).$

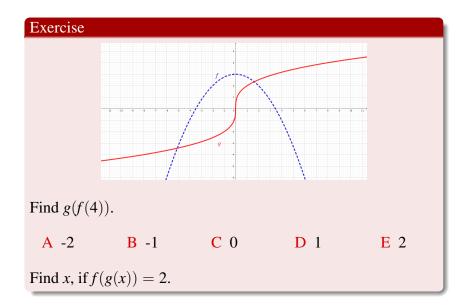
This mapping is called a compound mapping or a composition of the mapping f and the mapping g.



Mathematics I - Functions

11/27

æ



Mathematics I - Functions

11/27

문 🛌 문

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲

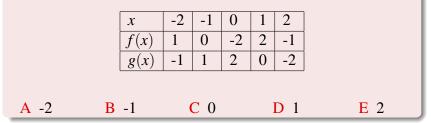
In the tables we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2	B -1	C 0	D 1	E 2
Find $f(f(0))$				
A -2	B -1	C 0	D 1	E 2

In the tables we can find values of functions f and g. If f(g(x)) = -2, find x.



Mathematics I - Functions

13/27

▲ 伊 ト ▲ 注 ト

э

We say that a mapping $f: A \to B$

maps the set A onto the set B if f(A) = B, i.e. if to each y ∈ B there exist x ∈ A such that f(x) = y;

We say that a mapping $f: A \to B$

- maps the set A onto the set B if f(A) = B, i.e. if to each y ∈ B there exist x ∈ A such that f(x) = y;
- is one-to-one (or injective) if images of different elements differ, i.e.

$$\forall x_1, x_2 \in A \colon x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2),$$

We say that a mapping $f: A \to B$

- maps the set A onto the set B if f(A) = B, i.e. if to each y ∈ B there exist x ∈ A such that f(x) = y;
- is one-to-one (or injective) if images of different elements differ, i.e.

$$\forall x_1, x_2 \in A \colon x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2),$$

• is a bijection of A onto B (or a bijective mapping), if it is at the same time one-to-one and maps A onto B.

Exercise					
A e^x	B x^3	$\mathbf{C} \sin x$	D $\tan x$	$\mathbf{E} = \frac{1}{x}$	
Which functions are onto?					

Mathematics I - Functions

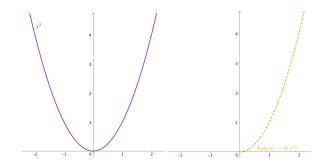
Exercise					
A e^x	B x^3	$\mathbf{C} \sin x$	D $\tan x$	$\mathbf{E} \frac{1}{x}$	
Which functions are onto? Which functions are one-to-one?					

Exercise						
A e^x	B x^3	$\mathbf{C} \sin x$	D $\tan x$	$\mathbf{E} \frac{1}{x}$		
Which functions are onto? Which functions are one-to-one? Which functions are bijections?						

Mathematics I - Functions

◆□▶ < 部 ▶ < 目 ▶ < 目 ▶ 目 の Q @</p>
Inctions
15/27

Let *A*, *B*, *C* be sets, $C \subset A$ and $f: A \to B$. The mapping $\tilde{f}: C \to B$ given by the formula $\tilde{f}(x) = f(x)$ for each $x \in C$ is called the restriction of the mapping *f* to the set *C*. It is denoted by $f|_C$.



16/27

Let $f: A \to B$ be bijective (i.e. one-to-one and onto). An inverse mapping $f^{-1}: B \to A$ is a mapping that to each $y \in B$ assigns a (uniquely determined) element $x \in A$ satisfying f(x) = y.

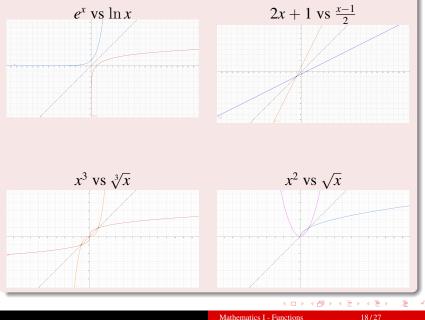
17/27

Let $f: A \to B$ be bijective (i.e. one-to-one and onto). An inverse mapping $f^{-1}: B \to A$ is a mapping that to each $y \in B$ assigns a (uniquely determined) element $x \in A$ satisfying f(x) = y.

Exercise

Find inverse mappings at \mathbb{R} :

A	2x + 1	С	$\sqrt[3]{x}$
R	e ^x	D	r^2



IV. Functions of one real variable

Mathematics I - Functions

19/27

IV. Functions of one real variable

Definition

A function f of one real variable (or a function for short) is a mapping $f: M \to \mathbb{R}$, where M is a subset of real numbers.

A function $f: J \to \mathbb{R}$ is increasing on an interval *J*, if for each pair $x_1, x_2 \in J$, $x_1 < x_2$ the inequality $f(x_1) < f(x_2)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval *J*.

A function $f: J \to \mathbb{R}$ is increasing on an interval *J*, if for each pair $x_1, x_2 \in J$, $x_1 < x_2$ the inequality $f(x_1) < f(x_2)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval *J*.

Definition

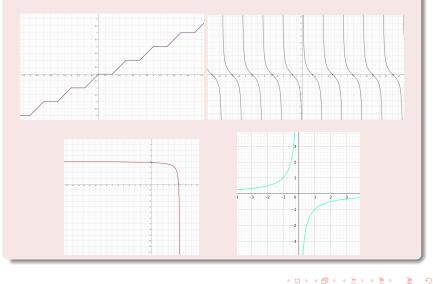
A monotone function on an interval J is a function which is non-decreasing or non-increasing on J.

A function $f: J \to \mathbb{R}$ is increasing on an interval *J*, if for each pair $x_1, x_2 \in J$, $x_1 < x_2$ the inequality $f(x_1) < f(x_2)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval *J*.

Definition

A monotone function on an interval J is a function which is non-decreasing or non-increasing on J. A strictly monotone function on an interval J is a function which is increasing or decreasing on J.

Decide, which functions are monotone on its domain:



Mathematics I - Functions

э.

Let *f* be a function and $M \subset D_f$. We say that *f* is

• bounded from above on *M* if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,

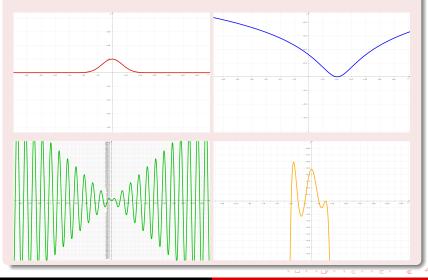
Let *f* be a function and $M \subset D_f$. We say that *f* is

- bounded from above on *M* if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,
- bounded from below on *M* if there is $K \in \mathbb{R}$ such that $f(x) \ge K$ for all $x \in M$,

Let *f* be a function and $M \subset D_f$. We say that *f* is

- bounded from above on *M* if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,
- bounded from below on *M* if there is $K \in \mathbb{R}$ such that $f(x) \ge K$ for all $x \in M$,
- bounded on *M* if there is $K \in \mathbb{R}$ such that $|f(x)| \le K$ for all $x \in M$,

Decide, which functions are bounded: Určete, které funkce jsou omezené, omezené shora, zdola, neomezené



Mathematics I - Functions

Let *f* be a function and $M \subset D_f$. We say that *f* is

• odd if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = -f(x),

ヨト・モト

Let *f* be a function and $M \subset D_f$. We say that *f* is

- odd if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = -f(x),
- even if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = f(x),

Let *f* be a function and $M \subset D_f$. We say that *f* is

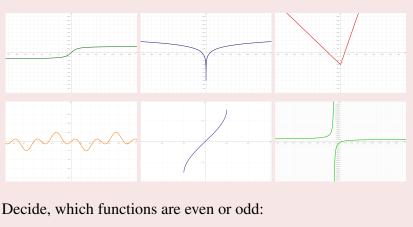
- odd if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = -f(x),
- even if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = f(x),
- periodic with a period *a*, where $a \in \mathbb{R}$, a > 0, if for each $x \in D_f$ we have $x + a \in D_f$, $x a \in D_f$ and f(x + a) = f(x a) = f(x).

Decide, which functions are even or odd:

Mathematics I - Functions

25/27

Decide, which functions are even or odd:

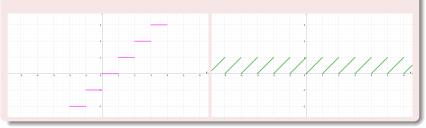


A $x^3 + 1$ **B** $x(x^2 + 1)$ **C** |x - 2|**D** $e^{x^2} \sin x$ **E** $|1 + \cos x|$

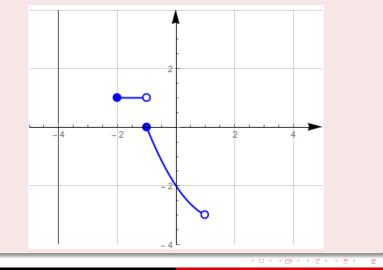
Mathematics I - Functions

25/27

Decide, which functions are periodic



Sketch in the function so that it is periodic with the smallest possible period



Mathematics I - Functions