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Exercise (Motivation)
The farmer would like to enclose a rectangular place for sheep.
She has 40 meters of fence and land by the river. What is the
biggest possible area of the place?

Figure: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/
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Derivative

Figure: https://ginsyblog.wordpress.com/2017/02/04/how-to-solve-
the-problems-of-differential-calculus/
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Definition
Let f be a function and a ∈ R. Then

the derivative of the function f at the point a is defined by

f ′(a) = lim
h→0

f (a + h)− f (a)

h
,

if the respective limits exist.

Figure: https://cs.wikipedia.org/wiki/Derivace
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Definition
Let f be a function and a ∈ R. Then

the derivative of the function f at the point a is defined by

f ′(a) = lim
h→0

f (a + h)− f (a)

h
,

the derivative of f at a from the right is defined by

f ′+(a) = lim
h→0+

f (a + h)− f (a)

h
,

the derivative of f at a from the left is defined by

f ′−(a) = lim
h→0−

f (a + h)− f (a)

h
,

if the respective limits exist.
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Definition
Suppose that the function f has a finite derivative at a point
a ∈ R. The line

Ta =
{

[x, y] ∈ R2; y = f (a) + f ′(a)(x− a)
}
.

is called the tangent to the graph of f at the point [a, f (a)].

https:
//www.desmos.com/calculator/l0puzw0zvm
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Examples
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Theorem 1
Suppose that the function f has a finite derivative at a point
a ∈ R. Then f is continuous at a.
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(x3 + 2x2 − 3)′ = 3x2 + 4x

( 3
√

x)′ = 1
3 3√x2

(sgn x)′(0) =∞

|x|′ at 0 does not exist
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Derivatives of elementary functions
(const.)′ = 0,
(xn)′ = nxn−1, x ∈ R, n ∈ N; x ∈ R \ {0}, n ∈ Z, n < 0,
(log x)′ = 1

x for x ∈ (0,+∞),
(exp x)′ = exp x for x ∈ R,
(xa)′ = axa−1 for x ∈ (0,+∞), a ∈ R,
(ax)′ = ax log a for x ∈ R, a ∈ R, a > 0,
(sin x)′ = cos x for x ∈ R,
(cos x)′ = − sin x for x ∈ R,
(tg x)′ = 1

cos2 x for x ∈ Dtg,
(cotg x)′ = − 1

sin2 x for x ∈ Dcotg,
(arcsin x)′ = 1√

1−x2
for x ∈ (−1, 1),

(arccos x)′ = − 1√
1−x2

for x ∈ (−1, 1),

(arctg x)′ = 1
1+x2 for x ∈ R,

(arccotg x)′ = − 1
1+x2 for x ∈ R.
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Proof (sin x)′

sin(x + h)− sin x
h

=
(sin x · cos h + cos x · sin h)− sin x

h

=
sin x (cos h− 1) + cos x · sin h

h

= sin x
cos h− 1

h︸ ︷︷ ︸
→0

+ cos x
sin h

h︸︷︷︸
→1

→ cos x as h→ 0.

Proof (xn)′.

(x + h)n − xn

h
=

(
xn + n · xn−1h + a2xn−2h2 + . . . anhn

)
− xn

h
= n · xn−1 + h

(
a2xn−2 + . . . anhn−2)︸ ︷︷ ︸

→0
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Proof (log x)′

1
h

(log(x + h)− log x) =
1
h

(
log

(
x ·
(

1 +
h
x

))
− log x

)
=

1
h

(
log x + log(1 +

h
x

)− log x
)

=
1
h

log

(
1 +

h
x

)
=

1
x
· x

h
log

(
1 +

h
x

)
︸ ︷︷ ︸

→1
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Theorem 2 (arithmetics of derivatives)
Suppose that the functions f and g have finite derivatives at
a ∈ R and let α ∈ R. Then

(i) (f + g)′(a) = f ′(a) + g′(a),
(ii) (αf )′(a) = α · f ′(a),

(iii) (fg)′(a) = f ′(a)g(a) + f (a)g′(a),
(iv) if g(a) 6= 0, then(

f
g

)′
(a) =

f ′(a)g(a)− f (a)g′(a)

g2(a)
.
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Proof (f + g)′

(f (x + h) + g(x + h))− (f (x) + g(x))

h

=
f (x + h)− f (x)

h︸ ︷︷ ︸
→f ′(x)

+
g(x + h)− g(x)

h︸ ︷︷ ︸
→g′(x)
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Proof (fg)′

f (x + h)g(x + h)− f (x)g(x)

h

=
f (x + h)g(x + h)− f (x + h)g(x) + f (x + h)g(x)− f (x)g(x)

h

=
f (x + h)g(x + h)− f (x + h)g(x) + f (x + h)g(x)− f (x)g(x)

h

=
f (x + h) (g(x + h)− g(x)) + (f (x + h)− f (x)) g(x)

h

= f (x + h)︸ ︷︷ ︸
→f (x)

g(x + h)− g(x)

h︸ ︷︷ ︸
→g′(x)

+
f (x + h)− f (x)

h︸ ︷︷ ︸
→f ′(x)

g(x)︸︷︷︸
→g(x)

→ f (x)g′(x) + f ′(x)g(x)
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Proof (1/g)′

1
h

(
1

g(x + h)
− 1

g(x)

)
=

g(x)− g(x + h)

hg(x + h)g(x)

=
−1

g(x + h)g(x)
· g(x + h)− g(x)

h︸ ︷︷ ︸
→g′(x)

→ −g′(x)

g(x)2

Proof (f/g)′

(
f (x)

g(x)

)′
=

(
f (x) · 1

g(x)

)′
= f ′(x) · 1

g(x)
+ f (x) ·

(
1

g(x)

)′
= f ′(x) · 1

g(x)
+ f (x) ·

(
−g′(x)

g(x)2

)
=

f ′(x)g(x)− f (x)g′(x)

g(x)2
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(tan x)′

(tan x)′ =

(
sin x
cos x

)′
=

(sin x)′ cos x− sin x(cos x)′

cos2 x

=
cos x cos x− sin x(− sin x)

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x
.
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Exercise
f = cos x sin x. Find f ′.

A cos2 x
B sin2 x

C cos2 x− sin2 x
D − sin x cos x

Exercise
f = e7. Find f ′.

A 7e6 B e7 C 0

Exercise

f =
ex

x2 Find f ′.

A
ex

2x

B
ex(x− 2)

x3

C
exx2 − 2xex

x4

D
ex2x + x2ex

x4
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Theorem 3 (derivative of a compound function)
Suppose that the function f has a finite derivative at y0 ∈ R, the
function g has a finite derivative at x0 ∈ R, and y0 = g(x0).
Then

(f ◦ g)′(x0) = f ′(y0) · g′(x0).

Exercise

f = sin x + esin x. Find f ′.
A cos x + ecos x

B cos x + esin x

C cos x + sin x ecos x

D cos x + cos x esin x
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Proof derivative of composition

1. g(x0 + h) 6= g(x0) as h→ 0.

f (g(x0 + h))− f (g(x0))

h

=
f (g(x0 + h))− f (g(x0))

g(x0 + h)− g(x0)
· g(x0 + h)− g(x0)

h︸ ︷︷ ︸
→g′(x0)

Denote y0 = f (x0).

lim
h→0

f (g(x0 + h))− f (g(x0))

g(x0 + h)− g(x0)
=

∣∣∣∣∣∣
y = g(x0 + h)

y→ g(x0), h→ 0
(I) : y 6= g(x0), h→ 0

∣∣∣∣∣∣
= lim

y→y0

f (y)− f (y0)

y− y0
= f ′(y0)
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Proof derivative of composition (continue)

2. what if ∃xn → x0 such that g(xn) = g(x0)? Then

f (g(xn))− f (g(x0))

xn − x0
= 0,

and f (g(x0))
′ = 0, g′(x0) = 0.

Missing point: why (f (g(x)))′ exists?
If not, then there exist two sequences, on which the expression
for the derivative has two different limits:
∃ {x̂n}∞n=1 → x0, ∃ {x̃n}∞n=1 → x0 such that A 6= B and

f (g(x̂n))− f (g(x0))

x̂n − x0
→ A ∈ R,

f (g(x̃n))− f (g(x0))

x̃n − x0
→ B ∈ R

But if g(x̂n) 6= g(x0), n→∞, then A = f ′(g(x0))g′(x0) = 0.
If g(x̃nk) = g(x0), then B = 0. So, in any case A = B(= 0).
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(xa)

(xa)′ =
(
ea ln x)′ = ea ln x (a ln x)′ = ea ln x a

x
= xa a

x
= axa−1.

(ax)

(ax)′ =
(
ex ln a)′ = ex ln a (x ln a)′ = ex ln a ln a = ax ln a.
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Theorem 4 (derivative of an inverse function)
Let f be a function continuous and strictly monotone on an
interval (a, b) and suppose that it has a finite and non-zero
derivative f ′(x0) at x0 ∈ (a, b). Then the function f−1 has a
derivative at y0 = f (x0) and

(f−1)′(y0) =
1

f ′(x0)
=

1
f ′(f−1(y0))

.
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arcsin

y = arcsin x, x = sin y;

y′(x) =
1

x′(y)
=

1
cos y

=
1√

1− sin2 y
=

1√
1− x2

.

arctan

y = arctan x, x = tan y;

y′(x) =
1

x′(y)
= cos2 y =

cos2 y
cos2 y + sin2 y

=
1

1 + tan2 y

=
1

1 + x2 .
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Exercise (True or false?)
1. If f ′(x) = g′(x), then f (x) = g(x). (For every x.)
2. If f ′(a) 6= g′(a), then f (a) 6= g(a).

(We are talking about particular point a.)
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Theorem 5 (necessary condition for a local extremum)
Suppose that a function f has a local extremum at x0 ∈ R. If
f ′(x0) exists, then f ′(x0) = 0.

(x2)′ = 2x

(sin x)′ = cos x
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(x3)′ = 3x2

|x| x/2
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Figure: http://slideplayer.com/slide/7555868/
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Theorem 6 (Rolle)
Suppose that a, b ∈ R, a < b, and a function f has the following
properties:

(i) it is continuous on the interval [a, b],
(ii) it has a (finite) derivative at every point of the open

interval (a, b),
(iii) f (a) = f (b).
Then there exists ξ ∈ (a, b) satisfying f ′(ξ) = 0.

Figure: https://commons.wikimedia.org/wiki/File:
Rolle%27s_theorem.svg
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Theorem 7 (Lagrange, mean value theorem)
Suppose that a, b ∈ R, a < b, a function f is continuous on an
interval [a, b] and has a (finite) derivative at every point of the
interval (a, b). Then there is ξ ∈ (a, b) satisfying

f ′(ξ) =
f (b)− f (a)

b− a
.

Figure: https://en.wikipedia.org/wiki/File:
Mittelwertsatz3.svg
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Proof
Apply previous (Rolle) theorem to the function

h(x) = f (x)− f (b)− f (a)

b− a
x.
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Theorem 8 (Cauchy, (extended) mean value theorem)
Suppose that a, b ∈ R, a < b, functions f , g are continuous on
an interval [a, b] and have derivatives (finite or infinite) at every
point of the interval (a, b). Then there is c ∈ (a, b) satisfying

(f (b)− f (a)) g′(c) = (g(b)− g(a)) f ′(c).

Figure: https://en.wikipedia.org/wiki/Mean_value_
theorem(sharp)Cauchy’s_mean_value_theorem
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Proof of Cauchy’s mean theorem

1. g(a) = g(b). By Rolle’ thm, ∃c ∈ (a, b) : g′(c) = 0.
Hence, 0 = (f (b)− f (a))g′(c) = (g(b)− g(a))f ′(c).

2. g(a) 6= g(b). Define h(x) = f (x)− rg(x), with r such that
h(a) = h(b).

f (a)− rg(a) = f (b)− rg(b), r =
f (b)− f (a)

g(b)− g(a)
.

Rolle’s thm: ∃c ∈ (a, b) : h′(c) = 0. I.e.

f ′(c)− f (b)− f (a)

g(b)− g(a)
g′(c) = 0.
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Theorem 9 (sign of the derivative and monotonicity)
Let J ⊂ R be a non-degenerate interval. Suppose that a function
f is continuous on J and it has a derivative at every inner point
of J (the set of all inner points of J is denoted by Int J).

(i) If f ′(x) > 0 for all x ∈ Int J, then f is increasing on J.
(ii) If f ′(x) < 0 for all x ∈ Int J, then f is decreasing on J.

(iii) If f ′(x) ≥ 0 for all x ∈ Int J, then f in non-decreasing on J.
(iv) If f ′(x) ≤ 0 for all x ∈ Int J, then f is non-increasing on J.

https://mathinsight.org/applet/derivative_
function
https://www.geogebra.org/m/mCTqH7u4
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Theorem 10 (computation of a one-sided derivative)
Suppose that a function f is continuous from the right at a ∈ R
and the limit lim

x→a+
f ′(x) exists. Then the derivative f ′+(a) exists

and
f ′+(a) = lim

x→a+
f ′(x).
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Theorem 11 (l’Hopital’s rule)
Suppose that functions f and g have finite derivatives on some
punctured neighbourhood of a ∈ R∗ and the limit lim

x→a

f ′(x)
g′(x) exist.

Suppose further that g′(x) 6= 0, x→ a and that one of the
following conditions hold:

(i) lim
x→a

f (x) = lim
x→a

g(x) = 0,

(ii) lim
x→a
|g(x)| = +∞.

Then the limit lim
x→a

f (x)
g(x) exists and limx→a

f (x)
g(x) = limx→a

f ′(x)
g′(x) .

Exercise

lim
x→∞

ln x
x

=

A ∞ B 0 C 1 D 6 ∃
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Theorem 11 (l’Hopital’s rule)
Suppose that functions f and g have finite derivatives on some
punctured neighbourhood of a ∈ R∗ and the limit lim

x→a

f ′(x)
g′(x) exist.

Suppose further that g′(x) 6= 0, x→ a and that one of the
following conditions hold:

(i) lim
x→a

f (x) = lim
x→a

g(x) = 0,

(ii) lim
x→a
|g(x)| = +∞.

Then the limit lim
x→a

f (x)
g(x) exists and limx→a

f (x)
g(x) = limx→a

f ′(x)
g′(x) .

Example

f (x) = 2x + sin(2x), g(x) = (2x + sin(2x))e− sin x.
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Proof of l’Hopital’s rule [Fikhhtengolc, page 222, Theorem 1]:

Case: a ∈ R and lim
x→a

f (x) = lim
x→a

g(x) = 0.

Step 1. Define f (a) = 0, g(a) = 0. Then f , g are continuous at
x = a.
Step 2. Since g′(x) 6= 0 as x→ a, then also g(x) 6= 0 as x→ 0.
(otherwise, contradiction with Rolle’s thm).
Step 3.

f (x)

g(x)
=

f (x)− f (a)

g(x)− g(a)
=

f ′(c)

g′(c)
, c = c(x).

(Cauchy’s mean theorem)
Step 4. Limit of a composition:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(c(x))

g′(c(x))
=

∣∣∣∣∣∣
y = c(x)

y→ a, x→ a
y 6= a, x→ a

∣∣∣∣∣∣ = lim
x→a

f ′(y)

g′(y)
.
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Proof of l’Hopital’s rule:

Case a = ±∞ and lim
x→a

f (x) = lim
x→a

g(x) = 0.

Apply previous case to the function f (1
y ), g(1

y ), and the point 0.

Proof of l’Hopital’s rule:

Case a ∈ R, lim
x→a

f (x) = lim
x→a

g(x) = +∞, lim
x→a

f ′(x)
g′(x) = K ∈ R.

f (x)

g(x)
−K =

f (x0)− Kg(x0)

g(x)
+

f (x)− f (x0) + Kg(x0)− Kg(x)

g(x)

=
f (x0)− Kg(x0)

g(x)
+

(g(x)− g(x0))
(

f (x)−f (x0)
g(x)−g(x0)

− K
)

g(x)

=
f (x0)− Kg(x0)

g(x)
+

(
1− g(x0)

g(x)

)(
f (x)− f (x0)

g(x)− g(x0)
− K

)
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Proof of l’Hopital’s rule:

Case a ∈ R, lim
x→a

f (x) = lim
x→a

g(x) = +∞, lim
x→a

f ′(x)
g′(x) = K ∈ R.

∣∣∣∣ f (x)

g(x)
− K

∣∣∣∣ ≤ ∣∣∣∣ f (x0)− Kg(x0)

g(x)

∣∣∣∣+∣∣∣∣1− g(x0)

g(x)

∣∣∣∣·∣∣∣∣ f (x)− f (x0)

g(x)− g(x0)
− K

∣∣∣∣
f (x)− f (x0)

g(x)− g(x0)
− K =

f ′(c(x, x0))

g′(c(x, x0))
− K

can be made small by taking both x, x0 close to a.∣∣∣∣1− g(x0)

g(x)

∣∣∣∣
is in the interval (0, 1) by choosing first x0 close to a such that
g(x0) > 0, and then by choosing x even closer to a (so that g(x)

is large). Similar: f (x0)−Kg(x0)
g(x) can be made small by choosing x.
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Fix an arbitrary ε > 0.

∃δ1 > 0 ∀c ∈ (a, a + δ1) :

∣∣∣∣ f ′(c)

g′(c)
− K

∣∣∣∣ <
ε

2
.

∃δ2 > 0 ∀x0 ∈ (a, a + δ2) : g(x0) > 0.

Denote δ3 = min(δ1, δ2) and fix an arbitrary x0 ∈ (a, a + δ3).

∃δ ∈ (0, δ3) ∀x ∈ (a, a + δ) :

∣∣∣∣ f (x0)− Kg(x0)

g(x)

∣∣∣∣ < ε

2

and g(x0) < g(x), i.e. 0 < 1− g(x0

g(x)
< 1.
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Convex and concave functions

Inspired by: realisticky.cz
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Convex and concave functions

Figure: https://www.math24.net/convex-functions/
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Figure: https://math.stackexchange.com/questions/3399/why-does-
convex-function-mean-concave-up
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Convex combination

2 x1 x
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Convex combination

2 x1 x

1 · x1 + 0 · x2 = x1 + 0 · (x2 − x1) = x1
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Convex combination

2 x1 x

0 · x1 + 1 · x2 = x1 + 1 · (x2 − x1) = x2
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Convex combination
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Convex combination

2 x1 x

λx1 + (1− λ)x2 = x1 + (1− λ)(x2 − x1), λ ∈ [0, 1]
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Definition
We say that a function f is

convex on an interval I if

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];
concave on an interval I if

f (λx1 + (1− λ)x2) ≥ λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];
strictly convex on an interval I if

f (λx1 + (1− λ)x2) < λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I, x1 6= x2 and each λ ∈ (0, 1);
strictly concave on an interval I if

f (λx1 + (1− λ)x2) > λf (x1) + (1− λ)f (x2).

for each x1, x2 ∈ I, x1 6= x2 and each λ ∈ (0, 1).
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)2f(x
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Lemma 12
A function f is convex on an interval I if and only if

f (x2)− f (x1)

x2 − x1
≤ f (x3)− f (x2)

x3 − x2

for each three points x1, x2, x3 ∈ I, x1 < x2 < x3.

)2f(x

2 x

)3f(x

)1f(x

3 x1 x

)2f(x )1f(x

2 x1 x
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Definition
Suppose that a function f has a finite derivative on some
neighbourhood of a ∈ R. The second derivative of f at a is
defined by

f ′′(a) = lim
h→0

f ′(a + h)− f ′(a)

h
if the limit exists.

Let n ∈ N and suppose that f has a finite nth derivative (denoted
by f (n)) on some neighbourhood of a ∈ R. Then the (n + 1)th
derivative of f at a is defined by

f (n+1)(a) = lim
h→0

f (n)(a + h)− f (n)(a)

h

if the limit exists.
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Theorem 13 (second derivative and convexity)
Let a, b ∈ R∗, a < b, and suppose that a function f has a finite
second derivative on the interval (a, b).

(i) If f ′′(x) > 0 for each x ∈ (a, b), then f is strictly convex on
(a, b).

(ii) If f ′′(x) < 0 for each x ∈ (a, b), then f is strictly concave
on (a, b).

(iii) If f ′′(x) ≥ 0 for each x ∈ (a, b), then f is convex on (a, b).
(iv) If f ′′(x) ≤ 0 for each x ∈ (a, b), then f is concave on (a, b).

https://www.geogebra.org/m/rqebuwyw https:
//www.khanacademy.org/math/ap-calculus-ab/
ab-diff-analytical-applications-new/
ab-5-9/e/
connecting-function-and-derivatives
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Definition
Suppose that a function f has a finite derivative at a ∈ R and let
Ta denote the tangent to the graph of f at (a, f (a)). We say that
the point (x, f (x)) lies below the tangent Ta if

f (x) < f (a) + f ′(a) · (x− a).

We say that the point [x, f (x)] lies above the tangent Ta if the
opposite inequality holds.
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Figure: https://www.math24.net/convex-functions/
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Definition
Suppose that a function f has a finite derivative at a ∈ R and let
Ta denote the tangent to the graph of f at (a, f (a)). We say that
a is an inflection point of f if there is ∆ > 0 such that

(i) ∀x ∈ (a−∆, a) : (x, f (x)) lies below the tangent Ta,
(ii) ∀x ∈ (a, a + ∆): (x, f (x)) lies above the tangent Ta,

or
(i) ∀x ∈ (a−∆, a) : (x, f (x)) lies above the tangent Ta,

(ii) ∀x ∈ (a, a + ∆): (x, f (x)) lies below the tangent Ta.
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https://en.wikipedia.org/wiki/Inflection_
point#/media/File:Animated_illustration_
of_inflection_point.gif
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Theorem 14 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.
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Theorem 15 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

(x4 − x)′′ = 12x2

Figure:
https://commons.wikimedia.org/wiki/File:X to the 4th minus x.svgMathematics I - Derivatives 56 / 84



Theorem 16 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

Theorem 17 (sufficient condition for inflection)
Suppose that a function f has a continuous first derivative on an
interval (a, b) and z ∈ (a, b). Suppose further that
∀x ∈ (a, z) : f ′′(x) > 0,
∀x ∈ (z, b) : f ′′(x) < 0.

Then z is an inflection point of f .
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Definition
The line which is a graph of an affine function x 7→ kx + q,
k, q ∈ R, is called an asymptote of the function f at +∞ (resp.
v −∞) if

lim
x→+∞

(f (x)− kx− q) = 0, (resp. lim
x→−∞

(f (x)− kx− q) = 0).
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Definition
The line which is a graph of an affine function x 7→ kx + q,
k, q ∈ R, is called an asymptote of the function f at +∞ (resp.
v −∞) if

lim
x→+∞

(f (x)− kx− q) = 0, (resp. lim
x→−∞

(f (x)− kx− q) = 0).

Proposition 18
A function f has an asymptote at +∞ given by the affine
function x 7→ kx + q if and only if

lim
x→+∞

f (x)

x
= k ∈ R and lim

x→+∞
(f (x)− kx) = q ∈ R.
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Exercise
Let us assume that a function y = f (x) is continuous at R.
Sketch f .

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Exercise
Let us assume that a function y = f (x) is continuous at R.
Sketch f .

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Investigation of a function

1. Determine the domain and discuss the continuity of the
function.

2. Find out symmetries: oddness, evenness, periodicity.
3. Find the limits at the “endpoints of the domain”.
4. Investigate the first derivative, find the intervals of

monotonicity and local and global extrema. Determine the
range.

5. Find the second derivative and determine the intervals
where the function is concave or convex. Find the
inflection points.

6. Find the asymptotes of the function.
7. Draw the graph of the function.
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Taylor polynomial

T f ,x0
n (x) = f (x0) + f ′(x0) · (x− x0) +

1
2

f ′′(x0) · (x− x0)
2

+
1
3!

f ′′′(x0) · (x− x0)
3 + . . .+

1
n!

f (n)(x0) · (x− x0)
n

Taylor expansion with remainder in form of Peano
Let f be n times differentiable at a point x0. Then

f (x) = T f ,x0
n (x) + o((x− x0)

n)

Taylor expansion with remainder in form of Lagrange
Let f be n + 1 times differentiable on an interval I. Let x0, x ∈ I.
Then ∃ξ ∈ (x0, x) :

f (x) = T f ,x0
n (x) +

1
(n + 1)!

f (n+1)(ξ)(x− x0)
n+1
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Proof: Peano
n = 1.

lim
x→x0

f (x)− f (x0)

x− x0
= f ′(x0)

f (x)− f (x0)

x− x0
= f ′(x0) + o(1)

f (x) = f (x0) + f ′(x0)(x− x0) + (x− x0)o(1)︸ ︷︷ ︸
=o(x−x0)

Mathematics I - Derivatives 64 / 84



Proof: Peano: l’Hopitalle
n = 2

lim
x→x0

f (x)− f (x0)− f ′(x0)(x− x0)

(x− x0)2

=
1
2

lim
x→x0

f ′(x)− f ′(x0)

x− x0
=

1
2

f ′′(x0)

Proof: Peano: l’Hopitalle
n = 2

f (x)− f (x0)− f ′(x0)(x− x0)

(x− x0)2 =
1
2

f ′′(x0) + o(1)

f (x) = f (x0)+ f ′(x0)(x−x0)+
1
2

f ′′(x0)(x−x0)
2 +o(1) · (x− x0)

2︸ ︷︷ ︸
o((x−x0)2)

Mathematics I - Derivatives 65 / 84



Proof: Peano: l’Hopitalle

general n + 1:
(
T f ,x0

n (x)
)′

= T f ′,x0
n−1 (x)

lim
x→x0

f (x)− T f ,x0
n (x)

(x− x0)n+1 =
1

n + 1
lim
x→x0

f ′(x)− T f ,x0
n (x)

(x− x0)n

=
1

n + 1
lim
x→x0

f ′(x)− T f ′,x0
n−1 (x)

(x− x0)n =
1

n + 1
· 1

n!
f (n+1)(x0)

f (x)− T f ,x0
n (x)

(x− x0)n+1 =
1

(n + 1)!
f (n+1)(x0) + o(1)

f (x) = T f ,x0
n (x)+

1
(n + 1)!

f (n+1)(x0)(x−x0)
n+1 +o(1)(x− x0)

n+1︸ ︷︷ ︸
o((x−x0)n+1)
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Proof: Lagrange
n = 0 : Lagrange:

f (x)− f (x0)

x− x0
= f ′(ξ).
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Proof: Lagrange

n = 1 : g(y) = f (y)− f (x0)− f ′(x0)(y− x0)

− (f (x)− f (x0)− f ′(x0)(x− x0))
(y− x0)

2

(x− x0)2

g(x0) = 0 g(x) = 0. Rolle: ∃η ∈ (x0, x) : g′(η) = 0.

g′(y) = f ′(y)− f ′(x0)− (f (x)− f ′(x0)(x− x0))
2(y− x0)

(x− x0)2

We see that g′(x0) = 0. Rolle: ∃ξ ∈ (x0η) : g′′(ξ) = 0.

g′′(y) = f ′′(y)− (f (x)− f ′(x0)(x− x0))
1
2(x− x0)2

.

Since g′′(ξ) = 0, then f (x) = f ′(x0)(x− x0) + 1
2 f ′′(ξ)(x− x0)

2.
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Proof: Lagrange
General n. Fix x, x0 ∈ I.

g(y) = f (y)− T f ,x0
n (y)−

(
f (x)− T f ,x0

n (x)
) (y− x0)

n+1

(x− x0)n+1

g(x0) = 0 : f (x0) = Tg,x0
n (x0); g(x) = 0.

Rolle: ∃η1 ∈ (x0, x) : g′(η1) = 0.

g′(y) = f ′(y)− T f ′,x0
n−1 (y)−

(
f (x)− T f ,x0

n (x)
) (n + 1)(y− x0)

n

(x− x0)n+1

g′(x0) = 0 : f ′(x0) = T f ′,x0
n−1 (x0); g′(η1) = 0.

Rolle: ∃η2 ∈ (x0, η1) : g′′(η2) = 0.
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Proof: Lagrange remainder

g(n)(y) = f (n)(y)−T f (n),x0
0 (y)︸ ︷︷ ︸
=f (n)(x0)

−
(
f (x)− T f ,x0

n (x)
) (n + 1)!(y− x0)

(x− x0)n+1

g(n)(x0) = 0; g(n)(x) = 0.
Rolle: ∃ξ ∈ (x0, ηn) : g(n+1)(ξ) = 0.

g(n+1)(y) = f (n+1)(y)−
(
f (x)− T f ,x0

n (x)
) (n + 1)!

(x− x0)n+1

Since g(n+1)(ξ) = 0,we have

f (x) = T f ,x0
n (x) +

1
(n + 1)!

f (n+1)(ξ)(x− x0)
n+1
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Application: Newton approximation method

Let f (x) = 0, and x0 be some point.

f (x) = f (x0) + f ′(x0)(x− x0) + o(x− x0)

f (x)︸︷︷︸
=0

≈ f (x0) + f ′(x0)(x− x0)

x ≈ x0 −
f (x0)

f ′(x0)

Practical application

Take any x1, and then define xn+1 = xn − f (xn)
f ′(xn)

Examples

f (x) = x2 − a. Then xn+1 = 1
2xn + a

2xn
.

f (x) = x2 + 1. Then xn+1 = 1
2xn − 1

2xn
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Definition
A polynomial is a function P of the form

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R,

where n ∈ N ∪ {0} and a0, a1, . . . , an ∈ R. The numbers
a0, . . . , an are called the coefficients of the polynomial P.

Remark
Let n,m ∈ N ∪ {0} and

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R,
Q(x) = b0 + b1x + · · ·+ bmxm, x ∈ R,

where a0, a1, . . . , an ∈ R, an 6= 0, b0, b1, . . . , bm ∈ R, bm 6= 0. If
the polynomials P and Q are equal (i.e. P(x) = Q(x) for each
x ∈ R), then n = m and a0 = b0, . . . , an = bn.
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Definition
Let P be a polynomial of the form

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R.

We say that P is a polynomial of degree n if an 6= 0. The degree
of a zero polynomial (i.e. a constant zero function defined on R)
is defined as −1.
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Definition
Let {an}∞n=0 be a sequence. If limn→∞(a0 + a1 + · · ·+ an)
exists, we denote it by

∞∑
k=0

ak or a1 + a2 + a3 + . . .
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Definition
The exponential function (denoted by exp) is defined by

exp(x) =
∞∑

k=0

xk

k!
= 1 + x +

1
2

x2 +
1
6

x3 +
1

24
x4 + . . .

for every x ∈ R. The number exp(1) is denoted by e (and it is
called Euler’s number).

Theorem 19 (existence of the exponential)

For every x ∈ R the limit lim
n→∞

∑n
k=0

xk

k! exists and is finite.
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Properties of the exponential function

Dexp = R, Rexp = (0,+∞),
the function exp is continuous and increasing on R,
exp 0 = 1, exp 1 = e,
∀x, y ∈ R : exp(x + y) = exp(x) exp(y),
∀x ∈ R : exp(−x) = 1/ exp x,
∀n ∈ Z ∀x ∈ R : exp(nx) = (exp x)n,
lim

x→+∞
exp x = +∞, lim

x→−∞
exp x = 0,

lim
x→0

exp(x)−1
x = 1,

∀r ∈ Q : exp r = er.
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Definition
The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm

Dlog = (0,+∞), Rlog = R,
log is continuous and increasing on (0,+∞),
log 1 = 0, log e = 1,
∀x, y ∈ (0,+∞) : log(xy) = log(x) + log(y),
∀x ∈ (0,+∞) : log(1/x) = − log x,
∀n ∈ Z ∀x ∈ (0,+∞) : log xn = n log x,
lim

x→+∞
log x = +∞, lim

x→0+
log x = −∞,

lim
x→1

log x
x−1 = 1.
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Definition
Let a, b ∈ R, a > 0. The general power ab is defined by

ab = exp(b log a).

Definition
Let a, b ∈ (0,+∞), a 6= 1. The general logarithm to base a is
defined by

loga b =
log b
log a

.
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Definition
The sine and cosine functions (denoted by sin and cos) are
defined by

sin x =
∞∑

k=0

x2k+1

(2k + 1)!
, cos x =

∞∑
k=0

x2k

(2k)!

for every x ∈ R.

Theorem 20 (existence of sine and cosine functions)

For every x ∈ R the limits lim
n→∞

∑n
k=0

x2k+1

(2k+1)! , lim
n→∞

∑n
k=0

x2k

(2k)!

exist and they are finite.
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Properties of the sine and cosine

Dsin = Dcos = R, Rsin = Rcos = [−1, 1].
The functions sin and cos are continuous on R.

x 0 π
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π
4

π
3

π
2

2π
3

3π
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5π
6 π

sin x 0 1
2

√
2
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√
3

2 1
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2

√
2

2
1
2 0

cos x 1
√

3
2

√
2

2
1
2 0 − 1

2 −
√

2
2 −

√
3

2 −1

The function cos is even, the function sin is odd.
The functions sin and cos are 2π-periodic.
∀x ∈ R : sin(x + π) = − sin x, cos(x + π) = − cos x.
∀x ∈ R : sin(x) = cos(π2 − x), cos(x) = sin(π2 − x).
∀x ∈ R : sin2 x + cos2 x = 1.
∀x, y ∈ R : sin(x± y) = sin x cos y± cos x sin y,
cos(x± y) = cos x cos y∓ sin x sin y.
∀x, y ∈ R : sin x− sin y = 2 sin

( x−y
2

)
cos
( x+y

2

)
.

lim
x→0

sin x
x = 1.
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Definition
The function tangent is denoted by tg and defined by

tg x =
sin x
cos x

for every x ∈ R for which the fraction is defined, i.e.

Dtg = {x ∈ R; x 6= π/2 + kπ, k ∈ Z}.

The function cotangent is denoted by cotg and defined on a set
Dcotg = {x ∈ R; x 6= kπ, k ∈ Z} by

cotg x =
cos x
sin x

.
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Properties of the tangent and cotangent

tg π
4 = cotg π

4 = 1
The functions tg and cotg are continuous at every point of
their domains.
The functions tg and cotg are odd.
The functions tg and cotg are π-periodic.
The function tg is increasing on (−π/2, π/2), the function
cotg is decreasing on (0, π).
lim

x→π
2 −

tg x = +∞, lim
x→−π

2 +
tg x = −∞, lim

x→0+
cotg x = +∞,

lim
x→π−

cotg x = −∞

Rtg = Rcotg = R
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Definition
The function arcsine (denoted by arcsin) is an inverse
function to the function sin |[−π

2 ,
π
2 ]

.

The function arccosine (denoted by arccos) is an inverse
function to the function cos |[0,π].
The function arctangent (denoted by arctg) is an inverse
function to the function tg |(−π

2 ,
π
2 )

.
The function arccotangent (denoted by arccotg) is an
inverse function to the function cotg |(0,π).
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Properties of inverse trigonometric functions

Darcsin = Darccos = [−1, 1], Darctg = Darccotg = R
The functions arcsin and arctg are odd.
The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).
arctg 0 = 0, arctg 1 = π

4 , arccotg 0 = π
2

lim
x→0

arcsin x
x = lim

x→0

arctg x
x = 1

∀x ∈ [−1, 1] : arcsin x + arccos x = π
2 ,

∀x ∈ R : arctg x + arccotg x = π
2

lim
x→+∞

arctg x = π
2 , lim

x→−∞
arctg x = −π

2

lim
x→+∞

arccotg x = 0, lim
x→−∞

arccotg x = π
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