Mathematics I - Derivatives

24/25

Mathematics I - Derivatives

Exercise (Motivation)

The farmer would like to enclose a rectangular place for sheep. She has 40 meters of fence and land by the river. What is the biggest possible area of the place?

Figure: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/

Mathematics I - Derivatives

) < (~

Derivative

Limit Definition of the Derivative f'(c)

Figure: https://ginsyblog.wordpress.com/2017/02/04/how-to-solvethe problems of differential calculus/

Mathematics I - Derivatives

Definition

Let *f* be a function and $a \in \mathbb{R}$. Then

• the derivative of the function f at the point a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if the respective limits exist.

Definition

Let *f* be a function and $a \in \mathbb{R}$. Then

• the derivative of the function f at the point a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

• the derivative of f at a from the right is defined by

$$f'_{+}(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h},$$

• the derivative of f at a from the left is defined by

$$f'_{-}(a) = \lim_{h \to 0-} \frac{f(a+h) - f(a)}{h},$$

if the respective limits exist.

Definition

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \left\{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \right\}.$$

is called the tangent to the graph of f at the point [a, f(a)].

https: //www.desmos.com/calculator/l0puzw0zvm

Examples

Mathematics I - Derivatives

7/84

3 4

Theorem 1

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. Then f is continuous at a.

 $(x^3 + 2x^2 - 3)' = 3x^2 + 4x$

 $(\operatorname{sgn} x)'(0) = \infty$

 $\left(\sqrt[3]{x}\right)' = \frac{1}{3\sqrt[3]{x^2}}$

|x|' at 0 does not exist

Derivatives of elementary functions

•
$$(\text{const.})' = 0$$
,
• $(x^n)' = nx^{n-1}, x \in \mathbb{R}, n \in \mathbb{N}; x \in \mathbb{R} \setminus \{0\}, n \in \mathbb{Z}, n < 0$,
• $(\log x)' = \frac{1}{x} \text{ for } x \in (0, +\infty)$,
• $(\exp x)' = \exp x \text{ for } x \in \mathbb{R}$,
• $(x^a)' = ax^{a-1} \text{ for } x \in (0, +\infty), a \in \mathbb{R}$,
• $(x^a)' = ax^{a-1} \text{ for } x \in (0, +\infty), a \in \mathbb{R}$,
• $(a^x)' = ax \log a \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\sin x)' = \cos x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\sin x)' = \cos x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\cos x)' = -\sin x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a < 0$,
• $(\cos x)' = -\sin x \text{ for } x \in D_{\text{tg}}, a \in \mathbb{R}, a < 0$,
• $(\cos x)' = -\frac{1}{\sin^2 x} \text{ for } x \in D_{\text{cotg}}, a \in (-1, 1), a = (\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}} \text{ for } x \in (-1, 1), a = (\operatorname{arccos} x)' = -\frac{1}{1+x^2} \text{ for } x \in \mathbb{R}, a < 0$.

Proof $(\sin x)'$

Proof $(\overline{x^n})'$.

$$\frac{(x+h)^n - x^n}{h} = \frac{\left(x^n + n \cdot x^{n-1}h + a_2 x^{n-2}h^2 + \dots + a_n h^n\right) - x^n}{h}$$

= $n \cdot x^{n-1} + \underbrace{h\left(a_2 x^{n-2} + \dots + a_n h^{n-2}\right)}_{\to 0}$

Mathematics I - Derivatives

Proof $(\log x)'$

$$\frac{1}{h} \left(\log(x+h) - \log x \right) = \frac{1}{h} \left(\log \left(x \cdot \left(1 + \frac{h}{x} \right) \right) - \log x \right)$$
$$= \frac{1}{h} \left(\log x + \log(1 + \frac{h}{x}) - \log x \right) = \frac{1}{h} \log \left(1 + \frac{h}{x} \right)$$
$$= \frac{1}{x} \cdot \underbrace{\frac{x}{h} \log \left(1 + \frac{h}{x} \right)}_{\to 1}$$

Mathematics I - Derivatives

◆□▶ ◆課 ▶ ◆注 ▶ ◆注 ▶ ○注

Theorem 2 (arithmetics of derivatives)

Suppose that the functions f and g have finite derivatives at $a \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$. Then (i) (f+g)'(a) = f'(a) + g'(a), (ii) $(\alpha f)'(a) = \alpha \cdot f'(a)$, (iii) (fg)'(a) = f'(a)g(a) + f(a)g'(a), (iv) if $g(a) \neq 0$, then $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$

Proof (f+g)'

$$\frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h} = \underbrace{\frac{f(x+h)-f(x)}{h}}_{\rightarrow f'(x)} + \underbrace{\frac{g(x+h)-g(x)}{h}}_{\rightarrow g'(x)}$$

Mathematics I - Derivatives

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Proof (fg)'

$$\frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} = \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} = \frac{f(x+h)(g(x+h) - g(x)) + (f(x+h) - f(x))g(x)}{h} = \frac{f(x+h)(g(x+h) - g(x)) + (f(x+h) - f(x))g(x)}{h} = \frac{f(x+h)(g(x+h) - g(x))}{e^{-g(x)}} + \frac{f(x+h) - f(x)}{e^{-g(x)}} \underbrace{g(x)}_{e^{-g(x)}} + \frac{f(x) - f(x)}{e^{-g(x)}} + \frac{f(x)$$

Mathematics I - Derivatives

◆□ ▶ ◆ □ ▶ \bullet ■ ▶ ◆ □ ▶ \bullet ■ ■ ▶ \bullet ■

Proof (1/g)'

$$\frac{1}{h}\left(\frac{1}{g(x+h)} - \frac{1}{g(x)}\right) = \frac{g(x) - g(x+h)}{hg(x+h)g(x)}$$
$$= \frac{-1}{g(x+h)g(x)} \cdot \underbrace{\frac{g(x+h) - g(x)}{h}}_{\rightarrow g'(x)} \rightarrow \frac{-g'(x)}{g(x)^2}$$

Proof (f/g)'

$$\begin{split} \left(\frac{f(x)}{g(x)}\right)' &= \left(f(x) \cdot \frac{1}{g(x)}\right)' = f'(x) \cdot \frac{1}{g(x)} + f(x) \cdot \left(\frac{1}{g(x)}\right)' \\ &= f'(x) \cdot \frac{1}{g(x)} + f(x) \cdot \left(\frac{-g'(x)}{g(x)^2}\right) \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \end{split}$$

Mathematics I - Derivatives

200

$(\tan x)'$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos x - \sin x(\cos x)'}{\cos^2 x}$$
$$= \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Exercise

$f = \cos x \sin x$. Find f'.

A $\cos^2 x$	C $\cos^2 x - \sin^2 x$
B $\sin^2 x$	$D - \sin x \cos x$

æ

Exercise

$f = \cos x \sin x$. Find f'.

A $\cos^2 x$	C $\cos^2 x - \sin^2 x$
B $\sin^2 x$	$D - \sin x \cos x$

Exercise			
$f = e^7$. Find f' .			
A $7e^6$	B e^7	C 0	

æ

◆ロト ◆聞 と ◆臣 と ◆臣 と

Exercise

$f = \cos x \sin x$. Find f'.

A	$\cos^2 x$	C	$\cos^2 x - \sin^2 x$
В	$\sin^2 x$	D	$-\sin x \cos x$

Exercise $f = e^7$. Find f'.A $7e^6$ B e^7 C 0

Exercise

$$f = \frac{e^x}{x^2} \operatorname{Find} f'.$$

A $\frac{e^x}{2x}$
B $\frac{e^x(x-2)}{x^3}$

$$C \frac{e^{x}x^{2} - 2xe^{x}}{x^{4}}$$
$$D \frac{e^{x}2x + x^{2}e^{x}}{x^{4}}$$

Mathematics I - Derivatives

200

Theorem 3 (derivative of a compound function)

Suppose that the function f has a finite derivative at $y_0 \in \mathbb{R}$, the function g has a finite derivative at $x_0 \in \mathbb{R}$, and $y_0 = g(x_0)$. Then

$$(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0).$$

Exercise

$$f = \sin x + e^{\sin x}$$
. Find f' .

A
$$\cos x + e^{\cos x}$$

B
$$\cos x + e^{\sin x}$$

$$C \cos x + \sin x e^{\cos x}$$

D $\cos x + \cos x e^{\sin x}$

Proof derivative of composition

1.
$$g(x_0 + h) \neq g(x_0)$$
 as $h \to 0$.

$$\frac{f(g(x_0+h)) - f(g(x_0))}{h} = \frac{f(g(x_0+h)) - f(g(x_0))}{g(x_0+h) - g(x_0)} \cdot \underbrace{\frac{g(x_0+h) - g(x_0)}{h}}_{\rightarrow g'(x_0)}$$

Denote
$$y_0 = f(x_0)$$
.

$$\lim_{h \to 0} \frac{f(g(x_0 + h)) - f(g(x_0))}{g(x_0 + h) - g(x_0)} = \begin{vmatrix} y = g(x_0 + h) \\ y \to g(x_0), h \to 0 \\ (I) : y \neq g(x_0), h \to 0 \end{vmatrix}$$
$$= \lim_{y \to y_0} \frac{f(y) - f(y_0)}{y - y_0} = f'(y_0)$$

Proof derivative of composition (continue)

2. what if $\exists x_n \rightarrow x_0$ such that $g(x_n) = g(x_0)$? Then

$$\frac{f(g(x_n)) - f(g(x_0))}{x_n - x_0} = 0,$$

and $f(g(x_0))' = 0$, $g'(x_0) = 0$.

Proof derivative of composition (continue)

2. what if $\exists x_n \rightarrow x_0$ such that $g(x_n) = g(x_0)$? Then

$$\frac{f(g(x_n)) - f(g(x_0))}{x_n - x_0} = 0,$$

and
$$f(g(x_0))' = 0, g'(x_0) = 0.$$

Missing point: why (f(g(x)))' exists?

If not, then there exist two sequences, on which the expression for the derivative has two different limits: $\exists \{\widehat{x}_n\}_{n=1}^{\infty} \to x_0, \exists \{\widetilde{x}_n\}_{n=1}^{\infty} \to x_0 \text{ such that } A \neq B \text{ and}$

$$\frac{f(g(\widehat{x}_n)) - f(g(x_0))}{\widehat{x}_n - x_0} \to A \in \overline{\mathbb{R}}, \quad \frac{f(g(\widetilde{x}_n)) - f(g(x_0))}{\widetilde{x}_n - x_0} \to B \in \overline{\mathbb{R}}$$

But if $g(\widehat{x}_n) \neq g(x_0), n \to \infty$, then $A = f'(g(x_0))g'(x_0) = 0$. If $g(\widetilde{x}_{n_k}) = g(x_0)$, then B = 0. So, in any case A = B(= 0).

$$(x^{a})' = (e^{a\ln x})' = e^{a\ln x} (a\ln x)' = e^{a\ln x} \frac{a}{x} = x^{a} \frac{a}{x} = ax^{a-1}.$$

$$(a^{x})$$
$$(a^{x})' = (e^{x \ln a})' = e^{x \ln a} (x \ln a)' = e^{x \ln a} \ln a = a^{x} \ln a.$$

Mathematics I - Derivatives

22/84

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Theorem 4 (derivative of an inverse function)

Let f be a function continuous and strictly monotone on an interval (a, b) and suppose that it has a finite and non-zero derivative $f'(x_0)$ at $x_0 \in (a, b)$. Then the function f^{-1} has a derivative at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

arcsin

$$y = \arcsin x, \quad x = \sin y;$$

 $y'(x) = \frac{1}{x'(y)} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$

arctan

$$y = \arctan x, \quad x = \tan y;$$

$$y'(x) = \frac{1}{x'(y)} = \cos^2 y = \frac{\cos^2 y}{\cos^2 y + \sin^2 y} = \frac{1}{1 + \tan^2 y}$$
$$= \frac{1}{1 + x^2}.$$

Mathematics I - Derivatives

Exercise (True or false?)

- 1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)
- 2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.)

Theorem 5 (necessary condition for a local extremum)

Suppose that a function f has a local extremum at $x_0 \in \mathbb{R}$. If $f'(x_0)$ exists, then $f'(x_0) = 0$.

Mathematics I - Derivatives

|*x*|

Mathematics I - Derivatives

First Derivative Test for Local Extrema

FIGURE 3.21 A function's first derivative tells how the graph rises and falls.

Figure: http://slideplayer.com/slide/7555868/

Mathematics I - Derivatives

Theorem 6 (Rolle)

Suppose that $a, b \in \mathbb{R}$, a < b, and a function f has the following properties:

- (i) *it is continuous on the interval* [*a*, *b*],
- (ii) it has a (finite) derivative at every point of the open interval (a, b),

(iii)
$$f(a) = f(b)$$
.

Then there exists $\xi \in (a, b)$ satisfying $f'(\xi) = 0$.

Figure: https://commons.wikimedia.org/wiki/File:Rolle%27s theorem.svg

Theorem 7 (Lagrange, mean value theorem)

Suppose that $a, b \in \mathbb{R}$, a < b, a function f is continuous on an interval [a, b] and has a (finite) derivative at every point of the interval (a, b). Then there is $\xi \in (a, b)$ satisfying $f'(\xi) = \frac{f(b) - f(a)}{b - a}.$

Figure: https://en.wikipedia.org/wiki/File: Mittelwertsatz3.svg

Mathematics I - Derivatives

Proof

Apply previous (Rolle) theorem to the function

$$h(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

Theorem 8 (Cauchy, (extended) mean value theorem)

Suppose that $a, b \in \mathbb{R}$, a < b, functions f, g are continuous on an interval [a, b] and have derivatives (finite or infinite) at every point of the interval (a, b). Then there is $c \in (a, b)$ satisfying (f(b) - f(a)) g'(c) = (g(b) - g(a)) f'(c).

Figure: https://en.wikipedia.org/wiki/Mean_value_ theorem(sharp)Cauchy's_mean_value_theorem () 2 000

Mathematics I - Derivatives

Proof of Cauchy's mean theorem

- 1. g(a) = g(b). By Rolle' thm, $\exists c \in (a, b) : g'(c) = 0$. Hence, 0 = (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).
- 2. $g(a) \neq g(b)$. Define h(x) = f(x) rg(x), with *r* such that h(a) = h(b).

$$f(a) - rg(a) = f(b) - rg(b),$$
 $r = \frac{f(b) - f(a)}{g(b) - g(a)}.$

Rolle's thm: $\exists c \in (a, b) : h'(c) = 0$. I.e.

$$f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0.$$

Mathematics I - Derivatives
Theorem 9 (sign of the derivative and monotonicity)

Let $J \subset \mathbb{R}$ be a non-degenerate interval. Suppose that a function f is continuous on J and it has a derivative at every inner point of J (the set of all inner points of J is denoted by Int J).

(i) If f'(x) > 0 for all $x \in \text{Int } J$, then f is increasing on J.

(ii) If f'(x) < 0 for all $x \in \text{Int } J$, then f is decreasing on J.

(iii) If $f'(x) \ge 0$ for all $x \in \text{Int } J$, then f in non-decreasing on J.

(iv) If $f'(x) \le 0$ for all $x \in \text{Int } J$, then f is non-increasing on J.

https://mathinsight.org/applet/derivative_ function https://www.geogebra.org/m/mCTqH7u4

Theorem 10 (computation of a one-sided derivative)

Suppose that a function f is continuous from the right at $a \in \mathbb{R}$ and the limit $\lim_{x\to a+} f'(x)$ exists. Then the derivative $f'_+(a)$ exists and

$$f'_+(a) = \lim_{x \to a+} f'(x).$$

Theorem 11 (l'Hopital's rule)

Suppose that functions f and g have finite derivatives on some punctured neighbourhood of $a \in \mathbb{R}^*$ and the limit $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exist. Suppose further that $g'(x) \neq 0, x \to a$ and that one of the following conditions hold:

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$$

(ii)
$$\lim_{x \to a} |g(x)| = +\infty.$$

(ii)
$$\lim_{x \to a} |g(x)| = +\infty$$

hen the limit
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 exists and $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Exercise				
$\lim_{x\to\infty}\frac{\ln x}{x} =$				
A ∞	B 0	C 1	D∄	

Theorem 11 (l'Hopital's rule)

Suppose that functions f and g have finite derivatives on some punctured neighbourhood of $a \in \mathbb{R}^*$ and the limit $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exist. Suppose further that $g'(x) \neq 0, x \to a$ and that one of the following conditions hold:

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
,

(ii)
$$\lim_{x \to a} |g(x)| = +\infty.$$

Then the limit $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists and $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Example

$$f(x) = 2x + \sin(2x),$$
 $g(x) = (2x + \sin(2x))e^{-\sin x}$

Proof of l'Hopital's rule [Fikhhtengolc, page 222, Theorem 1]:

Case: $a \in \mathbb{R}$ and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. Step 1. Define f(a) = 0, g(a) = 0. Then f, g are continuous at x = a.

Step 2. Since $g'(x) \neq 0$ as $x \to a$, then also $g(x) \neq 0$ as $x \to 0$. (otherwise, contradiction with Rolle's thm). **Step 3.**

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}, \quad c = c(x).$$

(Cauchy's mean theorem) **Step 4.** Limit of a composition:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(c(x))}{g'(c(x))} = \begin{vmatrix} y = c(x) \\ y \to a, x \to a \\ y \neq a, x \to a \end{vmatrix} = \lim_{x \to a} \frac{f'(y)}{g'(y)}.$$

Proof of l'Hopital's rule:

Case
$$a = \pm \infty$$
 and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$.
Apply previous case to the function $f(\frac{1}{y}), g(\frac{1}{y})$, and the point 0.

Proof of l'Hopital's rule:

Case
$$a \in \mathbb{R}$$
, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = +\infty$, $\lim_{x \to a} \frac{f'(x)}{g'(x)} = K \in \mathbb{R}$.

$$\frac{f(x)}{g(x)} - K = \frac{f(x_0) - Kg(x_0)}{g(x)} + \frac{f(x) - f(x_0) + Kg(x_0) - Kg(x)}{g(x)}$$

$$= \frac{f(x_0) - Kg(x_0)}{g(x)} + \frac{(g(x) - g(x_0))\left(\frac{f(x) - f(x_0)}{g(x) - g(x_0)} - K\right)}{g(x)}$$

$$= \frac{f(x_0) - Kg(x_0)}{g(x)} + \left(1 - \frac{g(x_0)}{g(x)}\right)\left(\frac{f(x) - f(x_0)}{g(x) - g(x_0)} - K\right)$$

2

ヘロン 人間 とくほとく ほど

Proof of l'Hopital's rule:

Case
$$a \in \mathbb{R}$$
, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = +\infty$, $\lim_{x \to a} \frac{f'(x)}{g'(x)} = K \in \mathbb{R}$.
 $\left| \frac{f(x)}{g(x)} - K \right| \le \left| \frac{f(x_0) - Kg(x_0)}{g(x)} \right| + \left| 1 - \frac{g(x_0)}{g(x)} \right| \cdot \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - K \right|$

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} - K = \frac{f'(c(x, x_0))}{g'(c(x, x_0))} - K$$

can be made small by taking both x, x_0 close to a.

$$1-\frac{g(x_0)}{g(x)}$$

is in the interval (0, 1) by choosing first x_0 close to a such that $g(x_0) > 0$, and then by choosing x even closer to a (so that g(x) is large). Similar: $\frac{f(x_0) - Kg(x_0)}{g(x)}$ can be made small by choosing x.

Mathematics I - Derivatives

Fix an arbitrary $\varepsilon > 0$.

$$\exists \delta_1 > 0 \ orall c \in (a,a+\delta_1) : \left| rac{f'(c)}{g'(c)} - K
ight| < rac{arepsilon}{2}.$$

$$\exists \delta_2 > 0 \ \forall x_0 \in (a, a + \delta_2) : g(x_0) > 0.$$

Denote $\delta_3 = \min(\delta_1, \delta_2)$ and fix an arbitrary $x_0 \in (a, a + \delta_3)$.

$$\exists \delta \in (0, \delta_3) \ \forall x \in (a, a + \delta) : \quad \left| \frac{f(x_0) - Kg(x_0)}{g(x)} \right| < \frac{\varepsilon}{2}$$

and $g(x_0) < g(x)$, i.e. $0 < 1 - \frac{g(x_0)}{g(x)} < 1$.

Mathematics I - Derivatives

Convex and concave functions

Mathematics I - Derivatives

Convex and concave functions

Figure: https://www.math24.net/convex-functions/

Figure: https://math.stackexchange.com/questions/3399/why-does-convex-function-mean-concave-up

Mathematics I - Derivatives

45/84

æ

イロト イポト イヨト

 $x_{1} \qquad x_{2} \\ 0 \cdot x_{1} + 1 \cdot x_{2} = x_{1} + 1 \cdot (x_{2} - x_{1}) = x_{2}$

伺とくほとくほと

 $x_{1} \qquad x_{2}$ $\frac{1}{2}x_{1} + \frac{1}{2}x_{2} = x_{1} + \frac{1}{2}(x_{2} - x_{1})$

▲ 伊 ト ▲ 王 ト

Mathematics I - Derivatives

45/84

・ 伊 ト ・ ヨ ト ・ ヨ ト

・ 伊 ト ・ ヨ ト ・ ヨ ト

$\lambda x_1 + (1 - \lambda)x_2 = x_1 + (1 - \lambda)(x_2 - x_1), \quad \lambda \in [0, 1]$

・ 何 ト ・ ヨ ト ・ ヨ ト …

3

Definition

We say that a function f is

• convex on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• concave on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• strictly convex on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$;

• strictly concave on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2).$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$.

Mathematics I - Derivatives

47/84

(日)

≣ • • • • •

47/84

(日)

≣ *•* ೧ < ೧

Mathematics I - Derivatives

47/84

Mathematics I - Derivatives

47/84

Lemma 12

A function f is convex on an interval I if and only if

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

for each three points $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$.

Lemma 12

A function f is convex on an interval I if and only if

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

for each three points $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$.

Definition

Suppose that a function f has a finite derivative on some neighbourhood of $a \in \mathbb{R}$. The second derivative of f at a is defined by

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

if the limit exists.

Definition

Suppose that a function f has a finite derivative on some neighbourhood of $a \in \mathbb{R}$. The second derivative of f at a is defined by

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

if the limit exists.

Let $n \in \mathbb{N}$ and suppose that f has a finite nth derivative (denoted by $f^{(n)}$) on some neighbourhood of $a \in \mathbb{R}$. Then the (n + 1)th derivative of f at a is defined by

$$f^{(n+1)}(a) = \lim_{h \to 0} \frac{f^{(n)}(a+h) - f^{(n)}(a)}{h}$$

if the limit exists.

Theorem 13 (second derivative and convexity)

Let $a, b \in \mathbb{R}^*$, a < b, and suppose that a function f has a finite second derivative on the interval (a, b).

- (i) If f''(x) > 0 for each $x \in (a, b)$, then f is strictly convex on (a, b).
- (ii) If f''(x) < 0 for each $x \in (a, b)$, then f is strictly concave on (a, b).
- (iii) If $f''(x) \ge 0$ for each $x \in (a, b)$, then f is convex on (a, b).

(iv) If $f''(x) \le 0$ for each $x \in (a, b)$, then f is concave on (a, b).

https://www.geogebra.org/m/rqebuwyw https: //www.khanacademy.org/math/ap-calculus-ab/ ab-diff-analytical-applications-new/ ab-5-9/e/ connecting-function-and-derivatives

Definition

Suppose that a function *f* has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of *f* at (a, f(a)). We say that the point (x, f(x)) lies below the tangent T_a if

$$f(x) < f(a) + f'(a) \cdot (x - a).$$

We say that the point [x, f(x)] lies above the tangent T_a if the opposite inequality holds.

Figure: https://www.math24.net/convex-functions/

Definition

Suppose that a function *f* has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of *f* at (a, f(a)). We say that *a* is an inflection point of *f* if there is $\Delta > 0$ such that (i) $\forall x \in (a - \Delta, a) : (x, f(x))$ lies below the tangent T_a ,

(ii) $\forall x \in (a, a + \Delta)$: (x, f(x)) lies above the tangent T_a ,

Definition

Suppose that a function *f* has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of *f* at (a, f(a)). We say that *a* is an inflection point of *f* if there is $\Delta > 0$ such that (i) $\forall x \in (a - \Delta, a) \colon (x, f(x))$ lies below the tangent T_a , (ii) $\forall x \in (a, a + \Delta) \colon (x, f(x))$ lies above the tangent T_a ,

or

(i) ∀x ∈ (a − Δ, a): (x, f(x)) lies above the tangent T_a,
(ii) ∀x ∈ (a, a + Δ): (x, f(x)) lies below the tangent T_a.

https://en.wikipedia.org/wiki/Inflection_ point#/media/File:Animated_illustration_ of_inflection_point.gif

54/84

Theorem 14 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 15 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

 $(x^4 - x)'' = 12x^2$

Figure:

Mathematics I - Derivatives

56/84

ક જ) વ (
Theorem 16 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 16 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 17 (sufficient condition for inflection)

Suppose that a function f has a continuous first derivative on an interval (a, b) and $z \in (a, b)$. Suppose further that

- $\forall x \in (a,z) : f''(x) > 0$,
- $\forall x \in (z,b) : f''(x) < 0.$

Then z is an inflection point of f.

The line which is a graph of an affine function $x \mapsto kx + q$, $k, q \in \mathbb{R}$, is called an asymptote of the function f at $+\infty$ (resp. $v - \infty$) if

$$\lim_{x \to +\infty} (f(x) - kx - q) = 0, \quad (\text{resp. } \lim_{x \to -\infty} (f(x) - kx - q) = 0).$$

< □ > < 同 >

The line which is a graph of an affine function $x \mapsto kx + q$, $k, q \in \mathbb{R}$, is called an asymptote of the function f at $+\infty$ (resp. $v - \infty$) if

$$\lim_{x\to+\infty} (f(x)-kx-q)=0, \quad (\text{resp. } \lim_{x\to-\infty} (f(x)-kx-q)=0).$$

Proposition 18

A function *f* has an asymptote at $+\infty$ given by the affine function $x \mapsto kx + q$ if and only if

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \in \mathbb{R} \quad and \quad \lim_{x \to +\infty} (f(x) - kx) = q \in \mathbb{R}.$$

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

61/84

ж

イロト イポト イヨト イヨト

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

61/84

(4 個) トイヨト イヨト

Investigation of a function

- 1. Determine the domain and discuss the continuity of the function.
- 2. Find out symmetries: oddness, evenness, periodicity.
- 3. Find the limits at the "endpoints of the domain".
- 4. Investigate the first derivative, find the intervals of monotonicity and local and global extrema. Determine the range.
- 5. Find the second derivative and determine the intervals where the function is concave or convex. Find the inflection points.
- 6. Find the asymptotes of the function.
- 7. Draw the graph of the function.

Taylor polynomial

$$T_n^{f,x_0}(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{1}{2}f''(x_0) \cdot (x - x_0)^2 + \frac{1}{3!}f'''(x_0) \cdot (x - x_0)^3 + \ldots + \frac{1}{n!}f^{(n)}(x_0) \cdot (x - x_0)^n$$

Taylor expansion with remainder in form of Peano

Let *f* be *n* times differentiable at a point x_0 . Then

$$f(x) = T_n^{f,x_0}(x) + o((x - x_0)^n)$$

Taylor expansion with remainder in form of Lagrange

Let *f* be n + 1 times differentiable on an interval *I*. Let $x_0, x \in I$. Then $\exists \xi \in (x_0, x)$:

$$f(x) = T_n^{f,x_0}(x) + \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}$$

Proof: Peano

n = 1

1.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + o(1)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{(x - x_0)o(1)}_{=o(x - x_0)}$$

Mathematics I - Derivatives

4 □ ▶ 4 □ ■

Proof: Peano: l'Hopitalle

n = 2

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{(x - x_0)^2} = \frac{1}{2} \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \frac{1}{2} f''(x_0)$$

Proof: Peano: l'Hopitalle

n = 2

$$\frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{(x - x_0)^2} = \frac{1}{2}f''(x_0) + o(1)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \underbrace{o(1) \cdot (x - x_0)^2}_{o((x - x_0)^2)}$$

Proof: Peano: l'Hopitalle

general
$$n + 1: (T_n^{f,x_0}(x))' = T_{n-1}^{f',x_0}(x)$$

$$\lim_{x \to x_0} \frac{f(x) - T_n^{f,x_0}(x)}{(x - x_0)^{n+1}} = \frac{1}{n+1} \lim_{x \to x_0} \frac{f'(x) - T_n^{f,x_0}(x)}{(x - x_0)^n}$$
$$= \frac{1}{n+1} \lim_{x \to x_0} \frac{f'(x) - T_{n-1}^{f',x_0}(x)}{(x - x_0)^n} = \frac{1}{n+1} \cdot \frac{1}{n!} f^{(n+1)}(x_0)$$

$$\frac{f(x) - T_n^{f,x_0}(x)}{(x - x_0)^{n+1}} = \frac{1}{(n+1)!} f^{(n+1)}(x_0) + o(1)$$
$$f(x) = T_n^{f,x_0}(x) + \frac{1}{(n+1)!} f^{(n+1)}(x_0)(x - x_0)^{n+1} + \underbrace{o(1)(x - x_0)^{n+1}}_{o((x - x_0)^{n+1})}$$

Mathematics I - Derivatives

66/84

イロト イポト イヨト

Proof: Lagrange

n = 0: Lagrange:

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi).$$

Mathematics I - Derivatives

< ≣ ▶67/84

æ

Proof: Lagrange

$$n = 1: \qquad g(y) = f(y) - f(x_0) - f'(x_0)(y - x_0) \\ - (f(x) - f(x_0) - f'(x_0)(x - x_0)) \frac{(y - x_0)^2}{(x - x_0)^2}$$

$$g(x_0) = 0$$
 $g(x) = 0$. Rolle: $\exists \eta \in (x_0, x) : g'(\eta) = 0$.

$$g'(y) = f'(y) - f'(x_0) - (f(x) - f'(x_0)(x - x_0)) \frac{2(y - x_0)}{(x - x_0)^2}$$

We see that $g'(x_0) = 0$. Rolle: $\exists \xi \in (x_0 \eta) : g''(\xi) = 0$.

$$g''(y) = f''(y) - \frac{(f(x) - f'(x_0)(x - x_0))}{\frac{1}{2}(x - x_0)^2}.$$

Since $g''(\xi) = 0$, then $f(x) = f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$.

Proof: Lagrange

General *n*. Fix $x, x_0 \in I$.

$$g(y) = f(y) - T_n^{f,x_0}(y) - \left(f(x) - T_n^{f,x_0}(x)\right) \frac{(y - x_0)^{n+1}}{(x - x_0)^{n+1}}$$

 $g(x_0) = 0$: $f(x_0) = T_n^{g,x_0}(x_0)$; g(x) = 0. Rolle: $\exists \eta_1 \in (x_0, x)$: $g'(\eta_1) = 0$.

$$g'(y) = f'(y) - T_{n-1}^{f',x_0}(y) - \left(f(x) - T_n^{f,x_0}(x)\right) \frac{(n+1)(y-x_0)^n}{(x-x_0)^{n+1}}$$

$$g'(x_0) = 0: f'(x_0) = T_{n-1}^{f',x_0}(x_0); \qquad g'(\eta_1) = 0$$

Rolle: $\exists \eta_2 \in (x_0, \eta_1): g''(\eta_2) = 0.$

Proof: Lagrange remainder

$$g^{(n)}(y) = f^{(n)}(y) - \underbrace{T_0^{f^{(n)}, x_0}(y)}_{=f^{(n)}(x_0)} - \left(f(x) - T_n^{f, x_0}(x)\right) \frac{(n+1)!(y-x_0)}{(x-x_0)^{n+1}}$$

 $g^{(n)}(x_0) = 0;$ $g^{(n)}(x) = 0.$ Rolle: $\exists \xi \in (x_0, \eta_n) : g^{(n+1)}(\xi) = 0.$

$$g^{(n+1)}(y) = f^{(n+1)}(y) - \left(f(x) - T_n^{f,x_0}(x)\right) \frac{(n+1)!}{(x-x_0)^{n+1}}$$

Since $g^{(n+1)}(\xi) = 0$, we have

$$f(x) = T_n^{f,x_0}(x) + \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}$$

Mathematics I - Derivatives

70/84

프 > 프

Application: Newton approximation method

Let f(x) = 0, and x_0 be some point.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$
$$\underbrace{f(x)}_{=0} \approx f(x_0) + f'(x_0)(x - x_0)$$
$$x \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

Practical application

Take any
$$x_1$$
, and then define $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Examples

$$f(x) = x^2 - a$$
. Then $x_{n+1} = \frac{1}{2}x_n + \frac{a}{2x_n}$.
 $f(x) = x^2 + 1$. Then $x_{n+1} = \frac{1}{2}x_n - \frac{1}{2x_n}$

Mathematics I - Derivatives

A polynomial is a function *P* of the form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R},$$

where $n \in \mathbb{N} \cup \{0\}$ and $a_0, a_1, \dots, a_n \in \mathbb{R}$. The numbers a_0, \dots, a_n are called the coefficients of the polynomial *P*.

A polynomial is a function *P* of the form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R},$$

where $n \in \mathbb{N} \cup \{0\}$ and $a_0, a_1, \dots, a_n \in \mathbb{R}$. The numbers a_0, \dots, a_n are called the coefficients of the polynomial *P*.

Remark

Let $n, m \in \mathbb{N} \cup \{0\}$ and

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R},$$

$$Q(x) = b_0 + b_1 x + \dots + b_m x^m, \quad x \in \mathbb{R},$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$, $a_n \neq 0, b_0, b_1, \ldots, b_m \in \mathbb{R}$, $b_m \neq 0$. If the polynomials *P* and *Q* are equal (i.e. P(x) = Q(x) for each $x \in \mathbb{R}$), then n = m and $a_0 = b_0, \ldots, a_n = b_n$.

Let *P* be a polynomial of the form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R}.$$

We say that *P* is a polynomial of degree *n* if $a_n \neq 0$. The degree of a zero polynomial (i.e. a constant zero function defined on \mathbb{R}) is defined as -1.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence. If $\lim_{n\to\infty}(a_0 + a_1 + \cdots + a_n)$ exists, we denote it by

$$\sum_{k=0}^{\infty} a_k \quad \text{or} \quad a_1 + a_2 + a_3 + \dots$$

The exponential function (denoted by exp) is defined by

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \dots$$

for every $x \in \mathbb{R}$. The number $\exp(1)$ is denoted by *e* (and it is called Euler's number).

The exponential function (denoted by exp) is defined by

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \dots$$

for every $x \in \mathbb{R}$. The number $\exp(1)$ is denoted by *e* (and it is called Euler's number).

Theorem 19 (existence of the exponential)

For every $x \in \mathbb{R}$ the limit $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}$ exists and is finite.

Mathematics I - Derivatives

75/84

Mathematics I - Derivatives

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

76/84

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

• the function \exp is continuous and increasing on \mathbb{R} ,

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

• $\forall x, y \in \mathbb{R}$: $\exp(x + y) = \exp(x) \exp(y)$,

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

•
$$\forall x, y \in \mathbb{R}$$
: $\exp(x+y) = \exp(x) \exp(y)$,

•
$$\forall x \in \mathbb{R}: \exp(-x) = 1/\exp x$$
,

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

• the function \exp is continuous and increasing on \mathbb{R} ,

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

• $\forall x, y \in \mathbb{R}$: $\exp(x+y) = \exp(x) \exp(y)$,

•
$$\forall x \in \mathbb{R}: \exp(-x) = 1/\exp x$$
,

•
$$\forall n \in \mathbb{Z} \ \forall x \in \mathbb{R} \colon \exp(nx) = (\exp x)^n$$
,

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

•
$$\forall x, y \in \mathbb{R}$$
: $\exp(x+y) = \exp(x) \exp(y)$,

•
$$\forall x \in \mathbb{R}$$
: $\exp(-x) = 1/\exp x$,

•
$$\forall n \in \mathbb{Z} \ \forall x \in \mathbb{R} \colon \exp(nx) = (\exp x)^n$$
,

•
$$\lim_{x \to +\infty} \exp x = +\infty$$
, $\lim_{x \to -\infty} \exp x = 0$,

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

•
$$\forall x, y \in \mathbb{R}$$
: $\exp(x+y) = \exp(x) \exp(y)$,

•
$$\forall x \in \mathbb{R}: \exp(-x) = 1/\exp x$$
,

•
$$\forall n \in \mathbb{Z} \ \forall x \in \mathbb{R} \colon \exp(nx) = (\exp x)^n$$
,

•
$$\lim_{x \to +\infty} \exp x = +\infty$$
, $\lim_{x \to -\infty} \exp x = 0$,

•
$$\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1,$$

•
$$D_{\exp} = \mathbb{R}, R_{\exp} = (0, +\infty),$$

•
$$\exp 0 = 1$$
, $\exp 1 = e$,

•
$$\forall x, y \in \mathbb{R}$$
: $\exp(x+y) = \exp(x) \exp(y)$,

•
$$\forall x \in \mathbb{R}: \exp(-x) = 1/\exp x$$
,

•
$$\forall n \in \mathbb{Z} \ \forall x \in \mathbb{R} \colon \exp(nx) = (\exp x)^n$$
,

•
$$\lim_{x \to +\infty} \exp x = +\infty$$
, $\lim_{x \to -\infty} \exp x = 0$,

•
$$\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1,$$

•
$$\forall r \in \mathbb{Q}$$
: exp $r = e^r$.

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm
The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

•
$$\log 1 = 0, \log e = 1,$$

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

• log is continuous and increasing on $(0, +\infty)$,

•
$$\log 1 = 0$$
, $\log e = 1$,

• $\forall x, y \in (0, +\infty)$: $\log(xy) = \log(x) + \log(y)$,

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

•
$$\log 1 = 0$$
, $\log e = 1$,

- $\forall x, y \in (0, +\infty)$: $\log(xy) = \log(x) + \log(y)$,
- $\forall x \in (0, +\infty)$: $\log(1/x) = -\log x$,

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

•
$$\log 1 = 0$$
, $\log e = 1$,

- $\forall x, y \in (0, +\infty)$: $\log(xy) = \log(x) + \log(y)$,
- $\forall x \in (0, +\infty)$: $\log(1/x) = -\log x$,
- $\forall n \in \mathbb{Z} \ \forall x \in (0, +\infty) \colon \log x^n = n \log x,$

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

•
$$\log 1 = 0$$
, $\log e = 1$,

- $\forall x, y \in (0, +\infty)$: $\log(xy) = \log(x) + \log(y)$,
- $\forall x \in (0, +\infty)$: $\log(1/x) = -\log x$,
- $\forall n \in \mathbb{Z} \ \forall x \in (0, +\infty) \colon \log x^n = n \log x,$
- $\lim_{x \to +\infty} \log x = +\infty$, $\lim_{x \to 0+} \log x = -\infty$,

The natural logarithm (denoted by \log) is defined as the inverse function to the function exp.

Properties of the logarithm

•
$$D_{\log} = (0, +\infty), R_{\log} = \mathbb{R},$$

•
$$\log 1 = 0$$
, $\log e = 1$,

- $\forall x, y \in (0, +\infty)$: $\log(xy) = \log(x) + \log(y)$,
- $\forall x \in (0, +\infty)$: $\log(1/x) = -\log x$,
- $\forall n \in \mathbb{Z} \ \forall x \in (0, +\infty) \colon \log x^n = n \log x,$
- $\lim_{x \to +\infty} \log x = +\infty$, $\lim_{x \to 0^+} \log x = -\infty$,
- $\lim_{x \to 1} \frac{\log x}{x-1} = 1.$

Let $a, b \in \mathbb{R}$, a > 0. The general power a^b is defined by

 $a^b = \exp(b\log a).$

Mathematics I - Derivatives

78/84

Let $a, b \in \mathbb{R}$, a > 0. The general power a^b is defined by

$$a^b = \exp(b\log a).$$

Definition

Let $a, b \in (0, +\infty)$, $a \neq 1$. The general logarithm to base *a* is defined by

$$\log_a b = \frac{\log b}{\log a}.$$

The sine and cosine functions (denoted by \sin and \cos) are defined by

$$\sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \qquad \cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

for every
$$x \in \mathbb{R}$$
.

The sine and cosine functions (denoted by \sin and \cos) are defined by

$$\sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \qquad \cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

for every $x \in \mathbb{R}$.

Theorem 20 (existence of sine and cosine functions)

For every $x \in \mathbb{R}$ the limits $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!}$, $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!}$ exist and they are finite.

Mathematics I - Derivatives

79/84

The sine and cosine functions (denoted by \sin and \cos) are defined by

$$\sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \qquad \cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

for every $x \in \mathbb{R}$.

Theorem 20 (existence of sine and cosine functions)

For every $x \in \mathbb{R}$ the limits $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!}$, $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!}$ exist and they are finite.

Mathematics I - Derivatives

79/84

Mathematics I - Derivatives

♦ ≣ ▶
80/84

æ

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

æ

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

• The functions \sin and \cos are continuous on \mathbb{R} .

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

• The function cos is even, the function sin is odd.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
٩	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions \sin and \cos are 2π -periodic.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions \sin and \cos are 2π -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions sin and $\cos \operatorname{are} 2\pi$ -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- $\forall x \in \mathbb{R}$: $\sin(x) = \cos(\frac{\pi}{2} x)$, $\cos(x) = \sin(\frac{\pi}{2} x)$.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions sin and $\cos \operatorname{are} 2\pi$ -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- $\forall x \in \mathbb{R}$: $\sin(x) = \cos(\frac{\pi}{2} x), \cos(x) = \sin(\frac{\pi}{2} x).$
- $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions sin and $\cos \operatorname{are} 2\pi$ -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- $\forall x \in \mathbb{R}$: $\sin(x) = \cos(\frac{\pi}{2} x), \cos(x) = \sin(\frac{\pi}{2} x).$
- $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$.
- $\forall x, y \in \mathbb{R}$: $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$, $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions sin and $\cos \operatorname{are} 2\pi$ -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- $\forall x \in \mathbb{R}$: $\sin(x) = \cos(\frac{\pi}{2} x)$, $\cos(x) = \sin(\frac{\pi}{2} x)$.
- $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$.
- $\forall x, y \in \mathbb{R}$: $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$, $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$.
- $\forall x, y \in \mathbb{R}$: $\sin x \sin y = 2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right)$.

•
$$D_{\sin} = D_{\cos} = \mathbb{R}, R_{\sin} = R_{\cos} = [-1, 1].$$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
•	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

- The function cos is even, the function sin is odd.
- The functions sin and $\cos \operatorname{are} 2\pi$ -periodic.
- $\forall x \in \mathbb{R}$: $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- $\forall x \in \mathbb{R}$: $\sin(x) = \cos(\frac{\pi}{2} x)$, $\cos(x) = \sin(\frac{\pi}{2} x)$.
- $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$.
- $\forall x, y \in \mathbb{R}$: $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$, $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$.
- $\forall x, y \in \mathbb{R}$: $\sin x \sin y = 2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right)$.
- $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

The function tangent is denoted by tg and defined by

 $\operatorname{tg} x = \frac{\sin x}{\cos x}$

for every $x \in \mathbb{R}$ for which the fraction is defined, i.e.

 $D_{\rm tg} = \{ x \in \mathbb{R}; \ x \neq \pi/2 + k\pi, k \in \mathbb{Z} \}.$

Mathematics I - Derivatives

The function tangent is denoted by tg and defined by

 $\operatorname{tg} x = \frac{\sin x}{\cos x}$

for every $x \in \mathbb{R}$ for which the fraction is defined, i.e.

$$D_{\rm tg} = \{ x \in \mathbb{R}; \ x \neq \pi/2 + k\pi, k \in \mathbb{Z} \}.$$

The function cotangent is denoted by $\cot g$ and defined on a set $D_{\cot g} = \{x \in \mathbb{R}; x \neq k\pi, k \in \mathbb{Z}\}$ by

 $\cot g x = \frac{\cos x}{\sin x}.$

Mathematics I - Derivatives

•
$$\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$$

•
$$\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$$

• The functions tg and cotg are continuous at every point of their domains.

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.
- The functions tg and $\cot g$ are π -periodic.

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.
- The functions tg and $\cot g$ are π -periodic.
- The function tg is increasing on $(-\pi/2, \pi/2)$, the function cotg is decreasing on $(0, \pi)$.

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.
- The functions tg and $\cot g$ are π -periodic.
- The function tg is increasing on $(-\pi/2, \pi/2)$, the function cotg is decreasing on $(0, \pi)$.
- $\lim_{\substack{x \to \frac{\pi}{2} \\ x \to \pi^-}} \operatorname{tg} x = +\infty, \lim_{\substack{x \to -\frac{\pi}{2} + \\ x \to \pi^-}} \operatorname{tg} x = -\infty, \lim_{\substack{x \to 0 + \\ x \to \pi^-}} \operatorname{cotg} x = +\infty,$

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.
- The functions tg and $\cot g$ are π -periodic.
- The function tg is increasing on (-π/2, π/2), the function cotg is decreasing on (0, π).
- $\lim_{\substack{x \to \frac{\pi}{2} \\ x \to \pi -}} \operatorname{tg} x = +\infty, \lim_{\substack{x \to -\frac{\pi}{2} + \\ y \to \pi -}} \operatorname{tg} x = -\infty, \lim_{\substack{x \to 0 + \\ y \to \pi -}} \operatorname{cotg} x = +\infty,$

•
$$R_{\mathrm{tg}} = R_{\mathrm{cotg}} = \mathbb{R}$$

The function arcsine (denoted by arcsin) is an inverse function to the function sin |[-π/2, π/2].
Definition

- The function arcsine (denoted by arcsin) is an inverse function to the function sin |_[-π/2,π/2].
- The function arccosine (denoted by arccos) is an inverse function to the function cos |_[0,π].

Definition

- The function arcsine (denoted by arcsin) is an inverse function to the function sin |_[-π/2,π/2].
- The function arccosine (denoted by arccos) is an inverse function to the function cos |_[0,π].
- The function arctangent (denoted by arctg) is an inverse function to the function tg |(-π/2, π/2).

Definition

- The function arcsine (denoted by arcsin) is an inverse function to the function sin |[-π/2, π/2].
- The function arccosine (denoted by arccos) is an inverse function to the function cos |_[0,π].
- The function arctangent (denoted by arctg) is an inverse function to the function tg |(-π/2, π/2).
- The function arccotangent (denoted by arccotg) is an inverse function to the function cotg |_(0,π).

▲ Ξ84/84

•
$$D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$$

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

•
$$\operatorname{arctg} 0 = 0$$
, $\operatorname{arctg} 1 = \frac{\pi}{4}$, $\operatorname{arccotg} 0 = \frac{\pi}{2}$

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

•
$$\operatorname{arctg} 0 = 0$$
, $\operatorname{arctg} 1 = \frac{\pi}{4}$, $\operatorname{arccotg} 0 = \frac{\pi}{2}$

•
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = 1$$

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

•
$$\operatorname{arctg} 0 = 0$$
, $\operatorname{arctg} 1 = \frac{\pi}{4}$, $\operatorname{arccotg} 0 = \frac{\pi}{2}$

•
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = 1$$

•
$$\forall x \in [-1, 1]$$
: $\arcsin x + \arccos x = \frac{\pi}{2}$,
 $\forall x \in \mathbb{R}$: $\operatorname{arctg} x + \operatorname{arccotg} x = \frac{\pi}{2}$

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

•
$$\operatorname{arctg} 0 = 0$$
, $\operatorname{arctg} 1 = \frac{\pi}{4}$, $\operatorname{arccotg} 0 = \frac{\pi}{2}$

•
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = 1$$

•
$$\forall x \in [-1, 1]$$
: $\arcsin x + \arccos x = \frac{\pi}{2}$,
 $\forall x \in \mathbb{R}$: $\operatorname{arctg} x + \operatorname{arccotg} x = \frac{\pi}{2}$

•
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
, $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$
 $\lim_{x \to +\infty} \operatorname{arccotg} x = 0$, $\lim_{x \to -\infty} \operatorname{arccotg} x = \pi$