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SIS
The linear Boltzmann equation in the phase space
Q: bounded domain of RY with C! boundary

V C RY: velocity space

f = f(t,x,v): population density of neutrons
Two main phenomena:

@ Absorption of neutrons with an absorption rate ¢ > 0
@ Scattering and creation of neutrons with transition kernel x > 0

Otf +v-Vif +o(x,v)f — / k(x, v - V) f(t,x,v)dv =0
A%
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The linear Boltzmann equation in the phase space
Q: bounded domain of RY with C! boundary

V C RY: velocity space
f = f(t,x,v): population density of neutrons

Two main phenomena:
@ Absorption of neutrons with an absorption rate ¢ > 0
@ Scattering and creation of neutrons with transition kernel x > 0

Otf +v-Vif +o(x,v)f — / k(x, v - V) f(t,x,v)dv =0
A%

Mathematical study of spatial oscillations

L. Dumas and F. Golse, Homogenization of Transport Equations. SIAM J
Appl Math, 60(4), pp. 1447-1470, 2000
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Introduction

Oscillating behavior in energy

Incident neutron data } JEFF3.1.1 /1 MT=102 : {(z.g) radiative capture / Cross section
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SR
Energy self-shielding

Energy self-shielding is related to the high oscillation of the optical
parameters with respect to the energy of the incoming flux.

The simple average of the optical parameters in the linear Boltzmann
equation does not allow to obtain accurate results (measured and expected
energy dependent neutron fluxes are not in agreement)

Practical strategy: introduce a correction to the linear Boltzmann equation
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Energy self-shielding is related to the high oscillation of the optical
parameters with respect to the energy of the incoming flux.

The simple average of the optical parameters in the linear Boltzmann
equation does not allow to obtain accurate results (measured and expected
energy dependent neutron fluxes are not in agreement)

Practical strategy: introduce a correction to the linear Boltzmann equation

Mathematical study of the energy self-shielding

H. Hutridurga, O. Mula, F. Salvarani. Homogenization in the energy
variable for a neutron transport problem. Asymptotic analysis, 2020
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Introduction The linear Boltzmann equation in energy

The energy description

w = v/|v|: trajectory angle of the neutron

E = m|v|?/2: kinetic energy of the neutron (m: neutron mass)

New unknown: neutron flux (v expressed via the pair (w, E))
o(t,x,w, E) = p(t,x,v) = |v|f(t,x,v) E € [Emin, Emax]

The linear Boltzmann equation

1/%8t¢+w~vxcp+a(x,w,E)g0

Emd/x
/ / (x,w-w', E,E") p(x,w', E')dw' dE' =0
/| 1

mln

90(07X’w7 E) = Q)Oin(x?wa E)

¢ =0Vt E>0 and for (x,w) € [_ = {(x,w) € 92 x S : ny-w < 0}
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Luc Tartar's example
L. Tartar's example (1979)

For the unknown wu®, consider the differential equation

X

Ol + o <*> u“=0; ut(0, x) = uip(x).

€

Notation for the Laplace transform (in the time variable) of a function:
z?(p) = / e Pf(s)ds for p > 0.
0

Notation: let Y := (0,1)? be the unit cube in RY; for any v € L}(Y)

W = [ )y

denotes the average of v in Y.
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Rl el
Homogenization of Tartar's example
Theorem (Tartar)

Let the coefficient o(-) be a strictly positive, bounded and purely periodic
coefficient of period Y. Then the L> weak * limit upom(t, x) of the

solution family u€ satisfies the following integro-differential equation
t
OtUpom (t, x) + (o) thom (t, X) — / M(t — s)upom(s,x)ds =0
0
Uhom(ovx) = uin(X)

where the memory kernel M(7) is given in terms of its Laplace transform

M(p>:p+<o>—6<p)=/

Y<p+00)—B@Ddy Vp >0,

. : dy -t
with the constant B(p) taking the value B(p) := </ ) .
(p) (p) y p+o(y)
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Tartar's example revisited

{6tu6(t,x) + o“(x)u(t, x) = F(t,x) (t,x) € (0, T) xQ
uc(0,x) = uf, (x) x €

of(x) =0 <X, g) ,  f(t,x) =1 (t,x, i) , U (x) = uin <X, E) ,

€

a(x,y) e L™ (Q, Cper( ))
f(t,x,y) € L2((0, T) x Q; Cper(Y)),  tin(x,¥) € L*(; Cper(Y))

Notation: Cpe (Y) denote Y-periodic continuous functions on R9

Hypothesis: there exists a positive constant oy, such that

o(x,¥) > omin V(x,¥y) €QXY
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Two-scale convergence

The notion of two-scale convergence is a weak-type convergence as it is
given in terms of test functions
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Two-scale convergence

The notion of two-scale convergence is a weak-type convergence as it is
given in terms of test functions

Definition

A family of functions v¢(x) C L2(Q) two-scale converges to a limit

VO(x,y) € L2(Q x Y) if, for any smooth test function v(x, y), Y-periodic
in the y variable,

!m/ﬂv%xm <x, f) dX:/Q/YvO(x,y)Q,Z)(X,y)dxdy.
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Homogenization of an ODE

Two-scale convergence: two results
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Two-scale convergence: two results

Theorem (Nguetseng, Allaire)

Suppose a family v¢(x) C L2(Q) is uniformly bounded, i.e.,
VL2 < €

with constant C being independent of €. Then, we can extract a

sub-sequence (still denoted v¢) such that v two-scale converges to some
limit vO(x,y) € L2(Q x Y).
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Homogenization of an ODE A new approach to Tartar's example

Two-scale convergence: two results
Theorem (Nguetseng, Allaire)
Suppose a family v¢(x) C L2(Q) is uniformly bounded, i.e.,

VL2 < €

with constant C being independent of €. Then, we can extract a
sub-sequence (still denoted v¢) such that v two-scale converges to some
limit vO(x,y) € L2(Q x Y).

Proposition (Nguetseng, Allaire)

Let v¢ be a sequence of functions in L2(Q) which two-scale converges to a
limit v0 € L?(Q x Y). Then v¢(x) converges to { = [y V%(x,y)dy
weakly in L2(Q), i.e.

”LT)/Q ve(x)p(x)dx = /ng(x)/y VO(x,y)dy dx for all ¢ € L2(Q).

€

v

F. Salvarani (PULV & Univ. of Pavia) Homogenization of LBE in energy September 22th, 2020 14 /34



[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Properties of the ODE
For any given g € L*°(Y), the linear operator

Lgv:=gv—(gv) Vve L%er(Y)
is bounded in L2_(Y) as

per

1CehlT2 vy =/Y|g(y)h(y) — (gh)|” 01y=/y|g(y)h(y)!2 dy — (gh)*
By Cauchy-Schwarz:

et =| [ en)ar| < ([ ety )

As a consequence, L, : L2, (Y) — L%er(Y) is the infinitesimal generator
of a uniformly continuous semigroup given by
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Theorem (H. Hutridurga, O. Mula, FS)

U¢ — tpom  weakly in L2((0, T) x Q)
t
Betnom (£, X) + (0)(x) thom (£, ) — / K(t — 5, ) thom (5, x) ds = S(t, x)
0

thom (0, x) = {uin)(x)

The memory kernel is given by
K(r,x) = / o(x,y)e ™ Lio(x,y)dy
Y
The source term is given by

S(t,x) = (F)(t,x) /0 t /Y o(x, y)eEoo £ £(s, x, y) dy ds

— / o(x,y)e o Lum(x, y) dy.
Y
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Proof of the theorem

Explicit solution:
X c b X
€ — AN\ —oc(x)t —o¢(x)(t—s) -~
u(t, x) um(x,6>e +/0 e f<s,x,6) ds.

The regularity properties of the initial condition w;, and of the source term
f, together with the fact that ¢ > 0, imply that, uniformly in €

lu e (0, Tyra(@) < € < 00

Nguetseng & Allaire’s theorem guarantees the existence of a subsequence
u® which two-scale converges to a function u® € L2((0, T) x Q x Y)
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A NG
Equation satisfied by the limit u°

Passing to the limit as € — 0 in the sense of two-scale, we obtain
t
WO(t, %, y) = u(x, y)e 7O)E 4 / e OIS f (5 x y) ds
0

i.e., uY solves

e (t, %, y) + a(x, y)°(t, x,y) = f(t,x,y) (t,x,¥) € (0, T) x QAxY

u2(0,x,y) = tin (x,y) (x.y) €QXY
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

Decomposition
u¢ converges weakly in L2((0, T) x Q) to

Unom(t, X) = (uo)(t“7 x)

and we can then decompose the two-scale limit into a homogeneous part
and a remainder which is of zero mean over the periodic cell:

WOt %, ) = thom(t.x) + r(t.x,y)  where  (r) =0.
We have

atuhom + U(Xa)/)uhom + atr"i_ U(X7Y)f = f(t,X,y).

Integrating the above equation over the periodicity cell Y yields
Otthom + (o) (X)thom = (F)(t,x) — (o (x,)r(t,x,-))

as the reminder r is of zero average in the y variable.
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A new approsch to Tartr's example
The coupled system for upom(t, x) and r(t, x,y)

Equation for the remainder term:
O+ ol y)r — [ oley)ritoxy)dy
Y
= ((020) = 0%, ) ) thom + F(£, %, ¥) = {(£)(£, ).

Coupled system for upom(t, x) and r(t, x, y)
Ottinom + (0)(X)thom = (F)(t,x) = (o(x; )r(t, x,-))
Otr + Lor = —tpomL10 + L1f
Unom (0, ) = (uin(x))
r(0,x,y) = L1uiy.
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

The decoupled equation for upom(t, x)
Solve for the remainder term r(t,x,y) in terms of upom

t
f(tx,y):e_tﬁ"ﬁluin(xa)/)Jr/ e (Lo L1f (s, x,y)ds
0

t
—/ e (t79)Le £15(x, y) thom (s, X) ds
0

Substitute this expression for the remainder in the evolution for upom
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[T CEENIPEINIENOIDI=I A new approach to Tartar's example

The decoupled equation for upom(t, x)
Solve for the remainder term r(t,x,y) in terms of upom

t
f(tx,y):e_tﬁaﬁluin(xa)/)Jr/ e (Lo L1f (s, x,y)ds
0

t
—/ e (t79)Le £15(x, y) thom (s, X) ds
0

Substitute this expression for the remainder in the evolution for upop,
O¢tpom + (o) (X) tpom = (F)(t, x)
+ /Ot/YU(X,y)e(ts)llcr£1a(x,y)uhom(57x) dy ds
B /ot/YU(X’y)e_(t_s)ﬁ”ﬁlf(s,x,y)dy ds

—/ o(x,y)e e Liun(x, y) dy
Y
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Homogenization of the linear Boltzmann equation IESIESal -ate il TS eTEe] o] (1))

The rapidly oscillating problem for the linear Boltzmann
equation (0 < e <« 1)

1/%8#)5 +w -V +0° (x,w, E) ¢°
EmaX
—/ / 5 (x,w- W' E E") ¢ (x,0', E')dw' dE" =0
Emin ‘WIIZ]-
. E
o (x,w,E) =0 | x,w, E, —
€
E/
K (x,w-w EE')Y=kK <x,w-w’, E,E, >
€

o(x,w,E,y) and s (x,w -, E, E',y") are assumed to be periodic in the y
and y’ variables respectively.

The equation is complemented with zero incoming flux condition on the
boundary and initial condition i, € L2(Q x S9! X (Emin, Emax))
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Homogenization of the linear Boltzmann equation Setting of the problem

Further hypotheses on the optical parameters
Let

Emax
R (x,w, E) = / / K (x,w-w' E,E") du' dE/
Emin Sd_l
EmaX

R (x,w, E) = / ke (x,w-w' E' E) du' dE'.
Emin Sd-1

Assume that there exists a > 0 such that for all € > 0,

o (x,w,E) —k°(x,w,E) > a and o°(x,w, E) — & (x,w,E) > «

Hypothesis on the kernel structure

k¢ exhibits separation in the E and E’ variables:

E/
KE(x,w-w' E, E') := k1(x,w -, E)ka (x,w -w', E, ?)

with k2 (x,w - W', E’, y') being periodic in the y’ variable.
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Homogenization of the linear Boltzmann equation The homogenization result

Theorem (H. Hutridurga, O. Mula, FS)
©° — Qpom in L2((0, T) x Q x S971 x [Enin, Emax]), solution of

1
at‘:Dhom + \/EW * VxPhom + \/E(/ U(Wa an/)dy/> ¥Phom
0

Emax

1
— / \/Em(w W' E) (/ ko(w - W', E', y’)dy/> Phomdw'dE" =
Emin Sd71 0
Emax 1
/ /SdI\/EK;l(w-w',E)/O ko(w- W', E' y")x

Emin

t
[e—fﬁﬁvﬁl%— / e~ (=IWE Lo JEI L o (!, E, y’)gahomds] dy’dw/dE’
0

1 t
—\/E/a(w,E,y)[et‘/E‘C"ﬁlgoin—/e(ts)‘@L" \/Eﬁla(w,E,y)gohomds} dy
0 0

V.

with initial condition ¢nom(0, x,w, E) = (pin(x,w, E,-)) and zero
absorption condition at the in-flux phase-space boundary.
F. Salvarani (PULV & Univ. of Pavia) Homogenization of LBE in energy September 22th, 2020 26 /34




Homogenization of the linear Boltzmann equation The homogenization result

Treatment of the integral term
& Method of characteristics

& Change of variable x — VEwt =r

& Multiply the integral term by a test function g (E, £) and integrate
w.r.t. E:

Emax t Emax
/ / / / K (- o, E, E') e 99 @By (5. o EY) x
Emin 0 E, Sd71

min

E Emax t
g (E, ) dw’dE’dsdE:/ / / VE ki(w- W', E)x
€ Enin 0 Sd-1

e (=) WE) o5 v w W')g <E E> dw' ds dE,

, —
€

where
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Homogenization of the linear Boltzmann equation The homogenization result

& For every (s, r,w,w') € (0, T) x Q x S971 x 8971,

we(s, r,w,w)—=wi(s, rw,w') =

Emax
/ //—;2 w-w E Ly WO(s, r,u! E Ly )dy dE’

pointwise as ¢ — 0, where 9/° is the two-scale limit of 7/°.

& Consequence: two-scale convergence

Emax t E
/ // \/Enl (w-w' E)e —(t=s)o*(w.E) “(s,y,w,w')g (E, > dw'dsdE
min Sd 1 €

En]ax t

4/ // /\/Elﬂww E)e —(t=s)VEo(w.E.y) O(Srww)x
mln Sd 1
g(E,y)dydwdsdE
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Homogenization of the linear Boltzmann equation The homogenization result

As a result, passing to the limit in the sense of two-scale
U0t rw, Euy) = pun (r,w, E,y)e™VEEY)
/ /Emax/Sd 1/ VEri(w- o, E)e(t IVEo(w.Ey) ., (w- ', E,y')
YO(s, r, wE’ y')dy'dw'dE'ds
which implies that 4° solves the two-scale evolution
u0(t, ryw, E,y) + VEo(w, E,y)°(t, r,w, E,y)

E[I\ax
:/ VEki(w- o' E)/f@z (w-w' E y)¢os, r,w, E' y")dydwd E'
E

Sd—1

min

wo(oa r,w, Evy) :SOin (ruwa E,}/)
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Homogenization of the linear Boltzmann equation The homogenization result

Concluding remarks on the assumption on the optical
parameters o° and k°
@ The assumption of separability

E/
k(W W', E, E') = VE ky(w- ', E)ra <w W E 6)

simplifies the computations in the proof. It also lead to a relatively
simpler homogenized model.

@ In the above separable structure, we can further allow the factor k1 to
oscillate in the E-variable. The proof of the main theorem can be
reworked in this case, at the price of arriving at a more complex
two-scale system. The memory structure remains the same but with
additional terms.

@ It is apparent from the proof of the main theorem that the energy
oscillations in ¢, not those in the scattering kernel, resulted in the
memory effects in the homogenized limit.
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Homogenization of the linear Boltzmann equation Numerical simulations

Numerical illustration of the homogenization limit
E Emax E'
O (t,E)+ o <€> O (t,E) = / K (e) ©°(t, E')dE’
Emin
@5(07 E) = SDIH(E)
for (t, E) € [0,10] X (Emin, Emax) = (0, 1).

Strategy: family of orthogonal Legendre polynomials in L?(Emin, Emax)
denoted by {/}x>0

Define the modes

mi(t) = (0°(t, ), b)) 2 (B Erm) » K = O
of the solution for t € [0, T]. Likewise,

mzom(t) = (Qphom(t7 ')’gk('))Lz([EminaEmax]) ’ k 2 0

are the modes of the homogenized solution @pom.
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Numerica simulations
Numerical simulations for o(y) = 2 + Zsin(27y),
k(y') =1+ 3sin(27my’), pu(y) = 1 +sin(2my)

Convergence rate Norm difference
2 -2 |
w0 1073 it
1
-3
10 1031
10°° —e— Moment 0 104
—e— Moment 1
107 o —e— Moment 2 5
—e— Moment 3 107
107 —e— Moment 4
-6
Moment 5 10
11
10 Moment 6
5 —e— Moment 7 10774
10~
1078 4
107
- —=
1079 1
1074 1073 102 107! 10° 1074 102 1072 107 10°
B €

Convergence rates in €:
error €, = maxco, 11 |mi(t) — miom(t)| (left)

norm difference |||o%[|;2 — [|©°]12| (right)
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Homogenization of the linear Boltzmann equation

THANK YOU FOR YOUR ATTENTION!

=] & = E DA
F. Salvarani (PULV & Univ. of Pavia) Homogenization of LBE in energy



	Introduction
	Self-shielding
	The linear Boltzmann equation in energy

	Homogenization of an ODE
	Luc Tartar's example
	A new approach to Tartar's example

	Homogenization of the linear Boltzmann equation
	Setting of the problem
	The homogenization result
	Numerical simulations


