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Pattern formation examples I

Patterns in animal coat markings: one length scale



Pattern formation examples II

Patterns with two length scales:

Two-layer Turing (reaction–
diffusion) patterns:

Patterns with different length-scales
(0.46 mm and 0.25 mm) in the
two layers are diffusively coupled.
Chemistry: chlorine dioxide–iodine–
malonic acid (CDIMA). Berenstein et al. (2004)



Pattern formation examples III

Faraday (surface) wave experiment:

Arbell & Fineberg (2002)



Pattern formation examples IV

Left: 12-fold quasipattern.
The two circles in Fourier
space have radius ratio 0.52 ≈
1
2(
√

6−
√

2) = 2 cos(75◦)

Right: superlattice pattern.
The two circles in Fourier
space have radius ratio 0.38 ≈
1/
√

7

There are two length scales
apparent in the Fourier power
spectra.

Ding & Umbanhowar (2006)



Pattern formation examples V

Kudrolli, Pier & Gollub (1998)



Pattern formation examples VI

Epstein & Fineberg (2005)

Spatiotemporal chaos: “. . . continually evolving irregular domains of
patterns with differing spatial orientations.” (movie)



Pattern formation examples VII

Micelles formed from (for example) branched polymers or block
co-polymers can make a stiff inner hydrophobic polymer core surrounded
by a corona of hydrophillic polymer chains with a varying degree of
flexibility.

Smart et al. (2008)



Pattern formation examples VIII

Smart et al. (2008)

Cubic micellar phase formed by poly(ethylene oxide)-poly(ethyl ethylene)
in an epoxy network; disordered lamellar phase formed by
poly(styrene)-block-poly(butadiene)-block-poly-(methyl methacrylate) in
an epoxy network



Pattern formation examples IX

Hayashida et al. (2007)

Two-dimensional 12-fold quasicrystal formed by a
polyisoprene/polystyrene/poly(2-vinylpyridine) star polymer.



Pattern formation examples X

Summary:
Complex disordered patterns (Turing, soft matter)

Spatiotemporal chaos (Faraday)

Quasipatterns (Faraday, soft matter)

Common connection:

Nonlinear interactions between modes with different length scales.



Two length scales: linear theory I

Consider waves with wavenumbers k = 1 and k = q (q < 1) becoming
unstable, with growth rates µ and ν respectively:

k
σ k = q k = 1

At onset, the pattern U(x, y, t) will contain a combination of
eigenfunctions: Fourier modes eik·x with |k| = q or |k| = 1:

U =
∑
qj

wj(t)e
iqj ·x +

∑
kj

zj(t)e
ikj ·x



Two length scales: linear theory II

From the multitude, focus on one wave from each of the two circles:
z1e

ik1·x and w1e
iq1·x, as well as complex conjugates:

ky

z1z̄1 k1 kx

ky

w1w̄1
q1

and the evolution of the amplitudes z1 and w1 will governed by:

ż1 = µz1, ẇ1 = νw1



Two length scales: choice of vectors I

At this stage, one would usually choose a set of wavevectors, appropriate
for the pattern of interest:

ky

k1

q1

q = 1/
√

3

kx

ky

q = 1/
√

7

While this is appropriate for q < 1
2 (superlattice patterns), when q > 1

2 ,
the story is more interesting...



Two length scales: nonlinear theory I

Products of waves lead to sums of wave vectors. Expanding in a power
series in the small amplitude of the waves, at second order, there will be
contributions from all possible three-wave interactions. The simplest
interactions involve modes at 60◦:

ky

z1

z2

z3

kx

ky

w1

w2

w3

ż1 = µz1 +Qzhz̄2z̄3, ẇ1 = νw1 +Qwhw̄2w̄3



Two length scales: nonlinear theory II

Two waves on the outer circle can couple to a wave on the inner circle:
k6 + k7 = q1, defining θz = 2 arccos(q/2).

ky

z1

z4

z5

w5

w4

kx

ky

z6

z7

w1

θz

ż1 = · · ·+Qzw(z4w4 + z5w5), ẇ1 = · · ·+Qzzz6z7



Two length scales: nonlinear theory III

Two waves on the inner circle can couple to a wave on the outer, provided
q ≥ 1

2 : q6 + q7 = k1, defining θw = 2 arccos(1/2q).

ky

z1

w6

w7 θw

kx

ky

z8

z9

w1

w9

w8

ż1 = · · ·+Qwww6w7, ẇ1 = · · ·+Qwz(w8z8 + w9z9)



Two length scales: nonlinear theory IV

Putting it all together: there are 8 modes that couple to each of z1 and
w1:

ky

z1

z2

z3

z4

z5

w5

w4

w6

w7

kx

ky

w1

w2

w3

z6

z7

z8

z9

w9

w8

ż1 = µz1 +Qzhz̄2z̄3 +Qzw(z4w4 + z5w5) +Qwww6w7,

ẇ1 = νw1 +Qwhw̄2w̄3 +Qzzz6z7 +Qwz(w8z8 + w9z9)



Two length scales: nonlinear theory V

However, each z mode we’ve introduced couples to 8 other modes, and
each w mode we’ve introduced couples to 8 other modes, and so on: an
infinite number of modes can be generated:

ky ky

kx

ky

Here, q = 0.66, θz = 141.4◦, θw = 81.5◦.

At cubic order, all modes couple to all other modes.



Two length scales: nonlinear theory VI

kx

ky

For q = 1
2(
√

6−
√

2) (θz = 150◦, θw = 30◦), these interactions lead to a
finite number of waves

This is the only q for which a finite number of waves will form a closed set
under three-wave interaction in two dimensions, suggesting why 12-fold
quasipatterns are the most common in 2D



Two length scales: nonlinear theory VII

However, these 12 vectors form a quasilattice:

Q = 12, N = 7 N = 11 N = 15

which leads to the problem of small divisors:

Standard results (e.g., Equivariant Branching Lemma) cannot be used

Weakly nonlinear theory diverges, Nash–Moser Theorem needed

See R & R (2003), R & Silber (2009), Iooss & R (2010), Braaksma et
al. (2017), Iooss (2019)



Three-wave interactions I

How to make progress? Pull out one of the basic three-wave interactions,
two outer vectors coupling to an inner:

We illustrate using:

ż1 = µz1 +Qzwz̄2w1 − (3|z1|2 + 6|z2|2 + 6|w1|2)z1
ż2 = µz2 +Qzwz̄1w1 − (6|z1|2 + 3|z2|2 + 6|w1|2)z2
ẇ1 = νw1 +Qzzz1z2 − (6|z1|2 + 6|z2|2 + 3|w1|2)w1

The outcome depends on the product of quadratic coefficients QzwQzz.
Typically (Cf Porter & Silber 2004):

Positive QzwQzz: stable steady stripes, or stable rhombs (mixed z
and w);

Negative QzwQzz: stable steady stripes or rhombs, or time-dependent
competition between z and w modes.

Same conclusion for any of the three-wave interactions.



Three-wave interactions II
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Positive QzwQzz: stable steady z (red) or w (cyan) stripes, or stable
rhombs (blue), which are mixed z and w.



Three-wave interactions III
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Negative QzwQzz: stable steady z or w stripes, some stable rhombs
(blue), or time-dependent competition between z and w modes (empty
area). (Cf Porter & Silber 2004.)



Three-wave interactions IV

With multiple three-wave interactions, we hypothesise, with q > 1
2 :

We expect to find steady complex patterns or spatiotemporal chaos,
according to the signs of QzwQzz and QwzQzz.

If QzwQzz and QwzQzz are both negative, we expect to see greater
time dependence.

With q = 1
2(
√

6−
√

2) = 0.5176 we expect steady or time-dependent
12-fold quasipatterns, according to the signs of QzwQzz and QwzQzz.

and with q < 1
2 :

We expect to find steady complex patterns or spatiotemporal chaos,
according to the sign of QzwQzz.

Examples of this “rule of thumb”: Two-layer Turing (reaction–diffusion)
patterns (Castelino et al., 2020), Faraday waves (R & Skeldon 2015), soft
matter crystalisation (Subramanian, Archer, Knobloch, Ratliff & R,
2013–2020), model PDE (R, Silber & Skeldon 2012), . . .



Two-layer Turing patterns I

The Brusselator is a simple example of a Turing (reaction–diffusion)
system:

∂U

∂t
= (B − 1)U +A2V +DU∇2U +

B

A
U2 + 2AUV + U2V,

∂V

∂t
= −BU −A2V +DV∇2V − B

A
U2 − 2AUV − U2V,

where:

U(x, y, t) and V (x, y, t) represent chemical concentrations

A and B are parameters (A = 3 and B = 9)

DU and DV are diffusion constants

Hopf (k = 0) and pitchfork (k 6= 0) instabilities are possible

The usual nontrivial equilibrium has been moved to the origin

Link: Castelino et al., 2020

https://doi.org/10.1016/j.physd.2020.132475


Two-layer Turing patterns II

Typical Turing pattern: DU = 1.99833 and
DV = 4.50875, 8× 8 box
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Two-layer Turing patterns III

Two layer model (Yang et al. 2002, Catlla et al. 2012):

∂U1

∂t
= (B − 1)U1 +A2V1 +DU1∇2U1 + α(U2 − U1) + NLT,

∂V1
∂t

= −BU1 −A2V1 +DV1∇2V1 + β(V2 − V1) + NLT,

∂U2

∂t
= (B − 1)U2 +A2V2 +DU2∇2U2 + α(U2 − U1) + NLT,

∂V2
∂t

= −BU2 −A2V2 +DV2∇2V2 + β(V2 − V1) + NLT,

U1,2 and V1,2 are concentrations in each layer

Same A and B and nonlinear terms (NLT) as before

The diffusion coefficients are not the same in each layer

The α and β terms couple the two layers

Linear theory: 4× 4 matrix, solve for the D’s



Two-layer Turing patterns IV
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Dispersion relation: the largest eigenvalue σ(k), for

q =
√
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√

3 = 0.5176, β = 1, and α = 1, 2, . . . , 7.



Two-layer Turing patterns V
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Weakly nonlinear theory for q = 0.5176 and β = 1: Qzh (green),
Qwh (black), Qzz (red), Qzw (magenta), Qwz (cyan), Qww (blue), with
QzwQzz < 0 for 2.3 < α < 5.0, and QwzQww < 0 for 4.8 < α < 6.9.



Two-layer Turing patterns: steady I

Steady patterns: q = 0.2500, 0.3300, 0.3780, 0.5176, with α = β = 1, all
quadratic coefficients the same sign, linear growth rates µ = ν = 0.01/

√
2,

30× 30 domain with periodic boundary conditions. One chemical field is
shown along with its power spectrum.



Two-layer Turing patterns: steady II

Steady quasipattern approximants: q = 0.5176 (12-fold), 0.2500 (8-fold),
with α = β = 1, different choices of linear growth rates.



Two-layer Turing patterns: time dependent I

Spatio-temporal chaos: q = 0.4400, α = 2, β = 1, QzwQzz < 0. In an
8× 8 domain, the dynamics is much simpler. Links: paper, movies.

https://doi.org/10.1016/j.physd.2020.132475
https://doi.org/10.5518/768


Two-layer Turing patterns: time dependent II

Spatio-temporal chaos: q = 0.6180, α = 3, β = 1, QzwQzz < 0,
QwzQww > 0.



Two-layer Turing patterns: time dependent III

Spatio-temporal chaos: q = 0.3780, α = 3, β = 1, QzwQzz < 0, larger
linear growth rates.



Conclusions

If the ratio of wavenumbers q is between 1
2 and 1, mode interactions

in both directions must be taken in to account.

Most values of q in this range lead to the possibility of generating an
infinite number of interacting waves. The exception is q = 0.5176,
associated with 10- and 12-fold quasipatterns.

Even q < 1
2 , with only a single direction of mode interactions, turns

out to produce interesting patterns.

The outcome of the mode interactions will be influenced by the signs
of the quadratic coefficients, with time-dependence (and
spatiotemporal chaos) most likely in the case of (both pairs of)
quadratic coefficients with opposite sign.

Large domains are needed to see spatiotemporal chaos.

Steady patterns with an “infinite” set of wavevectors are elusive.

Is this mechanism responsible for complex behaviours seen in
experiments?

Further work in progress.


