Approximating the Navier–Stokes equations on \mathbb{R}^3 with large periodic domains

James C. Robinson

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 2.45pm 25th September 2020

I will consider solutions u_{α} of the three-dimensional Navier–Stokes equations on the periodic domains $Q_{\alpha} := (-\alpha, \alpha)^3$ as the domain size $\alpha \to \infty$, and compares them to solutions of the same equations on the whole space. For compactlysupported initial data $u_{\alpha}^0 \in H^1(Q_{\alpha})$, an appropriate extension of u_{α} converges to a solution u of the equations on \mathbb{R}^3 , strongly in $L^r(0, T; H^1(\mathbb{R}^3)), r \in [1, 4)$ (the result is in fact more general than this). The same also holds when u_{α}^0 is the velocity corresponding to a fixed, compactly-supported vorticity. Such convergence is sufficient to show that if an initial compactly-supported velocity $u_0 \in H^1(\mathbb{R}^3)$ or an initial compactly-supported vorticity $\omega_0 \in H^1(\mathbb{R}^3)$ gives rise to a smooth solution on $[0, T^*]$ for the equations posed on \mathbb{R}^3 , a smooth solution will also exist on $[0, T^*]$ for the same initial data for the periodic problem posed on Q_{α} for α sufficiently large; this illustrates a 'transfer of regularity' from the whole space to the periodic case.