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Introduction

Themodynamically isolated systems
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Example: fluid in a closed vessel, no interaction with surroundings
Expected behaviour: unconditional asymptotic stability of the rest state
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Introduction

Thermodynamically open systems
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Example: any system with external forcing (Rayleigh-Bénard convection, Taylor—Couette flow)
Expected behaviour: conditional asymptotic stability of the non-equilibrium steady state
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Key question

Can we show that such a behaviour is implied by the corresponding
governing equations?

Is it possible to use some thermodynamical concepts?
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Introduction

Concept of stability — clarification

We have two solutions s1 and sy starting from (slightly) different initial
conditions. Is it true that s; — s, —+ 0 as t — +o0?

perturbation

Y
steady state y
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Introduction

Concept of stability — clarification

We are not interested in the question or “continuous dependence of
thermodynamical processes upon initial state and supply terms”, in the
sense of C. M. Dafermos. The second law of thermodynamics and stability.
Arch. Ration. Mech. Anal., 70(2):167-179, 1979.

The typical result regarding “continuous dependence of thermodynamical processes upon initial state and supply terms” is just
the following:

The Gronwall inequality thus gives an estimate

!
[ty ax < e [ i) ax,
JQ JQ

where ugy , vg are the initial data. This is the way uniqueness is proved for Lipschitz solutions, but also stability:
if ug and vy are close to each other, then so are u(t) and v(t). Mind however that the distance between u(t)
and v(t) may increase unboundedly as t — +oo. We speak of finite-time stability.

D. Serre and A. F. Vasseur. About the relative entropy method for hyperbolic systems of conservation laws. In A panorama of

mathematics: Pure and applied, volume 658 of Contemporary Mathematics, pages 237-248. American Mathematical Society,
2016
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Stability — Lyapunov functional

V(Xeq + X)

u (Xeq>

nonlinear (finite amplitude) stability, basin of attraction
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Introduction

Micro-macro model for non-isothermal flows of dilute
polymeric fluids

For ps, 05, ¢ and v solve:

d
ps + psdivyv =0
dt
dv X
ps— = divxT + pgb
dt
e kg 05 2F 2kp 05
— +div (v - —V )+div (Vv - —p — \% ):O
ot x (v 2 xP q | (Vxv)qp Cv c q%
dés Opih,s .. . L2 .
PsCV s = = 7958waxv+dlvx (kVx0s) + X (divxv)® 4+ 2vD : D — 2kgOsnpdivev
El

. 0y 2 05 2kpbs [
+ / Vg—Uy | ® qpdq :D+7/ (VqUe)qu Ue + — Uy | dg — / [AqUe}godq
D Oref ¢Jp 6 ¢ Jop

ref

Spring force F potentials Ue and Uy:

2 2

1 q O 1 q

F:dequ[Ue<—— >+ bUT,(——
2 | Gret Oret 2 | Gret

Cauchy stress tensor T:
. cv,s (v — 1) psbs
T =qef —Pth.s! + A (divev) | + 2vD — 2kpfsnp| + /D F®apda  puns =der *1717“ ~ peo
— bps

M. Dostalik, J. Mdlek, V. Priga, and E. Siili. A simple construction of a thermodynamically consistent mathematical model for

non-isothermal flows of dilute compressible polymeric fluids. Fluids, 5(3):133, 2020
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Introduction

Lyapunov functional — easier said than done
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Thermodynamically isolated systems

Themodynamically isolated systems

no mechanical energy
flux

V‘m =0

no heat flux

Jgem[y, =0
no mechanical energy

n * flux

V|po =0

0 t — +o00

no heat flux

jq'“‘ag =0

Example: fluid in a closed vessel, no interaction with surroundings
Expected behaviour: unconditional asymptotic stability of the rest state
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Thermodynamically isolated systems

Die Energie der Welt ist konstant; die Entropie der Welt strebt einem
Maximum zu!

R. Clausius. Ueber verschiedene fiir die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Warmetheorie.
Annalen der Physik und Chemie, 125(7):353-400, 1865

Pierre Duhem. Traité d'Energetique ou Thermodynamique Générale. Paris, 1911; Bernard D. Coleman. On the stability of
equilibrium states of general fluids. Arch. Ration. Mech. Anal., 36(1):1-32, 1970; Morton E. Gurtin. Thermodynamics and the
energy criterion for stability. Arch. Ration. Mech. Anal., 52:93-103, 1973; Morton E. Gurtin. Thermodynamics and stability.
Arch. Ration. Mech. Anal., 59(1):63-96, 1975
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Thermodynamically isolated systems

Lyapunov-type functional — isolated systems

Candidate for Lyapunov-type functional:

Vmeq =def — S JF)\l (Etot - Etot) +)\2/ (ps - [/)\s) dv
M Q
entropy —
constant energy constant mass

0 [ (- mp) dv
Q

constant number of polymers
Identification of Lagrange multipliers (spatially homogeneous steady state): A\; =
Functional Vi eq decreases along trajectories:

1
6
dVmeq d — ds
—med _ 20 s +A1(Ett—Ett)+)\2/(p\—if)dv+)\3 /n—ﬁ\ dv $=_-=2
dt dt ~ ° ° Q" s Ja ( ») dt
entropy NV
constant energy constant mass constant number of polymers

= 7/ £Edv <0
Q
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Thermodynamically isolated systems

Micro-macro model for non-isothermal flows of dilute
polymeric fluids

v=v+Vv ps = ps + Ps Os = 05 + 05 p=p+¢

1 2 ~ 6 0
Vine :/Sv dv+/ SCVSGS[A—l—I < ﬂdv
q 2p| | p 5 es HS
Ps bps Ps — Ps
_1 S - =~
/CVs )9 [p < 1_bps> l_bps:| av
~ 2 ' '
kg6 M~ | - d d
: B/ﬂ</o 9[ o n("” ) Vi q) ’
—i—kBG/np[npln( p)—@—l—l} dv
Np Np

M. Dostalik, J. Mdlek, V. Priga, and E. Siili. A simple construction of a thermodynamically consistent mathematical model for
non-isothermal flows of dilute compressible polymeric fluids. Fluids, 5(3):133, 2020
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Thermodynamically isolated systems

Same calculation can be done whenever one knows the entropy production
and the specific Helmholtz free energy.

Each material is (in a given class of processes) characterised by:

1. Energy storage ability. (Give a formula for the specific internal
energy e or for the specific Helmholtz free energy 1.)

2. Entropy production ability. (Give a formula for entropy production &.)

The constitutive relations between tensorial and vectorial quantities follow
form the specification of the two scalar quantities.

K. R. Rajagopal and A. R. Srinivasa. On thermomechanical restrictions of continua. Proc. R. Soc. Lond., Ser. A, Math. Phys.
Eng. Sci., 460(2042):631-651, 2004

J. Mélek and V. Priga. Derivation of equations for continuum mechanics and thermodynamics of fluids. In Y. Giga and

A. Novotny, editors, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pages 3—-72. Springer, 2018

M. Dostalik, V. PriZa, and T. Skfivan. On diffusive variants of some classical viscoelastic rate-type models. AIP Conference
Proceedings, 2107(1):020002, 2019
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Thermodynamically open systems

Thermodynamically open

mechanical energy
flux

ven|y,, =0
vetlg#0

heat flux
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heat flux
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Entropy in nondecreasing function — NO
Energy is constant — NO
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Fluxes through boundary

We have fluxes through the boundary. We have no control on fluxes.
Everything is lost. Really?
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Thermodynamically open systems

Lyapunov-type functional — heuristics

Vea(Teall Tea)

Ca i~ A ~
" Feqit Taeq = Teq + Teq

Vneq( )?neq || ?neq) —def

Tneq
-

, Fneq

Teq

Affine correction.

Veq(Xneq + Xaeq) = Vea(Xneq) —

dx

X=Xneq

J. L. Ericksen. A thermo-kinetic view of elastic stability theory. Int. J. Solids Struct., 2(4):573-580, 1966
M. Bulitek, J. Mélek, and V. Priga. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy,

21(7), 2019
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Thermodynamically open systems

Lyapunov-type functional

Lyapunov-type functional for thermodynamically open systems:

(] 9) s~ st ) -] )

s(;(WH W) =qe S5 (W+ W) - 55 (W) - DWSBA(W)‘W:W (w]
E(W|| W) =aer Evor (W + W) = Evor (W) — DwEior (W)l _g [W]
Sg (W) =ger /QP%(W)CIV

Ecot (W) =aer /Q pe(W) dv
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Thermodynamically open systems

Disclaimer

Let us assume that there exists a classical solution to the corresponding
governing equations.
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Thermodynamically open systems Elastic turbulence

Elastic turbulence

Elastic turbulence
in a polymer solution flow
A. Groisman & V. Steinberg

Department of Physics of Complex Systems, Weizmann Institute of Science,
Rehovot 76100, Israel

Figure 1 The experimental set-up. A stationary cylindrical cup with a plain bottom (the
lower plate) is concentric with the rotating upper plate, which is attached to the shaft of a
rheometer. The radii of the upper and the lower plates are R = 38 mm and

Turbul is a ubiqui h that is not fully under-

stood. It is known that the ﬂow of a simple, newtonian fluid is
likely to be turbulent when the Reynolds number is large (typi-
cally when the velocity is high, the viscosity is low and the size of
the tank is large'?). In contrast, viscoelastic fluids’ such as
solutions of flexible long-chain polymers have nonlinear mech-
anical properties and therefore may be expected to behave
differently. Here we observe experimentally that the flow of a
sufficiently elastic polymer solution can become irregular even at
low velocity, high viscosity and in a small tank. The fluid motion is
excited in a broad range of spatial and temporal scales, and we
observe an increase in the flow resistance by a factor of about
twenty. Although the Reynolds number may be arbitrarily low, the
observed flow has all the main features of developed turbulence. A

R, = 43.6 mm, respectively. The liquid is filled until a level dof 10 mm unless otherwise
stated. The upper plate just touches the surface of the liquid. A special cover is used to
minimize evaporation of the liquid. We used a solution of 65% saccharose and 1% NaClin
water, viscosity n, = 0.324 Pas, as a solvent for the polymer. We added polyacrylamide
(M,, = 18,000,000; Polysciences) at a concentration of 80 p.p.m. by weight. The
solution viscosity was n = 0.424Pas at v = 15~ '. The relaxation time, \, estimated
from the phase shift between the stress and the shear rate in oscillatory tests, was 3.4s.
The temperature is stabilized at 12 °C by circulating water under the steel lower plate. The
walls of the cup are transparent which allows Doppler velocimeter measurements by
collecting light scattered from the crossing point of two horizontal laser beams. In
experiments where the flow has to be viewed from below, the lower plate is made from
plexiglass and a mirror tilted by 45° is placed under the lower plate. The flow patterns are
then captured by a CCD camera at the side and the temperature is stabilized by circulating
airin a closed box.

A. Groisman and V. Steinberg. Elastic turbulence in a polymer solution flow. Nature, 405(6782):53-55, 2000

Stability analysis
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Thermodynamically open systems Elastic turbulence

Elastic turbulence

Figure 3 Two snapshots of the flow at Wi = 13, Re = 0.7. The flow under the black
upper plate is visualized by seeding the fluid with light reflecting flakes (1% of the
Kalliroscope liquid). The fluid is illuminated by ambient light. Although the pattern is quite
irregular, structures that appear tend to have spiral-like forms. The dark spotin the middle
corresponds to the centre of a big persistent thoroidal vortex that has dimensions of the
whole set-up.

A. Groisman and V. Steinberg. Elastic turbulence in a polymer solution flow. Nature, 405(6782):53-55, 2000
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LT
Stability of flows of Giesekus fluid

Mechanical variables:

divv =0
p% =divT
4 1 5
By = i [aB2 -+ (1= 20)By,, — (1 - a)I]

Cauchy stress tensor T:

2 _
T=ml+=Ds+ :(B,%(t))(S

Upper convected derivative, L = Vv:

. dA A oA
A—ger 2 _LA—ALT LA A
def 7 g et 8t+(V’V)
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Thermodynamically open systems Elastic turbulence

Specific Helmholtz free energy and entropy production

Specific Helmholtz free energy ):

0
b =qus —cy <In (Gref) - 1) +35 <Tr B, — 3 — Indet B,fp(t))

Entropy production £ = g:

¢ =qet 2vD: D
2V1 " [aB2 +(1-30)By,, + (1 - a)B.L, +(3a—2)l
Vol

g
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Thermodynamically open systems Elastic turbulence

Giesekus fluid — Lyapunov functional

—

Pair [V, Bﬁp(t)} is a steady solution to the governing equations, we want to

show that perturbation vanishes [V, Bﬁp(t)]-

v=v+Vv
—— —— —_—
Bryy = Brpy T Bryy

Lyapunov functional (energetic part only):

v(w|w) :def;/ﬂpmz dv

- =1 —— =1 ——
+2 /Q [—indet (14+B. iy Boy, ) +Tr(Bryy Boy, )] av

M. Dostalik, V. Pri%a, and K. Tama. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type
fluid. Entropy, 21(12), 2019
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Thermodynamically open systems Elastic turbulence

Giesekus fluid — time derivative of Lyapunov functional

Time derivative of Lyapunov functional:

d ne
EQ(WH /D de—/ Bry : Ddv
—/DV.VdV
Q

= 11—~ -1 _—
/92 i [B”p(t) BryyBryy (Ve V) B’“vp(t)] dv

s ) e
) (e ) Y

_/Q 2(1 —_oz)Wi i [(B”v(w + By p(t) ~Fp(t)
= _— -1 —~2
_ /Q oz Tr [Bﬁp(t) Bro } dv
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Thermodynamically open systems Elastic turbulence

Distance

Bures—Wasserstein distance, symmetric positive definite matrices:

2

1
distp(a), Bw (A, B) =def {TrA +TrB—2Tr [(AéBAé) 2] }
Another distance, symmetric positive definite matrices:

distp(q). 5, (A, B) =qer ‘In (A*%BA*%)

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures—Wasserstein distance between positive definite matrices. Expo.
Math., 37(2):165-191, 2019
Rajendra Bhatia. Positive definite matrices. Princeton University Press, Princeton, 2015
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Thermodynamically open systems Elastic turbulence

Taylor—Couette flow — problem setting

—

Governing equations have a steady solution [p, v, B,ﬁp(t)7
has an analytical formula for the solution.

5]. One (almost)
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LT
Taylor—Couette flow — stability bounds for Giesekus fluid

wi sRsassassmaa 3 Wi 015 §
0.1 0.1 gg
0.05 0.05 %g
0 0
0 2 4 6 8 10 12
Re Re

C1<0,C2<0 . C1<0,C2<0 .

C,<0,C2>0 ° Cy <0, C; °

¢1>0,C:<0 o >0 .

120,620 - G>0,C>0 -
(a) Shear modulus = = 0.1. (b) Shear modulus = = 1.

Figure: Stability bounds for Taylor—Couette flow.

M. Dostalik, V. Pri%a, and K. Tama. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type
fluid. Entropy, 21(12), 2019
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Thermodynamically open systems Vessel with walls kept at non-uniform temperature

Isolated vessel

no mechanical energy exchange
V0po =0

no heat exchange
jgen|y, =0

Q

spatially homogeneous
steady temperature field 6

zero velocity field
v=0

Q
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Vessel with walls kept at non-uniform temperature
Thermal bath

no mechanical energy exchange
V0po =0

n

spatially homogeneous
temperature boundary
condition 6|y, = Bpar

Q

spatially homogeneous
steady temperature field 6

zero velocity field
v=0

Q
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Thermodynamically open systems Vessel with walls kept at non-uniform temperature

Spatially non-uniform wall temperature

no mechanical energy exchange
V]go =0

n

spatially inhomogeneous
temperature boundary
condition 6,q = Opar

spatially inhomogeneous _
steady temperature field 6

zero velocity field
v=0
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Vessel with walls kept at non-uniform temperature
Incompressible Navier—Stokes—Fourier fluid

Mechanical quantities:

divv =0
d
pd: =divT + pb
Cauchy stress tensor:
T=—pl+2vD

Temperature evolution equation:

de
POV, = 2vD : D 4 div (kV#6)
Boundary conditions:

Vipo =10

0|8Q — ebdr
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Expected result

Notation:

) <)
<

Steady state:

v=0
0 = solution to steady heat equation

Steady state temperature 9 solves:
0 = div (V)
d
o0

Arbitrary perturbation should decay. If you are not able to explain this,
you are doomed.

Vit Priga (Charles University) Stability analysis
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Thermodynamically open systems Vessel with walls kept at non-uniform temperature

Decay of kinetic energy

Evolution equation for the velocity:

v

— =div(—pl +2vD
p = div(—pl +2vD)
Evolution equation for the net kinetic energy:

4 .
— 2uD : Dd
T pH /Qu v

James Serrin. On the stability of viscous fluid motions. Arch. Ration. Mech. Anal., 3:1-13, 1959
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Main issues

Temperature evolution equation:

do
PV = 2vD : D 4 div (kV0)

Problem:

@ We do not know when and where is the kinetic energy dissipated.

@ We do not know what are the fluxes through the boundary.

o If v is small, it is not necessarily true that D is small.
Dissipative heating:

+oo
/ (/2,uD:de>dt<+oo
t=0 Q

Do not touch the dissipation. Use only its positivity!

Y. Kagei, M. Rizi¢ka, and G. Thater. Natural convection with dissipative heating. Commun. Math. Phys., 214:287-313, 2000
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Thermodynamically open systems Vessel with walls kept at non-uniform temperature

Main issues

How to measure the distance form the steady state?

d . o~ IO
pCV,ref/ 0% dv = —/ Kret VO @ VO dv + / 2uD : D 6dv
dt Jo Q Q

+ /QpCVJef (V ° V§> 0 dv
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Steady state 6, perturbation 6, m,n € 0,1), n>m> 7:

m

o n B
711 0 1 0 _

/pcv’refa 1) o (1en] #2 T e 20

@ n 0 m 0 mn
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Thermodynamically open systems Vessel with walls kept at non-uniform temperature

Lemma (Decay of integrable functions)

Let y : [0,+00) — R be a continuous non-negative function such that
+o0
/ y(r)dr < G,
7=0
where Cy is a constant. Moreover, let for all s,t € [0,+00), t > s,
t t
-y [ i [ b

hold, where f is a nondecreasing function from R™ to Rt and h is a non-negative
function such that f;o(? h(r)dr < G, where G, is a constant. Then

lim y(t)=0.

t—+o0

Songmu Zheng. Nonlinear evolution equations, volume 133 of Chapman & Hall/CRC Monographs and Surveys in Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2004

P. Krej¢i and J. Sprekels. Weak stabilization of solutions to PDEs with hysteresis in thermovisco-elastoplasticity. In R. P.
Agarwal, F. Neuman, and J. Vosmansky, editors, Proceedings of Equadiff 9, pages 81-96, Brno, 1998. Masaryk University
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature
We know:

+oo
/ y(r)dr < G

=0
We want:
t—llTooy(t) =0
y(T)
We need: d
4
2 < f h
s (v) +
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Candidate for Lyapunov functional

Convenient measure for the size of perturbation:
— = ~|o 0
Vineq (WH W) =aet | peveed |z —In (14
Q 0 0
Time derivative:

%vmeq (WH W) - —/Qnrefé\vm <1+ g) e Vin <1+ ;Z) dv

" 2uD: D ~ 0
_/ Ll dV_|_/pCV7ref (V@ov) In{1+ =] dv,
Q 1+% Q 0

1
dv—i—/pM2 dv
Q2
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

12 Classical thermodynamics

family of isotherms may be plotted out, as shown schematically in
fig. 1. Now let us label each isotherm with a number, 6, chosen at wil,
which we call the empirical temperature corresponding to the given
isotherm. Then provided there is some system, however arbitrary, in
the labelling of the isotherms, there will exist a relationship (not
necessarily analytic) between P, V and & which may be written in the
same form as (27), (P, V)=0.

Once this labelling of isotherms has been carried out for one par.
ticular mass of fluid, however, there exists no latitude of choice so far
as other fluids are concerned, if consistency is to be achieved. For the
isotherm of a second fluid in equilibrium with the first must be labelled
with the same 6. If, and only if, this is done can we say that all fluids
having the same value of 6 are in equilibrium with one another. This
brings us to the same result as was derived before; the two arguments
are equivalent.

It is because of the element of choice in the labelling of the isotherms

of to y) quantity A. B. Pippard. Elements of classical thermodynamics for
is referred to as the empirical temperature. It is usual to choose as the advanced students of physics. Cambridge University Press,
thermometric body a fluid whose properties make a rational choice of Cambridge, 1964

6 particularly simple. For example, in a mercury-in-glass thermo- '

meter there is effectively only one variable, the volume of the mercury,
and 6 is taken to be a linear function of the volume. The particular
straight line selected depends on the choice of scale; according to the R. L. Fosdick and K. R. Rajagopal. On the existence of
Celsius scale, 0 is put equal to 0 at the temperature of melting ce, and . .

100 st the temperature of water boiling at standard atmospheri a manifold for temperature. Arch. Ration. Mech. Anal.,
pressure. Two fixed points are sufficient to determine the linear rels- 81(4):317-332, 1983
tion. Consider now the perfect gas scale of temperature. This is

capable of simple definition because of the analytical simplicity of the

isotherms, which for perfect gases follow Boyle's law, PV = constant.

Thus the equation of state of a perfect any empirical scale must

take the form PV=£0),

and the nature of the empirical scale determines the form of the
function f(6). It happens that if the empirical scale is fixed by
mercury-in-glass thermometer, f(6) is very nearly a linear function
over a wide range of temperature. This experimental result makes it
convenient to establish an empirical scale in terms of a perfect gas
by adopting as a definition of 6 the equation

PV=R0.
The constant R is chosen for any particular mass of gas in such s way

that the value of 8 shall change by 100 between the melting-point of
ice and the boiling-point of water.
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Choose a different temperature scale

Alternative temperature scale:

O (0N
ﬁref et Gref

Corresponding candidate for Lyapunov functional:

Vﬁfeﬁ (WH W) =def /S;pCV,refé\ [g % ((1 + g)’" — 1)] dv

1
+/2p|v|2 dv
Q
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Choose a different temperature scale — formal argument

Pointwise evolution equation, f is a given function:

d~ R ndiff - ndiff
pd—: {cv,refﬁf <e°V7r6f>] = div l:ﬁ:refv <0f (gv,m))]

=R ndiff ndiff ndift
— /{I‘efef” eV, ref vecv,ref ° VGCV,ref

+ f/ (ezdﬁf> Cmech (W + VNV)

ndiff naig \  maig ]
+ pCV,ref f | eVref — f, eViyref | gViyref | v @ Ve

]
Ndiff =def CVref In [ 1+ A
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RIS VO ETTE AT NS Il Vessel with walls kept at non-uniform temperature

Result — unconditional stability

Steady state 5 perturbation 5 m,n € (0,1), n>m> Z:

o N
71 4 1 0 _

poveeid = (14 =] —=[1+%) +2=T] av 2520
n 0 m 0 mn

M. Dostalik, V. Pri%a, and J. Stein. Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically isolated
vessel with spatially non-uniform wall temperature. Math. Comput. Simulat., 2020. In press

M. Dostalik, V. PriZa, and K. R. Rajagopal. Unconditional finite amplitude stability of a fluid in a mechanically isolated vessel
with spatially non-uniform wall temperature. Contin. Mech. Thermodyn., 2020. In press
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Conclusion

Conclusion

@ Thermodynamic framework for stability analysis of open systems.

@ Description of proximity of two different solutions.

@ Tested for complex fluid
rate-type fluids.

Vit Priga (Charles University)
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Conclusion

Thank you for your attention.

Vit Priga (Charles University) Stability analysis Workshop EXPRO 2020 46 / 47



Conclusion

References

Thermodynamics and stability of closed systems:
@ Bernard D. Coleman. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal., 36(1):1-32, 1970
@ Morton E. Gurtin. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal., 52:93-103, 1973
@ Morton E. Gurtin. Thermodynamics and stability. Arch. Ration. Mech. Anal., 59(1):63-96, 1975
Thermodynamics and stability of open systems:

@ M. Bulitek, J. Malek, and V. Prii%a. Thermodynamics and stability of non-equilibrium steady states in open systems.

Entropy, 21(7), 2019
Applications:

@ M. Dostalik, V. Pri%a, and J. Stein. Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically

isolated vessel with spatially non-uniform wall temperature. Math. Comput. Simulat., 2020. In press

@ M. Dostalik, V. Priiga, and K. R. Rajagopal. Unconditional finite amplitude stability of a fluid in a mechanically isolated

vessel with spatially non-uniform wall temperature. Contin. Mech. Thermodyn., 2020. In press

@ M. Dostalik, V. Pri%a, and K. Tima. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic

rate-type fluid. Entropy, 21(12), 2019

Vit Priga (Charles University) Stability analysis Workshop EXPRO 2020 47 | 47



	Introduction
	Thermodynamically isolated systems
	Thermodynamically open systems
	Elastic turbulence
	Vessel with walls kept at non-uniform temperature


