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The Navier-Stokes equations for a fluid of constant density p can be expressed as

fﬁtu—l—(u-V)u—VAu—l—Vp:f
V- -u=20,

\

where v = u(x,t) is the velocity, p(xz,t) = P(x,t)/p is the pressure scaled by the
density, v is the kinematic viscosity and f = f(x,t) is an external forcing term.

=
Navier (1822)  Stokes (1845)
Millennium Prize problem
In three space dimensions and time, given an initial velocity field and identically

zero forcing term, there exists a vector velocity and a scalar pressure field, which
are both smooth and globally defined, that solve the Navier-Stokes equations.

From a dynamical systems perspective,
this is not the most important question.

Henri Poincaré



What shall we care about then ?

In any dynamical system, it is the bounded
solutions which are most important and
which should be investigated first.

Henri Poincaré

Compact invariant sets

Exploit smoothness, boundedness and low dimensionality.

* Equilibrium solutions.
* Time periodic solutions.
¢ Connecting orbits.

e Globa




In 1959, James Serrin published two papers on the existence and stability of certain
solutions to the Navier-Stokes equations in the limit of large viscosity.

- Existence of globally stable equilibrium solutions;

- Existence of periodic solutions on a three-dimensional bounded domain sub-
ject to time-periodic boundary data and body forces.

James Serrin

Many authors followed Serrin in studying the periodically forced (non-autonomous)
Navier-Stokes system dominated by viscosity.

- [Kaniel & Shinbrot, 1967]| Existence of periodic strong solutions for small
time-periodic forcing f (for 3D bounded domains with fixed boundaries);

- [Takeshita, 1969] Existence of periodic strong solutions for any time-periodic
forcing f (for 2D bounded domains with fixed boundaries);

* many more proofs of existence of periodic orbits for non-autonomous NS
[Teramoto, Maremonti, Kozono & Nakao, Kato, Farwig & Okabe, Hsia]



e Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.
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e Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.

e The same cannot be said about spontaneous periodic motions, that is periodic

flows driven by a time-independent forcing.

e The regular vortex shedding in the wake of a cylinder, for instance, arises in the
absence of a body force and as a consequence of the nonlinearity in NS, not by
virtue of the advection being dominated by viscous damping.

Credit: ANSYS



Goal: Develop a general (computer-assisted) approach to prove existence of spon-
taneous periodic orbits in the Navier-Stokes flow for some time-independent f.

Computer-assisted proofs (CAPs) in dynamics

The main idea Is to construct algorithms that provide an approximate solution to a
problem together with precise and possibly efficient bounds within which the exact
solution is guaranteed to exist in the mathematically rigorous sense.

This field draws inspiration from the ideas in

- Scientific computing
Functional analysis
Approximation theory
Nonlinear analysis
Numerical analysis
Topological methods

Early pioneer works

Cesari [1964] Functional analysis and Galerkin’s method.

Lanford [1982] A computer-assisted proof of the Feigenbaum conjectures.
Mischaikow & Mrozek [1995] Chaos in the Lorenz equations.

Tucker [1999] The Lorenz attractor exists.



A functional analytic approach to CAPs in dynamics



A general nonlinear problem

F(x)=0

The unknown x could be a

¢ solution to an initial value problem of an ODE

¢ periodic orbit of an ODE

¢ Jocal (un)stable manifold of a fixed point of an ODE
e hormal bundle of a periodic orbit of an ODE

¢ local (un)stable manifold of a periodic orbit of an ODE
e connecting orbit of an ODE

¢ periodic orbit of a functional delay equation

e critical point of an action functional

¢ solution to a boundary value problem

¢ steady state of a PDE

¢ bifurcation equilibrium point of a PDE

¢ periodic orbit of a PDE
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Alternative: find small balls in which it is demonstrated (in a
mathematically rigorous sense) that a unique solution exists.
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computed using a finite dimensional reduction.
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How to find these small isolating balils ?

|. Let  a numerical approximation of F(x) = 0in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of D F ().

3. Verify that A is an injective linear operator.

4. Define T'(z) = x — AF(x)a Newton-like operator
about the numerical approximation .

5. Consider Bz(r) C X the closed ball of radius r
centered at .

6. Find r > O such that 7" : Bz(r) — Bz(r) is a
contraction mapping (tool : radii polynomials).



Theorem: Let 7 : X — X defined by T'(z) = x — AF(x) with T € C*'(X).
Let > 0 and consider bounds ¢ and k = k(r) satisfying

IT(z) —z||x = [[AF(Z)|x <c¢
sup ||[DT'(w)||lx = sup |[I — A -DF(w)||lx < k(r).
wE Bz (r) w€ Bz (1)

If

p(r) et re(r) —r < 0 (radii polynomial)

then T': Bz(r) — Bz(r) is a contraction with Lipschitz constant x(r) < 1.

Moreover A is injective and therefore F = 0 has a unique solution in Bz(r).
A

p(r)
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The method fails if the approximate solution is not good enough

|AF(Z)[|x <€




The method fails if the approximate inverse is nhot good enough

sup ||[I — A-DF(w)|x < k(r)

we Bz (r)




A functional analytic approach to CAPs in dynamics

This requires an a priori setup that allows analysis and numerics to go hand in hand:
- the choice of function spaces,

- the choice of the basis functions and Galerkin projections,

» the analytic estimates,
- and the computational parameters

must all work together to bound the errors due to approximation, rounding and
truncation sufficiently tightly for the verification proof to go through.



A zero-finding problem for periodic orbits in NS

Applying the curl operator to Navier-Stokes yields the vorticity equation
Oyw — vAw + nonlinear terms = f“ on T° x R,

wherew £ V xuwand f* £ V x f.

Plugging the space-time Fourier expansion of the vorticity

w(a,t) = 3 wn eI (ny,ng,mg) € 72,
nezZ4

in the vorticity equation yields having to solve the zero-finding problem

E, (W) = iQnaw, + vilw, — f* + nonlinear terms = 0,

where (2 is the a-priori unknown time-frequency of the periodic orbit and

W:( . )
(wn)n€Z4\{O}



A zero-finding problem for periodic orbits in NS

Lemma: Let W be such that the vorticity w is analytic. Assume that F'(IW) = 0 and
V -w = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mw (that is v solves w = V x u). Then there exists a pressure
function p : T* x R — R such that (u, p) is a 2X-periodic solution of NS.

v(0)[ <"

Phase condition

F,(W) = iQnaw, + vit*w, — f¥ + nonlinear terms




def

F,(W) £ iQnw, + vi*w, — f¥ + nonlinear terms

. Let £ a numerical approximation of F(z) = 0in X
computed using a finite dimensional reduction.

. Construct with the help of the computer a linear
operator A that is an approximate inverse of D F ().

. Verify that A is an injective linear operator.

. Define T'(z) = x — AF(x)a Newton-like operator
about the numerical approximation .

. Consider B;(r) C X the closed ball of radius r
centered at T.

. Find r > O such that T : B;(r) — Bz(r) is a
contraction mapping (tool : radii polynomials).



Spontaneous periodic orbits in the Navier-Stokes flow

r

Ou+ (u-V)u—vAu+Vp=f, onT?ofsize L =2r
V.-u=0.

Taylor-Green (time=-independent) forcing term

L

AN L \)

4 sin x1 sin o

2 S1n £ COS 9
f = | —2coszysinxs ) f/(2v)
O &
L/2 ¢t ] 10
0
w def
S : . .

0

RN

1
Density plot of the vertical vorticity of f/(2v). Red corresponds to vortices with a
counter clockwise rotation and blue clockwise.

The autonomous Navier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u* = —Vf, p* = 12 (cos2x1 4 cos2xs) .



Spontaneous periodic orbits in the Navier-Stokes flow

F00 = (£, 7)) =

F,(W) = iQnaw, + vit*w, — f¥ + nonlinear terms

Banach space: X = C x (8717 (C))S

Norm: ([ W[ = (9] + S° [y,

1<1<3



What is A7

T(x)=x— AF(x)

|



What i1s A?

T(z)=x— AF(x)

| N



What is A?

T(r) =z — AF(x)




What i1s A?

T(zx)=x— AF(x)




Banach contraction Theorem

e T'"maps B, () C X into itself

o |[T(z) —T(@)|x <kllz—Z|x ~r<1
Analytic estimates

IT(z) —Z|[x <Y

|IDT(7)|p(x) < Z

|ID°T (z)]|... < W(r) V€ B.(7)
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Theorem: Consider NS defined on the three-torus T (with size length L = 2n)
and consider the Taylor-Green time-independent forcing term. Let v = 0.265 and
(u, p) be a numerical solution computed with N,,, = N, =21, N,, =0and N; = 16
Fourier coefficients. Let » = 2.2491-107°. There exists a %T—periodic solution (u, p)
of NS with |2 — Q| < r and |Ju — @/ co < 7.

f
o

L/2

»

0 L /2 L

n| Ny, | Ngy | Nuw | Ne | NT | N | RAM (GB) | CPU days
pr | 1| 17 | 17 | 0 |11 | 130 | 265 10 6
po | 1] 21 | 21 | 0 | 16 | 210 | 425 110 95

The Galerkin projection for the solution p, is F : C¢1018 — C61018,




Future work: a fully 3D spontaneous periodic orbit

WS TR
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