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Becker-Doring vs. Lifshitz-Slyozov:  n; + V = n; 4
i+1
V' : monomers, n; : polymers containing i monomers

Discrete: Becker-Doring

({ﬂ‘i = V(t)(ai—lni—l - aini) + di+1ni+1 - dini,

d <V(t) + i_ojl in,-(t)) —0.
Continuous: Lifshitz-Slyozov
G+ G2 ((V(Balx) — d(x)n) =0,
% <V(t) + ;foxn(t,x)dx> =0.

(Becker & Déring, 1935; Lifshitz & Slyozov, 1961; Wagner, 1961;
Laurencot & Mischler, Collet et al., 2003 & 2004; ... Canizo, Einav,
Lods, 2017, Stolz & Terrier, 2019)
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Outline

» Continuous framework: a new application of the
Lifshitz-Slyozov system

» Biological question: how to obtain stability?
» Lifshitz-Slyozov revisited
» steady state with the help of fragmentation

» Discrete case: an oscillatory variant of Becker-Doring
» Experimental observations: how to obtain periodic oscillations?
> steady states
» damped oscillations



Growth-fragmentation equations to model protein polymerization



Long-time asymptotics
(J. Calvo, MD, B. Perthame, Comm. Math. Phys., 2018)

Aim: modelling nucleation, growth and long-time asymptotics for
in vitro spontenous fibril formation
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In vitro polymerization of 52m (from Radford & Xue, PNAS, 2008).



Starting point: original models for protein polymerisation

PDE system for the " Prion” Model
(Greer, Pujo-Menjouet, Webb, 2005)

Considered reactions: polymerization and fragmentation

92 1 98 (V(t)a(x)n) = ~B()n(t.x) + 2 | B(y)Lho(2)n(t. y)dy,

oo
% <V(t) + ofxn(t,x)dx> =7m—~V.
Long-time asymptotics: still partially open

(Calvez, Lenuzza et al., 2009 & 2010; P. Gabriel, 2012 & 2015)



In vitro growth-fragmentation model

The most natural: adapt the prion model

Prion model but mass conservation + nucleation:

/

90 1 2 (V(t)an) = —B(x)n(t,x) +2 | B(y) ko(Z) n(t,y)dy.
2 (V(t) + ;foxn(t,x)dx> =0,

V(t)a(0)n(t,0) = aV/(t)o, i >1

)

[ V(0) =Gy, n(0,x)=0.



In vitro growth-fragmentation model
Asymptotic paradox _
Linearised growth-fragmentation equation around V/(t) = V:

on o T

3¢ T3 (Van) + B(x)n(t.x) = 2/ B(y)}l/ko(;) n(t, y)dy,

X

under balance assumptions on (B, a, k), tends exponentially fast
towards N (x)eM V)t
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In vitro growth-fragmentation model
Asymptotic paradox _
Linearised growth-fragmentation equation around V/(t) = V:

on o 7

3¢ T3 (Van) + B(x)n(t.x) = 2/ B(y)}l/ko(;) n(t, y)dy,

X

under balance assumptions on (B, a, k), tends exponentially fast
towards N (x)eM V)t

» around t = 07 : exponential growth, rate A\((p)

> V decreases exponentially fast to 0

» once V ~ 0 : pure fragmentation = n(t, x) — do dusts

How to avoid this " fibril instability” ?



Lifshitz-Slyozov revisited

Without nucleation

on 0
o (V(t)a-d()m) =0,

4 <V(t) + :foxn(t,x)dx) =0,

V(0) = Vo, n(0,x) = n"(x),

fn’” )dx = po, M = Vo—|—fxn’” )dx.

Physical usual assumptions (grain formation, supersaturated solid
. 1 . .
solutions): d(x) =1, a(x) = x3: for large sizes, growth dominates

= mass goes to infinity (Ostwald ripening)
refs: e.g. Niethammer, Pego, 2000 & 2001, Goudon, Tine & Lagoutiére, 2013



Lifshitz-Slyozov revisited

Without nucleation

For fibrils: a(x) = 1 constant, d(x) increasing: for large sizes,
decay dominates = Need for a boundary condition at x = 0:

(V(t) — d(0))n(t,0)1va0)-a(0)>0 = Lva0)—d(0)>0

(2)



Lifshitz-Slyozov revisited

Without nucleation

For fibrils: a(x) = 1 constant, d(x) increasing: for large sizes,
decay dominates = Need for a boundary condition at x = 0:

(V(t) = d(0))n(t,0)1va00)—d(0)>0 = Lva(0)—d(0)>0 (2)

Lemma (Characteristic curves - inspired by P. Michel, 2008)

Under the previous assumptions, let us define

d

X(t2) = V(1) = d(X(t,2)), X(0,2) =z
We have

oo o
/ n(t, x)|X(t,z) — x|? dx < e_2°‘t/ |z — x|?n(0, x)dx.
0 0



Lifshitz-Slyozov revisited

With or without nucleation - entropy-like inequality

Lemma (Entropy inequality - "reverse” of Collet et al., 2002)
Let k a C' convex positive function, [ k(x)no(x)dx < +oo

H(t) ::O/k(x)n(t,x) dx+K(V(t), K(v)= d% K'(b71(s)) ds.

(e o]

d

— —Hi(t) = /n(t,x)(V(t)—d(x))(k’(x)—k’(d‘l(V(t))) dx < 0.

0



Lifshitz-Slyozov revisited

without nucleation

Theorem (J. Calvo, MD, B. Perthame, 2018)

For d(x) increasing, 0 < a < d’ < 8, and a(x) =1, (V, n)
solution to (1) (2) with V(0) > d(0) satisfies

{ Iim V(t) = V = d(x), Vz>0, tingoX(t;z):f(,

I|m n(t, x) = pod(x — Xx), weakly in measures,

where X > 0 is the unique solution to M = pox + d(X).
More precisely we have for the Wasserstein distance:

Wa(u(t,-), pods) < Ce ™, [V(t) = d(x)] < Ce™™".
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Lifshitz-Slyozov revisited

With nucleation

Add nucleation to model in vitro experiments:
(V(t) = d(0))n(t,0)1ya0)—d(0)>0 = @ V(£)°Lyao)—d()>0  (3)

Theorem (J. Calvo, MD, B. Perthame)
For d(x) increasing and a(x) =1, (V, n) solution to (1) (3)
satisfies

t[}m p(t) = +oo, t[}m V(t) = d(0),
lim xn(t,x) = (M — d(0))4(x), weakly in measures.

t—00
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Lifshitz-Slyozov revisited

With nucleation

Add nucleation to model in vitro experiments:
(V(t) = d(0))n(t,0)1ya0)—ao)>0 = @ V(t)°Lya0)—a(0)>0

Theorem (J. Calvo, MD, B. Perthame)
For d(x) increasing and a(x) =1, (V, n) solution to (1) (3)
satisfies

Jim p(t) = 400, lim V(t) = d(0),

lim xn(t,x) = (M — d(0))4(x), weakly in measures.

t—00

— nucleation destabilizes the system

Add fragmentation? accelerated destabilization!

(3)
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Lifshitz-Slyozov revisited

Fragmentation + decreasing depolymerisation

Lifshitz-Slyozov + fragmentation with decreasing depolymerisation:
the nucleation stops after some time

Theorem (J. Calvo, MD, B. Perthame)

For d(x) decreasing, a(x) =1, under balance assumptions on
(B, k, d), there exists a steady state solution:

2((V = d())N) — BEON(x) = 2 T B(y)k(x, y) N(y)dy

=—> Depolymerisation may stabilize the system. Convergence?



Another experiment: Oscillatory behaviour

With K. Fellner, M. Mezache and H. Rezaei, J. Theor. Biol., 2019



Scattered intensity

Time (hours)

Human PrP amyloid fibrils (Hu fibrils) by SLS, 0.35uM

How to build a statistical test to evidence the presence of oscillations:
with M. Hoffmann and M. Mezache, arXiv
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Search for an oscillatory polymerisation/depolymerisation model

Seminal "natural” model for polymerisation/depolymerisation:

Ci+C 2 Cip, i>1,
Ci i> Ciii+C, i>2

—> Becker-Doring system, detailed balanced = no oscillation

Which simplest reaction system oscillates?

Ivanova/simplified Belousov-Zhabotinsky model:

d

vew 5 ow o owamMm & oM, My & ov.

OR: (Becker-Déring 4+ atomization reaction: Pego & Velazquez, 2019)



Search for an oscillatory polymerisation/depolymerisation model

Combination of both models:

k

V+W = 2W,
W+C 2 Ciga, 1<i<n,
IR VR N \7) i>1
% = —kvw + v i dic;,
n—1 =2
CC',—";’ =—w ) a;¢ + kvw,

i=1

fel=]

2 conserved quantities:

n
. E : 0
PO = (o
i=1

g = w(—ajc +aj—1¢i-1) + v(diz1ciy1 — dici),

n
Mior := V0wl + E ic,p.
i=1

2<i<n-1.



Case n=2

dt
d—W:W[kv—cl], %zwcl—vcz,

{d"—v[—kw—i—cz], {Cif:_—wcl—FVCZa
dt



Case n =2

% = V[—kW+C2], % = —wcy + vo,
dw __ doy
G =wlkv —al, G = we — v,

2 conserved quantities My and Py = reduced system

{z::v[M—(k—Fl)W—V]v
92 — w[(M— Po)+ (k —1)v —w],

where M = M, — Py = generalised Lotka-Volterra system.



Case n =2

% = V[—kW+C2], % = —wcy + vo,
dw __ doy
G =wlkv —al, G = we — v,

2 conserved quantities My and Py = reduced system

(3o
92 — w[(M— Po)+ (k —1)v —w],

where M = M, — Py = generalised Lotka-Volterra system.
» damped oscillations
» Existence of a Lyapunov functional

> exponential convergence to equilibrium despite oscillatory
behaviour



Case n=2

Let (Voo, Weo) > 0 a positive steady state and
H(v,w) = v — vy log(v) + w — wy log(w).

Theorem (Exponential convergence to positive equilibrium)

Let Py € (%, kl\/l) Then, H is a convex Lyapunov functional.

d 1
(), w(t)) = = [(v(t) = veo) + (w(t) — woo)?

20



Case n=2
Let (Voo, Weo) > 0 a positive steady state and
H(v,w) = v — vy log(v) + w — wy log(w).

Theorem (Exponential convergence to positive equilibrium)

Let Py € (%, kl\/l) Then, H is a convex Lyapunov functional.

d

1
(), w(t)) = = [(v(t) = veo) + (w(t) — woo)?

Moreover, for = < 1, every solution (v(t), w(t)) with initial data
(vo, wp) > 0 converges exponentially to (Voo, Weo), I.€.

1
IV — Voo 2+ |w — w2 < C (HO — Hy) e k™,
where the positive rate r and constant C depend only on

HO = H(v%, wP) and (Veo, Wxo).

20



Case n = oo : well-posedness

Theorem
Assume

dv
dt

dw
dt

de;
dt

aj = O(I), b,‘+1 = O(I+ 1) Vi>1.
Then the system

n
= —kvw + v dic,
i=2
n—1
a;c; + kvw,
i=1
= w(—ajc + aj_1¢i—1) + v(dit16iy1 — dici),

= —w

2<i<n-1

has a solution for t € [0, T), v(t) >0, w(t) >0, ¢i(t) >0 i>1.

21



Case n = oo : well-posedness

Theorem
Assume

aj = O(I), b,‘+1 = O(I+ 1) Vi>1.
Then the system

n

dv __
&= —kvw +v 232 dic;,
i=
d n—1
w __
G W)L aic + kvw,
i=1
de;

o =w(—aj¢;+aj_1¢1) + v(dijaciy1 — dici), 2<i<n-1
has a solution for t € [0, T), v(t) >0, w(t) >0, ¢i(t) >0 i>1.

o0 oo
Y i”? <oo = sup Y. i%ci(t) < oo + uniqueness.
i=1 tl0,T) i=1

21



Case n = oo : steady-states

Boundary steady-states: two types whether v, =0 or wy, = 0.
> Voo = Ws = 0 and any distribution of ¢; such that > ic; = M.

> Woo =0,6 =0fori>2, ¢ =Py, and voo = Myor — Py.

Proposition (Boundary steady-state (BSS) and their local stability.)
Let Myo; > Pg > 0 and b; > 0 for all i.

The BSS vy, = wo, = 0 are always unstable,

the BSS voo = Mot — Po, Woeo =0, ¢1 = Py, ¢i>1 = 0 is locally linearly
stable iff

Mot ai
— +1.
Py ~ kT

22



Proposition (Existence of non trivial steady state)
Let k, Py and My, be positive real constants. If

Mot a
A 4
Po kT (4)

there exists a strictly positive steady state (PSS) (Voo, Woo, Ci)-

Remarks:
> (4) = "there exists enough mass initially” to ignite the reactions.

> Conjecture : trend to the PSS if (4) is true and else a trend towards
a BSS.

23



Damped oscillations and convergence towards PSS

24



Links with oscillatory models

Constant coefficients = perturbed Lotka-Volterra system

dv

% = —kvw + bv(Py — c1),

d _

G = —awPo + kvw,

dC,'

@ =Jdi-i—Ji Ji = ajwc; — bip1veiqr.

25



Links with oscillatory models

Constant coefficients = perturbed Lotka-Volterra system

dv

% = —kvw + bv(Py — c1),

v — _awPy + kvw

dt 0 ?

dC,'

G =Jdi-i—Ji,  Ji=aiwc — bipveiy.

Linear coefficients = defining My(t) = Mior — v(t) — w(t), we
get:

% = —kvw + vb(M; — Pp),

d
G5 = —waMy + kvw,

dh = waMy — vb(My — Py).

25



Construction of the continuous model (Collet et al., 2002)
In progress by M. Mezache

v(t), w(t), ci(t) — v(t), w(t), c(t,x)

Jica(t) = Ji(t) = =2 J(t,x) = =& ((a(x)w(t) — b(x)v(t))c(t, x))

26



Construction of the continuous model (Collet et al., 2002)
In progress by M. Mezache

v(t), w(t), ci(t) — v(t), w(t), c(t,x)

Jica(t) = Ji(t) = =2 J(t,x) = =& ((a(x)w(t) — b(x)v(t))c(t, x))

Ly(t) = —kev(t)w(t) + v(t) [3° b(y)c(t,y)dy

Lt (£) 2 aly)e(t, y)dy + kuv(E)w(?)

L v(0) =w, w(0)=wo, ¢(0,x)=co(x)
Conservation of mass: Msor = v(t) + w(t) + [ xc(t,x)dx

26



Construction of the continuous model (Collet et al., 2002)
In progress by M. Mezache

v(8), w(t), Gi(t) = v(e), wlt), c(t,x)
Jica(t) = Ji(t) = =2 J(t,x) = =& ((a(x)w(t) — b(x)v(t))c(t, x))

gv(t) = —kuv(t)w(t) + v(t) [ bly)e(t, y)dy

s (t) (t) J5° aly)e(t, y)dy + kyv(t)w(t)

L v(0) =w, w(0)=wy, c(0,x)=co(x)

Conservation of mass: Msor = v(t) + w(t) + [ xc(t,x)dx
(v(t),w(t)) = almost "Lotka-Volterra” system where v is the
prey and w is the predator.



Back to the experiment
Adding noncatalytic depolymerization C; — Ci—1 + W

27



To conclude... and open

» powerful models, enriched by new applications

» Lifshitz-Slyozov with fragmentation: convergence towards the
steady state?

» Oscillatory model: prove the conjecture (in progress with K.
Fellner and J. Velazquez; general case, link with the
continuous version, parameter estimation...

» Statistical test for the oscillations

» J. Calvo, MD, B. Perthame, Comm. in Math. Phys., 2018
» MD, K. Fellner, M. Mezache, H. Rezaei, J. Theor. Biol., 2019
» MD, M. Hoffmann, M. Mezache, arXiv: : 1911.12719

28



Linear coefficients and sustained oscillations

Suppose Ja, b >0, a(x)=ax, b(x)= bx.
Proposition (Periodic solutions - M. Mezache)
Let (v,w,c) € Ci(R4+) x Ci(R4) x C(Ry, LY) be any nonnegative
solution such that vp, wy > 0 and vo + wp < M. Then:
1. v(t),w(t) are periodic of the same period T > 0.
2. c Is periodic of the same period T.

29



Depolymerization dominating
See J. Calvo, MD & Perthame, 2018

Hypotheses

1. 3b>0 a(x) =1, b(x) = bx, ¥x > 0.
2. Let vo,wp > 0 and vp + wp < Mo and

co € LH(R, (1 + x?)dx) with po = [5° co(x)dx > 0.
3. Let k > 1 with k large and 0 < pg < kM;ot.

30



Depolymerization dominating

Theorem (Concentration at a critical size)
The solution (v, w, c) € Ci(R4) x Ci(R4) x C(Ry, L) satisfies
1. forallz>0,

/ IX(t,z) — x|*c(t, x)dx < e_ZbC(’t/ |z — x|co(x)dx,
0 0

31



Depolymerization dominating

Theorem (Concentration at a critical size)
The solution (v, w, c) € Ci(R4) x Ci(R4) x C(Ry, L) satisfies
1. forallz>0,

/ IX(t,z) — x|*c(t, x)dx < e_2bC°t/ |z — x|co(x)dx,
0 0

2. ¢(t,x) converges to pod we exponentially fast: for some
bveo

constant C > 0 we have

Wa (C(ta )7/)051;%0) < Ceiﬁta

M\D—‘

where Wa(g1,82) = ([ [ Ix — y[*g1(x)g2(y)dxdy)2.

31



Sketch of the proof
First step: Exponential convergence of (v(t), w(t))

{ % =v(bMiot — bv — (k + b)w)
2 =w(kv — po)

> Generalized Lotka-Volterra system = Lyapunov functional
F(v,w) = k(v = Voo In(v)) + (k + b)(Ww — Woo In(w)), ZF(v,w) =
—kb(v — Voo )?

> local estimates near the degeneracy line —
[V — Voo P + |wW — weo|* < Ce™*

32



Sketch of the proof

First step: Exponential convergence of (v(t), w(t))

{ @ —y(bMor — bv — (k + b)w)
G =w(kv — po)

> Generalized Lotka-Volterra system = Lyapunov functional
F(v,w) = k(v = Voo In(v)) + (k + b)(Ww — Woo In(w)), ZF(v,w) =
—kb(v — Voo )?

> local estimates near the degeneracy line —
[V — Voo P + |wW — weo|* < Ce™*

Second step: Entropy inequality and exponential convergence of the characteristic curves
%X(t, z) = w(t) — bv(t)X(t,z) = h(t,X(t,z)), X(0,z)=2z>0. (6)
> fooo |X(t,z) — x|?c(t, x)dx < e~ 2bC0t fooo |z — x|?co(x)dx

> (6) asymptotically autonomous differential equation —-
|X(t,z) — %F < Ce Mt

32



Sketch of the proof

Final step: Entropy inequality 4+ exponential convergence of the characteristics
— exponential convergence to a Dirac for the Wasserstein distance

1/2
i (el oo ) < (2X(e2) = 2ok 2 [ IX(8,2) = el )k

33



Statistical test of presence of oscillations

Definition of the high-frequency features.

For some (large) n > 1, we observe
y[ = f(i/n) +o&], i=0,...,n—1 (7)

where:

» f:[0,1] — R is an, at least continuous, (unknown) signal of
interest,

> the &; are iid noise measurement assumed here to be standard
Gaussian,

» o > 0is a (fixed) noise level.

34



Projection on the Fourier Domain

We denote by (Unk(y)) <)<, , the discrete Fourier transform
(DFT) of length n of (y; ) <icp_1 (and by (O, (f))0<k<nfl the
DFT of f): o o

n—1

-1 Zyn —j2mki/ n ﬁn,k(f) — n—l Z f(l-/n)e—j27rki/n‘

i=0

35



Projection on the Fourier Domain

real signal

0 20 40 60 80 100
time axis

120

101 4

10° 4

10-1 4

1072 3

Amplitude spectrum

10-3 4

o] 1 2 3
frequency

> Since f is real-valued, then |9, «(f)| = |9a,—«(f)].

» Replacing f by f 4+ C for some constant C, we assume that
[9n,0(F)| > maxa<ixj<n [Onk(F)]-

36



Definitions of the high-frequency parameters

[V (£)]

s(f)

Idealized scheme of the parametrization of the HF features in the Fourier

Domain.

The parameters g(f) = Gn m(f) and d(f) = D, m(f) are two
distances (G, m(f) is a distance on the frequency axis and Dy, m,(f)
on the intensity axis).
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Definitions of the high-frequency parameters

Definition Let f € L2([0, 1]), we associate a high-frequency
feature (HF feature) (Gp,m(f), Dnm(f)) at discretisation level

n—

n > 1 and smoothing level m < “=.

» Dp m(f) describes the peak with the highest distance between
its amplitude and the minimum amplitude of the Fourier
coefficients of lower frequencies.

» G, m(f) gives the distance in frequency indices between the
peak and the components in the low frequencies with the
same intensity.
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Test for high-frequency features

The null
HY et Gom(f) <v, Dam(f)<c
against the local alternative

H},yc : Gom(f) > v and Dpm(f) >

where v > 0, ¢ > 0 are thresholds to determine significant HF

features.

Dum(f)

v Gum(f)
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Test for high-frequency features

The null Duu(f)

Hg,c : G"»m(f) <v, Dn,m(f) <c 3 H!
against the local alternative P S SO

Hyc: Gum(f) > v and Dypm(f) >

0 v Gum(f)

where v > 0, ¢ > 0 are thresholds to determine significant HF
features.

» HO — no significant HF feature in the tested signal,

» 1! = the signal has significant HF feature.
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Test for high-frequency features

The null Duu(f)

Hg,c : G"»m(f) <v, Dn,m(f) <c 3 H!
against the local alternative P S SO

H},yc : Gom(f) > v and Dpm(f) >

0 v Gum(f)

where v > 0, ¢ > 0 are thresholds to determine significant HF
features.

» HO — no significant HF feature in the tested signal,
» 1! = the signal has significant HF feature.

For too small values of v and ¢ any signal shall reject H® whereas
for large values, any signal shall accept H°.
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Monte Carlo Procedure and proxy of the p-value

First step: simulate N times £\, the signal f with HF features
removed but with additive Gaussian noise.

FDr=1,...,N
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Monte Carlo Procedure and proxy of the p-value

First step: simulate N times £\, the signal f with HF features
removed but with additive Gaussian noise.

FDr=1,...,N

Second step: we denote E,(\), the cloud of points representing the
HF features parameters of signals with HF features removed but
with Gaussian noise:

B = {(Gom (117)  Dam (£2)) 1 k=1,....N} . (8)
We define the function P : E} — F C [ 1]:
P(g,d) 121{(;"’” >g,Dnm( (,Ok))Zd}' 9)

P(g, d) is the proportion of points in E,(\’, located in the North-East
quarter of the plane centered on (g, d).
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Monte Carlo Procedure and proxy of the p-value

oP (61,151) ~1/3

[ ]
P 63,153) =1/3

[ ]
P (62,52) =2/3

Gk

Cloud of points ((A?k, 5") = (G,,,m (fn((;()) , Dnm (fn(i))) for k =1,2,3.

41



Monte Carlo Procedure and proxy of the p-value

.P(él,ﬁl) =1/3

PO A
(Gn,nu Dn,m)

. P (63, 6:) =1/3
p (GZ 132) —2/3

ék
Cloud of points (ék, 5") = (G,,’m (fn((?) , Dom (fn(i))) for k=1,2,3.

Third step: the p-value of the observations (y/)o<i<n—1 is defined as
p-value((y/)o<i<n-1) = min {a € Ran(P) | Gy m(y) > g%, Dam(y) > d}

(10)
where (g2, d) € Ef such that P(g®,d*) = a.
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Numerical results on test signal

Numerical results of the procedure on the sanity-check signals

> (Left)Test signals when the noise level
o€ {1170C37 %C27 Ca, 2Ca7 10Ca}.

> (Right) Scatter points (black dots) and HF features parameters of
the signal tested (red diamond).
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Numerical results on test signal

o ilec, ic,

Gom (Hz) | 2.095e—3  2.095e—3
Do 1.768e—4 1.784e—4

p-value 5e —5 5e—5

Table of estimators and p-values of the sanity-check signals.
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Numerical results on SLS experiments

HF features of the SLS experiments observations

> (Left) Zoom on the SLS experimentation signals with initial
concentration in pumol of fy € {0.25, 0.35, 0.5, 1, 2, ,3}.

> (Right) (Right) Scatter points (black dots) and HF features
parameters of the signal tested (red diamond).
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Discussions

» Proof of oscillations in the SLS experiments AND parametric
characterization of the HF features = Sensitivity analysis.
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Discussions

» Proof of oscillations in the SLS experiments AND parametric
characterization of the HF features = Sensitivity analysis.

» Next step, definition and characterization of the HF features
in a wavelet basis = 3 parameters (frequency resolution,
amplitude, time localization) and extension of the test of
hypothesis to this framework.
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	Statistical test of presence of oscillations.

