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Minimizing Free Energies

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

X=-VWX-a) W) =W(—x),W(0)=0,WeC'(R'/{0},R)

Multiple particles attracted/repelled by one another

X, == m VW(Xi — X;)
i
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Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

X=-VWX-a) W) =W(—x),W(0)=0,WeC'(R'/{0},R)

Multiple particles attracted/repelled by one another

X, == m VW(Xi — X;)
i

p(t, x) = density of particle at time ¢

v(x) =— [ VW(x—y) p(y)dy

R4

pe+div(pv) =0
v=—-VWxp
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Aggregation-Diffusion Equation

o+ div(pv) =0
v=—-VWsxp—VP(p)

p(t,x) : density
v(t,x): velocity field
x€RLE>0
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Aggregation-Diffusion Equation

o+ div(pv) =0
v=—-VWsxp—VP(p)

W:R' >R
“interaction potential”

p(t,x) : density
v(t,x): velocity field
x€RLE>0

—~VW:R* - R’
“attracting field”



Aggregatlon -Diffusion Equation

p(t,x) : density

pr+div (pv) =0 v(t,x): velocity field
v=—-VW=xp—VP(p) xR, >0

W:R' >R —~VW:R* - R’
“interaction potential” “attracting field”

If repulsion is modelled by diffusion, when does a balance between attraction and
diffusion happen?
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Forﬁal Gradient Flow

Basic Properties
@ Conservation of the center of mass.
@ Liapunov Functional: Gradient flow of
1
Flol =5 [ Wi =) 0 ) sty + [ @pt)as
J . Rd

with respect to the Wasserstein distance Wa.
(C., McCann, Villani; RMI 2003, ARMA 2006).
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The macroscopic equation can be rewritten as

) = aiv (p(e0)¥ |5 0] )
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Forﬁal Gradient Flow

Basic Properties
@ Conservation of the center of mass.
@ Liapunov Functional: Gradient flow of
1
Flol =5 [ Wi =) 0 ) sty + [ @pt)as
J . Rd

with respect to the Wasserstein distance Wa.
(C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

) = aiv (p(e0)¥ |5 0] )

with % =Wxp+ @ (p), P'(p) = p®”(p), and entropy dissipation:

G0 == [ ot
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Free Energy Minimization: Stable Steady States

Minimization Problem

‘We want to find local minimizers of the total interaction energy

// W(x — y)p(x)p(y) dxdy + / B(p(x)) dx.
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Free Energy Minimization: Stable Steady States

Minimization Problem

‘We want to find local minimizers of the total interaction energy

// W(x — y)p(x)p(y) dxdy + / B(p(x)) dx.

When does a balance between attraction and repulsion (modelled either by
nonlocality or diffusion) happen?
Recurrent Question in many fields:

@ Statistical Mechanics & Crystallization: Typically very singular potentials at
zero: Lennard-Jones.

@ Semiconductors - Astrophysics - Chemotaxis: Macroscopic model obtained
from Vlasov Equation under certain limits. Newtonian Potential.

@ Economic Applications: Mean Field Games, Cournot-Nash Equilibria.

@ Fractional Diffusion: More singular than Newtonian repulsion but still locally
integrable potentials. Levy Flights.

@ Random Matrices: Eigenvalue distributions.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals”

aAoki. Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ag.

@ Orientation Region: O.
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2nd» Order Model: 3-Zone Model

D’Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

dx,-
— =V,
dt '
dv: N
m?zl = (=B il )vi = Z VW(|xi —x]) + Za::/ (v = i)
i =
W(r) Pair-wise
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2nd» Order Model: 3-Zone Model

D’Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):
dy _

a "

dv: N
mj[’ = (=B il )vi = Z VW(|xi —x]) + Za::/ (v = i)

JF#i j=1

Model assumptions:

@ Self-propulsion and friction terms = an

asymptotic speed of y/«/f.

Pair-wise
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2nd Order Model: 3-Zone Model

D’Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):
dX[
— =V,
dt '
dv: N
mj[’ = (o= Bvil*)vi — Z VW(|xi —x]) + Za::/ (v = i)
JF#i j=1
Model assumptions:
@ Self-propulsion and friction terms = an
asymptotic speed of y/«/f.
@ Attraction/Repulsion modeled by an W) Pair-wise
effective pairwise potential W (x).

W(r) = —Cae """ + Cre"/*.
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2nd Order Model: 3-Zone Model

D’Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):
dX[
— =V,
dt '
dv: N
mj[’ = (o= Bvil*)vi — Z VW(|xi —x]) + Za::/ (v = i)
JF#i j=1
Model assumptions:
@ Self-propulsion and friction terms = an
asymptotic speed of y/«/f.
@ Attraction/Repulsion modeled by an W) Pair-wise
effective pairwise potential W (x).

W(r) = —Cae """ + Cre"/*.

@ Communication rate: v > 0 and

1
(1 + e = x52)7

aj = a(|xi — x|) =
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2nd Order Model: 3-Zone Model

D’Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):
dX[

E =,
dvi N
ms=(a=p Vil i = > VW (xi —x]) + Y ay (v —vi) -
j#i Jj=1
Model assumptions:
P CZCR/CA>1,€:€R/£A<1and

@ Self-propulsion and friction terms = an Cc? < 1:
asymptotic speed of y/«/f.
@ Attraction/Repulsion modeled by an W) Pair-wise

effective pairwise potential W (x).
W(r) = —Cae """ + Cre"/*.

@ Communication rate: v > 0 and

1
(1 + e = x52)7

aj = a(|xi — x|) =
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Flocking Patterns

Flocking Profiles:
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Cell/Bacteria Movement by Chemotaxis

x € R?.

Movement and aggregation due to chemical signalling. Wikinut

1. Saragosti etal, PLoS Comput. Biol. 2010.

S. Volpe etal, PLoS One 2012.
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Phase Transitions for the Keller-Segel model on an interval !

u =V - (uVu — xuVv), xeQ,t>0,
vi=Av—v+u, x€Q, >0,
O (uVu — xuVv) =0,v=0, x€ 90Q,r>0,
u(x, 0), v(x, 0) >, # 0, reQ.
2_ 15
t=0.05 t=005
150 At=12004 1 At=1e-0047
A¥=r100 1\ e.x::n-'j_p ,,"

1 2 & 1 2
Asymmetric Initial data with y=de(x, .y,l.J Symmetric Initial data with x,=4e{;¢,|,;5.’,)

1C.-Chen-Wang-Wang-Zhang, STAM J. Applied Mathematics 2020.









Problems & Motivation
000000000 0eO000000000000000
Minimizing Free Ener

A bifurcation diagram

o

—+— Half Bump [0
450 -—-One Bump w70 B
~~-One and Half Bump [us|ze

Two Bumps [[eg 1o

Maximum

11=2 12=5 13=10 14=17

Chemoattraction rate
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Two Bumps [[eg 1o

Maximum
ro
o
T

2t

constant glohal attractori«x,
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Chemoattraction rate
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A bifurcation diagram

5
—+— Half Bump [0
45 ---One Bump uy |z -
- ~-One snd Half Bump [ug|z=

4 Two Bumps [[eg 1o -

3, —
£
3 one-paramter family of solutions
East—; -
K VAR
=] [ P

2t \ ////—/’/ -

\ P
\ J—
El \ S,
oy \ L T _
\\ \\\\ ////’ /'/////
3 Y s
05} [ i i : -
H :
11=2 12=5 13=10 14=17
00

Chemoattraction rate
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A bifurcation diagram
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3 one-paramter family of solutions
East—; -
% AN
3 FAR
=] [
2 N -
\\
\\
15 -
\

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 00e0000000000
Minimizing Free Ener

A bifurcation diagram

o

——Half Burap [[u; 00

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 O000e000000000
Minimizing Free Energies

A bifurcation diagram

o

——Half Burap [[u; 00

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
000000000000 00000e00000000
Minimizing Free Energies

A bifurcation diagram

o

——Half Burap [[u; 00

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 O00000e0000000
Minimizing Free Energies

A bifurcation diagram

o

——Half Burap [[u; 00

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 000000e000000
Minimizing Free Ener

A bifurcation diagram

o

---0ne Bump [[u] e

Maximum

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 0000000e00000
Minimizing Free Ener

A bifurcation diagram

o

-—-One Bump [[va| 1o

Maximum

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 00000000e0000
Minimizing Free Energies

A bifurcation diagram

o

---0ne Bump [[u] e

Maximum

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 000000000e000
Minimizing Free Ener

A bifurcation diagram

o

---0ne Bump [[u] e

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 O000000000e00
Minimizing Free Energies

A bifurcation diagram

o

---0ne Bump [[u] e

Maximum
ro
o
T

11=2 12=5 13=10 14=17

Chemoattraction rate



Problems & Motivation
0000000000000 O0000000000e0
Minimizing Free Ener

A bifurcation diagram

o

- ~-One and Half Bump |3z
5| Twe Bumps [Juc |z

-~

Maximum
ro
o

11=2 175 13=10 14=17

Chemoattraction rate
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The Local Cucker-Smale model with noise

Phase Transition (Barbaro-Caiiizo-C.-Degond, SIAM MMS 2016)

@ We consider the following kinetic flocking model:
Of +v9if = Vo (v = w)f = av(1 = P)f + DV ),

where

. S (t,x,v) dv

o ff(t,x, v)dv

@ The first term is a Cucker-Smale-like term, encourages the velocity to align
with the mean velocity

uf(tv x)

@ The second term provides self-propulsion and friction, encouraging unit
velocities

@ The last term captures the influence of noise in the velocity
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = V- (v = up)f = av(1 = [vP)f + DVf )
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = V- (v = up)f = av(1 = [vP)f + DVf )

@ We have a gradient flow structure: write the equation as 9;f = V, - (fV,£) with
E=®(v) + Wxf+ Dlogf
e Confinement inv: ®(v) = « (% - %)

o Interaction potential of the form W(v) = i

2
o Linear diffusion.

@ Our model is continuity equation with velocity field of the form —V,£
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Local Cucker-Smale Model

The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = V- (v = w)f = av(1 = ) + DY)
@ We have a gradient flow structure: write the equation as 9;f = V, - (fV,£) with
E=®(v) + Wxf+ Dlogf
e Confinement inv: ®(v) = « (% - %)
o Interaction potential of the form W(v) = %
e Linear diffusion.
@ Our model is continuity equation with velocity field of the form —V,£

@ Natural entropy for this equation given by the free energy of the system:

Flf] = /qu)(v)f(v) dv + % /Rd RdW(vfw)f(v)f(w) dwdv+D/Rf(v) logf(v) dv

d

_ vt o _Loe
= [ (- )0 = Sl D [ frogso)av,
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The stationary solutions

@ We consider stationary solutions of the form:

f(v) =L exp (%1 [a%Jr(l fa)¥ 7Mf'vi|)
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The stationary solutions

@ We consider stationary solutions of the form:

f(v) =L exp (%1 [a%Jr(l fa)¥ 7Mf'vi|)

@ We see that in order for the stationary solution to exist, #s must be a root of the
equation:

H(u,D) = /(V —u)f(v)dv
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The stationary solutions

@ We consider stationary solutions of the form:

f(v) =L exp (%1 [a%Jr(l fa)¥ 7Mf'vi|)

@ We see that in order for the stationary solution to exist, #s must be a root of the
equation:

H(u,D) = /(V —u)f(v)dv

@ We prove that, in any dimension’

o There is a region of parameter space with only one such root, namely
u=20

o There is another region of parameter space with more than one root, u = 0
and |u| = Cap #0

21D case was proven independently in J. Tugaut. 2D also recently studied by X. Li.
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Local Cucker-Smale Model

Main idea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:
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Main idea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:

e For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution



Phase Transition driven by Diffusion/Interaction Ratio
[e]ele]e]e] lolele]

Local Cucker-Smale Model

Main idea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:

e For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution

e For large D, 2 81 is negative for all u.
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Local Cucker-Smale Model

Main idea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:

e For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution

e For large D, 2 81 is negative for all u.

@ Since we know that u = 0 is a solution for all D, this shows that there is more
than one root of H for small D, and only one root for large D
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Stability of the stationary solutions in 1D

alpha=1.5
alpha=3.0
alpha=4.5

0.9

081

071

0.6

0.5

0.2

01

u (magnitude of the velocity of stationary solution)

01 1 1 1 1 1 1
0 0.1 0.2 0.5 0.6 0.7

0.3 0.4
D (diffusion coefficient)
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Comparing particles to f in 1D

n by Diffusion/Interaction Ratio

3 T
—True stationary state (D=0.1)
+ Histogram of final state (D=0.1)
— True stationary state (D=0.2)
251 * Histogram of final state (D=0.2)

—True stationary state (D=0.3)

+ Histogram of final state (D=0.3)
True stationary state (D=0.4)
Histogram of final state (D=0.4)

2 H—True stationary state (D=0.5)
Histogram of final state (D=0.5)

—True stationary state (D=0.6)
« Histogram of final state (D=0.6)




Phase Transition driven by Diffusion/Interaction Ratio
®00000000000
The Torus case

Outline

9 Phase Transition driven by Diffusion/Interaction Ratio

@ The Torus case



Phase Transition driven by Diffusion/Interaction Ratio
O®0000000000
The Torus case

The aggregation diffusion equation

Nonlocal (possibly) degenerate parabolic PDE

Op =Dp" + KV - (pVW x p) inT{ x (0, 7]
with periodic boundary conditions, p(-,0) = po € P(T{), T{= (-5, %)d =Q,
1 <m< oo.
@ p(-,1) € P(Q) probability density of particles
@ W coordinate-wise even, mean-zero interaction potential

@ > 0 interaction strength (parameter)
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The Torus case

The aggregation diffusion equation

Nonlocal (possibly) degenerate parabolic PDE

Op =Dp" + KV - (pVW x p) inT{ x (0, 7]
with periodic boundary conditions, p(-,0) = po € P(T{), T{= (-5, %)d =Q,
1 <m< oo.
@ p(-,1) € P(Q) probability density of particles
@ W coordinate-wise even, mean-zero interaction potential

@ > 0 interaction strength (parameter)

Assume throughout that
W(x) € C*(Q)
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Example: The noisy Kuramoto model

The Kuramoto model:m = 1, W(x) = —\/%cos (2mks) k€ Z

/2 /2
273 _ o 00 @ /3 2n/3 /3
»
57/6 / ‘\7/6 57/6 /6
] A
! .
™ §° ™ b

77r/6‘. /11 /6 77/6 11 7/6
.

AW/?\- s /3 4713 51/3
372 3n/2
K < K, no phase locking K > K, phase locking

Goals and Motivation:
@ Bifurcations
@ Classification for continuous and discontinuous transitions

@ Better understanding of the free energy landscape
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H-stability

Notation: Fourier representation f (k) = (f, wx) 21y, Withk € 7¢

d

2mk;
_ iy k > 0
wr(x) =L d/2@ k Wi (Xi COS( L X,) 1 ’
® ( )II;II () with  wy(x) =< 1 ki =0,
C"‘)(k) _ 2#{11/‘:':0}/2 sin (%xi) ki <0,

Definition (H-stability)
An even function W € L*(T¢) is H-stable, W € H,, if

Wk) = (W,w) >0, VkeZ,
Decomposition of potential W into H-stable and H-unstable part

Ws(x) = Z((W7 wi))  wi(x) and Wa(x) = W(x) — Wy(x) .
keNd
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Free energy

The equations have the following free energy, 7 : P(Q) — R U {+o00}, associated
to them

[Pt dx— S+ 5 W —y)p(x)p(y) dxdy m > 1
Fr =
Ja(plog p)(x) dx + 5 [[o, o Wx — y)p(x)p(y) dxdy m=1
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Free energy

The equations have the following free energy, 7 : P(Q) — R U {+o00}, associated
to them

1 pr Jdx— 5+ 5 foxQ V)p@)p(y)dedy m>1
Fr =

Ja(plog p)(x) dx + 5 [[o, o Wx — y)p(x)p(y) dxdy m=1

W,-gradient flow w.r.t this energy
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The Torus case

Free energy

The equations have the following free energy, 7 : P(Q) — R U {+o00}, associated
to them

1 pr Jdx— 5+ 5 foxQ V)p@)p(y)dedy m>1
Fr =

Ja(plog p)(x) dx + 5 [[o, o Wx — y)p(x)p(y) dxdy m=1
W,-gradient flow w.r.t this energy

Theorem (Existence of minimisers)

@ m = 1: For k € (0,00) the free energy F.(p) has a smooth minimiser
pr € CZ(Q)NP(Q). Fork < 1 or W € Hy, Fy is strictly convex and poc is
the unique minimiser.
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The Torus case

Free energy

The equations have the following free energy, 7 : P(Q) — R U {+o00}, associated
to them

. 1pr dx———|— 5 [laxa W Vp)p(y)dedy m>1
Fr =
Ja(plog p)(x) dx + 5 [[o, o Wx — y)p(x)p(y) dxdy m=1
W,-gradient flow w.r.t this energy
Theorem (Existence of minimisers)

@ m = 1: For k € (0,00) the free energy F.(p) has a smooth minimiser
pr € CZ(Q)NP(Q). Fork < 1 or W € Hy, Fy is strictly convex and poc is
the unique minimiser.

@ | <m < oo: For k € (0,00) the free energy Fr (p) has a minimiser
Pr € CO(Q) NP(Q). For k < 1 or W € Hy, F is strictly convex and poo is
the unique minimiser.
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The Torus case

Characterisation of stationary solutions

@ Self-consistency equation m = 1

1 — KW
Fm(p)Zp—me “Wxe - with Z(p,K):/ e ™M dxx .

@ Self-consistency equation m > 1

1 m m—
Fi(p) = P "+ EWxp—C

for some constant C.
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The Torus case

Characterisation of stationary solutions

@ Self-consistency equation m = 1

1 _ —RkWx
Fm(p):p—me “WP - with Z(p,K):/ e ™M dxx .

@ Self-consistency equation m > 1
1 m m—
Fi(p) = —=p"""+xWxp—C
m—1
for some constant C.

Definition (Weak stationary solution)

A weak stationary solution for m > 1 is a bounded, measurable function
e H'(9)

such that
[ (V6" Vot V(W) Vo) de =0
Q

forall ¢ € HY ().
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Characterisation of stationary solutions

Characterization of stationary states(m = 1): TFAE
@ pis a classical stationary solution of Ap + KV - (p)VW % p) =0
@ pisazeroof Fr(p)

@ pis a critical point of F.(p).
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Characterisation of stationary solutions

Characterization of stationary states(m = 1): TFAE
@ pis a classical stationary solution of Ap + KV - (p)VW xp) =0
@ pisazeroof Fr(p)

@ pis a critical point of F.(p).

Characterization of stationary states(m > 1): TFAE
@ pis a weak stationary solution of Ap™ + KV - (pVW x p) =0
@ For every connected component A of its support p satisfies the self-consistency

equation, i.e.,

T kW p = C(A, p)
m—1

@ pis a critical point of ' (p).

= poo = L% is a stationary state for all & > 0.
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The Torus case

Nontrivial solutions to the stationary McKean—Vlasov eq’'n?

@ W ¢ H, needs to be a necessary condition
@ Numerical experiments indicate one, multiple, or possibly infinite solutions
@ What determines the number of nontrivial solutions?
@ Birfurcation analysis of p — Fy(p)
Example: Kuramoto model:

W(x) = —\/%cos(an/L)

2 4 6 8 10

-5 0 5
Bifurcation diagram for the Kuramoto ’
model The clustered solution
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Local bifurcation result m = 1

_1
Z(p, k)

Theorem ( [C.-Gvalani-Pavliotis-Schlichting ARMA *20] )

Fo(p)=p—Tp=p— e ™ with  Z(p, k) :/ e ™™ dxx .
']I‘d

L

Consider F : LX(T¢) x Rso — L2(T$) with F(u, k) = Fx(u + poo) and
W € LX(TY) with L2(T{) the subspace of coordinate-wise even functions.
Assume there exists k™ € Nd, such that:

Q card{k € N : W(k)/O(k) = W(k*)/O(k*)} = 1
Q@ W(k*) <0

[ *
Then, (0, k+) is a bifurcation point of F(u, k) = 0, where, k. = —L;?;f) ) The

branch of solutions (p; , k(s)) has the following form

pi = Poo +swis + 1((s),s) .

fors € (=6,8) and r ~ o(s). Also, k(0) = k., £'(0) =0, and & (0) = 1.
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Local bifurcation result m = 1

1 —kWx . —kWx
Fop)=p—Tp=p— —— e W* th Z = PP dox
(P)=p=Tp=p Z0m)° , with  Z(p, k) /T € X

Theorem ( [C.-Gvalani-Pavliotis-Schlichting ARMA *20] )

Consider F : LX(T¢) x Rso — L2(T$) with F(u, k) = Fx(u + poo) and
W € LX(TY) with L2(T{) the subspace of coordinate-wise even functions.
Assume there exists k™ € Nd, such that:

Q card{k € N : W(k)/O(k) = W(k*)/O(k*)} = 1
Q@ W(k*) <0

L

[ *
Then, (0, k+) is a bifurcation point of F(u, k) = 0, where, k. = —L;?;f) ) The

branch of solutions (p; , k(s)) has the following form

pi = Poo +swis + 1((s),s) .

fors € (=6,8) and r ~ o(s). Also, k(0) = k., £'(0) =0, and & (0) = 1.

Use Crandall-Rabinowitz theorem and Look at higher order Fréchet derivatives of F'
to study structure of the branch
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Local bifurcation result m > 1

Define the map, F : Hg ((2) x Ry — Hj () for n > d/2 which is given by
m m—1 m m—1
F = ——(poo Wxn— =7 [P m— .
(1K) = = (poo + )" + KW k1) =1 l[Poe + a1 (q)

Theorem ( [C.-Gvalani, preprint] )

Consider the map F : H ((Q) x Ry — Hg () for n > d /2 as defined above with
its trivial branch (0, k). Assume there exists k* € N, k # 0 such that the following
two conditions are satisfied

Q@ W(k) <0

d LWy W) |
@ card{ke N k£0: 50 = B3 L =1 |

m—3/2
then (0, k+) is a bifurcation point of (0, k) with k. = —% , there exists a

neigbourhood N of (0, k) and a curve (n(s), k(s)) € N,s € (—4,8),0 > 0 such
that F(n(s), k(s)) = 0. Additionally n(s) has the form

n(s) = sex, + r(sex. , ks), )

where Hr“HS (@) =o(s)ass — 0.
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The Torus case

Examples of birfucations results

@ Kuramoto-type of models: W(x) = —wi(x) ind = 1

satisfying both conditions. Thus we have that k. = v2L
@ For W(x) = % holds
A 5/2
Wik) = L’/ cos(mk)
2V2mk?
satisfying both conditions for odd values of k. Hence, every odd k is birfucation

3 2
point k. = %.

0.5
° W) =-2 ()

Fors > 1: W'(x) € H*(T¢) _
Vk > 0 : conditions (1) and (2) ok E
Infinitely many bifurcation points
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Further examples of bifurcation results

Corollary (Keller—Segel)

Consider the stationary parabolic-elliptic Keller—Segel equation, i.e.,
Wxp=—(—A)"p. Ford < 2ands € (},1], it has smooth solutions and its
trivial branch (peo, k) has infinitely many bifurcation points.




Phase Transition driven by Diffusion/Interaction Ratio
00000000000 e
The Torus case

Further examples of bifurcation results

Corollary (Keller—Segel)

Consider the stationary parabolic-elliptic Keller—Segel equation, i.e.,
Wxp=—(—A)"p. Ford < 2ands € (},1], it has smooth solutions and its
trivial branch (peo, k) has infinitely many bifurcation points.

Corollary (Liquid crystals)

We have the following results for We(x) = |sin(2mx/L)|", £ € N:
® The trivial branch of the Onsager model, W\ (x), has infinitely many bifurcation
points.
@ The trivial branch of the Maiers—Saupe model, W»(x), has exactly one
bifurcation point.
® The trivial branch of the model Wy(x) for £ even has at least f bifurcation
points if g is even and f + % bifurcation points if % is odd.

@ The trivial branch of the model We(x) for € odd has infinitely many bifurcation
points 5;21 is even and at least A# bifurcation points if 2%1 is odd.
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Outline

9 Phase Transition driven by Diffusion/Interaction Ratio

@ Transition Points
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Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers.
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Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers.
Question: When do we get new minimisers?
Definition (Transition point [Chayes-Panferov *10])

A parameter value k. > 0 is said to be a transition point of an energy E,, if it
satisfies the following conditions,

@ For0 < k < Ke: poo is the unique minimiser of E,.(p)
Q For k = Ke: poo is a minimiser of E,.(p)

©Q For k > Ke: 3pi # poo, such that pi. is a minimiser of E.(p)
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Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers.
Question: When do we get new minimisers?
Definition (Transition point [Chayes-Panferov *10])

A parameter value k. > 0 is said to be a transition point of an energy E,, if it
satisfies the following conditions,

@ For0 < k < Ke: poo is the unique minimiser of E,.(p)
Q For k = Ke: poo is a minimiser of E,.(p)

©Q For k > Ke: 3pi # poo, such that pi. is a minimiser of E.(p)

Definition (Continuous and discontinuous transition point)
A transition point k. > 0 is a continuous transition point of Fi, if
@ For k = Ke: poo is the unique minimiser of E..(p)

@ For any family of minimizers {px. # poo }r>x. it holds

limsup ||px = poclly =0

Klke

A transition point k. > 0 which is not continuous is discontinuous.
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Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers.
Question: When do we get new minimisers?
Definition (Transition point [Chayes-Panferov *10])

A parameter value k. > 0 is said to be a transition point of an energy E,, if it
satisfies the following conditions,

@ For0 < k < Ke: poo is the unique minimiser of E,.(p)
Q For k = Ke: poo is a minimiser of E,.(p)

©Q For k > Ke: 3pi # poo, such that pi. is a minimiser of E.(p)

Definition (Continuous and discontinuous transition point)
A transition point k. > 0 is a continuous transition point of Fi, if
@ For k = Ke: poo is the unique minimiser of E..(p)

@ For any family of minimizers {px. # poo }r>x. it holds

limsup ||px = poclly =0

Klke

A transition point k. > 0 which is not continuous is discontinuous.
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Basic properties of transition points, m = 1

Summary of critical points:
@ K, transition point
@ K. bifurcation point

d
@ ry point of linear stability, i.e., ky = —m‘

If ky = arg min W (k) is unique, then x4 = k.. is a bifurcation point.
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Basic properties of transition points, m = 1

Summary of critical points:
@ K, transition point
@ K. bifurcation point

@ ry point of linear stability, i.e., ky = _Wi)/@(k)‘
If ky = arg min W (k) is unique, then x4 = k.. is a bifurcation point.
Results from [Gates-Penrose 1970] and [Chayes-Panferov "10]
@ F, has a transition point x. iff W ¢ H
@ min F, is non-increasing as a function of x

@ If for some k' : poo is no longer the unique minimiser,
then Vi > £’ : poo is no longer a minimizer

@ If k. is continuous, then k. = Ky
Conclusion:
@ To prove a discontinuous transition: Show p is no longer global minimizer at
Ry.
@ To prove a continuous transition:
Sufficient to show that po at x4 is the unique global minimizer.
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Conditions for continuous and discontinuous phase
transition

Theorem ( [C.-Gvalani-Pavliotis-Schlichting ARMA °20] )
Let W(x) € H.

@ [fthere exist (near)-resonating dominant modes:
That is for 6 small enough

W) _ W ik

Kk ke dk e N
{ O(k") ~ rend O(k)

satisfying k% = k> + k¢, then there exists a discontinuous transition point
Ke < Ky.

@ If there is only one dominant unstable mode k*:
For o > 0 small enough holds

aW(k*) < W(k)  forallk # Kk : W(k) <0,

then the transition point K. = Ky = K« IS CONtinuous.
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Transition Points

Conditions for continuous and discontinuous phase

transition

: []
0 I S S
= _
=
1t 2 3 4 5 6 7 8 9 10
k
1 2 83 4 5 6 7 8 9 10
. . k
The near resonating dominant modes
The dominant mode scenario

scenario
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What can we say form > 1?

Can we reproduce the results obtained with linear diffusion?
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What can we say form > 1?

Can we reproduce the results obtained with linear diffusion?

Proposition ( [C.-Gvalani, preprint] )

Assume that W € H . Then F, has a transition point at some k. < Ky where

—3/2
Vampls*

Ry == mingen W(k)

is the point of linear stability. If k. is continuous, then k. = K.
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Transition Points

What can we say form > 1?

Can we reproduce the results obtained with linear diffusion?

Proposition ( [C.-Gvalani, preprint] )
Assume that W € H . Then F, has a transition point at some k. < Ky where

Nt . . e L _
K= i W0 S the point of linear stability. If k. is continuous, then k. = Ky.

Lemma ( [C.-Gvalani, preprint] )

Assume k. is a discontinuous transition point. Then, there exists p.., # poo such that
T (pr.) = Fii (poo), Le., there exists a nontrivial minimiser at k = Ke.




Phase Transition driven by Diffusion/Interaction Ratio
O00000e
Transition Points

What can we say form > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that F}! has a discontinuous transition point form = 1 and k. < Iié.
Then for 1 < m < 1+ € for some ¢ > 0 small enough, F/! has a discontinuous
transition point at k' < Ky
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What can we say form > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that F}! has a discontinuous transition point form = 1 and k. < Iié.
Then for 1 < m < 1+ € for some ¢ > 0 small enough, F/! has a discontinuous

transition point at k' < Ky

Theorem ( [C.-Gvalani, preprint] )

Let W(x) € HS. If there exist (near)-resonating dominant modes:
That is for § small enough

W(K) - W(k) 5
KR K ek e N < 2 4sb=K
K, G{ €N oK) _E;INI} @(k)+

satisfying k = kP + k¢, then there exists a discontinuous transition point r. < ky.
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What can we say form > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that F}! has a discontinuous transition point form = 1 and k. < Iié.
Then for 1 < m < 1+ € for some ¢ > 0 small enough, F/! has a discontinuous

transition point at k' < Ky

Theorem ( [C.-Gvalani, preprint] )

Let W(x) € HS. If there exist (near)-resonating dominant modes:
That is for § small enough

W(K) - W(k) 5
KR K ek e N < 2 4sb=K
K, G{ €N oK) _E;INI} @(k)+

satisfying k = kP + k¢, then there exists a discontinuous transition point r. < ky.

Assume W € H such that 3. is a transition point of 7. Then if m € [2,3], B, is a
discontinuous transition point.
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What can we say form > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that F}! has a discontinuous transition point form = 1 and k. < Iié.
Then for 1 < m < 1+ € for some ¢ > 0 small enough, F/! has a discontinuous
transition point at k' < Ky

Theorem ( [C.-Gvalani, preprint] )

Let W(x) € HS. If there exist (near)-resonating dominant modes:
That is for § small enough

W) W) e
o) <o) 0} =~

KKK € {k’ eN’:

satisfying k = kP + k¢, then there exists a discontinuous transition point r. < ky.

Assume W € H such that 3. is a transition point of 7. Then if m € [2,3], B, is a
discontinuous transition point.

No general conditions for continuous transition points. We give examples of
continuous phase transitions for a large class of potentials for m = 4.
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Conclusions

@ Aggregation-diffusion equations can lead to complicated phase transitions and
bifurcations diagrams.

@ General conditions for continuous or discontinuous phase transitions depending
on the interaction potential.

@ Nonlinear diffusion lead to particular effects: persistence of discontinuous
phase transitions and one parameter families of solutions and bifurcation points.
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