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Problems description

Keywords:

continuum thermodynamics

instability vs stability in the theory of PDEs/infinite dimensional dynamical systems

small scales vs large scales vs mesoscales

open systems - allow heat transfer and mass transfer (in general, nonhomogenous
Dirichlet or Neumann data)

rigorous analysis (weak/strong/classical solutions)

description of the dissipative structures in simple geometries

rigorous constructive methods for the description of the dissipative structures in general
geometries

general methods for general dynamical systems
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Problems description

Instabilities

Instability Field

Kelvin–Helmholtz instability Stability of shearing flow

Kruskal–Shafranov instability Plasma physics

Peratt instability Plasma physics

Plateau–Rayleigh instability Stability of jets and drops

Rayleigh–Bénard instability
Natural convection, Rayleigh–Bénard 

convection

Rayleigh–Taylor instability
Instability created by density 

startification

Richtmyer–Meshkov instability Plasma physics, Astrophysics

Saffman–Taylor instability Flow in porous medium

Taylor–Caulfield instability Stratified shear flows

Taylor–Couette instability Flow in rotating cylinder

Tollmien–Schlichting instability Wave instability in shearing flows

Velikhov instability Plasma physics (non-equilibrium MHD)

Velikhov-Chandrasekhar instability
Stability of rotating fluid in magnetic 

field

Weibel instability Plasma physics

Instability Field

Benjamin–Feir instability Surface gravity waves

Buneman instability Plasma physics

Chandrasekhar–Donnelly instability Taylor-Couette instability of Helium II

Cherenkov instability Plasma physics

Chromo-Weibel instability Plasma physics

Crow instability Aerodynamics

Darrieus–Landau instability Stability of propagating flame

Dean instability Stability of flow in a curved pipe

D'Yakov–Kontorovich instability Stability of a plane shock

Faraday instability Vibrating fluid surfaces

Farley–Buneman instability Plasma instability

Görtler instability
Stability of flow along a concave boundary 

layer

Holmboe instability Stratified shear flows

Jeans instability Stability of interstellar gas clouds

Figure: Instabilities
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Problems description

Pipe flow

Figure: Reynolds experiment.

∂tv + div(v ⊗ v)− 1

Re
∆v = ∇p,

div v = 0

Re < 2300 laminar flow

Re > 2900 turbulent flow

Buĺıček (Charles University) (in)stability September 21, 2020 4 / 14



Problems description

Thermal convection

Figure: Rayleigh-Bénard convection

div v = 0,

%ref ∂tv + %ref div(v ⊗ v) = −∇p + µ∆v + %ref (1− α(θ − θref ))b,
%ref cp∂tθ + %ref cp div(vθ) = κ∆θ.

Oberbeck–Boussinesq approximation

The central idea is that the thermal expansivity of
the fluid is neglected everywhere except in the
buoyancy term in the balance of momentum

appears when θbot � θtop
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Solution - proposals

Wrong/not proper models

thermal convection: experimental data gives evidence to the so-called
non-Oberbeck–Boussinesq effects, i.e., for large temperature gradient the
Oberbeck–Boussinesq system does give adequate prediction

pipe flow: the original Reynolds measurement is no longer valid, or more precisely, doing
the same experiment at the same place nowdays gives much less critical Reynolds
number; on the other hand for very long pipes and for experimental setting that is able to
“almost” avoid disturbances coming from outside, the critical Reynolds number is much
higher; Navier–Stokes system can be derived from Boltzmann equation for a fluctuation
that is close to the uniform Maxwellian state, i.e., close to the equilibrium

one should not blindly use Navier–Stokes or Oberbeck–Boussinesq systems in the
far-from-equilibrium settings
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Solution - proposals

Wrong/not proper boundary conditions - pipe flow

usually the theory for dynamical systems is done for “conservative” boundary conditions

outflow: how to chose outflow bc - Dirichlet/do nothing/Neumann/infinite pipe?

pipe with several outflows: is there a non-heuristic way how to prescribe boundary
conditions?

walls: no-slips/partial slip/stick-slip/dynamical slip for velocity? Neumann vs Dirichlet
for temperature?
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Solution - proposals

Wrong/not proper concepts/methods

linearized stability: prediction on small scales, also proper for long scales provided that
the linearised operator is normal - not the case e.g. for pipe flow

Taylor–Couette flow: linearized stability leads to very good predictions - evenmore leads to
very good description of the dynamical structures
pipe flow: the spectrum of linearized operator is complex, it is numerically conjectured
that the spectrum is “far” from “crossing” zero, hence it predicts stability, but it is not the
case

concept of (exponential) attractor: perfect theoretical object for fluid flow with
conservative boundary conditions but for long scales; due to disturbances it may not
attract all solution at all; typically we do not know the structure (typical structures in the
attractor); typically we just know its dynamics can be described by huge system of ODEs
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Solution - proposals

Proposals - models

thermal convection: to keep fluid thermally expansible and mechanically incompressible
- i.e., the model “between” compressible Navier–Stokes equations and
Oberbeck–Boussinesq system; study of asymptotic limits - one must start from proper
pressure-temperature-density relation

pipe with several outflows: choose boundary condition such that it minimize the
entropy production

temperature must be taken into account since for large Reynolds number there is
significant heat transport
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Solution - proposals

Proposals - models

thermal convection

α(θ)(∂tθ + div(θv)) = div v ,

%ref ∂tv + %ref div(v ⊗ v) = −∇p + µ∆v +
µ

3
∇(div v) + %ref b,

−θα(θ)(∂tp + div(pv)) = κ∆θ + 2µ|DDDδ|2 −
%ref cp
α

div v

pipe flow minimize the entropy production

η(v) :=

ˆ
|DDD(v)|2

θ

over all solutions fulfilling Navier–Stokes–Fourier system with prescribed inflow and wall
boundary conditions - choose proper geometry on the outflow!
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Solution - proposals

Proposals - concepts

different topology: instead of tracking v(t) point-wisely for t to track the dynamics of
the whole trajectory {v(τ); τ ∈ (t, t + `)} - advantage: no regularity needed, concept of
weak solution is sufficient - disadvantage: trajectories do not form a linear space

proper Lyapunov functionals for open systems, e.g. based on relative energies/entropies,
no regularity needed a priori

regularity theory can help in justification of heuristic analysis
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Solution - proposals

Proposals - concepts

numerically assisted proofs: e.g., for linearization in pipe flow

finite dimensional approximations: e.g.,

∂tx = Lx +N(x), where L =

[
− 1

Re 1
0 − 1

Re

]
and N(x) = x1

[
0 −1
1 0

] [
x1

x2

]
.

Here, Re denotes the analogue of the Reynolds number. The base solution is x = 0, and
the linear operator L is not normal and its eigenvalues are negative for all Re. The
nonlinear term N fulfills N(x) · x = 0, which mimics the convective term in the
Navier–Stokes setting.

if Re < 2, then the base solution x = 0 is the only stationary solution.
if Re > 2, then there exist multiple stationary solutions, and the base state x = 0 is still
stable.
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Goals

Goals

G1: qualitative analysis of relevant models and boundary conditions for far-from-equilibrium
dynamics,

G2: rigorous description of dynamical systems on mesoscales,

G3: rigorous constructive methods for the description of the dissipative structures in the
dynamical systems.
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Goals

Goals in terms of pictures

Figure: Rayleigh-Bénard convection

Description of structures - why, when, how?
Description of structures for weak solutions
Rigorous qualitative justification of transition from stable to instable regimes
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