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Problems description

Keywords:
@ continuum thermodynamics
e instability vs stability in the theory of PDEs/infinite dimensional dynamical systems
@ small scales vs large scales vs mesoscales
@ open systems - allow heat transfer and mass transfer (in general, nonhomogenous

Dirichlet or Neumann data)

rigorous analysis (weak/strong/classical solutions)

@ description of the dissipative structures in simple geometries

@ rigorous constructive methods for the description of the dissipative structures in general
geometries

@ general methods for general dynamical systems
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Problems description

Instabilities

Instability
Kelvin—Helmholtz instability
Kruskal-Shafranov instability
Peratt instability
Plateau—Rayleigh instability

Rayleigh-Bénard instability

Rayleigh-Taylor instability

Richtmyer—Meshkov instability
Saffman-Taylor instability
Taylor—Caulfield instability
Taylor-Couette instability
Tollmien-Schlichting instability

Velikhov instability

Velikhov-Chandrasekhar instability

Weibel instability

Field
Stability of shearing flow
Plasma physics
Plasma physics
Stability of jets and drops
Natural convection, Rayleigh-Bénard
convection
Instability created by density
startification
Plasma physics, Astrophysics
Flow in porous medium
Stratified shear flows
Flow in rotating cylinder
‘Wave instability in shearing flows

Plasma physics (non-equilibrium MHD)!

Stability of rotating fluid in magnetic
fiel

Plasma physics

Instability
Benjamin-Feir instability
Buneman instability

Chandrasekhar-Donnelly instability

Cherenkov instability
Chromo-Weibel instability
Crow instability
Darrieus—Landau instability
Dean instability
D'Yakov—Kontorovich instability
Faraday instability
Farley-Buneman instability

Gortler instability

Holmboe instability
Jeans instability

(in)stability

Field
Surface gravity waves
Plasma physics

Taylor-Couette instability of Helium Il

Plasma physics

Plasma physics

Aerodynamics

Stability of propagating flame
Stability of flow in a curved pipe
Stability of a plane shock
Vibrating fluid surfaces

Plasma instability

Stability of flow along a concave boundary
layer

Stratified shear flows

Stability of interstellar gas clouds
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Pipe flow

I
V Lam inar flow
. 1
Orv +div(v® v) — —Av = Vp,
Re
Turbuient flow le v = 0
@ Re < 2300 laminar flow
Turbulent flow (obzerved with an electric spark) o Re > 2900 turbulent flow

Figure: Reynolds experiment.
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Problems description

Thermal convection

divv =0,

@ Oberbeck—Boussinesq approximation

AN ﬁ ﬁ ﬁ »r ‘ 0ref OtV + 0rer div(v @ v) = =V p + uAv + grer (1 — (6 — Orer)) b,

() (J () (J 0ref CpOt + prer cp div(vO) = KAS.

ﬁ ﬁ ﬁ ﬁ ﬁ @ The central idea is that the thermal expansivity of
the fluid is neglected everywhere except in the
buoyancy term in the balance of momentum

Figure: Rayleigh-Bénard convection @ appears when Opot > Ot
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Wrong/not proper models

o thermal convection: experimental data gives evidence to the so-called
non-Oberbeck—Boussinesq effects, i.e., for large temperature gradient the
Oberbeck—Boussinesq system does give adequate prediction

o pipe flow: the original Reynolds measurement is no longer valid, or more precisely, doing
the same experiment at the same place nowdays gives much less critical Reynolds
number; on the other hand for very long pipes and for experimental setting that is able to
“almost” avoid disturbances coming from outside, the critical Reynolds number is much
higher; Navier—Stokes system can be derived from Boltzmann equation for a fluctuation
that is close to the uniform Maxwellian state, i.e., close to the equilibrium

@ one should not blindly use Navier-Stokes or Oberbeck—Boussinesq systems in the
far-from-equilibrium settings
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Solution - proposals

Wrong/not proper boundary conditions - pipe flow

@ usually the theory for dynamical systems is done for “conservative” boundary conditions

e outflow: how to chose outflow bc - Dirichlet/do nothing/Neumann/infinite pipe?

o pipe with several outflows: is there a non-heuristic way how to prescribe boundary
conditions?

e walls: no-slips/partial slip/stick-slip/dynamical slip for velocity? Neumann vs Dirichlet
for temperature?
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Wrong/not proper concepts/methods

o linearized stability: prediction on small scales, also proper for long scales provided that
the linearised operator is normal - not the case e.g. for pipe flow

e Taylor—Couette flow: linearized stability leads to very good predictions - evenmore leads to
very good description of the dynamical structures
o pipe flow: the spectrum of linearized operator is complex, it is numerically conjectured
that the spectrum is “far” from “crossing” zero, hence it predicts stability, but it is not the
case
e concept of (exponential) attractor: perfect theoretical object for fluid flow with
conservative boundary conditions but for long scales; due to disturbances it may not
attract all solution at all; typically we do not know the structure (typical structures in the
attractor); typically we just know its dynamics can be described by huge system of ODEs
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Proposals - models

o thermal convection: to keep fluid thermally expansible and mechanically incompressible
- i.e., the model “between” compressible Navier—Stokes equations and
Oberbeck—Boussinesq system; study of asymptotic limits - one must start from proper
pressure-temperature-density relation

@ pipe with several outflows: choose boundary condition such that it minimize the
entropy production

e temperature must be taken into account since for large Reynolds number there is
significant heat transport
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Solution - proposals

Proposals - models

o thermal convection
a(0)(0:0 + div(fv)) = div v,
Oref OtV + Oref diV(V & V) =—-Vp+ plAv+ %V(le V) + orerb,

—0a(0)(9:p + div(pv)) = kA + 24| Ds|? — 2P div v
@
o pipe flow minimize the entropy production
D(v)|?
o) = [P

over all solutions fulfilling Navier—Stokes—Fourier system with prescribed inflow and wall
boundary conditions - choose proper geometry on the outflow!
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Proposals - concepts

o different topology: instead of tracking v(t) point-wisely for t to track the dynamics of
the whole trajectory {v(7);7 € (t,t+ ¢)} - advantage: no regularity needed, concept of
weak solution is sufficient - disadvantage: trajectories do not form a linear space

@ proper Lyapunov functionals for open systems, e.g. based on relative energies/entropies,
no regularity needed a priori

@ regularity theory can help in justification of heuristic analysis
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Solution - proposals

Proposals - concepts

o numerically assisted proofs: e.g., for linearization in pipe flow

o finite dimensional approximations: e.g.,

Orx = Lx+N(x) where L= “re and N(x)=x 0 —1fix
tA — ) — 0 _% = X1 1 0 X .

Here, Re denotes the analogue of the Reynolds number. The base solution is x = 0, and
the linear operator L is not normal and its eigenvalues are negative for all Re. The
nonlinear term N fulfills N(x) - x = 0, which mimics the convective term in the
Navier—Stokes setting.

e if Re < 2, then the base solution x = 0 is the only stationary solution.
e if Re > 2, then there exist multiple stationary solutions, and the base state x = 0 is still
stable.
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Goals

G1: qualitative analysis of relevant models and boundary conditions for far-from-equilibrium
dynamics,

G2: rigorous description of dynamical systems on mesoscales,

G3: rigorous constructive methods for the description of the dissipative structures in the
dynamical systems.
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Goals in terms of pictures

Figure: Rayleigh-Bénard convection

@ Description of structures - why, when, how?
@ Description of structures for weak solutions
@ Rigorous qualitative justification of transition from stable to instable regimes
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