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CcT

Continuum Thermodynamics (CT)

partial mass balances:
Or0; + div (gjv;) = E;V:Rl MiviR, =: r;
total mass balance:
Oro + div (ov) = 0; 0=1,0i, OV=1)_, 0V

total momentum balance:

O(ov) + div (ov ® v — S) = pb; ob=>",0ib;

internal energy balance:

O¢(0e) + div (gev +q) = Vv : S + om;



CcT

Class-I Model - Balance Equations

partial mass balances:

Oroi + div (oiv +ji) = ri; ji=oi(vi—v), > ;ji=0
total mass balance:

dr0 + div (ov) = 0; Q=220 OV =10V
total momentum balance:

Ot(ov) + div (ov ® v — S) = pb; ob=>",0ib;

internal energy balance:

O¢(0e) + div (gev + q) = Vv : S + om; om = :ji-bj



CcT

Class-1 Model - Constitutive Modeling

Variables: g1,...,0n, v, g€

class-I model requires constitutive equations for:

jia S7 q, Ra
We consider non-polar fluids, hence the stress S is symmetric: S =S'.

Universal Principles:

@ material frame indifference

@ entropy principle (second law of thermodynamics)



CcT

The Entropy Principle

The entropy principle comprises the following postulates?:

1) There is an entropy/entropy-flux pair (gs, ®) as a material
dependent quantity, satisfying the principle of material frame
indifference (s is an objective scalar, ® is an objective vector).

2) The pair (gs, ®) satisfies the balance equation
Ot(0s) + div (psv + ®) = ¢,
where the entropy production ( satisfies

¢ >0 for every thermodynamic process.

Equilibria are characterized by { = 0.

1Bothe, Dreyer: Acta Mech. 226, 1757-1805 (2015).



CcT

The Entropy Principle

3) Every admissible entropy flux is such that the entropy production
becomes a sum of binary products according to

C = ZNuma

where N,,, P, denote objective quantities of negative, respectively
positive parity?.

4) Each binary product in the entropy production describes a
dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

NyPm >0 for every m and any thermodynamic process.

2 . . . . . .
parity +/- iff physical dimension s appears even/odd times



CcT

The Entropy Principle

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multicomponent diffusion,
heat conduction, chemical reaction, viscous flow.

6) The entropy density is given as

os = os(oe, 01, .., on)
with a strictly concave material function, strictly increasing in pe.

The absolute temperature T and chemical potentials y; are defined

via
1 Oos pi  Oos

T Ooe’ T 0o




CcT

Entropy Principle evaluated

Calculation of the entropy production:
Introduce the mechanical pressure as P := —Ltr(S)

= S = —PIl+ S° with S° the traceless part of S.

Entropy production:
¢ =0t(ps) +div(gsv+ )= ... =

N . N
iJi 1 .
div(¢—?_+§u7})—T(P—i—ge—gsT—;g;u;)dlvv
N Ng
1 1_, o wi b; 1
+q V7+7S D —;J,'(V7—7)—7;R‘3Aa



CcT

Entropy Principle evaluated

N
: e 4 i ji
Choice of entropy flux: ¢ = T Z

Reduced entropy production:

N
1 1., . 1
C:q.V7+7S :D *7(P+QE*QST*;Zlé):ﬂl)leV
N Nr
Hi bi 1
S (Vo T) -7 2 R,

Dissipative Mechanisms:

heat flux, shear, compression/expansion, relative motion, chemical reactions
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© Fick-Onsager Closure



Fick-Onsager

Thermodynamics of Irreversible Processes (T.I.P.)

Constitutive equations required for:

q, SO’ Pa ji7 Ra

N N—1
under the constraint Zj,- = 0. Eliminate one flux, say jy = — Zj,-.
i=1 i=1
Entropy production:
11 1 N
g:q-V? + 750 :D° — 7(P+ge— gsT—Zg;u;)divv

i=1

= pi —pn  bi—by 1 &
_;Jl(v T - T )_?;RaAa



Fick-Onsager
Closure within T.I.P.

Closure: Linear in the co-factors
1
@ heat flux: q= aV7, a>0

@ shear stress: S°=2yD°, >0
N

© compression: P+ pe — posT — Z oipi = —Adivw, A >0
i=1

N-1
: - Hji—pn by —by
O relative motion: j;i = — El Lj(VH = - g = ), [Ly] s-p.d.
J:

Nr

@ reactions: R,=— Z lavAp,  [lap] s.p.d.
b=1



Fick-Onsager
Closure within T.I.P.

Closure: Linear in the co-factors
1
@ heat flux: q= aV7, a>0

@ shear stress: S°=2yD°, >0
N

© compression: P+ pe — posT — Z oipi = —Adivw, A >0
i=1

N-1
: S pji—pn by —by
O relative motion: j; = — El Lj(VH = - g = ). [Ly] s-p.d.
J:

Nr

@ reactions: R,=— Z lavAp,  [lap] s.p.d.
b=1



Fick-Onsager
Closure within T.I.P.

Multicomponent diffusion within T.I.P.:

j,:_ZLU(v“f_T“N—bf'_TbN) i=1,... N-1



Fick-Onsager
Closure within T.I.P.

Fick-Onsager diffusion within T.l.P. — Pros and Cons:

_|_
+

thermodynamically consistent closure

explicit expressions for the diffusion fluxes

incorporation of flux-constraint requires dense matrix [L;]

phenomenological coefficients Lj show strong dependence
on composition

constant coefficients L;; lead to possible loss of positivity

no non-trivial diagonal closure possible
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Maxwell-Stefan

The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving forces and friction forces:

X'J,'—X,'J'
di= = fyxixglv—v)=-y == D
J#i j#i Y

d; the thermodynamic driving forces, ¢, = JLv umel + 2iivp — (b —b)

c =Y, ¢ total concentration

x; = ¢;/c molar fractions

J; = ji/M; molar mass fluxes

bjj = 1/f;j the Maxwell-Stefan diffusivities

Origin of the Maxwell-Stefan Equations:

@ James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

@ Josef Stefan: Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).



Maxwell-Stefan
The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving forces and friction forces:

X'J,'—X,'J'
di= = fyxixglv—v)=-y == D
J#i J#i Y

d; the thermodynamic driving forces, ¢, = ZLv,umo! + 2iivp — (b —b)
c =Y, ¢ total concentration

x; = ¢;/c molar fractions

J; = ji/M; molar mass fluxes

Djj = 1/f; the Maxwell-Stefan diffusivities

Maxwell-Stefan Equations embedded into T.I.P. ?



Maxwell-Stefan
Resistance Form for Diffusion Fluxes

Entropy production due to relative motion:

N
i b;
CDIFF = — E o - (V2 — =)
P T T

with diffusion velocities u; = v; — v.
Shuffle g; and exploit Zl’.vzlj,- =0:

N wi b A
Coirr = — » v 0 (V= — =+ =)
’_Z:; T T T

holds for any A.



Maxwell-Stefan
Resistance Form for Diffusion Fluxes

Special choice of Lagrange parameter A :

/\z—%—l—b—l—(e—l—g)VInT

in order to have Y., d; = 0. This yields
N
Corrr = — »_u; - d;
i=1
with the so-called (generalized) thermodynamic driving forces

1
T b_ yi(oe + p)V—=

oM Yig,  bi—b
dI_leT TVP Oi T



Maxwell-Stefan
Resistance Form for Diffusion Fluxes

Linear closure using resistance form:

N-1 N—1
(pIFF = _Z(UI—UN)'di = d;= —Zﬁj(uj—u,\,)
i=1 =1

with a symmetric, positive definite matrix [7].
Extension to N x N format (positive semi-definite) such that

N N
ZTU:O and ZTU:O
i=1 j=1

yields

N
d,‘:ZTij(uifuj) for /':17...,/\/.
j=1



Maxwell-Stefan
Maxwell-Stefan Equations

Assumption of binary type interactions:
T,:,':T,:,'(T,Q,',‘Qj)%o if oj — 0+ or Qj—>0+

This implies symmetry of [r;] ! (evaluate ;7 (u; —u;) = 0)
= 1= —fyoie; fori# jwith fy = £, f; =f;(0i, 0/, T).

Note: f;

ii = f;i > 0 is often assumed. Then [7;;] has the requested props.

J

Yields the Maxwell-Stefan equations:

N wiyi b, —b 1
— fyvii — vii)) = o VE — £Vp — pi—— — hiV =
;Zl ofi(yjii = yilj) = oV = ZVp—oi— =

with h; = yi(e + p/ o).



Maxwell-Stefan
Maxwell-Stefan Equations

Isothermal Maxwell-Stefan equations in molar-based form:

N smol smol mol
X" — Xij 1 Vi b;—b
SN TR = gvhi - ZLUp g
Pk “ RT RT p—e RT

k=1

where ¢; = Q;/M,‘, Xj = C,'/C with ¢ = Ek Ck, janl :j,'/M,', /.L;HOI = M,'/j,,'
and Maxwell-Stefan diffusivities Djy.



Maxwell-Stefan
Maxwell-Stefan Equations

Multicomponent diffusion via M-S Equations — Pros and Cons:

+  thermodynamically consistent closure

4+ Pk regular with moderate dependence on composition

4+ local-in-time strong wellposedness with positivity

(numerical) flux computation requires inversion of Maxwell-Stefan
matrix (in every time step and every mesh cell).

—  equivalent MS-form of a diagonal closure not clear
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@ A Novel Closure Scheme



New Closure
Novel Closure Scheme

Aim: new closure for thermodynamically consistent diffusion fluxes

@ which is direct, avoiding the inversion of the Maxwell-Stefan
equations

@ which allows for a diagonal closure in which only minimal
cross-effects are present

@ which displays the structure which is necessary to guarantee
consistency with total mass conservation

N
Question:® how to incorporate the constraint Z oju; = 0 into
i=1

N
i m
— Sy oV = —(u,RVE)?
(DIFF ;:1u oV = (U =)

3From here on b; = b for simplicity



New Closure
Novel Closure Scheme

Consider diffusion velocities against an undetermined reference velocity v*:

* *
u, =v;,—v.

Then
N

* § *
u; = u,' - ykuk.

k=1
In short hand notation with e = (1,...,1)T:
U=PU* with the projection P=1—e®y.
Then

1 [t T [k
ks — _(PU",RVE) — (U PTRV-E
RCDIFF (PU", VRT> (u*, VRT>

and there is no constraint on U*!



New Closure
A First Closure

A first closure in this scheme:
*— _APTRV L — PAPTRV- A
U v T = U \Y T

with positive definite and symmetric A. This yields the mass diffusion
fluxes "
J=-RPAP'RV_ -
v RT

2s—1

Physical dimensions: [A] # m = A is not a diffusion matrix!

but note: A diagonal closure would be consistent!



New Closure
Symmetric Form of Binary Product

Diffusive entropy production in molar-based form:  (u*°! := M; y;)

mol

1 — U By 2
ECDIFF = —(U 7vaﬁ> = —(U",CPLqaV RT>
with C = diag(cy, . . ., cn), Pmol = MPM~L, M = diag(My, . .., My).

Diffusive entropy production with symmetrized binary product:

i _ 1/2 1% y1/2 IimOl
RCCDIFF = —(X"/“U", X PmolvRT>

with X = diag(xi,...,xn), xi = ¢i/c.



New Closure
The Novel Closure

Final closure in the novel scheme:

mol

u
RT

X72u* = —DXY2P,q V
with symmetric D being positive definite on {{/x}*.

This yields the diffusion velocities

mol

- —px2px¥2p,, vk
u oV RT

Physical dimensions: [D] = m?s~! = D is a diffusion matrix!



New Closure
The Novel Closure

Splitting into (diagonal) main and (binary) cross-diffusion:
D =D + XY2KX/2
with diagonal D and symmetric, off-diagonal K.

This yields the mass diffusion fluxes

_ _pT N
J=-P R(D+KX)MPVRT

Remaining degrees of freedom concerning D, resp. K !

The additional condition Ke = 0 determines K uniquely.
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Positivity Requirements

MS-closure yields positive solutions due to structure of fluxes:
ji = *df(Tv 0, y)le + oi fi(T7 0, VQ, Y, VY),

where di(T, 0,y) = d°(T,0,y1, -, Yi—1, Yi+1, -, yn) > 0 as y; — 0+,
the f; are non-singular.

Same structure for Onsager coefficients requires:
Lix = Iy Vi#k with regular [y
Structure of Onsager coefficients:
Li = oi(ai b + yx Qi)

where a;, Qi are regular, Q = [Qi] is symmetric and off-diagonal.



The Different Closures

Fick-Onsager diffusion fluxes:

FO [ .
L=LT p.d. on {e}*, Le =0, A diagonal, Q" = Q off-diagonal.
Maxwell-Stefan diffusion fluxes:
MS _ L . _R-
J = LVRT with L=B™R
B~ group-inverse of B, Bjxy = —yify , Bii = ZJ-%,-yjf,-j, BY p.d. on {e}—.
Novel form of diffusion fluxes:
J = -LVE  with L=PTR(D+KX)MP
D = diag(d;), K = KT, Ke = 0, K; = 0, D+ XY/2KX'/2 p.d. on {{/x}*.



P

Equivalence of the Different Closures

Theorem. (B./Druet. Theorem 7.1 and 7.2 in arXiv:2008.05327)

1. The Fick-Onsager, the Maxwell-Stefan and the new closure are
(algebraically) equivalent.

2. The following are equivalent:
@ Fick-Onsager closure such that L > dyPTMRP,
@ Maxwell-Stefan closure such that BY > dy PTM-1Y P,

© Novel closure such that
b b
inf (D+X:KXZ)—, ) > d,
el Vbl o/ = %

where dy denotes a strictly positive, regular function depending
only on (T, p).
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@ Core-Diagonal Closure: Multicomponent Darken Equation
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Core-Diagonal Closure

The novel closure allows for a (core-)diagonal special case:
J= _PTRDMPV-L
RT

with D = diag(d;), R = diag(e;), M = diag(M;), P=1-e®y.

In molar-based form:

mol

u
RT

ol = - Sxgm|DPTCV
Y

How does the Maxwell-Stefan form of this case look like?



Darken
Core-Diagonal Closure

Maxwell-Stefan equations in molar form:

mol

_ BmolJmol _ PTC 1%
v RT’
with
Xk

B_r_nol _ X
i = .
Y Dk

for i # j, B,-?‘Ol =
i ki

Insertion into core-diagonal closure yields:

Jmol — [l o SX ® m] D BmolJmol.
Inversion yields e

XQ® Dile) Jmol'

Bmol mol _ Dfl | —
J ( (x,Dle)



Darken
Multicomponent Darken Equation

Maxwell-Stefan form of core-diagonal closure:

1 d7tdt

=k (i£k)
_ Dic YL xid
l.e.
N X .
Pi(T,c,x) = > Tex di(T,c,x)di(T,c,x) (i # k).
/:1 9 )

Multicomponent Darken equations*:

N

N
D, — DiA,self Dk,self 1 o Z X| 1 _ Z Xj
ik = ) - ) - 1
Drnix Dmix -1 Dl,self Di,self DXJ_>

Jj=1 “iself

with D,X’Szfl the diffusivity of (dilute) species 7 in solvent species j.

4Liu, Vlugt, Bardow: Ind. End. Chem. Res. 50, 10350-10358 (2011).
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Final Conclusions

Remarks and Outlook:

@ Novel closure yields explicit fluxes together with several advantages
of the Maxwell-Stefan closure

@ Positivity requirements lead to structural information which yields
equivalence of the different closures

@ Novel approach allows for (core-)diagonal closure which provides a
rigorous fundament for the multicomponent Darken equation

@ The structural information from the new closure can help to model
the compositional dependence of the Pj.

@ The core-diagonal special case might stimulate the mathematical
analysis.



Final Conclusions

Thank You for Your Attention !
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