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Continuum Thermodynamics (CT)

partial mass balances:

∂t%i + div (%ivi ) =
∑NR

a=1 Miν
a
i Ra =: ri

total mass balance:

∂t%+ div (%v) = 0; % =
∑

i %i , %v =
∑

i %ivi

total momentum balance:

∂t(%v) + div (%v ⊗ v − S) = %b; %b =
∑

i %ibi

internal energy balance:

∂t(%e) + div (%ev + q) = ∇v : S + %π; %π =
∑

i ji · bi
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Class-I Model - Balance Equations

partial mass balances:

∂t%i + div (%iv + ji ) = ri ; ji = %i (vi − v),
∑

i ji = 0

total mass balance:

∂t%+ div (%v) = 0; % =
∑

i %i , %v =
∑

i %ivi

total momentum balance:

∂t(%v) + div (%v ⊗ v − S) = %b; %b =
∑

i %ibi

internal energy balance:

∂t(%e) + div (%ev + q) = ∇v : S + %π; %π =
∑

i ji · bi
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Class-I Model - Constitutive Modeling

Variables: %1, . . . , %N , v, %e

class-I model requires constitutive equations for:

ji , S, q, Ra

We consider non-polar fluids, hence the stress S is symmetric: S = ST.

Universal Principles:

1 material frame indifference

2 entropy principle (second law of thermodynamics)
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The Entropy Principle

The entropy principle comprises the following postulates1:

1) There is an entropy/entropy-flux pair (%s,Φ) as a material
dependent quantity, satisfying the principle of material frame
indifference (%s is an objective scalar, Φ is an objective vector).

2) The pair (%s,Φ) satisfies the balance equation

∂t(%s) + div (%sv + Φ) = ζ,

where the entropy production ζ satisfies

ζ ≥ 0 for every thermodynamic process.

Equilibria are characterized by ζ = 0.

1
Bothe, Dreyer: Acta Mech. 226, 1757-1805 (2015).
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The Entropy Principle

3) Every admissible entropy flux is such that the entropy production
becomes a sum of binary products according to

ζ =
∑
m

NmPm,

where Nm, Pm denote objective quantities of negative, respectively
positive parity2.

4) Each binary product in the entropy production describes a
dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

NmPm ≥ 0 for every m and any thermodynamic process.

2
parity +/- iff physical dimension s appears even/odd times
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The Entropy Principle

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multicomponent diffusion,
heat conduction, chemical reaction, viscous flow.

6) The entropy density is given as

%s = %s(%e, %1, . . . , %N)

with a strictly concave material function, strictly increasing in %e.

The absolute temperature T and chemical potentials µi are defined
via

1

T
:=

∂%s

∂%e
, −µi

T
:=

∂%s

∂%i
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Entropy Principle evaluated

Calculation of the entropy production:

Introduce the mechanical pressure as P := − 1
3 tr(S)

⇒ S = −PI + S◦ with S◦ the traceless part of S.

Entropy production:
ζ = ∂t(%s) + div (%sv + Φ) = . . . =

div
(
Φ− q

T
+

N∑
i=1

µi ji
T

)
− 1

T

(
P + %e − %sT −

N∑
i=1

%iµi

)
div v

+q · ∇ 1

T
+

1

T
S◦ : D◦ −

N∑
i=1

ji ·
(
∇µi

T
− bi

T

)
− 1

T

NR∑
a=1

RaAa
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Entropy Principle evaluated

Choice of entropy flux: Φ =
q

T
−

N∑
i=1

µi ji
T

Reduced entropy production:

ζ = q · ∇ 1

T
+

1

T
S◦ : D◦ − 1

T

(
P + %e − %sT −

N∑
i=1

%iµi

)
div v

−
N∑
i=1

ji ·
(
∇µi

T
− bi

T

)
− 1

T

NR∑
a=1

RaAa

Dissipative Mechanisms:

heat flux, shear, compression/expansion, relative motion, chemical reactions
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Thermodynamics of Irreversible Processes (T.I.P.)

Constitutive equations required for:

q, S◦, P, ji , Ra

under the constraint
N∑
i=1

ji = 0. Eliminate one flux, say jN = −
N−1∑
i=1

ji .

Entropy production:

ζ = q · ∇ 1

T
+

1

T
S◦ : D◦ − 1

T

(
P + %e − %sT −

N∑
i=1

%iµi

)
div v

−
N−1∑
i=1

ji ·
(
∇µi − µN

T
− bi − bN

T

)
− 1

T

NR∑
a=1

RaAa
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Closure within T.I.P.

Closure: Linear in the co-factors

1 heat flux: q = α∇ 1

T
, α ≥ 0

2 shear stress: S◦ = 2ηD◦, η ≥ 0

3 compression: P + %e − %sT −
N∑
i=1

%iµi = −λdiv v, λ ≥ 0

4 relative motion: ji = −
N−1∑
j=1

Lij
(
∇µj − µN

T
− bj − bN

T

)
, [Lij ] s.p.d.

5 reactions: Ra = −
NR∑
b=1

labAb, [lab] s.p.d.
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Closure within T.I.P.

Closure: Linear in the co-factors

1 heat flux: q = α∇ 1

T
, α ≥ 0

2 shear stress: S◦ = 2ηD◦, η ≥ 0

3 compression: P + %e − %sT −
N∑
i=1

%iµi = −λdiv v, λ ≥ 0

4 relative motion: ji = −
N−1∑
j=1

Lij
(
∇µj − µN

T
− bj − bN

T

)
, [Lij ] s.p.d.

5 reactions: Ra = −
NR∑
b=1

labAb, [lab] s.p.d.
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Closure within T.I.P.

Multicomponent diffusion within T.I.P.:

ji = −
N−1∑
j=1

Lij
(
∇µj − µN

T
− bj − bN

T

)
i = 1, . . . ,N − 1

Extend [Lij ] to N × N such that
N∑
i=1

Lij = 0 and
N∑
j=1

Lij = 0.

Fick-Onsager diffusion:

ji = −
N∑
j=1

Lij
(
∇µj

T
− bj

T

)
i = 1, . . . ,N.
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Closure within T.I.P.

Fick-Onsager diffusion within T.I.P. – Pros and Cons:

+ thermodynamically consistent closure

+ explicit expressions for the diffusion fluxes

− incorporation of flux-constraint requires dense matrix [Lij ]

− phenomenological coefficients Lij show strong dependence
− on composition

− constant coefficients Lij lead to possible loss of positivity

− no non-trivial diagonal closure possible
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The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving forces and friction forces:

di = −
∑
j 6=i

fij xi xj(vi − vj) = −
∑
j 6=i

xjJi − xiJj

c −Dij

di the thermodynamic driving forces, di =
xi
RT
∇pµ

mol
i +

φi−yi
%RT

∇p − yi
%RT

(bi − b)

c =
∑

i ci total concentration
xi = ci/c molar fractions
Ji = ji/Mi molar mass fluxes

−Dij = 1/fij the Maxwell-Stefan diffusivities

Origin of the Maxwell-Stefan Equations:

James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

Josef Stefan: Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).
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The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving forces and friction forces:

di = −
∑
j 6=i

fij xi xj(vi − vj) = −
∑
j 6=i

xjJi − xiJj

c −Dij

di the thermodynamic driving forces, di =
xi
RT
∇pµ

mol
i +

φi−yi
%RT

∇p − yi
%RT

(bi − b)

c =
∑

i ci total concentration
xi = ci/c molar fractions
Ji = ji/Mi molar mass fluxes

−Dij = 1/fij the Maxwell-Stefan diffusivities

Maxwell-Stefan Equations embedded into T.I.P. ?
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Resistance Form for Diffusion Fluxes

Entropy production due to relative motion:

ζDIFF = −
N∑
i=1

%iui ·
(
∇µi

T
− bi

T

)
with diffusion velocities ui = vi − v.

Shuffle %i and exploit
∑N

i=1 ji = 0:

ζDIFF = −
N∑
i=1

ui · %i
(
∇µi

T
− bi

T
+

Λ

T

)
holds for any Λ.
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Resistance Form for Diffusion Fluxes

Special choice of Lagrange parameter Λ :

Λ = −∇p
%

+ b +
(
e +

p

%

)
∇ lnT

in order to have
∑N

i=1 di = 0. This yields

ζDIFF = −
N∑
i=1

ui · di

with the so-called (generalized) thermodynamic driving forces

di = %i∇
µi

T
− yi

T
∇p − %i

bi − b

T
− yi (%e + p)∇ 1

T
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Resistance Form for Diffusion Fluxes

Linear closure using resistance form:

ζDIFF = −
N−1∑
i=1

(ui − uN) · di ⇒ di = −
N−1∑
j=1

τij(uj − uN)

with a symmetric, positive definite matrix [τij ].

Extension to N × N format (positive semi-definite) such that

N∑
i=1

τij = 0 and
N∑
j=1

τij = 0

yields

di =
N∑
j=1

τij (ui − uj) for i = 1, . . . ,N.
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Maxwell-Stefan Equations

Assumption of binary type interactions:

τij = τij(T , %i , %j)→ 0 if %i → 0+ or %j → 0+

This implies symmetry of [τij ] ! (evaluate
∑

i,j τij (ui − uj) = 0)

⇒ τij = − fij%i%j for i 6= j with fij = fji , fij = fij(%i , %j ,T ).

Note: fij = fji > 0 is often assumed. Then [τij ] has the requested props.

Yields the Maxwell-Stefan equations:

−
N∑
i=1

%fij(yj ji − yi jj) = %i∇
µi

T
− yi

T
∇p − %i

bi − b

T
− hi∇

1

T

with hi = yi (e + p/%).
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Maxwell-Stefan Equations

Isothermal Maxwell-Stefan equations in molar-based form:

−
N∑

k=1

xk jmol
i − xi jmol

k

−Dik
= ci∇

µmol
i

RT
− yi

RT
∇p − %i

bi − b

RT
,

where ci = %i/Mi , xi = ci/c with c =
∑

k ck , jmol
i = ji/Mi , µ

mol
i = Miµi

and Maxwell-Stefan diffusivities −Dik .
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Maxwell-Stefan Equations

Multicomponent diffusion via M-S Equations – Pros and Cons:

+ thermodynamically consistent closure

+ −Dik regular with moderate dependence on composition

+ local-in-time strong wellposedness with positivity

− (numerical) flux computation requires inversion of Maxwell-Stefan
− matrix (in every time step and every mesh cell).

− equivalent MS-form of a diagonal closure not clear
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Novel Closure Scheme

Aim: new closure for thermodynamically consistent diffusion fluxes

which is direct, avoiding the inversion of the Maxwell-Stefan
equations

which allows for a diagonal closure in which only minimal
cross-effects are present

which displays the structure which is necessary to guarantee
consistency with total mass conservation

Question:3 how to incorporate the constraint
N∑
i=1

%iui = 0 into

ζDIFF = −
N∑
i=1

ui · %i∇
µi

T
= −〈U , R∇µ

T
〉 ?

3From here on bi = b for simplicity
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Novel Closure Scheme

Consider diffusion velocities against an undetermined reference velocity v∗:

u∗i = vi − v∗.
Then

ui = u∗i −
N∑

k=1

yku∗k .

In short hand notation with e = (1, ..., 1)T:

U = P U∗ with the projection P = I− e⊗ y.

Then
1

R
ζDIFF = −〈P U∗,R∇ µ

RT
〉 = −〈U∗,PT R∇ µ

RT
〉

and there is no constraint on U∗!
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A First Closure

A first closure in this scheme:

U∗ = −A PT R∇ µ

RT
⇒ U = −P A PT R∇ µ

RT

with positive definite and symmetric A. This yields the mass diffusion
fluxes

J = −R P A PT R∇ µ

RT

Physical dimensions: [A] 6= m2 s−1 ⇒ A is not a diffusion matrix!

but note: A diagonal closure would be consistent!
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Symmetric Form of Binary Product

Diffusive entropy production in molar-based form: (µmol
i := Mi µi )

1

R
ζDIFF = −〈U∗,R P∇ µ

RT
〉 = −〈U∗,C Pmol∇

µmol

RT
〉

with C = diag(c1, . . . , cN), Pmol = MPM−1, M = diag(M1, . . . ,MN).

Diffusive entropy production with symmetrized binary product:

1

Rc
ζDIFF = −〈X1/2 U∗,X1/2 Pmol∇

µmol

RT
〉

with X = diag(x1, . . . , xN), xi = ci/c .
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The Novel Closure

Final closure in the novel scheme:

X1/2 U∗ = −D X1/2 Pmol∇
µmol

RT

with symmetric D being positive definite on {
√

x}⊥.

This yields the diffusion velocities

U = −P X−1/2 D X1/2 Pmol∇
µmol

RT

Physical dimensions: [D] = m2 s−1 ⇒ D is a diffusion matrix!
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The Novel Closure

Splitting into (diagonal) main and (binary) cross-diffusion:

D = D + X1/2 K X1/2

with diagonal D and symmetric, off-diagonal K.

This yields the mass diffusion fluxes

J = −PT R
(
D + K X

)
M P∇ µ

RT

Remaining degrees of freedom concerning D, resp. K !

The additional condition Ke = 0 determines K uniquely.
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Positivity Requirements

MS-closure yields positive solutions due to structure of fluxes:

ji = −di (T , %, y)∇%i + %i fi (T , %,∇%, y,∇y),

where di (T , %, y)→ d0
i (T , %, y1, .., yi−1, yi+1, .., yN) > 0 as yi → 0+,

the fi are non-singular.

Same structure for Onsager coefficients requires:

Lik = lik yk ∀i 6= k with regular lik

Structure of Onsager coefficients:

Lik = %i
(
ai δik + ykQik

)
,

where ai , Qik are regular, Q = [Qik ] is symmetric and off-diagonal.
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The Different Closures

Fick-Onsager diffusion fluxes:

JFO = −L∇ µ

RT
with L = R

(
A + QY

)
L = LT p.d. on {e}⊥, L e = 0, A diagonal, QT = Q off-diagonal.

Maxwell-Stefan diffusion fluxes:

JMS = −L∇ µ

RT
with L = B−R

B− group-inverse of B, Bik = −yi fik , Bii =
∑

j 6=i yj fij , BY p.d. on {e}⊥.

Novel form of diffusion fluxes:

J = −L∇ µ

RT
with L = PTR

(
D + KX

)
MP

D = diag(di ), K = KT, Ke = 0, Kii = 0, D+ X1/2KX1/2 p.d. on {
√

x}⊥.
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Equivalence of the Different Closures

Theorem. (B./Druet. Theorem 7.1 and 7.2 in arXiv:2008.05327)

1. The Fick-Onsager, the Maxwell-Stefan and the new closure are
(algebraically) equivalent.

2. The following are equivalent:

1 Fick-Onsager closure such that L ≥ d0 PT M R P,

2 Maxwell-Stefan closure such that B Y ≥ d0 PT M−1 Y P,

3 Novel closure such that

inf
b∈{
√

x}⊥
〈(D + X

1
2 K X

1
2 )

b

|b|
,

b

|b|
〉 ≥ d0,

where d0 denotes a strictly positive, regular function depending
only on (T , %).
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Core-Diagonal Closure

The novel closure allows for a (core-)diagonal special case:

J = −PT RDM P∇ µ

RT

with D = diag(di ), R = diag(%i ), M = diag(Mi ), P = I− e⊗ y.

In molar-based form:

Jmol = − [I− c

%
x⊗m]DPT C∇µmol

RT

How does the Maxwell-Stefan form of this case look like?



CT Fick-Onsager Maxwell-Stefan New Closure ⇔ Darken

Core-Diagonal Closure

Maxwell-Stefan equations in molar form:

−BmolJmol = PTC ∇µmol

RT
,

with
Bmol
ij = − xi

−Dij
for i 6= j , Bmol

ii =
∑
k 6=i

xk
−Dik

.

Insertion into core-diagonal closure yields:

Jmol = [I− c

%
x⊗m]DBmolJmol.

Inversion yields

BmolJmol = D−1
(

I− x⊗D−1e

〈x,D−1e〉

)
Jmol.
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Multicomponent Darken Equation

Maxwell-Stefan form of core-diagonal closure:

1

−Dik
=

d−1
i d−1

k∑N
l=1 xld

−1
l

(i 6= k)

i.e.

−Dik(T , c , x) =
N∑
l=1

xl
dl(T , c , x)

di (T , c , x) dk(T , c , x) (i 6= k).

Multicomponent Darken equations4:

−Dik =
Di,self Dk,self

Dmix
,

1

Dmix
=

N∑
l=1

xl
Dl,self

,
1

Di,self
=

N∑
j=1

xj

D
xj→1
i,self

with D
xj→1
i,self the diffusivity of (dilute) species i in solvent species j .

4
Liu, Vlugt, Bardow: Ind. End. Chem. Res. 50, 10350-10358 (2011).
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Final Conclusions

Remarks and Outlook:

Novel closure yields explicit fluxes together with several advantages
of the Maxwell-Stefan closure

Positivity requirements lead to structural information which yields
equivalence of the different closures

Novel approach allows for (core-)diagonal closure which provides a
rigorous fundament for the multicomponent Darken equation

The structural information from the new closure can help to model
the compositional dependence of the −Dik .

The core-diagonal special case might stimulate the mathematical
analysis.
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Final Conclusions

Thank You for Your Attention !
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